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Abstract

It is a generally accepted fact that the Dempster’s rule of combination
plays a key role in Dempster-Shafer Theory of Evidence. In this paper
the authors compare this combination rule with another one, which is
called composition, and which was designed to create multidimensional
basic assignments from a system of low-dimensional ones. The goal of
this paper is to show that though the mentioned methods of combination
were designed for totally different reasons, they manifest some similar
formal properties and under very special conditions they even coincide.

1 Introduction

Dempster’s rule of combination is often used as a method of fusion of several
sources of information: combining two subjective evaluations of beliefs one can
get a “summarized” evaluation expressing knowledge from both the considered
sources (e.g. [6, 1, 4]).

It is not the goal of this paper to bring arguments for or against the above
mentioned way of interpretation of the Dempster’s rule of combination. Our goal
is to compare this rule of combination with another combining tool, so called
operator of composition, proposed for construction of multidimensional models
from a number of low-dimensional ones. Here we do not consider fusion in its
proper meaning. The purpose why the operator of composition was designed
was not to fuse imprecise descriptions about the same object but to compose
a number of descriptions each of them describing different properties of the
object to get its global description. Using the terminology of AI, operator
of composition was proposed to construct a model of global knowledge from

∗The research was partially supported by Ministry of Education of the Czech Republic un-
der grant no. 2C06019, and by Czech Science Foundation under the grants no. ICC/08/E010
and 201/09/1891.
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a system of pieces of local knowledge. So, it corresponds to the process of
knowledge integration.

Keeping this in mind, it is quite natural that we do not want to compare
the mentioned two ways of combination to show that one of them is better
than the other. Having been inspired by an anonymous referee of [3], we want
to compare them from the formal point of view, because, though they were
designed for different purposes, they manifest some similar properties, and they
even coincide under some very special situations.

2 Notation and basic notions

2.1 Set notation

In the whole paper we will deal with a finite number of variables X1, X2, . . . , Xn

each of which is specified by a finite set Xi of its values. So, we will consider
multidimensional space of discernment

XN = X1 × X2 × . . . × Xn,

and its subspaces. For K ⊂ N = {1, 2, . . . , n}, XK denotes a Cartesian product
of those Xi, for which i ∈ K:

XK =×i∈KXi.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK will be denoted x↓K , i.e.
for K = {i1, i2, . . . , iℓ}

x↓K = (xi1 , xi2 , . . . , xiℓ
) ∈ XK .

Analogously, for K ⊂ L ⊆ N and A ⊂ XL, A↓K will denote a projection of A
into XK :

A↓K = {y ∈ XK : ∃x ∈ A (y = x↓K)}.

Let us remark that we do not exclude situations when K = ∅. In this case
A↓∅ = ∅.

In addition to the projection, in this text we will need also the opposite
operation which will be called join. By a join of two sets A ⊆ XK and B ⊆ XL

we will understand a set

A ⊗ B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Notice that if K and L are disjoint then their join is just their Cartesian
product

A ⊗ B = A × B.

If K = L then
A ⊗ B = A ∩ B. (1)

If K ∩ L ̸= ∅ and A↓K∩L ∩ B↓K∩L = ∅ then also A ⊗ B = ∅. Generally,

A ⊗ B = (A × XL\K) ∩ (B × XK\L). (2)
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2.2 Basic assignment notation

The role of a probability distribution from a probability theory is in Dempster-
Shafer theory played by a basic (probability or belief ) assignment. In this paper
we shall use exclusively normalized basic assignments.

A basic assignment m on XK is a function

m : P(XK) −→ [0, 1],

for which m(∅) = 0 and ∑
A⊆XK

m(A) = 1.

A basic assignment on XK is called vacuous if m(XK) = 1, and it is called
simple basic assignment focused on A (for ∅ ̸= A ⊂ XK) if m(A) = a for a > 0
and m(XK) = 1 − a.

If m(A) > 0, then A is said to be a focal element of m. If all the focal
elements of m are singletons (i.e. m(A) > 0 implies that |A| = 1) then we say
that m is Bayesian.

For L ⊂ K and basic assignment m on XK one gets its marginal basic
assignment m↓L by computing for each B ⊆ XL:

m↓L(B) =
∑

A⊆XK :A↓L=B

m(A).

Conversely, let m be a basic assignment on XL. Its vacuous extension on
XK is defined for all A ⊆ XK in the following way

m↑K(A) =
{

m(A↓L) if A = A↓L × XK\L,
0 otherwise. (3)

2.3 Dempster’s rule of combination

Dempster’s rule of combination is usually defined for two basic assignments
m1,m2 defined on the same frame of discernment (say XK) by the formula

(m1 ⊕ m2)(C) =

∑
A,B⊆XKA∩B=C

m1(A)m2(B)

1 −
∑

A,B⊆XK :A∩B=∅
m1(A)m2(B)

, (4)

for each C ⊆ XK . For the purpose of this paper we need its generalization
to cover situations when one wants to combine two basic assignments, which
are not defined on the same frame of discernment. Regarding equality (1), the
natural generalization, which will be used in this paper, is the one introduced
in the following definition.

Definition 1. For two arbitrary basic assignments m1 on XK and m2 on XL

(K ̸= ∅ ̸= L) their combination is computed according to the formula (for all
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C ⊆ XK∪L)1:

(m1 ⊕ m2)(C) =

∑
A⊆XK

∑
B⊆XL:A⊗B=C

m1(A)m2(B)

1 −
∑

A⊆XK

∑
B⊆XL:A⊗B=∅

m1(A)m2(B)
.

Substituting vacuous extensions of m1 and m2 on XK∪L into formula (4),
one gets

(m1 ⊕ m2)(C) =

∑
A,B⊆XK∪LA∩B=C

m↑K∪L
1 (A)m↑K∪L

2 (B)

1 −
∑

A,B⊆XK∪L:A∩B=∅
m↑K∪L

1 (A)m↑K∪L
2 (B)

=

∑
D⊆XK

∑
E⊆XL:(D×XL\K)∩(E×XK\L)=C

m1(D)m2(E)

1 −
∑

D⊆XK

∑
E⊆XL:(D×XL\K)∩(E×XK\L)=∅

m1(D)m2(E)
,

which is equivalent (taking into account expression (2)) the formula in Defini-
tion 1.

It is well known [5] that the following basic properties hold true for Demp-
ster’s rule of combination.

Lemma 1. Let K,L, M ⊆ N . For arbitrary basic assignments m1,m2,m3

defined on XK ,XLXM , respectively:

(i) m1 ⊕ m2 is a basic assignment on XK∪L;

(ii) m1 ⊕ m2 = m2 ⊕ m1;

(iii) (m1 ⊕ m2) ⊕ m3 = m1 ⊕ (m2 ⊕ m3).

2.4 Operator of composition

An operator of composition was for basic assignments defined in [2] by the
following definition.

Definition 2. For two arbitrary basic assignments m1 on XK and m2 on XL

(K ̸= ∅ ̸= L) a composition m1 ◃ m2 is defined for each C ⊆ XK∪L by one of
the following expressions:

[a] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K ⊗ C↓L then

(m1 ◃ m2)(C) =
m1(C↓K) · m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;

1For the purpose of this paper we do not consider situations when
X

A⊆XK

X

B⊆XL:A⊗B=∅
m1(A)m2(B) = 1.
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[b] if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K × XL\K then

(m1 ◃ m2)(C) = m1(C↓K);

[c] in all other cases (m1 ◃ m2)(C) = 0.

Example 1. Let X1 = {a, ā},X2 = {b, b̄} and X3 = {c, c̄} be three frames of
discernment and let us consider the following two simple basic assignments m1

and m2 defined on X1 × X2 and X2 × X3, respectively:

m1(X1 × {b}) = 0.4,

m1(X1 × X2) = 0.6,

m2(X2 × {c}) = 0.5,

m2(X2 × X3) = 0.5.

From Definition 2 one can immediately see that the formula in case [a] can
assign a positive value to (m1 ◃ m2)(A) and/or (m2 ◃ m1)(A) only for those
A ⊆ X1 × X2 × X3 for which

A↓{1,2} = X1 × {b} or A↓{1,2} = X1 × X2,

and
A↓{2.3} = X2 × {c} or A↓{2,3} = X2 × X3.

There are only two such sets, namely:

X1 × X2 × {c} and X1 × X2 × X3.

For these sets we get

(m1 ◃ m2)(X1 × X2 × {c}) =
m1(X1 × X2) · m2(X2 × {c})

m
↓{2}
2 (X2)

=
0.6 · 0.5

1
= 0.3,

(m1 ◃ m2)(X1 × X2 × X3) =
m1(X1 × X2) · m2(X2 × X3)

m
↓{2}
2 (X2)

=
0.6 · 0.5

1
= 0.3

and similarly

(m2 ◃ m1)(X1 × X2 × {c}) =
m2(X2 × {c}) · m1(X1 × X2)

m
↓{2}
1 (X2)

=
0.5 · 0.6

0.6
= 0.5,

(m2 ◃ m1)(X1 × X2 × X3) =
m2(X2 × X3) · m1(X1 × X2)

m
↓{2}
1 (X2)

=
0.5 · 0.6

0.6
= 0.5.

Since m2({b}) = 0, from case [b] of Definition 2 we will get yet another focal
element for m1 ◃ m2, namely

A = X1 × {b} × X3,

for which
A↓{1,2} = X1 × {b} and A↓{3} = X3.
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Table 1: Composed basic assignments.

A (m1 ◃ m2)(A) (m2 ◃ m1)(A)
X1 × X2 × {c} 0.3 0.5
X1 × X2 × X3 0.3 0.5

X1 × {b} × X3 0.4 0

For this set we get

(m1 ◃ m2)(X1 × {b} × X3) = m1(X1 × {b}) = 0.4.

Notice that when computing a composition m2 ◃ m1, case [b] of Definition 2
does not assign a positive value to any subset A of X1 × X2 × X3, since if
m

↓{2}
2 (A↓{2}) > 0 then also m

↓{2}
1 (A↓{2}) > 0.

Both the composed basic assignments m1 ◃ m2 and m2 ◃ m1 are outlined in
Table 1 (recall once more that for all other A ⊆ X1 × X2 × X3 different from
those included in Table 1, both assignments equal 0). It is also evident from
the table that the operator ◃ is not commutative.

Let us present the most important properties of the operator of composition
for basic assignments, which were proved in [2].

Lemma 2. Let K,L ⊆ N . For arbitrary basic assignments m1,m2 defined on
XK and XL, respectively:

(i) m1 ◃ m2 is a basic assignment on XK∪L;

(ii) m1 ◃ m2 = m2 ◃ m1 ⇐⇒ m↓K1∩K2
1 = m↓K1∩K2

2 ;

(iii) (m1 ◃ m2)↓K1 = m1.

3 Relation of combinations and compositions

3.1 Disjoint domains

Theorem 1. Let K, L ⊆ N and m1,m2 be basic assignments defined on XK

and XL, respectively. If K ∩ L = ∅ then

m1 ◃ m2 = m2 ◃ m1 = m1 ⊕ m2.

Proof. For disjoint K, L and A ⊆ XK , B ⊆ XL one gets A ⊗ B = A × B and
m↓K∩L

2 ≡ 1. Therefore, for computation of m1 ◃ m2 (for any focal element
C ⊆ XK∪L of m1 ◃ m2) only case [a] of Definition 2 is employed, and therefore

(m1 ◃ m2)(C) = m1(C↓K) · m2(C↓L) =
∑

A=C↓K

∑
B=C↓L

m1(A)m2(B)

=
∑

A⊆XK

∑
B⊆XL:A⊗B=C

m1(A)m2(B) = (m1 ⊕ m2)(C),
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because, in this case, ∑
A⊆XK

∑
B⊆XL:A∩B=∅

m1(A)m2(B) = 0.

The fact that m1 ◃ m2 = m2 ◃ m1 follows immediately from property (ii) of
Lemma 2.

3.2 Identical domains

Theorem 2. If for arbitrary two basic assignments m1,m2 on XK each focal
element of m2 contains all the focal elements of m1, i.e.

m1(A) > 0,m2(B) > 0 =⇒ A ⊆ B,

then
m1 ◃ m2 = m1 ⊕ m2.

Proof. First, compute∑
A,B⊆XK :A⊗B=∅

m1(A)m2(B) =
∑

A,B⊆XK :A∩B=∅

m1(A)m2(B)

=
∑

A⊆XK

m1(A)
∑

B⊆XK :A∩B=∅

m2(B) = 0,

because, under the given assumptions, for each focal element A of m1∑
B⊆XK :A∩B=∅

m2(B) = 0.

Now, we can easily compute (m1 ⊕ m2)(C) for any focal element C of m1.

(m1 ⊕ m2)(C) =
∑

A⊆XK

m1(A)
∑

B⊆XK :A⊗B=C

m2(B) =
∑

A⊆XK :A=C

m1(A)

= m1(C).

In this way we obtained that (m1 ⊕ m2)(C) = m1(C) for all focal elements C
of m1. Therefore, since∑

C⊆XK

(m1 ⊕ m2)(C) =
∑

C⊆XK

m1(C) = 1,

it is clear that (m1 ⊕ m2)(C) = m1(C) for all C ⊆ XK , and therefore also

m1 ⊕ m2 = m1 = m1 ◃ m2.

As a special case of Theorem 2 one gets the following assertion.

Corollary 1. Let m1 be an arbitrary basic assignment on XK and let F denote
the set of its focal elements. If m2 is a simple basic assignment on XK focused
on B such that B ⊇ ∪A∈FA, then

m1 ◃ m2 = m1 ⊕ m2.
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3.3 General situation

Let us start studying general overlapping (but not identical) frames of discern-
ment by an example illustrating the fact that a sufficient condition describing
situations when combination and composition results in the same basic assign-
ments cannot be obtained as a generalization of results from the previous two
subsections.

Example 2. Consider two basic assignments m1 on X{1,2,3} and m2 on X{2,3,4}
(with X1 = {a, ā},X2 = {b, b̄},X3 = {c, c̄},X4 = {d, d̄}), each having only two
focal elements:

m1 : A1 = {abc}, A2 = {abc, āb̄c̄} m1(A1) = 1/4,m1(A2) = 3/4.
m2 : B1 = {bcd, b̄c̄d}, B2 = {bcd, bc̄d, b̄c̄d̄} m2(B1) = 1/3,m2(B2) = 2/3.

The reader can immediately see that each focal element of m
↓{2,3}
2 contains all

the focal elements of m
↓{2,3}
1 ; i.e. A

↓{2,3}
1 = {bc} and A

↓{2,3}
2 = {bc, b̄c̄} are

subsets of both B
↓{2,3}
1 = {bc, b̄c̄} and B

↓{2,3}
2 = {bc, bc̄, b̄c̄}.

Realizing that

A1 ⊗ B1 = {abcd},
A1 ⊗ B2 = {abcd},
A2 ⊗ B1 = {abcd, āb̄c̄d},
A2 ⊗ B2 = {abcd, āb̄c̄d̄},

it is clear that ∑
A⊆X{1,2,3}

∑
B⊆X{2,3,4}:A⊗B=∅

m1(A)m2(B) = 0,

and therefore

(m1 ⊕ m2)({abcd}) =
∑

A⊆X{1,2,3}

∑
B⊆X{2,3,4}:A⊗B={abcd}

m1(A)m2(B)

= m1(A1)m2(B1) + m1(A1)m2(B2) = 1/4.

When computing m1 ◃ m2 one has to realize that even though

{abcd} = {abcd}↓{1,2,3} ⊗ {abcd}↓{2,3,4},

m
↓{2,3}
2 ({bc}) = 0 and therefore neither case [a] nor [b] of Definition 2 is appli-

cable for computing (m1 ◃ m2)({abcd}), and therefore it equals 0 according to
case [c]. So we obtained that in this example m1 ⊕ m2 ̸= m1 ◃ m2.

Theorem 3. Let m1 on XK and m2 on XL be such basic assignments that
each focal element A of m1 and each focal element B of m2 projects to a unique
set in XK∩L. Then

m1 ◃ m2 = m1 ⊕ m2.

Proof. First, let us note that the assumption that all focal elements of both m1

and m2 project to a unique set implies, that m↓K∩L
2 (A↓K∩L) = 1 for any focal

element A of m1.
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Now, consider any C ⊆ XK∪L for which C = C↓K ⊗ C↓L. For this C

(m1 ⊕ m2)(C) =

∑
A⊆XK

∑
B⊆XL:A⊗B=C

m1(A)m2(B)

1 −
∑

A⊆XK

∑
B⊆XL:A⊗B=∅

m1(A)m2(B)

≥
∑

A⊆XK

∑
B⊆XL:A⊗B=C

m1(A)m2(B) ≥ m1(C↓K) · m2(C↓L).

Simultaneously, if m1(C↓K) > 0,

(m1 ◃ m2)(C) =
m1(C↓K) · m2(C↓L)

m↓K∩L
2 (C↓K∩L)

= m1(C↓K) · m2(C↓L).

Since if m1(C↓K) = 0 then also

(m1 ◃ m2)(C) = 0 = m1(C↓K) · m2(C↓L),

one can see that for all C ⊆ XK∪L for which C = C↓K ⊗ C↓L

(m1 ⊕ m2)(C) ≥ m1(C↓K) · m2(C↓L) = (m1 ◃ m2)(C).

Regarding Definition 2, according to which (m1◃m2)(C) = 0 for C ̸= C↓K⊗C↓L,
we see that

(m1 ⊕ m2)(C) ≥ (m1 ◃ m2)(C)

holds true for all C ⊆ XK∪L, from which, because both m1 ⊕ m2 and m1 ◃ m2

are normalized basic assignments, we get that m1 ⊕ m2 = m1 ◃ m2.

Example 3. Let X1, X2 and X3 be three binary variables with values in X1 =
{a, a},X2 = {b, b}, X3 = {c, c} and m1 and m2 be two basic assignments on
X1×X3 and X2×X3 respectively, both of them having only two focal elements:

m1 : A1 = {ac̄, āc̄}, A2 = {ac̄, āc} m1(A1) = 1/2,m1(A2) = 1/2.
m2 : B1 = {bc̄, b̄c̄}, B2 = {bc̄, b̄c} m2(B1) = 1/2,m2(B2) = 1/2.

(5)

One can immediately see that both A1⊗B2 and A2⊗B1 are empty and therefore
m1 ⊕ m2 has only two focal elements, namely A1 ⊗ B1 = X1 × X2 × {c̄} and
A2 ⊗ B2 = {abc̄, āb̄c}. For these focal elements we have

(m1 ⊕ m2)(X1×X2×{c̄}) =
m1(A1)m2(B1)

1 − (m1(A1)m2(B2) + m1(A2)m2(B1))
= 1/2,

(m1 ⊕ m2)({abc̄, āb̄c}) =
m1(A2)m2(B2)

1 − (m1(A1)m2(B2) + m1(A2)m2(B1))
= 1/2

and simultaneously

(m1 ◃ m2)(X1×X2×{c̄}) = 1/2,

(m1 ◃ m2)({abc̄, āb̄c}) = 1/2.

Thus we got that for the basic assignments defined in expressions (5)
m1 ⊕ m2 = m1 ◃ m2. Nevertheless, it does not mean that for any couple of
basic assignments m1,m2 defined on X1 ×X2, X2 ×X3, respectively, with the
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respective focal elements A1, A2 and B1, B2, the coincidence must hold. This
happened because we chose special values of the considered basic assignments.
If we change the values of m1 and m2 e.g. in the following way:

m′
1(A1) = 1/3 m′

1(A2) = 2/3,
m′

2(B1) = 1/3 m′
2(B2) = 2/3,

we will get, analogously to (6),

(m′
1 ⊕ m′

2)(X1×X2×{c̄}) = 1/5,

(m1 ⊕ m2)({abc̄, āb̄c}) = 4/5,

and

(m1 ◃ m2)(X1×X2×{c̄}) = 1/3,

(m1 ◃ m2)({abc̄, āb̄c}) = 2/3.

Special property holds for Bayesian basic assignments.

Theorem 4. Let K, L ⊆ N and m1,m2 be Bayesian basic assignments defined
on XK and XL, respectively. Then

m1 ◃ m2 = m1 ⊕ m2

if m↓K∩L
2 corresponds to uniform probability distribution.

Proof. The assumption that m↓K∩L
2 , being Bayesian basic assignment, corre-

sponds to the uniform probability distribution implies that m↓K∩L
2 is positive

for any singleton from XK∩L. This shows that case [b] of Definition 2 is not
applicable to any C ⊆ XK∪L such that C↓K∩L is singleton.

Now consider an arbitrary singleton C ⊂ XK∪L. It is obvious that C =
C↓K ⊗ C↓L and therefore, according to case [a] of Definition 2,

(m1 ◃ m2)(C) =
m1(C↓K) · m2(C↓L)

β
, (6)

where β = m↓K∩L
2 (C↓K∩L) is, due to the assumption posed on m↓K∩L

2 , the same
for all singletons C ⊂ XK∪L. On the other hand, if C ⊂ XK∪L is not singleton
then either C↓K or C↓L cannot be singleton and therefore, if (m1 ◃ m2)(C) is
assigned by case [a] of Definition 2, the value of (m1 ◃ m2)(C) is 0. In case
that (m1 ◃ m2)(C) is assigned by case [b] of Definition 2, the resulting value is
also 0, because this case is applicable only when m↓K∩L

2 (C↓K∩L) = 0, which
may appear only when C↓K∩L is not singleton and therefore neither C↓K is
a singleton, which means that m1(C↓K) = 0. So, we showed that m1 ◃ m2 is
defined by (6) for singletons and for non-singletons it equals 0.

Let us denote

α =
∑

A⊆XK

∑
B⊆XL:A⊗B=∅

m1(A) · m2(B).

For the considered Bayesian assignments

m1(A) · m2(B)
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can be positive only when both A ⊆ XK and B ⊆ XL are singletons. Therefore
for any singleton C ⊆ XK∪L

(m1 ⊕ m2)(C) =

∑
A⊆XK

∑
B⊆XL:A⊗B=C

m1(A) · m2(B)

1 − α

=
m1(C↓K) · m2(C↓L)

1 − α
, (7)

and for non-singletons C

(m1 ⊕ m2)(C) = 0 = (m1 ◃ m2)(C).

To prove the required equality

(m1 ⊕ m2)(C) = (m1 ◃ m2)(C)

also for singletons it is enough to compare equalities (7) and (6) and again
realize that both m1 ⊕ m2 and m1 ◃ m2 are normalized basic assignments and
therefore 1 − α = β.

4 Conclusions

In the paper we introduced the operator of composition for basic assignments
and compared it with the famous Dempster’s rule of combination. We showed
that though Dempster’s rule of combination and operator of composition were
designed for different purposes they coincide in special situations; m1 ⊕ m2 =
m1 ◃ m2

• when the combined basic assignments m1 and m2 are defined on disjoint
frames of discernment;

• when all the focal elements of m1 are contained in each focal element of
m2 and the basic assignments in question are defined on the same frame
of discernment;

• when all the focal elements of both m1 and m2 project to the same subset
of the overlapping frame of discernment.

Naturally, as shown in Example 3, the above described situations do not form
a complete list of conditions under which the studied two operators coincide.
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