Proceedings of the

 $8^{\text {th }}$ WORKSHOP ON

 $8^{\text {th }}$ WORKSHOP ON}

UNCERTAINTY PROCESSING

LIBLICE

September 19 - 23, 2009

Programme Committee:

Francesc Esteva, Spain
Lluis Godo, Spain
Petr Hájek, Czech Republic
Radim Jiroušek, Czech Republic
Gernot D. Kleiter, Austria
Romano Scozzafava, Italy

Proceedings Editors:
Tomáš Kroupa, Czech Republic
Jiřina Vejnarová, Czech Republic

Organizing Chairs:

Radim Jiroušek Czech Republic
Gernot D. Kleiter Austria

$8^{\text {th }}$ WORKSHOP ON UNCERTAINTY PROCESSING

organized by

Institute of Information Theory and Automation of the Academy of Sciences of the Czech Republic

and

Faculty of Management，University of Economics

Liblice，September 19－23， 2009
with the financial support from

EUROCORES Programme
European Collaborative Research

Table of Contents

Exploiting unconditional independencies in semigraphoid closure computation 1
Marco Baioletti, Giuseppe Busanello, Barbara Vantaggi
Coherent conditional possibilities in medical diagnosis 13
M. Baioletti, G. Coletti, D. Petturiti, B. Vantaggi
On general conditional prevision assessments 23
Veronica Biazzo, Angelo Gilio, Giuseppe Sanfilippo
Merging different probabilistic information sources through a new discrepancy measure 35
Andrea Capotorti, Giuliana Regoli, Francesca Vattari
Belief conditioning rules for classic belief functions 46
Milan Daniel
The role of assumptions in causal discovery 57
Marek J. Druzdzel
Bridges between contextual linguistic models of vagueness and t-norm based fuzzy logic 69
Christian G. Fermüller, Christoph Roschger
How people interpret an uncertain If 80
Andrew J. B. Fugard, Niki Pfeifer, Bastian Mayerhofer, Gernot D. Kleiter
On an approximative solution to the marginal problem 92
Martin Janžura
There are combinations and compositions in Dempster-Shafer theory of evidence 100
Radim Jiroušek, Jiřina Vejnarová
Structuring essential graphs 112
Gernot D. Kleiter

There are Combinations and Compositions in Dempster-Shafer Theory of Evidence

Radim Jiroušek, Jiřina Vejnarová*
Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic
and
University of Economics, Prague
radim@utia.cas.cz, vejnar@utia.cas.cz

Abstract

It is a generally accepted fact that the Dempster's rule of combination plays a key role in Dempster-Shafer Theory of Evidence. In this paper the authors compare this combination rule with another one, which is called composition, and which was designed to create multidimensional basic assignments from a system of low-dimensional ones. The goal of this paper is to show that though the mentioned methods of combination were designed for totally different reasons, they manifest some similar formal properties and under very special conditions they even coincide.

1 Introduction

Dempster's rule of combination is often used as a method of fusion of several sources of information: combining two subjective evaluations of beliefs one can get a "summarized" evaluation expressing knowledge from both the considered sources (e.g. [6, 1, 4]).

It is not the goal of this paper to bring arguments for or against the above mentioned way of interpretation of the Dempster's rule of combination. Our goal is to compare this rule of combination with another combining tool, so called operator of composition, proposed for construction of multidimensional models from a number of low-dimensional ones. Here we do not consider fusion in its proper meaning. The purpose why the operator of composition was designed was not to fuse imprecise descriptions about the same object but to compose a number of descriptions each of them describing different properties of the object to get its global description. Using the terminology of AI, operator of composition was proposed to construct a model of global knowledge from

[^0]a system of pieces of local knowledge. So, it corresponds to the process of knowledge integration.

Keeping this in mind, it is quite natural that we do not want to compare the mentioned two ways of combination to show that one of them is better than the other. Having been inspired by an anonymous referee of [3], we want to compare them from the formal point of view, because, though they were designed for different purposes, they manifest some similar properties, and they even coincide under some very special situations.

2 Notation and basic notions

2.1 Set notation

In the whole paper we will deal with a finite number of variables $X_{1}, X_{2}, \ldots, X_{n}$ each of which is specified by a finite set \mathbf{X}_{i} of its values. So, we will consider multidimensional space of discernment

$$
\mathbf{X}_{N}=\mathbf{X}_{1} \times \mathbf{X}_{2} \times \ldots \times \mathbf{X}_{n}
$$

and its subspaces. For $K \subset N=\{1,2, \ldots, n\}, \mathbf{X}_{K}$ denotes a Cartesian product of those \mathbf{X}_{i}, for which $i \in K$:

$$
\mathbf{X}_{K}=\mathbf{X}_{i \in K} \mathbf{X}_{i}
$$

A projection of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{X}_{N}$ into \mathbf{X}_{K} will be denoted $x^{\downarrow K}$, i.e. for $K=\left\{i_{1}, i_{2}, \ldots, i_{\ell}\right\}$

$$
x^{\downarrow K}=\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{\ell}}\right) \in \mathbf{X}_{K}
$$

Analogously, for $K \subset L \subseteq N$ and $A \subset \mathbf{X}_{L}, A^{\downarrow K}$ will denote a projection of A into \mathbf{X}_{K} :

$$
A^{\downarrow K}=\left\{y \in \mathbf{X}_{K}: \exists x \in A \quad\left(y=x^{\downarrow K}\right)\right\}
$$

Let us remark that we do not exclude situations when $K=\emptyset$. In this case $A^{\downarrow \emptyset}=\emptyset$.

In addition to the projection, in this text we will need also the opposite operation which will be called join. By a join of two sets $A \subseteq \mathbf{X}_{K}$ and $B \subseteq \mathbf{X}_{L}$ we will understand a set

$$
A \otimes B=\left\{x \in \mathbf{X}_{K \cup L}: x^{\downarrow K} \in A \quad \& \quad x^{\downarrow L} \in B\right\}
$$

Notice that if K and L are disjoint then their join is just their Cartesian product

$$
A \otimes B=A \times B
$$

If $K=L$ then

$$
\begin{equation*}
A \otimes B=A \cap B \tag{1}
\end{equation*}
$$

If $K \cap L \neq \emptyset$ and $A^{\downarrow K \cap L} \cap B^{\downarrow K \cap L}=\emptyset$ then also $A \otimes B=\emptyset$. Generally,

$$
\begin{equation*}
A \otimes B=\left(A \times \mathbf{X}_{L \backslash K}\right) \cap\left(B \times \mathbf{X}_{K \backslash L}\right) \tag{2}
\end{equation*}
$$

2.2 Basic assignment notation

The role of a probability distribution from a probability theory is in DempsterShafer theory played by a basic (probability or belief) assignment. In this paper we shall use exclusively normalized basic assignments.

A basic assignment m on \mathbf{X}_{K} is a function

$$
m: \mathcal{P}\left(\mathbf{X}_{K}\right) \longrightarrow[0,1],
$$

for which $m(\emptyset)=0$ and

$$
\sum_{A \subseteq \mathbf{x}_{K}} m(A)=1
$$

A basic assignment on \mathbf{X}_{K} is called vacuous if $m\left(\mathbf{X}_{K}\right)=1$, and it is called simple basic assignment focused on $A\left(\right.$ for $\left.\emptyset \neq A \subset \mathbf{X}_{K}\right)$ if $m(A)=a$ for $a>0$ and $m\left(\mathbf{X}_{K}\right)=1-a$.

If $m(A)>0$, then A is said to be a focal element of m. If all the focal elements of m are singletons (i.e. $m(A)>0$ implies that $|A|=1$) then we say that m is Bayesian.

For $L \subset K$ and basic assignment m on \mathbf{X}_{K} one gets its marginal basic assignment $m^{\downarrow L}$ by computing for each $B \subseteq \mathbf{X}_{L}$:

$$
m^{\downarrow L}(B)=\sum_{A \subseteq \mathbf{X}_{K}: A^{\downarrow L}=B} m(A) .
$$

Conversely, let m be a basic assignment on \mathbf{X}_{L}. Its vacuous extension on \mathbf{X}_{K} is defined for all $A \subseteq \mathbf{X}_{K}$ in the following way

$$
m^{\uparrow K}(A)= \begin{cases}m\left(A^{\downarrow L}\right) & \text { if } A=A^{\downarrow L} \times \mathbf{X}_{K \backslash L} \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

2.3 Dempster's rule of combination

Dempster's rule of combination is usually defined for two basic assignments m_{1}, m_{2} defined on the same frame of discernment (say \mathbf{X}_{K}) by the formula

$$
\begin{equation*}
\left(m_{1} \oplus m_{2}\right)(C)=\frac{\sum_{A, B \subseteq \mathbf{x}_{K} A \cap B=C} m_{1}(A) m_{2}(B)}{1-\sum_{A, B \subseteq \mathbf{x}_{K}: A \cap B=\emptyset} m_{1}(A) m_{2}(B)}, \tag{4}
\end{equation*}
$$

for each $C \subseteq \mathbf{X}_{K}$. For the purpose of this paper we need its generalization to cover situations when one wants to combine two basic assignments, which are not defined on the same frame of discernment. Regarding equality (1), the natural generalization, which will be used in this paper, is the one introduced in the following definition.

Definition 1. For two arbitrary basic assignments m_{1} on \mathbf{X}_{K} and m_{2} on \mathbf{X}_{L} $(K \neq \emptyset \neq L)$ their combination is computed according to the formula (for all

$$
\begin{aligned}
& \left.C \subseteq \mathbf{X}_{K \cup L}\right)^{1}: \\
& \qquad\left(m_{1} \oplus m_{2}\right)(C)=\frac{\sum_{A \subseteq \mathbf{x}_{K}} \sum_{B \subseteq \mathbf{x}_{L}: A \otimes B=C} m_{1}(A) m_{2}(B)}{1-\sum_{A \subseteq \mathbf{X}_{K}} \frac{\sum_{B \subseteq \mathbf{x}_{L}: A \otimes B=\emptyset} m_{1}(A) m_{2}(B)}{} .} .
\end{aligned}
$$

Substituting vacuous extensions of m_{1} and m_{2} on $\mathbf{X}_{K \cup L}$ into formula (4), one gets

$$
\begin{aligned}
\left(m_{1} \oplus m_{2}\right)(C) & =\frac{\sum_{A, B \subseteq \mathbf{x}_{K \cup L} A \cap B=C} m_{1}^{\uparrow K \cup L}(A) m_{2}^{\uparrow K \cup L}(B)}{1-\sum_{A, B \subseteq \mathbf{x}_{K \cup L}: A \cap B=\emptyset} m_{1}^{\uparrow K \cup L}(A) m_{2}^{\uparrow K \cup L}(B)} \\
& =\frac{\sum_{D \subseteq \mathbf{X}_{K}} E \subseteq \mathbf{X}_{L}:\left(D \times \mathbf{x}_{L \backslash K}\right) \cap\left(E \times \mathbf{x}_{K \backslash L}\right)=C}{1-\sum_{D \subseteq \mathbf{X}_{K}} m_{1}\left(D \subseteq \mathbf{X}_{L}:\left(D \times \mathbf{x}_{L \backslash K} \sum_{2} \cap\left(E \times \mathbf{X}_{K \backslash L}\right)=\emptyset\right.\right.} m_{1}(D) m_{2}(E)
\end{aligned},
$$

which is equivalent (taking into account expression (2)) the formula in Definition 1.

It is well known [5] that the following basic properties hold true for Dempster's rule of combination.

Lemma 1. Let $K, L, M \subseteq N$. For arbitrary basic assignments m_{1}, m_{2}, m_{3} defined on $\mathbf{X}_{K}, \mathbf{X}_{L} \mathbf{X}_{M}$, respectively:
(i) $m_{1} \oplus m_{2}$ is a basic assignment on $\mathbf{X}_{K \cup L}$;
(ii) $m_{1} \oplus m_{2}=m_{2} \oplus m_{1}$;
(iii) $\left(m_{1} \oplus m_{2}\right) \oplus m_{3}=m_{1} \oplus\left(m_{2} \oplus m_{3}\right)$.

2.4 Operator of composition

An operator of composition was for basic assignments defined in [2] by the following definition.

Definition 2. For two arbitrary basic assignments m_{1} on \mathbf{X}_{K} and m_{2} on \mathbf{X}_{L} $(K \neq \emptyset \neq L)$ a composition $m_{1} \triangleright m_{2}$ is defined for each $C \subseteq \mathbf{X}_{K \cup L}$ by one of the following expressions:
[a] if $m_{2}^{\downarrow K \cap L}\left(C^{\downarrow K \cap L}\right)>0$ and $C=C^{\downarrow K} \otimes C^{\downarrow L}$ then

$$
\left(m_{1} \triangleright m_{2}\right)(C)=\frac{m_{1}\left(C^{\downarrow K}\right) \cdot m_{2}\left(C^{\downarrow L}\right)}{m_{2}^{\downarrow K \cap L}\left(C^{\downarrow K \cap L}\right)}
$$

[^1][b] if $m_{2}^{\downarrow K \cap L}\left(C^{\downarrow K \cap L}\right)=0$ and $C=C^{\downarrow K} \times \mathbf{X}_{L \backslash K}$ then
$$
\left(m_{1} \triangleright m_{2}\right)(C)=m_{1}\left(C^{\downarrow K}\right) ;
$$
$[\mathbf{c}]$ in all other cases $\left(m_{1} \triangleright m_{2}\right)(C)=0$.

Example 1. Let $\mathbf{X}_{1}=\{a, \bar{a}\}, \mathbf{X}_{2}=\{b, \bar{b}\}$ and $\mathbf{X}_{3}=\{c, \bar{c}\}$ be three frames of discernment and let us consider the following two simple basic assignments m_{1} and m_{2} defined on $\mathbf{X}_{1} \times \mathbf{X}_{2}$ and $\mathbf{X}_{2} \times \mathbf{X}_{3}$, respectively:

$$
\begin{aligned}
m_{1}\left(\mathbf{X}_{1} \times\{b\}\right) & =0.4 \\
m_{1}\left(\mathbf{X}_{1} \times \mathbf{X}_{2}\right) & =0.6 \\
m_{2}\left(\mathbf{X}_{2} \times\{c\}\right) & =0.5 \\
m_{2}\left(\mathbf{X}_{2} \times \mathbf{X}_{3}\right) & =0.5 .
\end{aligned}
$$

From Definition 2 one can immediately see that the formula in case [a] can assign a positive value to $\left(m_{1} \triangleright m_{2}\right)(A)$ and/or $\left(m_{2} \triangleright m_{1}\right)(A)$ only for those $A \subseteq \mathbf{X}_{1} \times \mathbf{X}_{2} \times \mathbf{X}_{3}$ for which

$$
A^{\downarrow\{1,2\}}=\mathbf{X}_{1} \times\{b\} \quad \text { or } \quad A^{\downarrow\{1,2\}}=\mathbf{X}_{1} \times \mathbf{X}_{2},
$$

and

$$
A^{\downarrow\{2.3\}}=\mathbf{X}_{2} \times\{c\} \quad \text { or } \quad A^{\downarrow\{2,3\}}=\mathbf{X}_{2} \times \mathbf{X}_{3} .
$$

There are only two such sets, namely:

$$
\mathbf{X}_{1} \times \mathbf{X}_{2} \times\{c\} \quad \text { and } \quad \mathbf{X}_{1} \times \mathbf{X}_{2} \times \mathbf{X}_{3}
$$

For these sets we get

$$
\begin{aligned}
& \left(m_{1} \triangleright m_{2}\right)\left(\mathbf{X}_{1} \times \mathbf{X}_{2} \times\{c\}\right)=\frac{m_{1}\left(\mathbf{X}_{1} \times \mathbf{X}_{2}\right) \cdot m_{2}\left(\mathbf{X}_{2} \times\{c\}\right)}{m_{2}^{\downarrow\{2\}}\left(\mathbf{X}_{2}\right)}=\frac{0.6 \cdot 0.5}{1}=0.3 \\
& \left(m_{1} \triangleright m_{2}\right)\left(\mathbf{X}_{1} \times \mathbf{X}_{2} \times \mathbf{X}_{3}\right)=\frac{m_{1}\left(\mathbf{X}_{1} \times \mathbf{X}_{2}\right) \cdot m_{2}\left(\mathbf{X}_{2} \times \mathbf{X}_{3}\right)}{m_{2}^{\downarrow\{2\}}\left(\mathbf{X}_{2}\right)}=\frac{0.6 \cdot 0.5}{1}=0.3
\end{aligned}
$$

and similarly

$$
\begin{aligned}
& \left(m_{2} \triangleright m_{1}\right)\left(\mathbf{X}_{1} \times \mathbf{X}_{2} \times\{c\}\right)=\frac{m_{2}\left(\mathbf{X}_{2} \times\{c\}\right) \cdot m_{1}\left(\mathbf{X}_{1} \times \mathbf{X}_{2}\right)}{m_{1}^{\downarrow\{2\}}\left(\mathbf{X}_{2}\right)}=\frac{0.5 \cdot 0.6}{0.6}=0.5 \\
& \left(m_{2} \triangleright m_{1}\right)\left(\mathbf{X}_{1} \times \mathbf{X}_{2} \times \mathbf{X}_{3}\right)=\frac{m_{2}\left(\mathbf{X}_{2} \times \mathbf{X}_{3}\right) \cdot m_{1}\left(\mathbf{X}_{1} \times \mathbf{X}_{2}\right)}{m_{1}^{\downarrow\{2\}}\left(\mathbf{X}_{2}\right)}=\frac{0.5 \cdot 0.6}{0.6}=0.5
\end{aligned}
$$

Since $m_{2}(\{b\})=0$, from case $[\mathbf{b}]$ of Definition 2 we will get yet another focal element for $m_{1} \triangleright m_{2}$, namely

$$
A=\mathbf{X}_{1} \times\{b\} \times \mathbf{X}_{3},
$$

for which

$$
A^{\downarrow\{1,2\}}=\mathbf{X}_{1} \times\{b\} \quad \text { and } \quad A^{\downarrow\{3\}}=\mathbf{X}_{3} .
$$

Table 1: Composed basic assignments.

A	$\left(m_{1} \triangleright m_{2}\right)(A)$	$\left(m_{2} \triangleright m_{1}\right)(A)$
$\mathbf{X}_{1} \times \mathbf{X}_{2} \times\{c\}$	0.3	0.5
$\mathbf{X}_{1} \times \mathbf{X}_{2} \times \mathbf{X}_{3}$	0.3	0.5
$\mathbf{X}_{1} \times\{b\} \times \mathbf{X}_{3}$	0.4	0

For this set we get

$$
\left(m_{1} \triangleright m_{2}\right)\left(\mathbf{X}_{1} \times\{b\} \times \mathbf{X}_{3}\right)=m_{1}\left(\mathbf{X}_{1} \times\{b\}\right)=0.4
$$

Notice that when computing a composition $m_{2} \triangleright m_{1}$, case [b] of Definition 2 does not assign a positive value to any subset A of $\mathbf{X}_{1} \times \mathbf{X}_{2} \times \mathbf{X}_{3}$, since if $m_{2}^{\downarrow\{2\}}\left(A^{\downarrow\{2\}}\right)>0$ then also $m_{1}^{\downarrow\{2\}}\left(A^{\downarrow\{2\}}\right)>0$.

Both the composed basic assignments $m_{1} \triangleright m_{2}$ and $m_{2} \triangleright m_{1}$ are outlined in Table 1 (recall once more that for all other $A \subseteq \mathbf{X}_{1} \times \mathbf{X}_{2} \times \mathbf{X}_{3}$ different from those included in Table 1, both assignments equal 0). It is also evident from the table that the operator \triangleright is not commutative.

Let us present the most important properties of the operator of composition for basic assignments, which were proved in [2].

Lemma 2. Let $K, L \subseteq N$. For arbitrary basic assignments m_{1}, m_{2} defined on \mathbf{X}_{K} and \mathbf{X}_{L}, respectively:
(i) $m_{1} \triangleright m_{2}$ is a basic assignment on $\mathbf{X}_{K \cup L}$;
(ii) $m_{1} \triangleright m_{2}=m_{2} \triangleright m_{1} \quad \Longleftrightarrow \quad m_{1}^{\downarrow K_{1} \cap K_{2}}=m_{2}^{\downarrow K_{1} \cap K_{2}}$;
(iii) $\left(m_{1} \triangleright m_{2}\right)^{\downarrow K_{1}}=m_{1}$.

3 Relation of combinations and compositions

3.1 Disjoint domains

Theorem 1. Let $K, L \subseteq N$ and m_{1}, m_{2} be basic assignments defined on \mathbf{X}_{K} and \mathbf{X}_{L}, respectively. If $K \cap L=\emptyset$ then

$$
m_{1} \triangleright m_{2}=m_{2} \triangleright m_{1}=m_{1} \oplus m_{2}
$$

Proof. For disjoint K, L and $A \subseteq \mathbf{X}_{K}, B \subseteq \mathbf{X}_{L}$ one gets $A \otimes B=A \times B$ and $m_{2}^{\downarrow K \cap L} \equiv 1$. Therefore, for computation of $m_{1} \triangleright m_{2}$ (for any focal element $C \subseteq \mathbf{X}_{K \cup L}$ of $m_{1} \triangleright m_{2}$) only case [a] of Definition 2 is employed, and therefore

$$
\begin{aligned}
\left(m_{1} \triangleright m_{2}\right)(C) & =m_{1}\left(C^{\downarrow K}\right) \cdot m_{2}\left(C^{\downarrow L}\right)=\sum_{A=C \downarrow K} \sum_{B=C \downarrow L} m_{1}(A) m_{2}(B) \\
& =\sum_{A \subseteq \mathbf{x}_{K}} \sum_{B \subseteq \mathbf{X}_{L}: A \otimes B=C} m_{1}(A) m_{2}(B)=\left(m_{1} \oplus m_{2}\right)(C),
\end{aligned}
$$

because, in this case,

$$
\sum_{A \subseteq \mathbf{x}_{K}} \sum_{B \subseteq \mathbf{X}_{L}: A \cap B=\emptyset} m_{1}(A) m_{2}(B)=0 .
$$

The fact that $m_{1} \triangleright m_{2}=m_{2} \triangleright m_{1}$ follows immediately from property (ii) of Lemma 2.

3.2 Identical domains

Theorem 2. If for arbitrary two basic assignments m_{1}, m_{2} on \mathbf{X}_{K} each focal element of m_{2} contains all the focal elements of m_{1}, i.e.

$$
m_{1}(A)>0, m_{2}(B)>0 \quad \Longrightarrow \quad A \subseteq B
$$

then

$$
m_{1} \triangleright m_{2}=m_{1} \oplus m_{2} .
$$

Proof. First, compute

$$
\begin{aligned}
\sum_{A, B \subseteq \mathbf{X}_{K}: A \otimes B=\emptyset} m_{1}(A) m_{2}(B) & =\sum_{A, B \subseteq \mathbf{x}_{K}: A \cap B=\emptyset} m_{1}(A) m_{2}(B) \\
& =\sum_{A \subseteq \mathbf{X}_{K}} m_{1}(A) \sum_{B \subseteq \mathbf{x}_{K}: A \cap B=\emptyset} m_{2}(B)=0,
\end{aligned}
$$

because, under the given assumptions, for each focal element A of m_{1}

$$
\sum_{B \subseteq \mathbf{X}_{K}: A \cap B=\emptyset} m_{2}(B)=0 .
$$

Now, we can easily compute $\left(m_{1} \oplus m_{2}\right)(C)$ for any focal element C of m_{1}.

$$
\begin{aligned}
\left(m_{1} \oplus m_{2}\right)(C) & =\sum_{A \subseteq \mathbf{x}_{K}} m_{1}(A) \sum_{B \subseteq \mathbf{x}_{K}: A \otimes B=C} m_{2}(B)=\sum_{A \subseteq \mathbf{x}_{K}: A=C} m_{1}(A) \\
& =m_{1}(C) .
\end{aligned}
$$

In this way we obtained that $\left(m_{1} \oplus m_{2}\right)(C)=m_{1}(C)$ for all focal elements C of m_{1}. Therefore, since

$$
\sum_{C \subseteq \mathbf{x}_{K}}\left(m_{1} \oplus m_{2}\right)(C)=\sum_{C \subseteq \mathbf{x}_{K}} m_{1}(C)=1,
$$

it is clear that $\left(m_{1} \oplus m_{2}\right)(C)=m_{1}(C)$ for all $C \subseteq \mathbf{X}_{K}$, and therefore also

$$
m_{1} \oplus m_{2}=m_{1}=m_{1} \triangleright m_{2} .
$$

As a special case of Theorem 2 one gets the following assertion.
Corollary 1. Let m_{1} be an arbitrary basic assignment on \mathbf{X}_{K} and let \mathcal{F} denote the set of its focal elements. If m_{2} is a simple basic assignment on \mathbf{X}_{K} focused on B such that $B \supseteq \cup_{A \in \mathcal{F}} A$, then

$$
m_{1} \triangleright m_{2}=m_{1} \oplus m_{2} .
$$

3.3 General situation

Let us start studying general overlapping (but not identical) frames of discernment by an example illustrating the fact that a sufficient condition describing situations when combination and composition results in the same basic assignments cannot be obtained as a generalization of results from the previous two subsections.

Example 2. Consider two basic assignments m_{1} on $\mathbf{X}_{\{1,2,3\}}$ and m_{2} on $\mathbf{X}_{\{2,3,4\}}$ (with $\mathbf{X}_{1}=\{a, \bar{a}\}, \mathbf{X}_{2}=\{b, \bar{b}\}, \mathbf{X}_{3}=\{c, \bar{c}\}, \mathbf{X}_{4}=\{d, \bar{d}\}$), each having only two focal elements:

$$
\begin{array}{lll}
m_{1}: & A_{1}=\{a b c\}, A_{2}=\{a b c, \bar{a} \bar{b} \bar{c}\} & m_{1}\left(A_{1}\right)=1 / 4, m_{1}\left(A_{2}\right)=3 / 4 \\
m_{2}: & B_{1}=\{b c d, \bar{b} \bar{c} d\}, B_{2}=\{b c d, b \bar{c} d, \bar{b} \bar{c} \bar{d}\} & m_{2}\left(B_{1}\right)=1 / 3, m_{2}\left(B_{2}\right)=2 / 3
\end{array}
$$

The reader can immediately see that each focal element of $m_{2}^{\downarrow\{2,3\}}$ contains all the focal elements of $m_{1}^{\downarrow\{2,3\}}$; i.e. $A_{1}^{\downarrow\{2,3\}}=\{b c\}$ and $A_{2}^{\downarrow\{2,3\}}=\{b c, \bar{b} \bar{c}\}$ are subsets of both $B_{1}^{\downarrow\{2,3\}}=\{b c, \bar{b} \bar{c}\}$ and $B_{2}^{\lfloor\{2,3\}}=\{b c, b \bar{c}, \bar{b} \bar{c}\}$.

Realizing that

$$
\begin{aligned}
& A_{1} \otimes B_{1}=\{a b c d\}, \\
& A_{1} \otimes B_{2}=\{a b c d\}, \\
& A_{2} \otimes B_{1}=\{a b c d, \bar{a} \bar{b} \bar{c} d\}, \\
& A_{2} \otimes B_{2}=\{a b c d, \bar{a} \bar{b} \bar{c} \bar{c}\},
\end{aligned}
$$

it is clear that

$$
\sum_{A \subseteq \mathbf{X}_{\{1,2,3\}}} \sum_{B \subseteq \mathbf{x}_{\{2,3,4\}}: A \otimes B=\emptyset} m_{1}(A) m_{2}(B)=0
$$

and therefore

$$
\begin{aligned}
\left(m_{1} \oplus m_{2}\right)(\{a b c d\}) & =\sum_{A \subseteq \mathbf{X}_{\{1,2,3\}}} \sum_{B \subseteq \mathbf{X}_{\{2,3,4\}: A \otimes B=\{a b c d\}}} m_{1}(A) m_{2}(B) \\
& =m_{1}\left(A_{1}\right) m_{2}\left(B_{1}\right)+m_{1}\left(A_{1}\right) m_{2}\left(B_{2}\right)=1 / 4
\end{aligned}
$$

When computing $m_{1} \triangleright m_{2}$ one has to realize that even though

$$
\{a b c d\}=\{a b c d\}^{\downarrow\{1,2,3\}} \otimes\{a b c d\}^{\downarrow\{2,3,4\}}
$$

$m_{2}^{\downarrow\{2,3\}}(\{b c\})=0$ and therefore neither case [a] nor [b] of Definition 2 is applicable for computing $\left(m_{1} \triangleright m_{2}\right)(\{a b c d\})$, and therefore it equals 0 according to case [c]. So we obtained that in this example $m_{1} \oplus m_{2} \neq m_{1} \triangleright m_{2}$.

Theorem 3. Let m_{1} on \mathbf{X}_{K} and m_{2} on \mathbf{X}_{L} be such basic assignments that each focal element A of m_{1} and each focal element B of m_{2} projects to a unique set in $\mathbf{X}_{K \cap L}$. Then

$$
m_{1} \triangleright m_{2}=m_{1} \oplus m_{2}
$$

Proof. First, let us note that the assumption that all focal elements of both m_{1} and m_{2} project to a unique set implies, that $m_{2}^{\downarrow K \cap L}\left(A^{\downarrow K \cap L}\right)=1$ for any focal element A of m_{1}.

Now, consider any $C \subseteq \mathbf{X}_{K \cup L}$ for which $C=C^{\downarrow K} \otimes C^{\downarrow L}$. For this C

$$
\begin{aligned}
\left(m_{1} \oplus m_{2}\right)(C) & =\frac{\sum_{A \subseteq \mathbf{x}_{K}} \sum_{B \subseteq \mathbf{X}_{L}: A \otimes B=C} m_{1}(A) m_{2}(B)}{1-\sum_{A \subseteq \mathbf{X}_{K}} \sum_{B \subseteq \mathbf{x}_{L}: A \otimes B=\emptyset} m_{1}(A) m_{2}(B)} \\
& \geq \sum_{A \subseteq \mathbf{X}_{K}} \sum_{B \subseteq \mathbf{X}_{L}: A \otimes B=C} m_{1}(A) m_{2}(B) \geq m_{1}\left(C^{\downarrow K}\right) \cdot m_{2}\left(C^{\downarrow L}\right) .
\end{aligned}
$$

Simultaneously, if $m_{1}\left(C^{\downarrow K}\right)>0$,

$$
\left(m_{1} \triangleright m_{2}\right)(C)=\frac{m_{1}\left(C^{\downarrow K}\right) \cdot m_{2}\left(C^{\downarrow L}\right)}{m_{2}^{\downarrow K \cap L}\left(C^{\downarrow K \cap L}\right)}=m_{1}\left(C^{\downarrow K}\right) \cdot m_{2}\left(C^{\downarrow L}\right) .
$$

Since if $m_{1}\left(C^{\downarrow K}\right)=0$ then also

$$
\left(m_{1} \triangleright m_{2}\right)(C)=0=m_{1}\left(C^{\downarrow K}\right) \cdot m_{2}\left(C^{\downarrow L}\right),
$$

one can see that for all $C \subseteq \mathbf{X}_{K \cup L}$ for which $C=C^{\downarrow K} \otimes C^{\downarrow L}$

$$
\left(m_{1} \oplus m_{2}\right)(C) \geq m_{1}\left(C^{\downarrow K}\right) \cdot m_{2}\left(C^{\downarrow L}\right)=\left(m_{1} \triangleright m_{2}\right)(C) .
$$

Regarding Definition 2, according to which $\left(m_{1} \triangleright m_{2}\right)(C)=0$ for $C \neq C^{\downarrow K} \otimes C^{\downarrow L}$, we see that

$$
\left(m_{1} \oplus m_{2}\right)(C) \geq\left(m_{1} \triangleright m_{2}\right)(C)
$$

holds true for all $C \subseteq \mathbf{X}_{K \cup L}$, from which, because both $m_{1} \oplus m_{2}$ and $m_{1} \triangleright m_{2}$ are normalized basic assignments, we get that $m_{1} \oplus m_{2}=m_{1} \triangleright m_{2}$.

Example 3. Let X_{1}, X_{2} and X_{3} be three binary variables with values in $\mathbf{X}_{1}=$ $\{a, \bar{a}\}, \mathbf{X}_{2}=\{b, \bar{b}\}, \mathbf{X}_{3}=\{c, \bar{c}\}$ and m_{1} and m_{2} be two basic assignments on $\mathbf{X}_{1} \times \mathbf{X}_{3}$ and $\mathbf{X}_{2} \times \mathbf{X}_{3}$ respectively, both of them having only two focal elements:

$$
\begin{array}{lll}
m_{1}: & A_{1}=\{a \bar{c}, \bar{a} \bar{c}\}, A_{2}=\{a \bar{c}, \bar{a} c\} & m_{1}\left(A_{1}\right)=1 / 2, m_{1}\left(A_{2}\right)=1 / 2 . \\
m_{2}: & B_{1}=\{b \bar{c}, \bar{b} \bar{c}\}, B_{2}=\{b \bar{c}, \bar{b} c\} & m_{2}\left(B_{1}\right)=1 / 2, m_{2}\left(B_{2}\right)=1 / 2 . \tag{5}
\end{array}
$$

One can immediately see that both $A_{1} \otimes B_{2}$ and $A_{2} \otimes B_{1}$ are empty and therefore $m_{1} \oplus m_{2}$ has only two focal elements, namely $A_{1} \otimes B_{1}=\mathbf{X}_{1} \times \mathbf{X}_{2} \times\{\bar{c}\}$ and $A_{2} \otimes B_{2}=\{a b \bar{c}, \bar{a} \bar{b} c\}$. For these focal elements we have

$$
\begin{aligned}
\left(m_{1} \oplus m_{2}\right)\left(\mathbf{X}_{1} \times \mathbf{X}_{2} \times\{\bar{c}\}\right) & =\frac{m_{1}\left(A_{1}\right) m_{2}\left(B_{1}\right)}{1-\left(m_{1}\left(A_{1}\right) m_{2}\left(B_{2}\right)+m_{1}\left(A_{2}\right) m_{2}\left(B_{1}\right)\right)}=1 / 2, \\
\left(m_{1} \oplus m_{2}\right)(\{a b \bar{c}, \bar{a} \bar{b} c\}) & =\frac{m_{1}\left(A_{2}\right) m_{2}\left(B_{2}\right)}{1-\left(m_{1}\left(A_{1}\right) m_{2}\left(B_{2}\right)+m_{1}\left(A_{2}\right) m_{2}\left(B_{1}\right)\right)}=1 / 2
\end{aligned}
$$

and simultaneously

$$
\begin{array}{r}
\left(m_{1} \triangleright m_{2}\right)\left(\mathbf{X}_{1} \times \mathbf{X}_{2} \times\{\bar{c}\}\right)=1 / 2, \\
\quad\left(m_{1} \triangleright m_{2}\right)(\{a b \bar{c}, \bar{a} \bar{b} c\})=1 / 2 .
\end{array}
$$

Thus we got that for the basic assignments defined in expressions (5) $m_{1} \oplus m_{2}=m_{1} \triangleright m_{2}$. Nevertheless, it does not mean that for any couple of basic assignments m_{1}, m_{2} defined on $\mathbf{X}_{1} \times \mathbf{X}_{2}, \mathbf{X}_{2} \times \mathbf{X}_{3}$, respectively, with the
respective focal elements A_{1}, A_{2} and B_{1}, B_{2}, the coincidence must hold. This happened because we chose special values of the considered basic assignments. If we change the values of m_{1} and m_{2} e.g. in the following way:

$$
\begin{array}{ll}
m_{1}^{\prime}\left(A_{1}\right)=1 / 3 & m_{1}^{\prime}\left(A_{2}\right)=2 / 3 \\
m_{2}^{\prime}\left(B_{1}\right)=1 / 3 & m_{2}^{\prime}\left(B_{2}\right)=2 / 3
\end{array}
$$

we will get, analogously to (6),

$$
\begin{aligned}
\left(m_{1}^{\prime} \oplus m_{2}^{\prime}\right)\left(\mathbf{X}_{1} \times \mathbf{X}_{2} \times\{\bar{c}\}\right) & =1 / 5 \\
\left(m_{1} \oplus m_{2}\right)(\{a b \bar{c}, \bar{a} \bar{b} c\}) & =4 / 5
\end{aligned}
$$

and

$$
\begin{array}{r}
\left(m_{1} \triangleright m_{2}\right)\left(\mathbf{X}_{1} \times \mathbf{X}_{2} \times\{\bar{c}\}\right)=1 / 3, \\
\quad\left(m_{1} \triangleright m_{2}\right)(\{a b \bar{c}, \bar{a} \bar{b} c\})=2 / 3 .
\end{array}
$$

Special property holds for Bayesian basic assignments.
Theorem 4. Let $K, L \subseteq N$ and m_{1}, m_{2} be Bayesian basic assignments defined on \mathbf{X}_{K} and \mathbf{X}_{L}, respectively. Then

$$
m_{1} \triangleright m_{2}=m_{1} \oplus m_{2}
$$

if $m_{2}^{\downarrow K \cap L}$ corresponds to uniform probability distribution.
Proof. The assumption that $m_{2}^{\downarrow K \cap L}$, being Bayesian basic assignment, corresponds to the uniform probability distribution implies that $m_{2}^{\downarrow K \cap L}$ is positive for any singleton from $\mathbf{X}_{K \cap L}$. This shows that case [b] of Definition 2 is not applicable to any $C \subseteq \mathbf{X}_{K \cup L}$ such that $C^{\downarrow K \cap L}$ is singleton.

Now consider an arbitrary singleton $C \subset \mathbf{X}_{K \cup L}$. It is obvious that $C=$ $C^{\downarrow K} \otimes C^{\downarrow L}$ and therefore, according to case [a] of Definition 2,

$$
\begin{equation*}
\left(m_{1} \triangleright m_{2}\right)(C)=\frac{m_{1}\left(C^{\downarrow K}\right) \cdot m_{2}\left(C^{\downarrow L}\right)}{\beta}, \tag{6}
\end{equation*}
$$

where $\beta=m_{2}^{\downarrow K \cap L}\left(C^{\downarrow K \cap L}\right)$ is, due to the assumption posed on $m_{2}^{\downarrow K \cap L}$, the same for all singletons $C \subset \mathbf{X}_{K \cup L}$. On the other hand, if $C \subset \mathbf{X}_{K \cup L}$ is not singleton then either $C^{\downarrow K}$ or $C^{\downarrow L}$ cannot be singleton and therefore, if $\left(m_{1} \triangleright m_{2}\right)(C)$ is assigned by case [a] of Definition 2, the value of $\left(m_{1} \triangleright m_{2}\right)(C)$ is 0 . In case that $\left(m_{1} \triangleright m_{2}\right)(C)$ is assigned by case [b] of Definition 2, the resulting value is also 0 , because this case is applicable only when $m_{2}^{\downarrow K \cap L}\left(C^{\downarrow K \cap L}\right)=0$, which may appear only when $C^{\downarrow K \cap L}$ is not singleton and therefore neither $C^{\downarrow K}$ is a singleton, which means that $m_{1}\left(C^{\downarrow K}\right)=0$. So, we showed that $m_{1} \triangleright m_{2}$ is defined by (6) for singletons and for non-singletons it equals 0 .

Let us denote

$$
\alpha=\sum_{A \subseteq \mathbf{x}_{K}} \sum_{B \subseteq \mathbf{x}_{L}: A \otimes B=\emptyset} m_{1}(A) \cdot m_{2}(B) .
$$

For the considered Bayesian assignments

$$
m_{1}(A) \cdot m_{2}(B)
$$

can be positive only when both $A \subseteq \mathbf{X}_{K}$ and $B \subseteq \mathbf{X}_{L}$ are singletons. Therefore for any singleton $C \subseteq \mathbf{X}_{K \cup L}$

$$
\begin{align*}
\left(m_{1} \oplus m_{2}\right)(C) & =\frac{\sum_{A \subseteq \mathbf{X}_{K}} \sum_{B \subseteq \mathbf{X}_{L}: A \otimes B=C} m_{1}(A) \cdot m_{2}(B)}{1-\alpha} \\
& =\frac{m_{1}\left(C^{\downarrow K}\right) \cdot m_{2}\left(C^{\downarrow L}\right)}{1-\alpha} \tag{7}
\end{align*}
$$

and for non-singletons C

$$
\left(m_{1} \oplus m_{2}\right)(C)=0=\left(m_{1} \triangleright m_{2}\right)(C) .
$$

To prove the required equality

$$
\left(m_{1} \oplus m_{2}\right)(C)=\left(m_{1} \triangleright m_{2}\right)(C)
$$

also for singletons it is enough to compare equalities (7) and (6) and again realize that both $m_{1} \oplus m_{2}$ and $m_{1} \triangleright m_{2}$ are normalized basic assignments and therefore $1-\alpha=\beta$.

4 Conclusions

In the paper we introduced the operator of composition for basic assignments and compared it with the famous Dempster's rule of combination. We showed that though Dempster's rule of combination and operator of composition were designed for different purposes they coincide in special situations; $m_{1} \oplus m_{2}=$ $m_{1} \triangleright m_{2}$

- when the combined basic assignments m_{1} and m_{2} are defined on disjoint frames of discernment;
- when all the focal elements of m_{1} are contained in each focal element of m_{2} and the basic assignments in question are defined on the same frame of discernment;
- when all the focal elements of both m_{1} and m_{2} project to the same subset of the overlapping frame of discernment.

Naturally, as shown in Example 3, the above described situations do not form a complete list of conditions under which the studied two operators coincide.

References

[1] Th. Denoeux. Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence. Artificial Intelligence, 172 (2008), pp. 234-264.
[2] R. Jiroušek, J. Vejnarová and M. Daniel. Compositional Models of Belief Functions. In: Proc. of the 5th Int. Symposium on Imprecise Probabilitis and Their Applications ISIPTA'07, (G. de Cooman, J. Vejnarová, M. Zaffalon, eds.). Mat-fyz Press, Praha, pp. 243-252, 2007.
[3] R. Jiroušek. On a Conditional Irrelevance Relation for Belief Functions Based on the Operator of Composition, (Gabriele Kern-Isberner, Ghristoph Beierle, eds.). To appear in: Proc. of the KI07-Workshop on Dynamics of Knowledge and Belief. Osnabrueck, Germany, 2007.
[4] A. Kallel, S. Hégarat-Mascle. Combination of partially non-distinct beliefs: The cautious-adaptive rule. Int. J. Approx. Reason (2009), doi:10.1016/j.ijar.2009.03.006.
[5] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton, New Jersey, 1976.
[6] Ph. Smets, Analyzing the combination of conflicting belief functions. Information Fusion 8 (4), 2007, pp. 387-412.

[^0]: *The research was partially supported by Ministry of Education of the Czech Republic under grant no. 2C06019, and by Czech Science Foundation under the grants no. ICC/08/E010 and 201/09/1891.

[^1]: ${ }^{1}$ For the purpose of this paper we do not consider situations when

 $$
 \sum_{A \subseteq \mathbf{x}_{K}} \sum_{B \subseteq \mathbf{x}_{L}: A \otimes B=\emptyset} m_{1}(A) m_{2}(B)=1
 $$

