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1 Introduction

Let ξ := ξ(ω) (s×1) be a random vector defined on a probability space
(Ω, S, P ); F, PF the distribution function and the probability measure
corresponding to the random vector ξ. Let, moreover, g0(x, z), g1

0(y, z)
be functions defined on Rn × Rs and Rn1 × Rs; fi(x, z), gi(y), i =
1, . . . , m functions defined on Rn × Rs and Rn1 ; h := h(z) (m × 1)
a vector function defined on Rs, h

′
(z) = (h1(z), . . . , hm(z)); X ⊂

Rn, Y ⊂ Rn1 be nonempty sets. Symbols x (n× 1), y := y (x, ξ) (n1 ×
1) denote decision vectors. (Rn denotes the n–dimensional Euclidean
space, h

′
a transposition of the vector function h.)

Stochastic programming problems with recourse (in a rather general
setting) can be introduced as the following problem:

Find

ϕ(F ) = min
x∈X

EF {g0(x, ξ) + min
{y∈Y : gi(y)≤hi(ξ)−fi(x, ξ), i=1, ..., m}

g1
0(y, ξ)},

(1)
where EF denotes the operator of mathematical expectation corre-
sponding to F.

A special case of the problem (1) is a stochastic programming prob-
lem with linear recourse, where Y = Rn1 and, furthermore,

ϕ(F ) = min
x∈X

EF {g0(x, ξ) + min
{y∈Rn1 : Wy=h−Tx, y≥0}

q
′
y} (2)
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with q := q(ξ) (n1×1), T := T (ξ) (m×n), W := W (ξ) (m × n1), m ≤
n1, m ≤ n (generally) random vectors and matrices.

If we denote

Q(x, ξ) = min
{y∈Y : gi(y)≤hi(ξ)−fi(x, ξ), i=1, ..., m}

g1
0(y, ξ)},

f0(x, ξ) = g0(x, ξ) + Q(x, ξ),
(3)

then evidently the problem (1) is covered by a more general problem:
Find

ϕ(F ) = inf{EF f0(x, ξ)|x ∈ X}, (4)

with f0(x, z) arbitrary real valued function defined on Rn ×Rs.
In applications very often the “underlying” distribution function F

has to be replaced by an empirical distribution function FN . Evidently,
then the solution is sought with respect to the “empirical” problem:

Find
ϕ(FN ) = inf{EF N f0(x, ξ)|x ∈ X}. (5)

If X (F ), X (FN ) denote the optimal solution sets of the problems (1)
and (5), then under rather general assumptions ϕ(FN ), X (FN ) are
“good” stochastic estimates of ϕ(F ), X (F ) (see e.g. [1], [4], [5], [12],
[13]). There were introduced assumptions guaranteing the consistency,
asymptotic normality and convergence rate. Especially, it means in the
last case that

P{ω : Nβ|ϕ(F )− ϕ(FN )| > t} −→(N−→∞) 0 for t > 0, β ∈ (0,
1
2
).

(6)
To obtain the relation (6), the Hoeffding inequality (see e.g. [2], [5]),
large deviation (see e.g. [4]), Talagrand approach (see e.g. [10]) and the
stability results (see e.g. [11]) have been employed. To obtain new as-
sertions, we employ stability results [8] based on the Wasserstein metric
determined by L1 norm in Rs. Consequently, our results are based on
the assumption of thin tails of one–dimensional marginal distribution
functions Fi(z), i = 1, . . . , s corresponding to F (z).

2 Some Auxiliary Assertions

Let P(Rs) denote the set of all Borel probability measures on Rs, s ≥ 1;
M1(Rs) = {P ∈ P(Rs) :

∫
Rs

‖z‖1
sP (dz) < ∞}, ‖ · ‖1

s the L1 norm in Rs.

First, we recall a little generalized result of [7].
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Proposition 1. Let G be an arbitrary s–dimensional distribution func-
tion such that PG ∈ M1(Rs). Let, moreover, PF ∈ M1(Rs), f0(x, z)
be defined on Rn ×Rs. If for every x ∈ X, f0(x, z) is a Lipschitz func-
tion of z ∈ Rs with the Lipschitz constant L(x) (corresponding to L1

norm), then

|EF f0(x, ξ)−EGf0(x, ξ)| ≤ L(x)
s∑

i=1

+∞∫

−∞
|Fi(zi)−Gi(zi)|dzi for x ∈ X.

(Symbols Fi, Gi, i = 1, . . . , s denote one–dimensional distribution
functions corresponding to F, G.)

Evidently, Proposition 1 reduces (from the mathematical point of
view) stability results considered with respect to s–dimensional distri-
bution functions to one–dimensional case. The next assertion has been
proven in [8].
Proposition 2. Let s = 1, t > 0, R̄ > 0. If

1. PF is absolutely continuous with respect to the Lebesgue measure
on R1,

2. there exists ψ(N, t) := ψ(N, t, R̄) such that the empirical distri-
bution function FN fulfils for N = 1, 2, . . . the relation

P{ω : |F (z)− FN (z)| > t} ≤ ψ(N, t) for every z ∈ (−R̄, R̄),

then for t
4R̄

< 1, N = 1, 2, . . . it holds that

P{ω :
∞∫
−∞

|F (z)− FN (z)|dz > t} ≤

(12R̄
t + 1)ψ(N, t

12R̄
, R̄) + P{ω :

−R̄∫
−∞

F (z)dz > t
3}+

P{ω :
∞∫
R̄

(1− F (z))dz > t
3} + 2NF (−R̄) + 2N(1− F (R̄)).

(7)

To recall the next auxiliary assertion (proven in [9]), let ξ̄, η̄ be
random values defined on (Ω, S, P ). We denote by F(ξ̄, η̄), Fξ̄, Fη̄ the
distribution functions of the random vector (ξ̄, η̄) and marginal distri-
bution functions of ξ̄ and η̄.

Lemma. Let ζ̄ = ξ̄ η̄ := ξ̄(ω)η̄(ω), Fζ̄ denote the distribution function
of ζ̄. If
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1. PFξ̄
, PFη̄ are absolutely continuous with respect to the Lebesgue

measure on R1 (we denote by fξ̄, fη̄ the probability densities cor-
responding to Fξ̄, Fη̄),

2. there exist constants C ξ̄
1 , C ξ̄

2 , C η̄
1 , C η̄

2 > 0 and T
′
> 0 such that

fξ̄(z) ≤ C ξ̄
1 exp{−C ξ̄

2 |z|} for z ∈ (−∞, −T
′
)

⋃
(T

′
, ∞),

fη̄(z) ≤ C η̄
1 exp{−C η̄

2 |z|} for z ∈ (−∞, −T
′
)

⋃
(T

′
, ∞),

then, there exist constants C ζ̄
1 , C ζ̄

2 > 0, T̄ > 1 such that for z > T̄

Fζ̄(−z) ≤ C ζ̄
1

C ζ̄
2

exp{−C ζ̄
2

√
z}, (1− Fζ̄(z)) ≤ C ζ̄

1

C ζ̄
2

exp{−C ζ̄
2

√
z}.

3 Convergence Rate

Let {ξi}∞i=1 be a sequence of independent s–dimensional random vectors
with a common distribution function F, FN be determined by {ξi}N

i=1.

3.1 General Case

Theorem 1. [8] Let t > 0, X be a compact set. If

1. PFi , i = 1, . . . , s are absolutely continuous with respect to the
Lebesgue measure on R1 (we denote by fi, i = 1, . . . , s the proba-
bility densities corresponding to Fi),

2. there exist constants C1, C2 > 0 and T > 0 such that for i =
1, . . . , s

fi(zi) ≤ C1 exp{−C2|zi|} for zi ∈ (−∞, −T )
⋃

(T, ∞),

3. f0(x, z) (defined by the relation (3)) is a uniformly continuous, Lip-
schitz (with respect to L1 norm) function of z ∈ Rs, the Lipschitz
constant L is not depending on x ∈ X,

then

P{ω : Nβ|ϕ(FN )− ϕ(F )| > t} −→(N−→∞) 0 for β ∈ (0,
1
2
). (8)

Remarks.

1. Some cases, under which f0(x, z) (defined by (3)) fulfils the as-
sumption 3 of Theorem 1, are introduced e.g. in [6].
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2. If Q(x, z) corresponds to the case (2) (with q and simultaneously
with at least one of h or T random), then evidently, the assumption
3 of Theorem 1 has not to be fulfilled (for more details see e.g. [3]).

3.2 Stochastic Programming Problems with Linear Recourse

Considering the linear case (2), we assume:

A.1 a. W is a deterministic matrix,
b. W is a complete recourse matrix (for the definition of the com-

plete recourse matrix see e.g. [3]),
A.2 there exists u ∈ Rm such that u

′
W ≤ q a.s.

Theorem 2. [8] Let t > 0, X be a compact set, the assumptions A.1,
A.2 and the assumptions 1, 2 of Theorem 1 be fulfilled. If

1.
f0(x, ξ) = g0(x, ξ) + Q(x, ξ)

Q(x, z) = min
{y∈Rn1 : Wy=h−Tx, y≥0}

q
′
y},

2. g0(x, z) is a uniformly continuous, Lipschitz (with respect to L1

norm) function of z ∈ Rs, the Lipschitz constant L is not depending
on x ∈ X,

then

P{ω : Nβ|ϕ(F )− ϕ(FN )| > t} −→(N−→∞) 0 for t > 0, β ∈ (0,
1
2
).

Proof. Employing the assertion of Propositions 1, 2, Lemma and the
technique employed in [8] we obtain the assertion of Theorem 2. ¤

4 Conclusion

The paper deals with the convergence rate of the optimal value of the
empirical estimates in the case of the stochastic programming with
recourse. It is known that if X is a convex, nonempty, compact set and
either f0(x, z) a strongly convex (with a parameter ρ > 0) function on
X or some growth conditions ([8], [12]) are fulfilled, then also

P{ω : Nβ‖x(FN )− x(F ))‖2 > t} −→(N−→∞) 0 for t > 0, β ∈ (0,
1
2
).

(9)
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To see the conditions under which Q(x, z) is a strongly convex function
on X see e.g. [11].
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