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ABSTRACT

Traditional design techniques for FPGAs are based on using

hardware description languages, with functional and post-

place-and-route simulation as a means to check design cor-

rectness and remove detected errors. With large complexity

of things to be designed it is necessary to introduce new de-

sign approaches that will increase the level of abstraction

while maintaining the necessary efficiency of a computation

performed in hardware that we are used to today. This paper

presents one such methodology that builds upon existing re-

search in multithreading, object composability and encapsu-

lation, partial runtime reconfiguration, and self adaptation.

The methodology is based on currently available FPGA de-

sign tools. The efficiency of the methodology is evaluated

on basic vector and matrix operations.

1. INTRODUCTION

In recent years we have seen the area of FPGA implemen-

tations broadening from simple, single-purpose applications

”hard-wired” in a single configuration bitstream towards com-

plex, variable, dynamically changing applications based ei-

ther on a reprogrammable sequential von Neumannmachine,

or reconfigurable dataflow machine that uses partial runtime

reconfiguration to change the circuit function.

Due to the advance of technology at present we can per-

ceive partial runtime reconfiguration of FPGAs as another

architectural feature ready to be used in real-world designs;

both the FPGA silicon and design tools are available today.

On the other hand, partial runtime reconfiguration itself in-

creases the complexity of the design process, resulting in

higher design costs. It is even expensive in terms of execu-

tion performance due to the relatively long reconfiguration

latency in current FPGA chips; this is caused mainly by the

fine grain nature of elements that must be described in the

partial reconfiguration bitstream, and by a very limited ar-

chitectural support of partial runtime reconfiguration in to-
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day’s FPGAs, which are designed to work primarily with

just a single context.

An alternative approach to changing circuit function dur-

ing runtime is to use simple CPUs that control the function

of data processing blocks; this approach has already been

described in the literature [1], [2], [3], [4], [5], [6].

The challenge in this approach is to align the slow, se-

quential nature of CPU data processing (here we mean a

very simple basic processor without advanced architectural

features) with the parallel nature of FPGA data processing,

often using pipelined function blocks with different pipeline

latencies.

The advantage of using simple CPUs to change the cir-

cuit function is twofold: First, the CPU program usually

works with a higher granularity than the FPGA configura-

tion mechanism. Second, the human mind has been trained

to think in a sequential rather than parallel manner. These

two facts mean that the circuit function can be changed faster

by CPU reprogramming than by direct FPGA reconfigura-

tion (by downloading programs that have a smaller memory

footprint compared to the corresponding configuration bit-

streams), and that it should be easier for a designer to design

programs for a CPU than to directly program the hardware

in HDL.

To make the mixed CPU and dataflow approach usable

in practical designs it is necessary to find a suitable organi-

zation of a hardware design in general so that we can take

advantage of using the sequential CPU approach while not

killing the data parallel processing inherent to FPGAs. This

paper proposes one such organization implemented with cur-

rently available FPGA design tools.

The paper is organized as follows: Section 2 overviews

the developments in mapping dataflow computations to CPUs.

Section 3 analyzes gains offered by using simple CPUs in

hardware design, and it describes a sample design organi-

zation based on simple CPUs and programmable datapaths.

Section 4 presents performance evaluation, and Section 5

concludes the paper.
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2. DATAFLOW COMPUTING AND CPUS

Architectural features of modern CPUs that try to decrease

execution stalls, usually due to operands not being ready in

registers, include several variants of multithreading, where

several computation threads without data dependencies are

executed independently by the instruction issue (do not con-

fuse with OS-level threads that usually represent much big-

ger parts of computation).

CPU multithreading [7] increases processor perform-
ance by executing the computation in several independent

dataflow parts, preferably without any mutual data depen-

dencies. In this approach an efficient computation is equiv-

alent to a full usage of the processing pipeline. The major

events that cause pipeline stall are accesses to external mem-

ories (represented mainly by cache misses) and mispredic-

tion of branches. The reasoning is that when a large num-

ber of threads are ready for processing, with zero latency on

context switch, no pipeline stall will ever occur.

Since the above example is idealized, we can expect

that in practice there will always be a certain percentage of

pipeline stalls due to a limited number of threads ready for

execution. Microthreading [8] is a technique that tries to
increase the number of processing threads ”by definition”

- the compiler identifies program locations where context

switch may occur, and it inserts explicit context switch in-

structions there (the context is defined only by a distinct pro-

gram counter for each thread, CPU registers and memory

space is shared).

From the point of view of a hardware designer the above

approaches are not satisfactory to be used in embedded ap-

plications with FPGAs, since such applications contain a

certain level of parallelism, where dependencies can be de-
termined statically [6]. In this context multithreading does
not guarantee efficient usage of computing resources in data

streaming applications; these techniques cannot totally elim-

inate pipeline stalls, and the silicon overhead in terms of

the necessary CPU function blocks is too high for limited-

purpose applications [9]. The lower functional density of

the CPU silicon can be justified only for general-purpose

applications that are not usually implemented in FPGAs.

3. DESIGNING WITH SIMPLE CPUS

On the other hand, it is beneficial to use simple CPUs in

the role of programmable finite state machines to control

configurable datapaths, and to eliminate execution stalls by

a definition of an explicit computation schedule.

We propose a design organization in two layers joined in

a basic computing element: the lower level consists of data-
flow units (DFUs) with a limited number of configurations
implemented through multiplexers in their data paths. In the

following text we will consider a general case of DFUs with

pipelined floating-point operations with different latencies.

Fig. 1. The basic computing element (BCE): a dataflow unit
with a simple control CPU. The dataflow unit can be recon-

figured on the fly to suit different application domains (e.g.

fixed-point vs. floating-point).

In general the computation of pipelined dataflow units can

be split in three steps: pipeline initialization, data process-

ing and wind-up. The ratio between the number of clock

cycles of the data processing step and the initialization plus

wind-up steps determines the efficiency of the pipeline us-

age, implying the data processing step should dominate the

computation.

The DFUs are meant to implement basic mathematical

operations, i.e. basic building blocks of the target computa-

tion. To increase the computation efficiency, when consid-

ering pipelined floating-point operations, the dataflow units

should operate on batches of data. The advantage besides

partly eliminating the initialization and wind-up is the possi-

bility to mask communication latencies as we will see later.

The higher level consists of simple CPUs (sCPUs), such
as the PicoBlaze [10], where each sCPU controls one or

more dataflow units. The role of these sCPUs is to encap-

sulate implementation details of the dataflow units, provide

a design interface on a higher level of abstraction (atomic

operations on data batches rather than dealing with individ-

ual clock cycles), provide an ability to specify sequences

of operations performed on one batch of data (making use

of data locality in the computation), and from the hardware

point of view to eliminate the expensive wide multiplexers

that would be necessary in pure hardware design with the

full variability built directly in hardware.

The encapsulation of dataflow units enables to use DFUs

of different complexity in terms of implemented operations

with different area requirements since it is assumed that more

specialized operations implemented in complex DFUs can

be implemented as a sequence of generic operations in sim-

ple DFUs. Each case is represented by an sCPU program:

one program will contain only a single instruction, while the

other will contain an equivalent sequence of instructions. A

typical example is a vector dot product operation that can be
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calculated as an explicit sequence of scalar multiplications

and additions.

3.1. Dataflow Unit Operations

The set of operations supported in the discussed dataflow

unit was derived to speed up commonDSP algorithms, based

on vector or matrix operations. We have focused on the ele-

mentary problem of vector dot product and its use in matrix

multiplication.

Matrix multiplication is defined as follows:

Z[i,j] = A[i,k].B[k,j] (1a)

zi,j =
k∑

r=1

ai,r.br,j (1b)

Equation (1b) can be computed as a sequence of basic

multiply and add operations, or it can be mapped directly

to a specific structure. This structure can be optimized ei-

ther for individual dot-product operations, computing only

one element of the resulting matrix at a time, ideal for long

vectors, or it can be optimized for computing several ele-

ments of the resulting matrix at once, ideal for cases where

several short vectors can be processed in one batch, such as

when multiplying matrices with a small dimension k, see
Eqs. (1a), (1b). In the discussed dataflow unit the former

case is implemented by the DOTPROD operation, and the

latter case by the MAC operation.

Important areas that use multiply-accumulate as the fun-

damental composite operator are mathematics - discrete con-

volution in Eq.(2a), used also in audio DSP - FIR, and image

processing - pattern matching in Eq.(2b) [11].

(f ∗ g)(n) =
∑

n

f(n)g(m − n) (2a)

Re(s, t) =
M∑

m=0

N∑

n=0

[Ii,j
1 (m, n).Ii,j

2 (m − s, n − t)] (2b)

The discussed DFU uses the floating-point representa-

tion; the main reason is its flexibility compared to the fixed-

point representation, i.e. no overflow effects and a wide dy-

namic range.

The DFU calculates results that are bit-exact identical

to the results generated by an equivalent sequence of oper-

ations in the MicroBlaze configured with the standard hard-

ware floating-point unit (note that in the MicroBlaze differ-

ent results are obtained when floating-point operations are

computed in the software floating-point library and in the

hardware floating point unit that does not support denormal-

ization).

3.2. Basic computing element

Figure 1 shows a block diagram of the described basic com-
puting element (BCE). Since the details of the internal or-
ganization have been described in [12], here we briefly men-

tion just the key facts.

The BCE is generic; this means the user can specify the

basic functions calculated in the dataflow unit to suit his ap-

plication domain (fixed-point vs. floating-point operations,

arbitrary precision, different libraries of basic operations e.g.

for image or audio processing). In the discussed case the

dataflow unit implements vector and matrix calculations in

a single-precision floating-point representation, the opera-

tions used in the DFU unit are pipelined, not necessarily

with the same pipeline latencies.

An example of a variable DFU discussed in the remain-

ing text is shown in Figure 2. The following discussion con-

siders a unit with two single-precision floating-point oper-

ations (+, ∗) generated in the Xilinx Core Generator. The
pipeline latency for the+ operation is 3 clock cycles and for
∗ 4 clock cycles; the latencies have been selected to achieve
system frequency of 100MHz, which is the limit dictated

by the QinetiQ floating-point IP cores and the PicoBlaze

used as the simple CPU to control the dataflow unit; this fre-

quency is also compatible with a design featuring the Micro-

Blaze configured with a single-precision floating-point unit

(a MicroBlaze option in Xilinx EDK) running at 100MHz.

Fig. 2. A configurable dataflow unit with pipelined floating-
point operations for vector and matrix processing.

In the following text we analyze the DFU in three flavours

that differ in the complexity of the batch operations it sup-

ports. In the basic version BCE BASIC the unit supports
data transfers between any of the three data memories and

batched vector-like addition and multiplication. Amore pow-
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Table 1. Resource requirements (XC4VSX35).
Feature Slices BRAM16 DSP48

MicroBlaze (MB) 1552 32 3

STD MB HW FPU 692 0 4

BCE BASIC 1632 8 4

BCE MAC 1904 8 4

BCE MAC DOTPROD 2176 8 4

erful version BCE MAC implements an additional multiply-
accumulate (MAC) operation that adds a multiple of two

numbers stored in two of the data memories to a number

stored in the third data memory, storing the result there. The

most powerful version BCE MAC DOTPROD implements
an additional dot product (DOTPROD) operation, used as

the basic building block in many DSP calculations. The

hatched parts in Fig. 2 correspond to design features im-

plemented only in the MAC and DOTPROD versions of the

DFU. The resource requirements of each of the three ver-

sions and their comparison to the MicroBlaze and its hard-

ware floating-point unit are listed in Table 1.

The function of the computing element can be changed

either via changing the contents of any of the program mem-

ories P0 or P1 (the memories can be swapped in one clock
cycle), or by using partial runtime reconfiguration of the

dataflow unit. Table 2 shows representative times for both

cases; we assume that each program memory consists of

256 locations to be defined, and that the reconfigurable area

taken by the whole basic computing element in its three vari-

ants is 24 by 48 CLBs, 30 by 64 CLBs, and 28 by 80 CLBs

respectively, the area being utilized completely. In the limit

case it is necessary to reload the whole program memory or

to reconfigure the whole reconfigurable area to change the

computation. It can be clearly seen that software-emulated

reconfiguration via program memory change is about 400
times faster.

Fig. 3. User-level view of the basic computing element.

We assume that the partial runtime reconfiguration will

be used only when redefining the application domain, and

that in the majority of cases the function of the computing

element will be modified by reloading the program memory.

Another important feature is the organization of the data

memories A, B, and Z. In our sample case each memory
is 1024 data words long, organized in four 256-word parts.

This enables to mask communication latencies, provided the

computation performed on the local data take longer than is

needed to read back previous results and load a new data

batch.

The basic computing element has been designed so as to

hide unnecessary implementation details from the designer.

The system perceives the whole BCE as an intelligent mem-

ory without any direct access to the BCE internals (see Fig.

3). The computation is started by a write to the BCE proces-

sor control register after all data have been transfered to the

BCE data memories, and synchronization is performed by

reading the BCE processor status register (an option is to in-

terrupt the host CPU, e.g. the MicroBlaze). The BCE appli-

cation programming interface (BCE API), currently imple-

mented as C function calls, is identical for all the described

flavours of the dataflow unit. In addition to the BCE organi-

zation discussed so far the BCE API also covers SIMD-like

variants that we have also developed, where the BCE con-

tains several dataflow units controlled by one sCPU; in such

cases the designer uses additional function calls to transfer

data to additional data memories that are served by the ad-

ditional dataflow units, and the interaction with the simple

CPU remains identical.

The protocol between the simple CPU and the dataflow

unit consists of these steps: 1. the sCPU requests the data-
flow unit to send an identification of its capabilities (a vector

of bit values set to 1 or 0 according to available features), 2.
the DFU answers the ID request, 3. the sCPU commands
the DFU to perform an operation on a batch of data values

(in our setting a typical batch length is 1-256 data values)

and monitors its completion (in the meantime the sCPU can

perform other tasks such as data transfers between an exter-

nal memory and the local data memories, in the discussed

example implemented through a host CPU), 4. the DFU ac-
knowledges completion and halts.

3.3. User-level interface and system integration

The use of dual port memories makes it possible to hide

implementation details beneath a standard memory access.

User applications simply perceive the computing element as

an intelligent memory that can perform operations on its

data. The interface memories also isolate the internal ar-

chitecture of the element from the comunication network;

the computing elements can be connected either directly to

a processor bus as shown in Figure 3 (this case will be dis-

cussed in the following text), or they can be connected in

a specialized network topology constructed with respect to

the flow of data in the application, as offered by the recently
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Table 2. Change of function: partial runtime reconfiguration vs. reprogramming (XC4VSX35).
Duration

Variant Slices BRAM16 DSP48 Bitstream Theoretical Measured

size Standalone Petalinux

[1] [1] [1] [B] [μs] [μs] [μs]

BCE BASIC 1632 8 4 151184 34831.81 34832.32 35168.00

BCE MAC 1904 8 4 152556 35148.73 35149.24 35484.00

BCE MAC DOTPROD 2176 8 4 209960 48372.44 48372.95 48813.00

PB program load Maximal values 4096 92.40 92.91 344.00

researched component approaches [13], [14].

4. PERFORMANCE EVALUATION

We have evaluated the core performance of the discussed

basic computing element and the influence of latencies of

data transfers between an external DDR memory and the

dual-port data BlockRAMs connected to a BCE. The ex-

perimental system consisted of one BCE connected to the

MicroBlaze CPU through the FSL interface (in general there

can be as many as eight BCEs connected via the FSL to the

MicroBlaze). The performance of the BCE has been eval-

uated as a speedup of basic vector and matrix operations

with respect to identical operations executed in the similarly

flexible MicroBlaze configured with the hardware floating-

point unit; both the BCE and MicroBlaze operations are se-

quenced in the same way to achieve bit-exact results.

The floating-point add and multiply operations used in

the dataflow unit have been generated in the Xilinx Core

Generator. The latencies of the operations (latadd = 3,
latmul = 4) have been selected to be compatible with the
operating frequency of a design with the MicroBlaze con-

figured with the hardware floating-point unit.

The design has been implemented in the Xilinx ML402

starter kit with XC4VSX35-10, the whole design operating

at 100MHz. We used the Xilinx System Generator, ISE and

EDK in version 9.1; the main reason for using this version

is the support of virtual platform simulation that we use for

debugging the system, which is missing in EDK version 9.2.

The MicroBlaze is v6.0b, with both Icache and Dcache con-

figured to 16kB, running Petalinux kernel version 2.6 with

100Mbps Ethernet.

4.1. Sample problem

The selected sample problem is a parameterizable matrix

multiplication, selected for its possibilities to test and evalu-

ate all the implemented BCE operations.

Z[10,10] = A[10,j].B[j,10] (3a)

1 ≤ j ≤ 24

The dimensions of the matrices are dictated by the size of

the data memories (each memory is divided into four parts,

each containing 256 words). The dimensions of the result

matrix are fixed at 10, while the inner dimensions of the

input matrices change from 1 to 24.

4.2. Communication

Our experiments performed ten consecutive matrix multipli-

cations using the following three basic communication sche-

mes:

• No communication: Input data are transfered from
the external DDR memory to the data BRAMs only

once before all computation steps. Output data are

transfered back to the DDR memory after all compu-

tation steps have finished.

• Sequential communication: Input data are transfered
from the DDR memory to the data BRAMs before

each computation. Output data are transfered back to

the DDR memory after each computation step.

• Masked communication: Input and output data trans-
fers overlap with the computation steps.

4.3. Results

Figure 4 shows the BCE performance for a system with a

single basic computing element with a single dataflow unit.

In both figures the upper plot shows an upper bound of

possible acceleration of the basic computing element since

it uses data in place. The middle plot shows a more re-

alistic lower bound of possible acceleration since compu-

tation steps are interleaved with communication steps (i.e.

computation does not happen during communication). The

lower plot shows the most realistic case with an optimized

communication that overlaps with computation.

Each plot in Fig. 4 shows the computation speedup for

all three versions of the dataflow unit as described in Table

1. These values can be used to trade off the available com-

puting performance and the resources needed to implement
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Fig. 4. Speedup of the BCE with a single dataflow unit over
the MicroBlaze with the HW FPU computing the sample

problem.

the operations. The application program commanding the

BCEs, presently running in the MicroBlaze, remains identi-

cal for all three versions of the DFU since the BCE performs

internal self-adaptation to different DFU configuration, self-

adaptation managed by the simple CPU.

It can be seen that for the three versions of the dataflow

unit (BASIC, MAC, MAC DOTPROD) the realistic speedup
with respect to the MicroBlaze with HW FPU is between 4

and 8 for the biggest matrices. The difference in speedups

between the top plot and the middle and bottom plots is

given by the data transfer latencies due to the FSL interfaces

and the MicroBlaze running the Petalinux system processes.

Please note that in a usual setting only a minimal amount

of data will be transfered between the external DDR mem-

ory and the internal data memories; this is given by the

nature of signal processing algorithms used in embedded

systems. The presented platform is intended for embedded

rather than high-performance computing.

5. CONCLUSION

This paper has presented a methodology based on a basic

computing element that increases the level of design abstrac-

tion of FPGA designs. The element uses a combination of a

simple CPUwith a configurable pipelined datapath to imple-

ment basic floating-point vector and matrix operations. The

function of the element can be changed through replacing

the CPU program as well as through partial runtime recon-

figuration of the dataflow unit; implementation results for

both features have been shown. Performance results have

been presented for a matrix multiplication operation in a

MicroBlaze based system; the speedup of the basic com-

puting element over the pure MicroBlaze with its hardware

floating-point unit is about eight.
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