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Abstract. This paper presents a framework for building and modeling
a new-generation self-adaptive systems. The first part of the paper pro-
poses an architecture of a self-adaptive networked entity that forms the
basic element of the approach. The second part describes a modeling en-
vironment based on Matlab / Simulink and one possible implementation
of the self-adaptive networked entity. A physical realization of the pro-
posed system is demonstrated on the computation of a simple FIR filter
in several FPGAs acting as hardware in the loop in Matlab / Simulink.

1 Introduction

In the past years, we have observed a gradual shift in the use of high performance
computing resources. After the mainframe era (many people, one computer) and
the PC era (one computer per person), we begin to enter the ubiquitous or
pervasive computing era (many computers per person) [1]. Computer related
devices are now a critical part in almost any piece of modern equipment. Every
day an average citizen interacts with at least one electronic device equipped
with a processing element. Some of these devices are already even capable of
communicating with others, for example a cell phone or personal computer.
This shift is being accelerated by progress in micro/nano-electronics technology
allowing for smaller and more power-aware chips.

An important factor that must also be considered is that in the 65nm tech-
nology fabs can produce with a reasonable yield only regular patterns such as
FPGA circuits or networked CPU arrays. If this trend is not changed, we will
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be faced with a more intense need for design tools and methods that can di-
vide and implement computation in multiple distributed targets with different
granularity. This increase in the number of processors is true at all levels of the
computing systems, from chips (multi-cores) to system level. Moreover, all these
intelligent devices will be interconnected through an intricate chain of networks.

This paper deals with the hardware part of the ATHER project [2] and intro-
duces a novel architecture based on several automomous computing units that
we call Self-Adaptive Networked Entities (SANESs). As its name indicates,
this basic computing element aims at being networked with others in order to
form complex but manageable systems. The remainder of the paper is as fol-
lows. The second section deals with a short state of the art based on relevant
project in the field. The third section introduces and describes the architecture.
Then the fourth section presents some possible implementations of the SANE
hardware followed by the description of the modelling. The sixth section present
current implementation with accent to self-adaptive network and easy modeling.
Finally, the seventh section concludes the paper.

2 State of the Art

On the international scientific scene, some other projects are scientifically linked
with the ATHER proposal at the hardware level. In the U.S., the High Produc-
tivity Computing Systems (HPCS) program [3] of the U.S. DARPA agency aims
at developing a broad spectrum of innovative computing system solutions that
will fill the gap between today’s HPC computing architectures and the promise
of future quantum computing. The Self-Regenerative System program [4] aims
at bringing more autonomy to computing systems by introducing such capa-
bilities as self-optimisation, self-diagnosis, self-awareness and self-healing. The
MIT Oxygen project [5] gathers academic labs and industrials around the topic
of adaptable, efficient and powerful computing resources for pervasive applica-
tions. They can delegate part of their computation in order to conserve power
and they can perform a wide variety of functions thanks to reconfiguration.

In Japan, the T-Engine forum [6] aims at developing an open, standardised,
real-time platform for future ubiquitous systems. The project was funded by
five Japanese chipmakers and 17 other technological firms. From now on, the
consortium is much more important (443 members as of February 29th, 2008).
The underlying hardware is composed of four dedicated boards [1].

On the European side, several projects in the pervasive computing domain
are under way. The RUNES project [7] aims at enabling the creation of large-
scale, widely distributed, heterogeneous networked embedded systems that in-
teroperate and adapt to their environments. The PalCom project [8] aims at
researching and developing a new perspective on ambient computing denoted
palpable computing.
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3 The Self-Adaptive Networked Entity

We define self-adaptivity as the ability of a system to adapt to an environment by
allowing its components to monitor this environment and change their behaviour
in order to preserve or improve the operation of the system according to some
defined criteria [2]. The environment of a system is defined by everything that
interacts with this system. The adaptation of a system can occur at different
levels, from hardware to software. In this article, we study self-adaptivity at the
hardware level and especially with reconfigurable architectures.

Some requirements of the underlying hardware can be enumerated from the
definition. Since the architecture must adapt, the underlying hardware has to be
reconfigurable in order to allow a deep change in the hardware structure. The
architecture also needs to efficiently monitor its environment and its behaviour
in order to be aware of its performance and the possible related improvements.
It also needs a decision taking mechanism to decide the moment and the nature
of the adaptation. The combination of the monitoring process and the decision
taking process provides the device with the ability to self-adapt: it can auto-
mously trigger reconfigurations to improve or to keep its performance after a
modification in its environment.

3.1 Description of the SANE

The proposed architecture is based on a set of elementary computing entities
named Self-Adaptive Networked Entities (SANE) partly presented in [9]. The
SANE is defined as a computing entity at which a local and autonomous decision
process occurs that affects its own operation. Figure 1 shows a functional view
of the SANE.

The computing engine processes data. It must provide the necessary pro-
cessing power to handle future complex algorithms required by new standards
and multimedia applications. It must also be reconfigurable to handle a wide
spectrum of applications, and the reconfiguration process must be dynamic (”on
the fly” reconfiguration). It is the most flexible block of the SANE.

The observer is responsible for monitoring the computation process and
other runtime parameters. It allows the SANE to sense its current environment
and optimize its performance, which means both comparing its actual processing
parameters with the required constraints given by the application designer, and
monitoring communication parameters. As an example optimal working mode
can be driven by the bit-error rate measurement on a link in order to automati-
cally set the correct power supply voltage and frequency [10] or the appropriate
error detection code [11].

The controller is in charge of actually taking all decisions regarding the
ongoing computation task. Based on the observations of the current running
task, the controller is responsible for changing the state of the SANE by loading
any locally available task implementation.
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Fig. 1. Functional view of the SANE with the main parts.

The communication interface is responsible for the management of SANE
assemblies. It enables resources sharing and collaboration between SANE ele-
ments as well as providing the SANE with goals to be reached.

The SANE is basically a tightly coupled hardware / software entity with
its computing engine seen as a hardware-based reconfigurable computing unit
(e.g. an FPGA fabric), and the observer and the controller implemented as more
software programmable CPU cores.

3.2 Self-Adaptive Network

The previous text describes the SANE as a self-adaptive networked entity em-
bedded in various ways such as pervasive computer around us. The SANE can
be seen as a computer for their main purpose, or it can adapt itself for current
require function and attach itself to virtual network. Self-adaptivity becomes an
advantage for the whole network built from SANEs.

Current networks need to transfer a huge amount of data between nodes that
process the data flow [12]. The bandwidth and delay depend on the size of the
data and distance between nodes with the demanded function [13], [14]. It is
not rarely the case that data run through half of the network before they reach
the demanded function. The SANE network eliminates the long distance data
transport. Self-adaptation allows to change the SANE function to the required
one and the resulting data can be processed by the neighboring SANE. This
leads to data being processed by the closest SANE.

To reach optimal adaptation of each SANE statistical information about
passed packets is collected in each SANE in the network. The passed packets
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carry information about prescribed processing. Each SANE knows the most re-
quired function to process the passed data after the data have moved in the
network for some time. SANEs will adapt themselves to work optimally. When
the prescribed processing in the packet changes the optimal function a new
placement will be reached in a short time.

4 Implementation Background

This section presents implementation and simulation background necessary for
the development of the SANE element that is applicable to a wide variety of
current FPGAs. The efficiency of the proposed approach is evaluated in the
frame of typical FPGA implementations of DSP-type computations, since the
DSP domain is the primary area of today’s FPGA implementations.

4.1 Dynamic Reconfiguration

Dynamic reconfiguration is a feature found in some field-programmable gate ar-
ray (FPGA) families that enables to change the function of a part of the internal
logic while another part continues uninterrupted in its function. This is an im-
portant feature for building self-* circuits when a suitable methodology becomes
available. The major contributions to the area of dynamic reconfiguration of
FPGA circuits relevant to this paper are summed up in [15], [16], [17], [18], [19],
[20].

The infrastructure provides support for using dynamic reconfiguration, here
represented by loading and clearing a precompiled (i.e. pre placed and routed)
IP core in an FPGA on the fly. The FPGA is divided into a static part and a
dynamic part. The details are described in [16].

4.2 Design Flow Based on Simulink and the DK Design Suite

The proposed design flow for building systems based on SANEs is based on
the bit-exact modeling of SANEs, programmed in Handel-C, in the Simulink
framework, where the Handel-C code is developed in the Celoxica DK Design
Suite combined simulation and synthesis environment. This enables the designer
to decompose the whole system into parts with simple functions with rapid
development and test of different combinations.

For the whole SANE development it is crucial to have a robust and fast design
and simulation framework, usable for complex designs, to prove the equivalence
between the proposed theoretical principles coded in Simulink and the final
design implementation in an FPGA.

Create a SANE Model in Simulink. First we build a model of the SANE
in Simulink. The data sources and sinks in this model will be the BRAMs shared
with CPU in the final implementation. Since the FPGA operations are (or can
be) written as a cycle-accurate and bit-exact Handel-C code, we can benefit from
having a single source for both implementation and simulation by compiling the
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Handel-C code to a DLL library that can be linked to the Simulink environment
and called as bit-exact S-functions.

Perform Cycle Accurate Verification. Our next stage is to create test
vectors using Simulink and feed these into the bit-exact and cycle-exact accurate
simulation of the SANE in the DK Design Suite’s debugger.

Test SANE in Hardware. We take advantage of a layered design approach
by using a single communication API for data I/O functions that applies for
both simulation and implementation. This allows us to verify the SANE design
on real FPGA hardware by ’linking’” with an appropriate board support library
for implementation. We can optionally insert this hardware test back into the
Simulink model for hardware-in-the-loop simulations.

Create a Model of a SANE Network in Simulink. We build the SANE
network using a Simulink blockset (described in the next section) and the SANE
model developed and debugged in the previous steps. We use the Simulink en-
vironment to emulate a dataflow network with an arbitrary topology.

Evaluate the Behaviour of the SANE Network in HW. We use the
SANE network created in the previous step, but we replace the SANE models
in Simulink with their hardware realization in Celoxica RC10 boards that act as
hardware in the loop.

At present we use one RC10 board per one SANE to avoid the complexity
of partial runtime reconfiguration, necessary when the whole SANE network is
implemented in one FPGA. Each board uses static reconfiguration of its FPGA
to configure different SANE functions during runtime, to decrease the amount
of data circulating in the SANE network all possible SANE configurations are
stored within each board in its configuration FLASH memory.

5 Modelling and Implementing a Simple SANE Network

Imagine a network of SANE entities that implement a family of FIR filters.
The requirement is to share the resources among different data channels with
different data throughput and filtering requirements. The task of the network is
to process data streams, i.e. perform different filtering operations on the input
data and generate responses. The network operates on tagged data packets. Each
packet is formed by a header and data part. The header specifies in some way
operations needed to process the data part; it contains the packet length, array
of tags mark operations of data, the end-of-tag-array delimiter and data array
length (see Figure 4).

The whole network of FIR SANE elements can be viewed as a linear chain of
processing elements with a FIFO memory forming a loop to circulate data not
completely processed (see Figure 2). The use of this topology (ring) enables us
to concentrate on the SANE computation only, since the ring can emulate any
given network topology on a logical level. We are aware of the importance of a
proper networking scheme, it will be addressed in more advanced stages of this
research.
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Fig. 2. General view of the SANE network.

The SANE network is modelled in the Matlab / Simulink environment and
verified on the Celoxica RC10 boards acting as hardware in the loop. The idea
is to use the Simulink environment for modelling, visualization and debugging.
A major advantage of this approach is that it allows us to gradually move from
the software model to the hardware implementation. Another advantage is the
possibility to use any FPGA platform provided it supports a standard simple
data exchange protocols; this way we can easily mix implementations on different
boards and with FPGAs from different families and manufacturers.

5.1 SANE Model in Simulink

The model of SANE network in Simulink is based on the following four blocks
that form the Simulink SANE blockset.

The input cutter takes an input data stream and divides it into packets of
data. In addition the cutter prepares packet headers for the data. In the simplest
case a header contains an ordered array of tags that indicate operations that are
required to process the data.

The output router is responsible for directing processed data out of the
network, and to direct partially processed data packets back to the network. The
processed data are recognized by an empty array of tags. Partially processed data
are stored in a FIFO memory in the feedback loop (not shown).

The configuration master is responsible for managing the database of
configuration bitstreams and programs for the FPGA and CPU. The master
sends configurations on demand from individual SANE elements. The master
by no means introduces central control to the SANE network since this would
invalidate the distributed processing character of the experiment.

The SANE element monitors the character of data that pass through it,
it processes data packets with tags that match its functionality. The distributed
control of the network is implemented as individual local decisions by each SANE
to change its internal configuration to match the majority of passing data tags
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Fig. 4. SANE model, interpretation of signal plots.

We use the above building blocks to assemble a Simulink schema that models
the SANE network. A clearer view is showed in Figure 3; the left part shows a
situation where the whole network is modelled in Simulink, the right part shows
SANEs implemented in individual FPGA development boards and connected to
the Simulink environment as hardware in the loop.

Figure 4 shows how SANE packets are mapped to Simulink data. Packets
are formed by consecutive numbers that are visualised as Matlab value plots.

6 Current Hardware Implementation

We use the above described FIR filter in our research to validate the proposed
theory on existing hardware and to suggest requirements on a future generation
of reconfigurable architectures. The system uses an external memory to store
partial FPGA bitstreams. At present the complete FPGA is reconfigured stati-
cally to a new function using the built-in infrastructure of the RC10 boards; The
plan is to use dynamic reconfiguration managed by a soft-core CPU that handles
FPGA reconfiguration and interfaces the system to the outside world, and an
FPGA portion denoted as a wrapper with a virtual socket that can be reconfig-
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ured to desired functions by the partial bitstreams (see [16]). In the described
example we use reconfiguration to change the parameters and the structure of
the FIR filters during runtime.

6.1 SANE Implementation

The SANE is implemented on the Celoxica RC10 board. A communication be-
tween the SANEs and IBM PC runs through the USB (main communication)
and RS232 (debugging) interfaces. This arrangement allows to monitor and con-
trol the communication channel. The multi-layer solution (see Figure 5) was used
to implement the SANE hardware:

The device layer services the data, control and debug channels on the
SANE. It is built as a universal input-output engine. By changing the layer we
can use different hardware or different NoC.

The control layer decodes packets, decides how to process them, and col-
lects statistical information on passed and processed packets. According to this
information the control layer chooses different functions for the SANE to process
data packets when tags match the SANE function, or pass the packet back to
the network.

The application layer processes the data. The data from a packet with
a tag that matches an available SANE function are passed to the application
layer. The processed data are passed back to the control layer that generates an
updated packet.

Each SANE layer contains parallel function blocks, or servers, shown in Fig-
ure 5; the servers working simultaneously and communicating through signals.
A received packet is stored in a Packet Buffer. Servers have access to the Packet
Buffer to proccess the packet header. A packet qualified for processing in the
current SANE is moved from the control layer to the application layer. During
packet processing another packets can be examined in the Packet buffer.

6.2 SANE Adaptation

At the beginning the SANE is not configured to perform any function. During
the run an observer chooses the best configuration for its computing engine
based on the collected statistical information on tags of the packets that passed
through the SANE. From the moment the SANE is configured, it can process
packets with tags that correspond to its function. The SANE function can be
switched according to the current statistical information on data packets. The
statistical algorithm is modular, and it can be changed or debugged easily to
test different aproaches to self-adaptation.

6.3 SANE Communication

The SANE implemented in the Celoxica RC10 board is connected to Matlab /
Simulink. The connection is done through USB in the star topology at the phys-
ical level. The Matlab / Simulink environment provides a platform to generate
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Fig. 5. SANE hardware block diagram and multi-layer solution.

and validate data. The virtual SANE network is built in Matlab / Simulink to
allow the possibility to simulate various topologies such as crossbar or mesh that
are often used in tile processor platforms [21]. The current SANE virtual network
is built as a ring to provide high throughput and a simple implementation of the
network interface [22]. The ring allows packets to cycle in the network till they
have been processed completely. The ring topology allows to avoid switching and
routing difficulties and focus on the development of self-adaptation and SANE
debugging.

The Matlab / Simulink network model allows to connect and disconnect the
SANE during operation without any network and data damage. It allows us to
examine the influence of the number of SANEs in the network and to force the
SANE network to change configuration. An example of the behaviour of a SANE
network with four SANEs is shown in Figure 6. The network is configured to
calculate a FIR filter response to a unit impulse in one data pass through the
SANE network. The plots show the result when two, three or four SANEs are
active. The partly processed data can be finished either in additional data passes
through the SANE network, or by additional SANEs; the first case results in
the computation taking more time, the second case requires more computing
resources.
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6.4 Current Implementation Advantage

The implementation of the SANE network presented above was designed to ease
SANE debugging using the advantage of Matlab / Simulink and hardware in the
loop simulation. Matlab provides a well known platform to generate and validate
data. Simulink provides modeling interface between various hardware platforms,
and it allows to change the network topology at a low cost. The bandwidth of
the SANE network is not significant in the current implementation. The SANE
designed on the current platform can be used as a starting point for SoC solutions
as a well-debugged building block

7 Conclusions

This paper has presented a novel self-adaptive element called Self-Adaptive Net-
worked Entity (SANE) that forms a basis for building a new class of self-adaptive
systems. This autonomous element is intended to be networked with other SANE
elements to form complete systems. A design flow has been presented as well as a
possible model and SANE implementations using reconfigurable hardware. The
presented implementation focuses on debugging the SANE design and its self-
adaptation, with taking all the advantages of the Matlab / Simulink environment
to interact with hardware.
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