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Abstract

The aim of this contribution is to find a common framework for parametric characterization of aggregation functions exploiting the
notions of unipolar and bipolar parametric characterization, and also unify the ideas of global and local parametric characterization.
We revise the known approaches to classification of aggregation functions in special classes in this framework, and also propose
some new parameters in classes of averaging, conjunctive and disjunctive aggregation functions.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The choice of an appropriate function for aggregating input data in practical applications can be a complicated
task. Usually, the possible choice is constrained by the character of the discussed problem. For example, for modeling
conjunctive problems (proposals of conjunctors in many-valued logics, intersections of fuzzy sets, building joint
distributions from marginal ones, etc.) some special types of conjunctors are required, such as triangular norms,
copulas, etc. Expected properties of an aggregation function [3,15], as, for example, anonymity (symmetry), unanimity
(idempotency), conjunctive, disjunctive or averaging behavior, etc., determine the framework we are working in.

In order to choose an appropriate aggregation function, we should be able to measure the degree of the required
properties or their defect. In that case one assigns to aggregation functions some values—parameters—characterizing
the properties of aggregation functions. The process of assigning parameters to aggregation functions will be called
parametric characterization of aggregation functions. Note that characterization of an aggregation function A by means
of some value v(A) can philosophically have two meanings. Either v(A) is given a priori, and then it is a parameter
of A (e.g., we estimate v(A) from real data and then fit A to given data to preserve the computed estimation v(A)),
or v(A) is computed from some formula exploiting the knowledge of A. Both approaches are frequently exploited,
e.g., in mathematical statistics when dealing with expected value or variance of random variables, and then these
characterizing values are called parameters. Therefore we also adopt this terminology and throughout the paper we
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will discuss the parameters of aggregation functions, though sometimes it would be more appropriate to call them
descriptors (or characteristics) of aggregation functions.

If an aggregation function A possesses the property P , the defect of P should be dP (A) = 0, and if the property P is
completely missing we will ask dP (A) = 1, compare [2]. For example, the defect of the idempotency of an aggregation
function A (i.e., the property A(x, . . . , x) = x for each x ∈ [0, 1]) from a given class of aggregation functions can be
expressed by the formula

dI (A) = k sup
x∈[0,1]

|x − A(x, . . . , x)|,

where k is an appropriate normalizing constant.
The degree of a property P for an aggregation function A is often determined as the defect of the “dual” property

P∗. For example, the degree of asymmetry mAs(A) of an aggregation function A can be expressed as its defect of
symmetry. E.g., for binary aggregation functions we can introduce the degree of asymmetry by the formula

mAs(A) = k sup
(x,y)∈[0,1]2

|A(x, y) − A(y, x)|,

where k is again an appropriate normalizing constant depending on the class of aggregation functions we are working
with. Recall that for the class C(2) of all binary copulas the constant k has the value k = 3 because supC∈C(2) sup(x,y)∈[0,1]2
|C(x, y) − C(y, x)| = 1

3 , see [14]. Evidently, in the case of all binary aggregation functions it holds k = 1. Observe
that the constant k has the value k = 1 also in the class of all (binary) conjunctors, though as a consequence of partial
symmetry forced by the neutral element e = 1 there is no conjunctor K satisfying mAs(K ) = 1.

In the above mentioned situations the degree or the defect of a property P was introduced as the satisfaction degree
expressing to what extent an aggregation function satisfies the definition of the considered property.

If a class A of aggregation functions contains an extremal element E (with respect to the ordering of aggregation
functions) possessing a propertyP , then this extremal element can be chosen as the prototype, and all other members of
the class can be compared to it. The degree of the property P of the members of the class can be measured by means of
a unipolar measure of similarity, i.e., a function � : A → [0, 1], such that �(E) = 1 (0 is attained by the other extremal
element ofA if such an element exists) and with the property |E − A|� |E − B| ⇒ �(A)��(B) for all A, B ∈ A. The
values of � express similarity between aggregation functions of the considered class and the prototype with respect to
property P . An example of a unipolar measure of similarity (in the class of averaging aggregation functions) is, e.g.,
the measure of the degree of orness [27] with prototypeMax, or, in the dual case, the measure of the degree of andness
with prototypeMin.

In classes of aggregation functions with the greatest and smallest elements A and A, respectively, which possess a
property P in two dual forms (e.g., increasing and decreasing functional dependence) and where exists an element O
representing total absence of that property (e.g., independence), a function measuring the difference of aggregation
functions from the element O (a central element of the class) can be defined. The range of such function is the interval
[−1, 1]; for the central element O its value is zero, the values −1 and 1 are usually attained for the extremal elements
of the class only. The functions of this type will be called bipolar measures of dissimilarity. A non-trivial example of
a bipolar measure of dissimilarity (with respect to the product copula � as the central element) is, e.g., the Spearman
rho, a well-known measure of association introduced in statistics [23].

Although in special classes of aggregation functions, for example, in the class of OWA operators, root-power
operators, triangular norms, copulas, etc., certain parameters expressing the degree of an investigated property were
already introduced, a systematic approach to the parametric characterization of aggregation functions is missing. The
aim of this contribution is to find a common framework for parametric characterization of aggregation functions, revise
the known approaches to classification of special types of aggregation functions in this framework, and propose some
new parameters in classes of conjunctive, disjunctive and averaging aggregation functions or their subclasses. Briefly,
this paper brings the state-of-art overview of parametric characterization of aggregation functions.

The paper is organized as follows. In the next section we review several known approaches to the classification of
aggregation functions in special classes of aggregation functions. In Section 3 we will deal with unipolar parametric
characterization. Main attention will be paid to the classes of averaging, conjunctive and disjunctive aggregation
functions, we introduce two types of idempotency measures for conjunctive (disjunctive) aggregation functions. In
Section 4 a new approach to the global and local parametric characterization of aggregation functions is presented, as
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well as its generalization—a mixed approach. In Section 5 we briefly discuss bipolar parametric characterization of
aggregation functions. Finally, some concluding remarks are given.

2. A review of some known approaches

As mentioned above, in special classes of aggregation functions certain parameters expressing the degree of some
propertyP have already been introduced. For example, for OWAoperators Yager [27] defined themeasure of the degree
of orness/andness, expressing the possibility of an OWA operator to stand as an operator for disjunction/conjunction.
Recall that an n-ary OWA operator (n�2) is the function M ′

w : [0, 1]n → [0, 1] given by

M ′
w(x1, . . . , xn) =

n∑
i=1

wi x
′
i ,

where w = (w1, . . . , wn) is a weighting vector with wi ∈ [0, 1],
∑n

i=1 wi = 1, and (x ′
1, . . . , x

′
n) is a non-decreasing

permutation of the input n-tuple (x1, . . . , xn). The measure of the degree of orness of M ′
w was defined by

mor(M
′
w) =

n∑
i=1

i − 1

n − 1
wi . (1)

Aggregation functions Min and Max are OWA operators with weighting vectors wMin = (1, 0, . . . , 0), wMax =
(0, . . . , 0, 1). Evidently, mor(Min) = 0, mor(Max) = 1, and for any other OWA operator mor(M ′

w) ∈]0, 1[. Note that
to a given value mor(M ′

w) ∈ ]0, 1[ an OWA operator can be assigned uniquely only for n = 2. For distinguishing n-ary
OWA operators with n�3 an additional parameter, the entropy, was introduced. Usually, for a given degree of orness,
an operator with maximal entropy is chosen [27]. The measure of the degree of andness is a dual notion, and it holds
mand(M ′

w) = 1 − mor(M ′
w).

Another distinguished class of aggregation functions is the class of root-power operators (Ap)p∈[−∞,∞]. For a fixed
n ∈ N, and p ∈] − ∞, 0[∪]0, ∞[, the n-ary root-power operator Ap : [0, 1]n → [0, 1] is defined by

Ap(x1, . . . , xn) =
(
1

n

n∑
i=1

x p
i

)1/p

,

and the limit operators are A0 = G (the geometric mean), A−∞ = Min and A∞ = Max. Evidently, A1 is the arithmetic
mean M.

For measuring the degree of disjunctive/conjunctive behavior of these operators Dujmović [5] proposed the concepts
of local orness/andness and mean local orness/andness. E.g., the mean local orness of Ap was defined by∫

[0,1]n

Ap(x) − Min(x)
Max(x) − Min(x)

dx,

and this value was later again studied as the orness average value in the class of all averaging (mean) operators by
Salido and Murakami [24], see also [8,20–22].

In [6] Dujmović characterized root-power operators by the mean value, defined for an n-ary operator Ap by

m(Ap) =
∫
[0,1]n

Ap(x1, . . . , xn) dx1 . . . dxn, (2)

and he explicitly showed how to compute some of the values m(Ap). For example, m(A1) = 1
2 , m(A−∞) = 1/(n + 1),

m(A∞) = n/(n + 1) and m(A0) = (n/(n + 1))n . The family (Ap)p∈[−∞,∞] is increasing and continuous with respect
to the parameter p, and for any fixed n ∈ N and � ∈ [1/(n + 1), n/(n + 1)], there is a unique parameter p ∈ [−∞, ∞]
such that m(Ap) = �. Therefore, the mean value for root-power operators is a strong parameter. Based on the mean
value, Dujmović [7] introduced the global orness/andness, initially called the disjunction/conjunction degree. For
example, the global orness was defined by

�g(Ap) = m(Ap) − m(Min)

m(Max) − m(Min)
= (n + 1)m(Ap) − 1

n − 1
. (3)
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Another known parametric characterization concerns triangular norms (t-norms for short). For the definition of a t-
norm and basic properties of t-norms we refer, e.g., to [13]. In [29] Yager et al. studied possible generalizations of “and”
operator for conjunction in fuzzy logics. They proposed to classify t-norms with respect to their value at the “fuzziest”
point (0.5, 0.5), i.e., with respect to the value T (0.5, 0.5), and to compare them to the t-norm TM, TM(x, y) = min{x, y}.
It is clear that the normed value �(T ) = T (0.5, 0.5)/TM(0.5, 0.5) = 2 T (0.5, 0.5) is equal to 1 not only for T = TM,
but also for all t-norms T for which the point 0.5 is the idempotent element. And, on the other hand, the value �(T )
is equal to zero for all t-norms with T (0.5, 0.5) = 0, as, for example, for the Łukasiewicz t-norm TL or the drastic
product TD, thus �(T ) is a weak parameter. This method of comparing t-norms is not enough sensitive; t-norms with
the same value �(T ) can be essentially different. However, in parametrized families of strict t-norms, for example,
in the Hamacher, Frank, Aczél–Alsina or Dombi families, parameters �(T ) distinguish all single members of the
family [29].

3. Unipolar parametric characterization of aggregation functions

Consider an n-ary aggregation function A, n�2, i.e., a function A : [0, 1]n → [0, 1] with the properties

(A1) A(0, . . . , 0) = 0, A(1, . . . , 1) = 1;
(A2) A(x1, . . . , xn)� A(y1, . . . , yn) for all (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n such that xi � yi , i ∈ {1, . . . , n}.

From the monotonicity of A and boundary conditions (A1) it follows that the mean value m(A),

m(A) =
∫
[0,1]n

A(x1, . . . , xn) dx1 . . . dxn, (4)

can be introduced for each Borel measurable n-ary aggregation function A. Since now, we will assume that each
discussed aggregation function is Borel measurable (and we will not mention this fact explicitly), though there exist
peculiar non-measurable aggregation functions, see, e.g., [12].

The integral in (4) is computed over the whole domain, thus the value m(A) is a kind of a global parameter assigned
to A. For the weakest and strongest aggregation functions Aw and As, respectively, which are defined by

Aw(x) =
{
1 if x = (1, . . . , 1),
0 otherwise,

As(x) =
{
0 if x = (0, . . . , 0),
1 otherwise,

we have m(Aw) = 0 and m(As) = 1. Obviously, m(A) = 0 if, and only if, A = Aw a.e., and m(A) = 1 if, and only if,
A = As a.e.. Fixing the dimension n, for each weighted arithmetic mean Mw it holds m(Mw) = 1

2 , further, m(Min) =
1/(n + 1), m(Max) = n/(n + 1), the mean value for the drastic product TD (the weakest t-norm) is m(TD) = 0, and
for the drastic sum SD (the strongest t-conorm) m(SD) = 1. Moreover, for the product t-norm TP and the Łukasiewicz
t-norm TL it holds m(TP) = 1/2n , m(TL) = 1/(n + 1)!

Note that we will respect the notations of functions usual in special classes of aggregation functions. For example,
the function whose value at any point (x, y) ∈ [0, 1]2 is min{x, y}, is denoted by TM if it is considered as a t-norm,
and by Min if it is considered in a more general framework as an aggregation function. Similarly, the notation of the
function defined by max{x, y} is either SM (t-conorm) orMax (aggregation function), and the notation of the function
defined by max{x + y − 1, 0} is either TL (the Łukasiewicz t-norm) orW (copula). Moreover, we will not indicate the
arity of arguments under considerations explicitly up to special cases when we stress the actual value of n. Though the
usual notation for associative functions is related to their binary form, we will use the same notation also for their n-ary
forms.

Formula (3) can be further generalized. In each subclass A of n-ary aggregation functions with the smallest and
greatest elements A and A, respectively, one can introduce a global parameter as the normalized mean value by

m̃(A) = m(A) − m(A)

m(A) − m(A)
(5)

or by

m̃∗(A) = m(A) − m(A)

m(A) − m(A)
. (6)
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Note that if inA there is only one extremal element then the previous formulae can be modified by using inf or sup of
the set {m(B)|B ∈ A} instead of m(A) and m(A), respectively.

It holds m̃(A) = 1, m̃(A) = 0, and conversely for m̃∗. The functions m̃, m̃∗ : A → [0, 1] defined by (5) and (6) are
unipolar measures of similarity, mentioned in Introduction, with prototypes A and A, respectively. The values m̃(A) and
m̃∗(A) are global parameters assigned toA. Evidently, they are complementary, m̃(A)+m̃∗(A) = 1. If Ad is the standard
dual aggregation function to A ∈ A, i.e., Ad(x1, . . . , xn) = 1 − A(1 − x1, . . . , 1 − xn) for all (x1, . . . , xn) ∈ [0, 1]n ,
then m(Ad) = 1 − m(A), and if A is closed under duality, then it holds

m̃(Ad) = 1 − m̃(A) = m̃∗(A).

Clearly, if Ad = A, that is, if A is a self-dual function (symmetric sum [25]), then necessarily m(A) = m̃(A) =
m̃∗(A) = 0.5.

In the next section, we will discuss the normalized mean value of aggregation functions given by (5) in classes
Aav,Ac,Ad, i.e., in classes of averaging, conjunctive and disjunctive aggregation functions, respectively, and give the
interpretation of the obtained global parameters in each case.

3.1. Unipolar parametric characterization in the class of averaging aggregation functions

In the class Aav of averaging aggregation functions, i.e., aggregation functions characterized by the property
Min� A�Max, formula (5) leads to

m̃av(A) = m(A) − m(Min)

m(Max) − m(Min)
= (n + 1)m(A) − 1

n − 1
. (7)

This characterization of averaging aggregation functions provides the comparison of A ∈ Aav to the aggregation
function Max, and expresses the degree of similarity between A and Max, the basic operator for disjunction. In the
class Aav the function m̃av : Aav → [0, 1] is a unipolar measure of similarity with prototypeMax. It will be called the
global disjunction measure and in what follows denoted by GDM, i.e.,

GDM(A) = (n + 1)
∫
[0,1]n A(x1, . . . , xn) dx1 . . . dxn − 1

n − 1
, A ∈ Aav, (8)

compare with [7,19,24].

Remark 1. Though formulae (3) and (7) are essentially the same, and in the case of OWA operators (7) reduces to (1),
formulae (1) and (3) were introduced for special classes of idempotent aggregation functions only. Marichal [18,19]
has adopted Dujmović’s formula to the Choquet integrals. In general, formula (7) for averaging aggregation functions
was first considered by Salido and Murakami [24].

Note that the complementary function m̃∗
av in the class Aav is a unipolar measure of similarity with prototype Min.

It will be called the global conjunction measure and denoted by GCM,

GCM(A) = n − (n + 1)
∫
[0,1]n A(x1, . . . , xn) dx1 . . . dxn

n − 1
, A ∈ Aav.

Again, for OWA operators it holds GCM(A) = mand(A).

Example 1. An interesting family of averaging aggregation functions is formed by k-medians [4,9,10], for k ∈ [0, 1].
The k-medians as n-ary aggregation functions are defined by

Medk(x1, . . . , xn) = med(x1, k, x2, k, . . . , k, xn).

The global disjunctive measure of n-ary k-median has the value

GDM(Medk) = (1 − k)n+1 − kn+1 + (n + 1)k − 1

n − 1
.
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To compute the mean value m(Medk) recall that

Medk(x) =
⎧⎨⎩
Max(x) if x ∈ D1,

Min(x) if x ∈ D2,

k if x ∈ D3,

where D1 = [0, k]n , D2 = [k, 1]n\{(k, . . . , k)} and D3 = [0, 1]n\(D1 ∪ D2). Then∫
D1

Medk(x) dx = kn+1 n

n + 1
,

∫
D2

Medk(x) dx = k(1 − k)n + (1 − k)n+1 1

n + 1
,

∫
D3

Medk(x) dx = k(1 − kn − (1 − k)n),

thus

m(Medk) = kn+1 n

n + 1
+ (1 − k)n+1 1

n + 1
+ k(1 − kn).

Consequently,

GDM(Medk) = nkn+1 + (1 − k)n+1 + (n + 1)k(1 − kn) − 1

n − 1
= (1 − k)n+1 − kn+1 + (n + 1)k − 1

n − 1
,

which is the mentioned formula. For example, for n = 2 we obtain

GDM(Medk) = k2(3 − 2k).

Note that Med0 = Min,Med1 = Max and that Med0.5 is a symmetric sum, see [25].

Observe that weighted means are symmetric sums and hence the global disjunctive (conjunctive) measure of any
weighted mean is equal to 0.5.

3.2. Unipolar parametric characterization in the class of conjunctive (disjunctive) aggregation functions

A natural requirement often put on an aggregation function is idempotency, i.e., the property

A(x, . . . , x) = x for all x ∈ [0, 1].

For aggregation functions the idempotency of A is equivalent to the property Min� A�Max, which means that all
averaging aggregation functions are idempotent. In the classAc of all conjunctive aggregation functions, i.e., aggregation
functions bounded from above byMin, the only idempotent function isMin. Similarly, in the classAd of all disjunctive
aggregation functions, i.e., aggregation functions bounded from below by Max, the only idempotent function is just
Max. To obtain the degree of idempotency, one can compare conjunctive (disjunctive) aggregation functions to Min
(Max).

In the classAc the smallest element is the function Aw, the greatestMin. Sincem(Min) = 1/(n + 1) andm(Aw) = 0,
the normalized mean value of a conjunctive aggregation function A is given by

m̃c(A) = m(A) − m(Aw)

m(Min) − m(Aw)
= (n + 1)m(A). (9)

It holds m̃c(A) = 1 if, and only if, A = Min, i.e., a conjunctive aggregation function A is idempotent if, and only if, the
value m̃c(A) = 1. The number m̃c(A) expresses the degree of similarity between a conjunctive aggregation function
A andMin, and can be interpreted as the degree of the idempotency of A. Therefore we define the global idempotency
measure of a conjunctive aggregation function A, with notation GIMc(A), by

GIMc(A) = (n + 1)
∫
[0,1]n

A(x1, . . . , xn) dx1 . . . dxn, A ∈ Ac. (10)
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In fuzzy logics, and consequently, in fuzzy set theory, important conjunctive aggregation functions are t-norms. In
the class T of all t-norms (with extremal elements TM and TD) formula (5) also leads to the global idempotencymeasure
given by (10). For t-norms this parameter has already been introduced and studied in [17], compare also [26,28]. This
measure is not injective, but in each distinguished parametric family of t-norms discussed in [13] distinguishes all
single members of the family.

Example 2. (i) Let n = 2. It can be shown that the global idempotency measure of the product t-norm TP is
GIMc(TP) = 0.75, for the Łukasiewicz t-norm TL we obtain GIMc(TL) = 0.5 and for the nilpotent minimum T nM we
have GIMc(T nM) = 0.75.

(ii) For the Sugeno–Weber family of t-norms (T SW
� )�∈[−1,∞], where

T SW
� (x, y) =

⎧⎪⎪⎨⎪⎪⎩
max

{
0,

x + y − 1 + �xy

1 + �

}
for � ∈] − 1, ∞[,

TD for � = −1,
TP for � = ∞,

we have

GIMc(T
SW
� ) = 3

4
− 3

4�
− 3

2�2
+ 3� + 3

�2
log(1 + �) for � ∈] − 1, 0[∪ ]0, ∞[

and

GIMc(T
SW
−1 ) = 0, GIMc(T

SW
0 ) = 0.5, GIMc(T

SW
∞ ) = 0.75.

For ordinal sums of t-norms [13] we have the following result.

Proposition 1. Let n = 2 and let T = (〈ak, bk, Tk〉)k∈K be an ordinal sum of t-norms. Then

GIMc(T ) = 1 −
∑
k∈K

(bk − ak)
3(1 − GIMc(Tk)).

Proof. Recall that if T = (〈ak, bk, Tk〉)k∈K , then

T (x, y) =
⎧⎨⎩ ak + (bk − ak)Tk

(
x − ak
bk − ak

,
y − ak
bk − ak

)
if (x, y) ∈ [ak, bk[2,

TM(x, y) else,

and thus

m(T )=m(TM) −
∑
k∈K

∫
[ak ,bk [2

(bk − ak)

(
TM

(
x − ak
bk − ak

,
y − ak
bk − ak

)
− Tk

(
x − ak
bk − ak

,
y − ak
bk − ak

))
dx dy

= 1

3
−
∑
k∈K

(bk − ak)
3
∫
[0,1[2

(TM(u, v) − Tk(u, v)) du dv = 1

3
−
∑
k∈K

(bk − ak)
3
(
1

3
− m(Tk)

)
.

Taking into account that in binary case GIMc(T ) = 3m(T ), we obtain the result. �

Since idempotency is in fact the property of an aggregation function A on the diagonal of the unit cube [0, 1]n , it has
sense to define the diagonal idempotency measure of a conjunctive aggregation function A ∈ Ac by

DIMc(A) = 2
∫
[0,1]

�A(x) dx,
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where �A(x) = A(x, . . . , x). This formula can naturally be derived from (5), where instead of the mean value m on
[0, 1]n the mean value 	 on the diagonal is considered, i.e., 	(A) = ∫

[0,1] A(x, . . . , x) dx ,	(Min) = 1
2 and 	(Aw) = 0.

Clearly, DIMc(Min) = 1, DIMc(Aw) = 0. The function DIMc is a unipolar measure of similarity with Min as the
prototype.

Example 3. For n = 2 the values of the diagonal idempotency measure of t-norms TD, TL, T nM and TP are

DIMc(TD) = 0, DIMc(TL) = 0.5, DIMc(T
nM) = 0.75 but DIMc(TP) = 2

3 ,

compare with the previous example.

The coefficient �(T ) introduced for t-norms by Yager et al. [29] can also be explained as a measure of similarity with
prototype TM. Computing the mean values in (5) with respect to a one point set, we obtain

�(T ) = T (0.5, 0.5) − TD(0.5, 0.5)

TM(0.5, 0.5) − TD(0.5, 0.5)
= 2T (0.5, 0.5).

The global idempotency measure of a disjunctive aggregation function A ∈ Ad can be defined directly following
(6) by

GIMd(A)= m(As) − m(A)

m(As) − m(Max)
= (n + 1)(1 − m(A))

= (n + 1)

(
1 −

∫
[0,1]n

A(x) dx
)

,

or, as the global idempotency measure of the corresponding dual conjunctive aggregation function, GIMd(A) =
GIMc(Ad).

4. General approach to unipolar parametric characterization of aggregation functions

4.1. Global and local parametric characterization

Acommonproperty of unipolarmeasures of similarity is that theymeasure the degree of some property of aggregation
functions by comparing with a prototype. Therefore a genuine requirement for a unipolar measure of similarity � is
its monotonicity. Let us consider the case that for all A, B ∈ A, A�B ⇒ �(A)��(B). Similarly, in convex classes
of aggregation functions a genuine requirement for all convex combinations of aggregation functions is the validity of
the property

�

(∑
i

�i Ai

)
=
∑
i

�i�(Ai ).

Two solutions with expected properties are the global and local parametric characterizations given for n-ary aggre-
gation functions by

�G(A) = f

(∫
[0,1]n

A(x) dP(x)
)

, (11)

�L(A) =
∫
[0,1]n

fx(A(x)) dP(x), (12)

respectively, where P is a probability measure on the Borel subsets of [0, 1]n and f : R → R is an increasing function
with the property

f

(∑
i

�i xi

)
=
∑
i

�i f (xi )
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for all convex combinations of arguments. By [1] the only functions of this property are those of the form f (u) = b+cu,
where b ∈ R, c > 0. The same holds for functions fx, see below.

• First, let us consider a global parametric characterization �G of aggregation functions from the class A,

�G(A) = b + c
∫
[0,1]n

A(x) dP(x), (13)

with P distinguishing the smallest and the greatest member of A.

Proposition 2. Let A be a convex class of aggregation functions with the smallest and greatest elements A and A,
respectively. Let P be a probability measure on B([0, 1]n) such that

∫
[0,1]n A(x) dP(x) �

∫
[0,1]n A(x) dP(x). Then the

global parametric characterization �G : A → [0, 1] introduced by (13) is given by

�G(A) =
∫
[0,1]n A(x) dP(x) − ∫

[0,1]n A(x) dP(x)∫
[0,1]n A(x) dP(x) − ∫

[0,1]n A(x) dP(x)
. (14)

Proof. To determine the constants b and c in (13), it is enough to solve the system of equations �G(A) = 1 and
�G(A) = 0. The result follows immediately. �

According to the chosen probability measure P on B([0, 1]n) and the considered class of aggregation functions we
obtain various types of measures of similarity. Note that each parametric characterization introduced in a convex class
A of aggregation functions with the smallest and greatest elements A and A, respectively, can be restricted to any
subclass B ⊂ A possessing the same extremal elements (possibly as limit members, in the sense a.e.). We give several
examples.

(i) LetA = Aav and let P be the probability measure uniformly distributed on [0, 1]n . From (14), taking into account∫
[0,1]n

Max(x) dx = n

n + 1
,

∫
[0,1]n

Min(x) dx = 1

n + 1
,

we obtain

�G(A) = (n + 1)
∫
[0,1]n A(x) dx − 1

n − 1
, A ∈ Aav, (15)

which coincides with the formula for the global disjunction measure in the class Aav, i.e., �G = GDM.
(ii) LetA = Ac and let P be the probability measure uniformly distributed over the diagonal of the unit cube [0, 1]n .

Since
∫
[0,1]Min(x, . . . , x) dx = 1

2 and
∫
[0,1] Aw(x, . . . , x) dx = 0, formula (14) results in

�G(A) = 2
∫
[0,1]

A(x, . . . , x) dx, A ∈ Ac,

which is the formula for the diagonal idempotencymeasureDIMc for conjunctive aggregation functions introduced
in Section 3.

(iii) Finally, let P be the Dirac measure distributed over the singleton {( 12 , 1
2 )}. Then in the class T of all t-norms (with

extremal elements TM and TD) formula (14) gives

�G(T ) = 2T ( 12 ,
1
2 ),

i.e., the values �G(T ) are just parameters �(T ) introduced for t-norms by Yager et al. [29]. Observe that T is not
a convex class, but is a subclass of the convex class of all conjunctors.

• Now, let us consider a local parametric characterization given by (12), where fx(u) = bx + cxu with local constants
bx ∈ R, cx > 0 corresponding to the points x ∈ [0, 1]n . In a classA of aggregation functionswith the greatest element
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A as the prototype and the smallest element A, a pointwise fitting gives the following equations for computing
bx, cx:

bx + cx A(x) = 0, bx + cx A(x) = 1,

leading to

bx = − A(x)

A(x) − A(x)
, cx = 1

A(x) − A(x)

for all points x ∈ [0, 1]n for which A(x)�A(x). In that case fx(A(x)) = (A(x) − A(x))/(A(x) − A(x)). Note that if
for an x ∈ [0, 1]n , A(x) = A(x) then A(x) = A(x) = A(x) for all A ∈ A. Applying the convention 0

0 = 0 and
supposing that A�A P-a.e., we will write

�L(A) =
∫
[0,1]n

A(x) − A(x)

A(x) − A(x)
dP(x), A ∈ A. (16)

IfA = Aav and P is the probability measure uniformly distributed on B([0, 1]n), the right-hand side of the previous
formula is of the form∫

[0,1]n

A(x) − Min(x)
Max(x) − Min(x)

dx, (17)

and defines themean local disjunction measure of A, in notation LDM(A). This value coincides with mean local orness
of Dujmović [5] and orness average value studied by Salido and Murakami [24].

In [24] the authors proved that for all OWA operators GDM(A) = LDM(A). Marichal [22] extended this result for
any discrete Choquet integral. As the following example shows the class of aggregation functions fulfilling this property
is certainly larger.

Example 4. Let e ∈]0, 1[. Consider the function Ue : [0, 1]2 → [0, 1] given by

Ue(x, y) =
{
min{x, y} if y� fe(x),
max{x, y} if y > fe(x),

where

fe(x) =

⎧⎪⎨⎪⎩ 1 − 1 − e

e
x if x ∈ [0, e],

e

1 − e
(1 − x) if x ∈ ]e, 1].

The function fe is piecewise linear, its graph links the points (0, 1), (e, e) and (1, 0). For each e ∈ ]0, 1[ the function
Ue is a non-trivial conjunctive uninorm. It is only a matter of computation to show that the mean value

m(Ue) =
∫
[0,1]2

Ue(x, y) dx dy = 2 − e

3
,

and consequently, the global disjunction measure of Ue is

GDM(Ue) = 3m(Ue) − 1 = 1 − e.

On the other hand, since for all (x, y) ∈ [0, 1]2, x�y,

Ue(x, y) − Min(x, y)

Max(x, y) − Min(x, y)
=
{
0 if x ∈ [0, 1], y� fe(x),
1 if x ∈ [0, 1], y > fe(x),

the mean local disjunction measure of Ue computed by formula (17) is LDM(Ue) = 1 − e, i.e.,

GDM(Ue) = LDM(Ue).
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Example 5. Let a ∈ [0, 1] and let Aa : [0, 1]2 → [0, 1] be defined by

Aa(x, y) =
{
min{x, y} if x�a,

max{x, y} if x > a.

The mean value of the function Aa is

m(Aa)=
∫
[0,1]2

Aa(x, y) dx dy =
∫ a

0
dx
∫ x

0
y dy +

∫ a

0
dx
∫ 1

x
x dy +

∫ 1

a
dx
∫ x

0
x dy +

∫ 1

a
dx
∫ 1

x
y dy

= 1

6
(−2 a3 + 3 a2 − 3 a + 4),

and the global disjunction measure is

GDM(Aa) = 3m(Aa) − 1 = −a3 + 3
2 a

2 − 3
2 a + 1.

As for all (x, y) ∈ [0, 1]2, x�y,

Aa(x, y) − Min(x, y)

Max(x, y) − Min(x, y)
=
{
0 if x�a,

1 if x > a,

the mean local disjunction measure of Aa is LDM(Aa) = 1 − a. It holds

GDM(Aa) = LDM(Aa) ⇔ −a3 + 3
2 a

2 − 3
2 a + 1 = 1 − a ⇔ a(−a2 − 3

2 a − 1
2 ) = 0

⇔ a ∈ {0, 1
2 , 1}.

Note that for a = 0 we have A0 = Max and GDM(A0) = LDM(A0) = 1, and for a = 1 we have A1 = Min, with
GDM(A1) = LDM(A1) = 0.

This example shows that the piecewise linearity of aggregation functions (Example 4) is not a sufficient condition
for the equality of GDM and LDM. The question for which types of averaging aggregation functions GDM and LDM
coincide is still open.

If we consider the class Ac of all conjunctive aggregation functions and the probability uniformly distributed over
[0, 1]n , the local parametric characterization (16) gives the value∫

[0,1]n

A(x)
Min(x)

dx, A ∈ Ac, (18)

which expresses the mean local idempotency measure of a conjunctive aggregation function A. It will be denoted by
LIMc(A), i.e., LIMc(A) = ∫

[0,1]n A(x)/(Min(x)) dx. The parameter LIMc(A) coincides with the idempotency average
value of a conjunctive aggregation function A introduced by Marichal, see [22]. For example, by (18) for the product
t-norm TP (binary form) we have

LIMc(TP) =
∫ 1

0
dx
∫ x

0
x dy +

∫ 1

0
dx
∫ 1

x
y dy = 2

3
.

As mentioned above, GIMc(TP) = 3
4 and DIMc(TP) = 2

3 . In general, for n-ary form of the product t-norm it holds

GIMc(TP) = (n + 1)/2n , DIMc(TP) = 2/(n + 1) and by [22], LIMc(TP) = 2n−1/
(
2n−1
n

)
.

4.2. A mixed approach

The concepts of local and global characterizations can be unified into a more general mixed approach assigning to
n-ary aggregation functions parameters defined by

�(A) = f

(∫
[0,1]n

fx(A(x)) dP(x)
)

, (19)

with the same general requirements on f, fx and P as in the previous part. Evidently, if f is the identity function, �
coincides with �L and �G is a special case of � for fx = id (independently of x).
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Next, using the linear form of functions f and fx we obtain

�(A)= b + c
∫
[0,1]n

(bx + cxA(x)) dP(x) = b + c
∫
[0,1]n

bx dP(x) + c
∫
[0,1]n

cxA(x) dP(x)

= k + c
∫
[0,1]n

cxA(x) dP(x).

The requirements �(A) = 0 and �(A) = 1, lead to

c = 1∫
[0,1]n cxA(x) dP(x) − ∫

[0,1]n cxA(x) dP(x)
and k = −c

∫
[0,1]n

cxA(x) dP(x),

thus

�(A) =
∫
[0,1]n cxA(x) dP(x) − ∫

[0,1]n cxA(x) dP(x)∫
[0,1]n cxA(x) dP(x) − ∫

[0,1]n cxA(x) dP(x)
. (20)

For example, in the class of averaging aggregation functions the previous formula is of the form

�(A) =
∫
[0,1]n cxA(x) dP(x) − ∫

[0,1]n cxMin(x) dP(x)∫
[0,1]n cxMax(x) dP(x) − ∫

[0,1]n cxMin(x) dP(x)
. (21)

Not to prefer any of the coordinates, we will always suppose that cx is symmetric.

Remark 2. (i) Formula (20) can be written in the form

�(A) = 1

M([0, 1]n)

∫
[0,1]n

A(x) − A(x)

A(x) − A(x)
dM(x),

where M is a 
-additive measure with Radon–Nikodym derivative dM/dP(x) = cx(A(x) − A(x)). However, then
M/(M([0, 1]n)) is a probability measure on the Borel subsets of [0, 1]n (supposing the finiteness ofM), i.e., formulae
(20) and (16) coincide. However, formula (20) can be easier to compute and therefore we will deal with it. Moreover,
the above comments lead to a new fact: the global parametric characterization �G given by (14) is a special case of the
mean local parametric characterization given by (16). For example, for n = 2, formula (15) (or (7)) can be written in
the form (16), with P described by a joint distribution function (restricted to [0, 1]2) F : [0, 1]2 → [0, 1] given by

F(x, y) = Min(x, y)

2
((x − y)2 + (x + y)Min(x, y)).

(ii) An important advantage of all introduced parametric characterizations of aggregation functions is their convexity.
For example, the Choquet integral based on a given fuzzy measure � can always be expressed as a convex combination
of lattice polynomials (i.e., Choquet integrals with respect to {0, 1}-valued fuzzy measures), and thus in such a case it
is enough to compute the considered parametric characterization for lattice polynomials only.

Example 6. In the class of averaging aggregation functions let us introduce a moment parametric characterization �(p),
p ∈] − 1, ∞[, based on the weighting function c(p)x = (

∏n
i=1 xi )

p and on the uniform probability P on Borel subsets
of [0, 1]n by

�(p)(A) =
∫
[0,1]n (

∏n
i=1 xi )

p A(x) dx − ∫
[0,1]n (

∏n
i=1 xi )

pMin(x) dx∫
[0,1]n (

∏n
i=1 xi )

pMax(x) dx − ∫
[0,1]n (

∏n
i=1 xi )

pMin(x) dx
. (22)
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Then, for example, for n = 3 we have∫
[0,1]3

x p y pz p min{x, y, z} dx dy dz = 6
∫ 1

0

∫ x

0

∫ y

0
x p y pz p+1 dx dy dz = 6

(p + 2)(2p + 3)(3p + 4)
,

∫
[0,1]3

x p y pz p max{x, y, z} dx dy dz = 6
∫ 1

0

∫ x

0

∫ y

0
x p+1y pz p dx dy dz = 6

(p + 1)(2p + 2)(3p + 4)
,

∫
[0,1]3

x p y pz pmed{x, y, z} dx dy dz = 6
∫ 1

0

∫ x

0

∫ y

0
x p y p+1z p dx dy dz = 6

(p + 1)(2p + 3)(3p + 4)
,

and substituting these values into (22) we obtain the parametric characterization of median,

�(p)(Med) = 2p + 2

3p + 4
.

Therefore, for ternary OWA operators which are convex combination of Min, Max and Med, whose parameters are
�(p)(Min) = 0, �(p)(Max) = 1 and �(p)(Med) = (2p + 2)/(3p + 4), it holds

�(p)(OWA) = w2
2p + 2

3p + 4
+ w3.

For the arithmetic mean M it can easily be computed that∫ 1

0

∫ 1

0

∫ 1

0
x p y pz p

x + y + z

3
dx dy dz = 1

(p + 1)2(p + 2)

and next, by (22),

�(p)(M) = 5p + 6

9p + 12
.

Observe thatM can be seen as an OWA operator with weighting vector w = ( 13 ,
1
3 ,

1
3 ), thus

�(p)(M) = 1

3

2p + 2

3p + 4
+ 1

3
= 5p + 6

9p + 12
,

which confirms the previous result.
For the geometric mean G it holds∫ 1

0

∫ 1

0

∫ 1

0
x p y pz p 3

√
xyz dx dy dz = 27

(3p + 4)3
,

thus by (22)

�(p)(G) = (p + 1)2(15p + 22)

(3p + 4)3
.

Note that for p = 1 it holds

�(1)(OW A) = 4
7w2 + w3, �(1)(M) = 11

21 , �(1)(G) = 148
343 ,

and the limit values are

lim
p→−1

�(p)(OW A) = w3, lim
p→−1

�(p)(M) = 1

3
, lim

p→−1
�(p)(G) = 0,

and

lim
p→∞ �(p)(OW A) = 2

3
w2 + w3, lim

p→∞ �(p)(M) = 5

9
, lim

p→∞ �(p)(G) = 5

9
.
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Example 7. For n = 2, there are four lattice polynomials: two projections,Min andMax. For the moment parametric
characterization �(p), p ∈] − 1, ∞[, we have∫

[0,1]2
x p y pMin(x, y) dx dy = 2

(p + 2)(2p + 3)
,

∫
[0,1]2

x p y pMax(x, y) dx dy = 2

(p + 1)(2p + 3)
,

∫
[0,1]2

x p y p PF (x, y) dx dy =
∫
[0,1]2

x p y p PL(x, y) dx dy = 1

(p + 1)(p + 2)
.

Therefore �(p)(Min) = 0, �(p)(Max) = 1, �(p)(PF ) = �(p)(PL) = 1
2 .

Let the Choquet integral based aggregation function Cha,b : [0, 1]2 → [0, 1] be determined by the corner points
values a, b, Cha,b(1, 0) = a, Cha,b(0, 1) = b (for more details concerning the Choquet integral based aggregation
functions we recommend [11]). Then the convex representation of Cha,b by means of lattice polynomials is

Cha,b(x, y) =
{
aPF (x, y) + bPL(x, y) + (1 − a − b)Min(x, y) if a + b�1,
(1 − b)PF (x, y) + (1 − a)PL(x, y) + (a + b − 1)Max(x, y) otherwise,

and thus �(p)(Cha,b) = (a + b)/2, independently of p.

5. Bipolar parametric characterization of aggregation functions

LetA be a class of aggregation functions with extremal elements A, A and letA be closed under some kind of duality
preserving convex sums, exchanging elements A and A. Then instead of the measures of similarity m̃ and m̃∗ with
prototypes A and A, respectively, and ranges [0, 1], we can define a function � measuring the difference of aggregation
functions from any self-dual element O, which is taken as a central element. As a central element one can take, e.g.,
the element O = 1

2 (A + A). Note that then its mean value is m(O) = 1
2 (m(A) + m(A)).

For each A ∈ A we put

�(A) = 2
m(A) − m(O)

m(A) − m(A)
, (23)

which is the same as �(A) = m̃(A) − m̃∗(A) = 2 m̃(A) − 1.
The range of � is the interval [−1, 1], �(A) = 1, �(A) = −1 and �(O) = 0. In this way we can “catch” two dual

properties P and P∗ by one parameter [16]. The function � will be called a bipolar measure of dissimilarity.
If we consider the class of all n-ary aggregation functions, with A = As, A = Aw and the standard duality, then

from (23) we obtain

�(A) = 2m(A) − 1.

It holds �(A) = −1 if, and only if, A = Aw a.e., �(A) = 1 if, and only if, A = As a.e., and �(O) = 0. In general,
�(Ad) = −�(A). For example, � attains the next values for distinguished binary aggregation functions:

�(TL) = − 2
3 , �(TP) = − 1

2 , �(Min) = − 1
3 , �(G) = − 1

9 , �(Max) = 1
3 , �(SL) = 2

3 .

In a special subclass Aav of averaging aggregation functions, where A = Min and A = Max, if we consider the
standard duality of aggregation functions and use as the central elementO the arithmetic meanM, we obtain the bipolar
measure of dissimilarity given by

�av : Aav → [−1, 1], �av(A) = (n + 1)

n − 1
(2m(A) − 1). (24)

The property P is “A has disjunctive behavior”, P∗ : “A has conjunctive behavior”, therefore �av can be interpreted
as the conjunction–disjunction measure. Note that from a mathematical point of view, any weighted mean could be
taken as the central element of Aav. Evidently, �av(Min) = −1, �av(Max) = 1 and for the arithmetic mean M it holds
�av(M) = 0. For example, for the geometric mean G the value is �av(G) = ((n + 1)/(n − 1))(2(n/(n + 1))n − 1) < 0,
which confirms that G is more similar toMin than to Max.
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Note that for the class Aav the concept of bipolar measure of dissimilarity coincides with the concept of sym-
metric global orness/andness for GCD functions (generalized conjunctions/disjunctions) introduced independently by
Dujmović [8].

A non-trivial example of a bipolar measure of dissimilarity is, e.g., the Spearman rho, a well-known measure of
association introduced in statistics. It is based on the notion of concordance, and for a pair (X, Y ) of random variables
it was defined as the difference of the probability of concordance and the probability of discordance, see, e.g., [23].
However, for continuous random variables X and Y linked by a copula C the parameter �X,Y = �C can be computed
[23] by the formula

�C = 12
∫ ∫

[0,1]2
C(x, y) dx dy − 3 = 12

∫ ∫
[0,1]2

(C(x, y) − x y) dx dy.

The last formula can be interpreted as ameasure of “average distance” between the copulaC representing the dependence
structure of the joint distribution of X and Y and the copula � representing independence. The range of Spearman’s
rho is [−1, 1]; for the product copula � we have �� = 0, �C = 1 iff C = Min and �C = −1 iff C = W (recall
that formally W = TL). Note that �C can be seen as a coefficient of functional dependence between random variables:
�X,Y = 1 if and only if Y is an increasing transformation of X, a.e., and �X,Y = −1 if and only if Y is a decreasing
transformation of X, a.e. If X and Y are independent then �X,Y = 0.

In the class of copulas Min and W are extremal elements, for each copula C it holds W �C�Min. The
mappinĝ : C(2) → C(2), defined by Ĉ(x, y) = x − C(x, 1 − y) is a duality in C(2), exchanging Min ↔ W and
preserving convex sums. The copula � is a self-dual element under this duality. Note that if C = Ĉ then

m(C) =
∫ 1

0

∫ 1

0
(x − C(x, 1 − y)) dx dy = 1

2
− m(C),

hence m(C) = 1
4 for any self-dual copula C.

As for binary functions m(Min) = 1
3 , m(W ) = 1/3! = 1

6 , and m(�) = 1
4 , in the class C(2) formula (23) leads to

�cop(C) = 2
m(C) − 1

4
1
3 − 1

6

= 12m(C) − 3,

that is, �cop(C) = �C , so the mapping C��C is a kind of bipolar measure of dissimilarity. Note that the latest formula
can also be applied in the class of all binary quasi-copulas without additional changes.

Another bipolar parametric characterization (again with central element �) in the class of copulas can be obtained if
themean value is computedwith respect to themeasure concentrated at the singleton {( 12 , 1

2 )}. Substituting�( 12 ,
1
2 ) = 1

4 ,
Min( 12 ,

1
2 ) = 1

2 and W ( 12 ,
1
2 ) = 0 into (23), we obtain the value 
C = 4C( 12 ,

1
2 ) − 1, which is known in statistics as

Blomqvist’s beta [23].

6. Conclusion

We have discussed a framework for parametric characterization of aggregation functions from distinguished classes
of aggregation functions. As special cases of our general approach, several well-known parametric characterizations
were recovered, such as the orness/andness measure in the class of averaging aggregation functions, or Spearman’s rho
and Blomqvist’s beta in the class of copulas. Moreover, new types of parametric characterizations were introduced. We
expect that these parametric characterizations will be of use in fitting aggregation functions to real data in several areas,
especially in multicriteria decision aid. Recall, e.g., that OWA operators are often fitted to a prescribed global orness
mor(OWA) = �, minimizing the corresponding dispersion (or entropy) of the assigned weighted vector (w1, . . . , wn).
Using the notation of Example 6 (then mor = �(0)) one can choose the best fitting OWA satisfying �(0)(OWA) = � and
minimizing �(1)(OWA).
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