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We formulate a problem of the evolution of elasto-plastic materials subjected to external loads in the framework of large
deformations and multiplicative plasticity. Our model includes gradients of the plastic strain and of hardening variables.
We prove the existence of the so-called energetic solution. The stored energy density function is assumed to be quasiconvex
in the elastic strain which makes our results applicable to relaxed models of shape memory materials, for instance.
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1 Introduction, notation13

The elastic-plastic behavior of crystalline materials poses a challenge for mathematical analysis on the microscopic, the14

mesoscopic, and the macroscopic scales. Here, we study a rate-independent model arising in the crystal plasticity. A15

common and successful approach to the analysis of crystalline materials is via energy minimization; see e.g. Ortiz &16

Repetto [31]. This is manifested for elastic crystals, even for those with the potential of undergoing phase transitions. The17

applicability of variational methods has been broadened to include rate-independent evolution. Typically, these models are18

characterized by energy minimization of a functional including macroscopic quantities such as the macroscopic deforma-19

tion gradient as well as a dissipation functional. In order to introduce a physically relevant scale to our problem we assume,20

following earlier works of Dillon & Kratochvı́l [8], Gurtin and Gurtin & Anand [15, 16], Mainik & Mielke [21] and others21

that our energy functional depends also on the gradient of the plastic tensor. The gradient term models non-local effects22

caused by short-range interactions among dislocations. It is not clear, however, which function of the gradient should be23

used. We refer to Kratochvı́l & Sedláček [18], to Bakó & Groma [1], and to Zaiser et al. [35] for attempts to derive it from24

statistical physics revealing thus complexity of the problem, for more details. A related approach to non-local models in25

damage and plasticity was undertaken in Bažant & Jirásek [3], see also [7, 9, 10, 12, 22].26

In this paper, we formulate the so-called energetic solution due to Mielke et al. [29] to our problem. This concept of27

solution is based on two requirements. First, as a consequence of the conservation law for linear momentum, all work28

put into the system by external forces or boundary conditions is spent on increasing the stored energy or it is dissipated.29

Secondly, the formulation must satisfy the second law of thermodynamics, which has in the present mechanical framework30

the form of a dissipation inequality. The last requirement enters the framework as the assumption of the existence of a31

nonnegative convex potential of dissipative forces. As a consequence the imposed deformation evolves in such a way that32

the sum of stored and dissipated energies is always minimized. The main advantage of this approach is that it allows us to33

exploit theory of the modern calculus of variations and suggests a numerical approach to this problem.34

To expose the essence of the mathematical structure of the energetic approach we first analyze a proto-model called35

here a material with internal variables. It freely follows the exposition of Francfort & Mielke [11] and we recall it here36

to motivate the notion of the energetic solution. In the second step, the framework is applied to elasto-plastic materials by37

specifications of some internal variables. One of the main results is that the described energetic approach can be identified38

with crystal plasticity with strain gradients in the version formulated by Gurtin [15]. Gurtin’s model is formulated in the39
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2 J. Kratochvı́l et al.: Energetic approach to gradient plasticity

mathematical language of differential equations. From the point of view of numerical solution of a boundary value problem40

of crystal plasticity the energetic formulation is more convenient.41

Our results are closely related to [21] where the authors proved the existence of energetic solutions to strain gradient42

plasticity with polyconvex energy density allowing even for +∞; see [2] and to Giacomini & Lussardi [13] where the43

linear-elastoplasticity framework is considered. Here we allow for finite quasiconvex stored energy density and large defor-44

mations. This is motivated by relaxation theory in the calculus of variation where the effective macroscopic energy density45

is quasiconvexification of the microscopic one. Thus, our results may be applied to plasticity of materials with developing46

microstructures as in shape memory alloys, [4], or [26] for instance. We refer an interested reader to [19] for a model de-47

scribing cyclic plasticity in these materials. Another related paper is Carstensen et al. [5] where the authors use the energetic48

approach to plasticity without strain gradients.49

In what follows, Ω ⊂ R
n, is an open bounded domain, Lβ(Ω; Rn), 1 ≤ β < +∞ denotes the usual Lebesgue space50

of mappings Ω → R
n whose modulus is integrable with the power β and L∞(Ω; Rn) is the space of measurable and51

essentially bounded mappings Ω → R
n. Further, W 1,β(Ω; Rn) standardly represents the space of mappings which live52

in Lβ(Ω; Rn) and their gradients belong to Lβ(Ω; Rn×n). Finally, W 1,β
0 (Ω; Rn) is a subspace of W 1,β(Ω; Rn) of maps53

with the zero trace on ∂Ω. The weak convergence in Lβ(Ω; Rn) is defined as follows: yk → y weakly in Lβ(Ω; Rn) if54 ∫
Ω

yk(x) · ϕ(x) dx → ∫
Ω

y(x) · ϕ(x) dx for all ϕ ∈ Lβ′
(Ω; Rn) where β′ = β/(β − 1) if 1 < β < +∞, β′ = 1 if55

β = +∞ and β′ = +∞ for β = 1. Weak convergence of mappings and gradients in Lβ then defines the weak convergence56

in W 1,β(Ω; Rn). Finally, C(Ω) or C(Rn×n) denotes function spaces of functions continuous on Ω or R
n×n, respectively,57

and C1(Ω) denotes the spaces of continuously differentiable functions.58

If f : R
n → R is convex but possibly nonsmooth we define its subdifferential at a point x0 ∈ R

n as the set of all v ∈ R
n

59

such that f(x) ≥ f(x0) + v · (x− x0) for all x ∈ R
n. The subdifferential of f will be denoted ∂subf and its elements will60

be called subgradients of f at x0.61

2 Materials with internal variables62

Consider a material whose elastic properties depend on internal variables z ∈ Z ⊂ R
m. The stored energy density is then63

W = W(Fe, z), where Fe ∈ R
n×n is the elastic strain. We are interested in the rate-independent evolution of the material.64

To this end, we assume the existence of a nonnegative convex potential δ = δ(ż) of dissipative forces, where ż denotes the65

time derivative of z. In order to ensure rate-independence, δ must be positively one-homogeneous, i.e., δ(αż) = αδ(ż) for66

all α > 0. Finally, we define for z ∈ Z a thermodynamic force67

Q := − ∂

∂z
W(Fe, z) . (1)68

The evolution rule is introduced in the form69

Q(t) ∈ ∂subδ(ż(t)), (2)70

where ∂subδ is the subdifferential of δ. Hence, there is ω(t) ∈ ∂subδ(ż(t)) such that Q(t) = ω(t). Maximal monotonicity71

of the subdifferential implies that for all θ ∈ ∂subδ(ξ) we have72

〈ω(t) − θ, ż(t) − ξ〉 ≥ 0 . (3)73

Remark 2.1. In particular, taking ξ = 0 and realizing that the one-homogeneity of δ yields δ(ż) = 〈ω, ż〉 for all74

ω ∈ ∂subδ(ż) we get75

δ(ż(t)) = 〈ω(t), ż(t)〉 = 〈Q(t), ż(t)〉 ≥ 〈θ, ż(t))〉 (4)76

for all θ ∈ ∂subδ(0). Inequality (4) expresses the so-called maximum dissipation principle (see e.g. Hill [17] or Simo77

[33]) which says that thermodynamic forces “available” in the so-called elastic domain ∂subδ(0) are not strong enough to78

overcome frictional forces.79

In what follows, Ω ⊂ R
n, is a bounded Lipschitz domain representing the so-called reference configuration, ν is the80

outer unit normal to ∂Ω, and ∂Ω ⊃ Γ0, Γ1 which are disjoint. The elastic deformation will be denoted y : Ω → R
n.81

The evolution of the system will be controlled by external forces. Let f(t) : Ω → R
n be the (volume) density of external82

body forces and g(t) : Γ1 ⊂ ∂Ω → R
n be the (surface) density of surface forces. The equilibrium equations governing83

mechanical behavior of the system are:84

−div
(

∂

∂∇y
W(∇y(t), z(t))

)

= f(t) in Ω , (5)85
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y(t, x) = y0(x) on Γ0 , (6)86

87

∂

∂∇y
W(∇y(t), z(t))ν(x) = g(t, x) on Γ1 . (7)88

The full system characterizing the proto-model consists of (5)-(7) supplemented by (2):89

− ∂

∂z
W(∇y(t), z(t)) ∈ ∂δ(ż(t)) , z(0) = z0 , z ∈ Z , (8)90

where z0 ∈ Z is an initial condition for the internal variable.91

In order to regularize our problem we may add the gradient of the internal variable , i.e., for ω ≥ 1 and ε > 0 put92

W(∇y, z) +
ε

ω
|∇z|ω .93

The evolution rule changes to94

εdiv(|∇z(t)|ω−2∇z(t)) − ∂

∂z
W(∇y(t), z(t)) ∈ ∂δ(ż(t)) , (9)95

96

z(0) = z0 , z ∈ Z ,97

so we have the thermodynamic force98

Q(t) := εdiv(|∇z(t)|ω−2∇z(t)) − ∂

∂z(t)
W(∇y(t), z(t)) . (10)99

The potential energy of our system can be written (ε := ε/ω)100

I(t, y(t), z(t)) :=
∫

Ω

W(∇y(t), z(t)) dx + ε

∫

Ω

|∇z(t)|ω dx − L(t, y(t)) , (11)101

where the work done by external forces is102

L(t, y(t)) :=
∫

Ω

f(t) · y(t) dx +
∫

Γ1

g(t) · y(t) dS (12)103

and the following energy balance is satisfied104

d
dt

I(t, y(t), z(t)) = L̇(t, y(t)) − d
dt

Diss(z; [0, t]) , (13)105

where106

Diss(z; [0, t]) :=
∫ t

0

∫

Ω

δ(ż(s)) dxds .107

Hence, the integration with respect to time gives108

I(t, y(t), z(t)) + Diss(z; [0, t]) = I(0, y(0), z(0)) +
∫ t

0

L̇(s, y(s)) ds .109

We can also consider a more general form of δ which can also depend on (x, z), i.e. δ := δ(x, z, ż).110

Typically, however, we do not have enough smoothness in the internal variable to compute the time derivative on the111

right-hand side of (13).112

Following Mielke [23] we define a dissipation distance between two values of internal variables z0, z1 ∈ Z as113

D(x, z0, z1) := inf
z

{∫ 1

0

δ(x, z(s), ż(s)) ds; z(0) = z0 , z(1) = z1

}

, (14)114
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where z ∈ C1([0, 1]; Z), and set115

D(z1, z2) =
∫

Ω

D(x, z1(x), z2(x)) dx , (15)116

where z1, z2 ∈ Z := {z : Ω → R
M ; z(x) ∈ Z a.e. in Ω}. We assume that Z is equipped with strong and weak topologies117

which define notions of convergence used below.118

Following [11, 21] we impose the following assumptions on D: (i) Weak lower semicontinuity:119

D(z, z̃) ≤ lim inf
k→∞

D(zk, z̃k) , (16)120

whenever zk⇀z and z̃k⇀z̃.121

(ii) Positivity: If {zk} ⊂ Z is bounded and min{D(zk, z),D(z, zk)} → 0 then122

zk⇀z . (17)123

2.1 Energetic solution124

Suppose that we look for the time evolution of y(t) ∈ Y ⊂ {y : Ω → R
n} and z(t) ∈ Z during the time interval [0, T ].125

The following two properties are the key ingrediences of the so-called energetic solution due to Mielke and Theil [28, 29].126

(i) Stability inequality:127

∀t ∈ [0, T ] , z̃ ∈ Z , y ∈ Y:128

I(t, y(t), z(t)) ≤ I(t, ỹ, z̃) + D(z(t), z̃) (18)129

(ii) Energy balance: ∀ 0 ≤ t ≤ T130

I(t, y(t), z(t)) + Var(D, z; [0, t]) = I(s, y(0), z(0)) +
∫ t

0

L̇(ξ, y(ξ)) dξ , (19)131

where132

Var(D, z; [s, t]) := sup

{
N∑

i=1

D(z(ti), z(ti−1)); {ti} partition of [s, t]

}

.133

Definition 2.2. The mapping t 
→ (y(t), z(t)) ∈ Y × Z is an energetic solution to the problem (I, δ, L) if the stability134

inequality and the energy balance are satisfied.135

Remark 2.3. Notice that the stability inequality (i) can be written in the form ∀t ∈ [0, T ] , z̃ ∈ Z, ỹ ∈ Y:136

I(t, y(t), z(t)) + D(z(t), z(t)) ≤ I(t, ỹ, z̃) + D(z(t), z̃) ,137

i.e., that y(t), z(t) always minimizes (ỹ, z̃) 
→ I(t, ỹ, z̃) + D(z(t), z̃). It means that the equilibrium configurations are138

characterized by energetic minima. Contrary to elasticity theory the minimized energy is not only the overall elastic one139

described by I but the dissipated energy is added.140

It is convenient to put Q := Y × Z and to set q := (y, z). Moreover, we define the set of stable states at time t as141

S(t) := {q ∈ Q : ∀q̃ ∈ Q : I(t, q) ≤ I(t, q̃) + D(q, q̃)} (20)142

and143

S[0,T ] := ∪t∈[0,T ]{t} × S(t) . (21)144

Moreover, a sequence {(tk, qk)}k∈N is called stable if qk ∈ S(tk).145

146

147
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3 Applications to elasto-plasticity148

Now we apply the energetic approach to an elasto-plastic problem.149

3.1 Problem statement150

In what follows y : Ω → R
n will be a deformation of a body Ω ⊂ R

n (in a fixed reference configuration) with the deforma-151

tion gradient F = ∇y. In particular, y covers both elastic, as well as plastic deformation. We define the multiplicative split,152

F = FeFp, into an elastic part Fe and an irreversible plastic part Fp which belongs to SL(n) := {A ∈ R
n×n; det A = 1}.153

The so-called plastic strain Fp and the vector p ∈ R
m of hardening variables are internal variables influencing elasticity. In154

other words, z(x) = (Fp(x), p(x)) ∈ SL(n) × R
m for almost all x ∈ Ω.155

The energy functional I takes the form156

I(t, y(t), z(t) :=
∫

Ω

W(x,∇yF−1
p , Fp,∇Fp, p,∇p) dx − L(t, y(t)) (22)157

with L given by (12).158

In order to ease the notation we omit the dependence of W on x, however, all the theory developed in this paper may159

include nonhomogeneousW , too.160

In what follows, we suppose that161

y ∈ Y := {y ∈ W 1,d(Ω; Rn); y = y0 on Γ0} ,162

where Γ0 ⊂ ∂Ω with a positive surface measure. Moreover, we suppose that Γ0 ∩ Γ1 = ∅. Further163

Z := {(Fp, p) ∈ W 1,β(Ω; Rn×n) × W 1,ω(Ω; Rm) : Fp(x) ∈ SL(n) for a.e. x ∈ Ω} .164

As q = (y, z) it will be advantageous and will make no confusion to write D as dependent on q, i.e.,165

D(q1, q2) := D(z1, z2)166

if q1 = (y1, z1) and q2 = (y2, z2). Similarly, we may write I in terms of q = (y, z) as167

I(t, q(t)) =
∫

Ω

W(x,∇yF−1
p , Fp,∇Fp, p,∇p) dx − L(t, q(t)) ,168

where, obviously, L(t, q(t) := L(t, y(t)).169

In this situation, Q = (Q1, Q2) are conjugate plastic stress and conjugate hardening forces, respectively,170

Q1 = div

(
∂W(∇yF−1

p , Fp,∇Fp, p,∇p)
∂∇Fp

)

− ∂W(∇yF−1
p , Fp,∇Fp, p,∇p)

∂Fp
(23)171

and172

Q2 = div

(
∂W(∇yF−1

p , Fp,∇Fp, p,∇p)
∂∇p

)

− ∂W(∇yF−1
p , Fp,∇Fp, p,∇p)

∂p
. (24)173

The elastic domain is defined as174

Q(x, z) = ∂sub
ż δ(x, z, 0) . (25)175

Remark 3.1. The principle of maximal dissipation asserts that176

Q1 : Ḟp + Q2 · ṗ (26)177

is maximal if Ḟp and ṗ are kept fixed and (Q1, Q2) ∈ Q(x, z). This means that for all (A, B) ∈ Q(x, z).178

Q1 : Ḟp + Q2 · ṗ ≥ A : Ḟp + B · ṗ . (27)179

Finally, we include two examples covered by our approach.180
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6 J. Kratochvı́l et al.: Energetic approach to gradient plasticity

Example 3.2. (Simple shear carried by single slip) Consider a single slip system defined by two orthonormal vectors181

a, b ∈ R
3 such that a is the glide direction and b is the slip-plane normal. Further suppose that we have a particular case of182

the so-called separable material where183

W(x, Fe, z) = W1 + (Fe) +
ε

2
|∇Fp|2 ,184

where Fp(t) = I+γ(t)a⊗b, where γ is the plastic slip. The slip system is generally not fixed in the reference configuration.185

The slip-plane normal b̃ in the reference configuration has the form b̃ = (Fp)�b. However, in this special case we have that186

b̃ = b, so that the slip-plane normal is kept constant during the process.187

Due to the special case of Fp we may identify z := (γ, p) because Fp depends only on γ.188

Choose the dissipation metric189

δ(z, ż) = δ(γ, p, γ̇, ṗ) ,190

191

δ(γ, p, γ̇, ṗ) =

{
p|γ̇| if ṗ ≥ H |γ̇| ,
+∞ otherwise,

192

where H is the so-called hardening function.193

The evolution rule reads:194

εΔγ ∈ ∂sub(p|γ̇|) .195

The elastic domain ∂subδ(γ, p, 0, 0) = [−p, p] if ṗ ≥ H |γ̇| and (−∞,∞) otherwise. The boundary of the elastic domain196

±p − εΔγ = 0 defines the yield surface. Thus, the energetic approach recovers Gurtin’s calculations on shear bands in197

single-slip, see [15].198

The dissipation quasi distance is199

D(γ1, p1, γ2, p2) =

{
p2|γ2 − γ1| if p2 − p1 ≥ H |γ2 − γ1| ,

+∞ otherwise.
200

Example 3.3. (Multi slip) Suppose that we have a multi slip system described by glide directions {ai} and slip-plane201

normals {bi}, where ai · bi = 0 and |ai| = |bi| = 1 for all 1 ≤ i ≤ N .202

Following [15] we define for γ = (γi)N
i=1 and p = (pi)N

i=1203

δ(γ, p, γ̇, ṗ) =

{ ∑N
i=1 pi|γ̇i| if ṗi ≥

∑N
i=1 Hij |γ̇j | ,

+∞ otherwise,
204

where H = (Hij) is a hardening matrix which may generally depend on p.205

In order to set up a mathematical formulation of our problem we will need the following definitions and results on weak206

lower semicontinuity of integral functionals.207

3.2 Quasiconvex functions208

Let Ω ⊂ R
n be a bounded regular domain. We say that a function v : R

n×n → R is quasiconvex if for any s0 ∈ R
n×n and209

any ϕ ∈ W 1,∞
0 (Ω; Rn),210

v(s0)|Ω| ≤
∫

Ω

v(s0 + ∇ϕ(x)) dx . (28)211

The notion of quasiconvexity which generalizes the usual convexity is important because of the following result, see e.g.212

Dacorogna [6].213

Lemma 3.4. Let v : R
n×n → R be quasiconvex and such that for all s ∈ R

n×n 0 ≤ v ≤ C(1 + | · |β). Then the214

functional I : W 1,β(Ω; Rn) → R given by215

I(y) =
∫

Ω

v(∇y(x)) dx216

is weakly sequentially lower semicontinuous. This means that if yk → y weakly in W 1,β(Ω; Rn) then217

I(y) ≤ lim infk→∞ I(yk).218
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In fact, we need a slightly more general lower semicontinuity result than that given in Lemma 3.4.219

Lemma 3.5. Let α−1 + β−1 ≤ d−1 < n−1 < 1. Let {Ak} ⊂ Lβ/(n−1)(Ω; Rn×n) converge strongly to A, and yk → y220

weakly in W 1,d(Ω; Rn), let {∇ykAk}k∈N be bounded in Lα(Ω; Rn×n), and let for almost all x ∈ Ω 0 ≤ v(x, ·) ≤221

C(1 + | · |α) be quasiconvex and v ∈ L∞(Ω; C(Rn×n)). Then I : W 1,d(Ω; Rn) × Lβ/(n−1)(Ω; Rn×n) → R given by222

I(y, A) =
∫

Ω

v(x,∇y(x)A(x)) dx223

satisfies I(y, A) ≤ lim infk→∞ I(yk, Ak), i.e., I is sequentially (weakly,strongly)-lower semicontinuous in W 1,d(Ω; Rn)×224

Lβ/(n−1)(Ω; Rn×n).225

P r o o f. We give a proof based on Young measures, see e.g. [32] for details on the subject. There is a subsequence226

(not relabeled) of {∇yk, Ak}k∈N generating an Lγ-Young measure, γ := min(d, β/(n − 1)), ν ⊗ δA where ν = {νx}x∈Ω227

is the W 1,d-gradient Young measure generated by {∇yk}. Moreover, as the α-th moment of ν ⊗ δA is finite, i.e.,228

∫

Ω

∫

Rn×n

|sA(x)|ανx(ds) dx < +∞ ,229

which means that ν ⊗ δ is an Lα-Young measure. We have230

lim
k→∞

∫

Ω

v(x,∇yk(x)Ak(x)) dx =
∫

Ω

∫

Rn×n

v(x, sA(x))νx(ds) dx . (29)231

Thus, s 
→ v(x, sA(x)) is quasiconvex and by ( [32]) for a.a. x ∈ Ω232

∫

Rn×n

v(x, sA(x))νx(ds) ≥ v

(

x,

∫

Rn×n

sA(x)νx(ds)
)

= v(x,∇y(x)A(x)) .233

Integrating this inequality over Ω and putting it into (29) gives the statement.234

3.3 Assumptions on problem data235

As in Gurtin [15] we will consider so-called separable materials, i.e., materials where the elasto-plastic energy density has236

the form237

W(x, Fe, Fp,∇Fp, p,∇p) := W1(x, Fe) + W2(x, Fp,∇Fp, p,∇p) . (30)238

We start with assumptions on W :239

(i) W1,W2 ≥ 0 are measurable in x ∈ Ω and continuous in their other arguments.240

(ii) Suppose that there are two constants C, c > 0 so that the following assumptions hold for constants C, c, c1 > 0,241

α, β > n, ω > n, and for almost all x ∈ Ω:242

C(1 + |A|α + |Fp|β + |G|β + |p|ω + |π|ω) ≥ W(x, A, Fp, G, p, π)243

≥ c(|A|α + |Fp|β + |G|β + |p|ω + |π|ω) − c1 , (31)244
245

where | · | denotes the Euclidean norm;246

247

(iii) W(x, ·, Fp, G, p, π) is quasiconvex for almost all x ∈ Ω and all (Fp, G, p, π) ∈ R
n×n × R

n×n×n × R
m × R

n×m;248

(iv) W(x, A, Fp, ·, p, ·) is convex for almost all x ∈ Ω and all (A, Fp, p) ∈ R
n×n × R

n×n × R
m.249

We recall the following assumptions on D:250

(i) Lower semicontinuity:251

D(z, z̃) ≤ lim inf
k→∞

D(zk, z̃k) , (32)252

whenever zk⇀z and z̃k⇀z̃.253

(ii) Positivity: If {zk} ⊂ Z is bounded and min{D(zk, z),D(z, zk)} → 0 then zk⇀z.254

In order to prove the existence of a solution to (37) we must impose some data qualifications. In what follows, we assume255

that256

f ∈ C1
(
[0, T ]; Ld∗

(Ω; Rn)
)

, (33)257
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g ∈ C1
(
[0, T ]; Ld#

(Γ1; Rn)
)

, (34)258

where d∗ ≥ nd/(n− d) if 1 ≤ d < n or d∗ ≥ 1 otherwise. Similarly, we suppose that d# ≥ (nd− d)/(n− d) if d < n or259

d# ≥ 1 otherwise.260

3.4 Auxiliary results261

Proposition 3.6. Let I be weakly sequentially lower semicontinuous and let (33) and (34) hold. Let for all (t∗, q∗) ∈262

[0, T ] × Q and all stable sequences {(tk, qk)}k∈N such that w-limk→∞(tk, qk) = (t∗, q∗) it holds that for all q̃ ∈ Q there263

is {q̃k} ⊂ Q that264

lim sup
k→∞

(I(tk, q̃k) + D(qk, q̃k)) ≤ I(t∗, q̃) + D(q∗, q̃)) . (35)265

Then I is weakly continuous along stable sequences and q∗ ∈ S(t∗), i.e. q∗ is in the stable set at t∗; cf. (20).266

P r o o f. We follow the proof of Prop. 4.2 in [21]. Take q̃ = q∗ in (35) and notice that (35) holds with q̃k = qk, k ∈ N.267

Then we get268

lim sup
k→∞

I(tk, qk) ≤ lim sup
k→∞

((I(tk, q̃k) + D(qk, q̃k)) ≤ I(t∗, q̃) + D(q∗, q̃) = I(t∗, q∗) .269

We have further270

lim
k→∞

|I(tk, qk) − I(t∗, qk)| = lim
k→∞

|L(tk, qk) − L(t∗, qk)| = 0 ,271

due to the assumptions (33) and (34) on f and g, respectively.272

Since I is weakly lower semicontinuous we have273

lim inf
k→∞

I(tk, qk) = lim
k→∞

(I(tk, qk) − I(t∗, qk)) + lim inf
k→∞

I(t∗, qk) ≥ I(t∗, q∗) .274

This together with (35) gives weak continuity of I(tk, qk) → I(t∗, q∗). Finally, we have275

I(t∗, q∗) = lim
k→∞

I(tk, qk) ≤ lim inf
k→∞

(I(tk, q̃k) + D(qk, q̃k)) ≤ I(t∗, q̃) + D(q∗, q̃) .276

The arbitrariness of q̃ ∈ Q shows the stability of q∗.277

The key point is, however, to ensure validity of (35). If D : Q × Q → [0, +∞), i.e., no irreversibility constraint is278

imposed on plastic processes, then it is sufficient if D from (14) satisfies279

D(x, z1, z2) ≤ c(x) + C(|Fp1 |β
∗−ε + |Fp2 |β

∗−ε + |p1|ω∗−ε + |p2|ω∗−ε) , (36)280

where ε > 0 is small enough and β∗ := nβ/(n − β) if n > β and β∗ < +∞ if β ≥ n. Similarly, ω∗ := nω/(n − ω) if281

n > ω and ω∗ < +∞ if ω ≥ n. Then the compact embedding ensures continuity of D.282

If D : Q × Q → [0, +∞] we must be more careful. Following [21] we impose the following sufficient conditions on D283

from (14):284

(A) D(x, ·, ·) : D(x) → [0, +∞) is continuous, D(x) := {(z1, z2); D(x, z1, z2) < +∞},285

(B) For every R > 0 there is K > 0 such that for almost all x ∈ Ω D(x, z1, z2) < K if z1, z2 ∈ D(x) and |z1|, |z2| < R,286

and287

(C) There is v∗ ∈ R
M such that for all α, R > 0 there is ρ > 0 such that for almost every x ∈ Ω and every z0, z1, z2:288

|z − z0| < ρ and (z0, z1) ∈ D(x) implies (z, z1 + (0, αv∗)) ∈ D(x) .289

Proposition 3.7. Let β, ω > n. Let D satisfy (A)–(C). Then (35) holds.290

P r o o f. We follow [21]. If D(q∗, q̃) = +∞ in (35) the proof is finished. So, we assume that291

D(q∗, q̃) ∈ R .292

If qj⇀q∗ we have due to the compact embedding that293

ρk := ‖Fpk − Fp∗‖C(Ω̄:Rn×n) + ‖pk − p∗‖C(Ω̄:Rn×n) → 0 .294

Thus, |zk| + |z∗| + |z̃| < R if k is large enough. We define z̃k := (F̃p, p̃ + αkv∗) where αk → 0 and relates to ρk295

as in (C). Then (zk, z̃k) ∈ D(x) in Ω and we have |zk|, |z̃k| < R. Continuity of D gives the pointwise convergence296

of D(x, zk, z̃k) → D(z, z∗, z̃) pointwise. The condition (B) together with the Lebesgue dominated convergence theorem297

implies that D(qj , q̃j) → D(q∗, q̃). Assumptions (33), (34) imply that (35) is fulfilled with equality.298
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3.5 Incremental problems299

Next, we define the following sequence of incremental problems. We consider a stable initial condition q0
τ := q0 ∈ Q.300

Let us take τ > 0, a time step, chosen in the way that N = T/τ ∈ N. For 1 ≤ k ≤ N , tk := kτ , find qk
τ ∈ Q such that301

qk
τ solves302

minimize I(tk, q) + D(qk−1
τ , q)

subject to qk
τ ∈ Q .

}

(37)303

Proposition 3.8. Let α−1 + β−1 ≤ d−1 < n−1 and ω > n. Let the assumption on W and D be satisfied. Let further304

(33) and (34) be satisfied. Then the problem (37) has a solution for all k = 1, . . . , T/τ .305

P r o o f. First, notice that F−1
p = (cofF )�, where “cof” stands for the cofactor matrix. Suppose that qk−1

τ ∈ Q306

is known and that {qj} ⊂ Q is a minimizing sequence for q 
→ I(tk, q) + D(qk−1
τ , q). We use Young’s and Hölder’s307

inequalities as in [21] to obtain the following pointwise inequality for any member of the minimizing sequence (the index308

j is omitted for simplicity)309

|FF−1
p | ≥ |F |

|Fp| ≥ rθr/(r−1)|F |1/r − (r − 1)θ|Fp|1/(r−1) (38)310

valid for all r > 1 and all θ > 0.311

Taking into account that Fe = FF−1
p ∈ Lα(Ω; Rn×n), Fp ∈ Lβ(Ω; Rn×n, and F ∈ Ld(Ω; Rn×n) together with312

Hölder’s inequality we get for r := α/d > 1 and 1
b := 1

d − 1
α ≥ 1

β313

‖FF−1
p ‖α

Lα(Ω;Rn×n) ≥
‖F‖α

Ld(Ω;Rn×n)

‖Fp‖α
Lβ(Ω;Rn×n)

(39)314

≥ rθr/(r−1)‖F‖d
Ld(Ω;Rn×n) − (r − 1)θ‖Fp‖b

Lb(Ω;Rn×n) .315

Using this inequality for θ small enough in the lower bound (31) of W integrated over Ω implies together with the316

Poincaré inequality a uniform bound on ‖yj‖W 1,d(Ω;Rn) for all j ∈ N. Having this bound we get uniform bounds on317

‖zj‖W 1,β(Ω;Rn×n)×W 1,ω(Ω;Rm) due to (31). Then Lemma 3.5 shows the lower semicontinuity of the We part of the stored318

energy along the minimizing sequence and the convexity of Wp in the gradient terms implies the weak lower semicontinuity319

of the minimized functional. The proof is then finished by the direct method of the calculus of variations.320

We denote qτ a piecewise constant interpolation of qk
τ := (yk

τ , zk
τ ), i.e., qτ (t) = qk

τ if t ∈ [kτ, (k + 1)τ) and k =321

1, . . . , T/τ − 1. Finally, qτ (T ) = qN
τ . Analogously, Lτ (t, qτ ) = L(kτ, qτ ) is a piecewise constant interpolation of L and322

Iτ (t, qτ ) = I(t, qτ ) is a piecewise constant interpolation of I.323

Proposition 3.9. Let (33) and (34) be satisfied. Then the problem (37) has a solution qτ (t) which is stable, i.e., for all324

t ∈ [0, T ] and for every q ∈ Q,325

Iτ (t, qτ (t)) ≤ Iτ (t, q) + D (qτ (t), q) . (40)326

Moreover, for all t1 ≤ t2 from the set {kτ}N
k=0, the following discrete energy inequalities hold if one extends the definition327

of qτ (t) by setting qτ (t) := q0 if t < 0.328

−
∫ t2

t1

L̇ (t, qτ (t − τ)) dt ≤ I (t2, qτ (t2)) + Var (D, qτ ; [t1, t2]) − I (t1, qτ (t1))329

≤ −
∫ t2

t1

L̇ (t, qτ (t)) dt. (41)330

331

P r o o f. The existence of a solution to (37) was proved in the Proposition 3.8.332

The stability estimate (40) follows from the minimizing property of qk
τ and the properties of D. Indeed, by minimality333

of qk
τ ,334

I
(
kτ, qk

τ

)
+ D

(
qk−1
τ , qk

τ

)
≤ I (kτ, q) + D

(
qk−1
τ , q

)
, (42)335

from which we infer that336

I
(
kτ, qk

τ

)
≤ I (kτ, q) + D

(
qk−1
τ , q

)
−D

(
qk−1
τ , qk

τ

)
.337
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However, the structure of the metric implies that338

D
(
qk−1
τ , q

)
−D

(
qk−1
τ , qk

τ

)
≤ D

(
qk
τ , q

)
,339

from which (40) follows.340

Next, we demonstrate the validity of the energy inequality (41), following the arguments in Mielke et al. [29]. For this341

part, let us test the stability of qk−1
τ with q := qk

τ . This gives342

I
(
(k − 1)τ, qk−1

τ

)
≤ I

(
(k − 1)τ, qk

τ

)
+ D

(
qk−1
τ , qk

τ ,
)

(43)343

= I
(
kτ, qk

τ

)
+ L

(
kτ, qk

τ

)
− L

(
(k − 1)τ, qk

τ

)
+ D

(
qk−1
τ , qk

τ

)
.344

345

Suppose that 0 ≤ k1 ≤ k2 ≤ N and that t1 = k1τ and t2 = k2τ . A summation of (43) over k = k1 + 1, . . . , k2 yields346

k2∑

k=k1+1

[
L

(
(k − 1)τ, qk

τ

)
− L

(
kτ, qk

τ

)]
≤ I

(
k2τ, q

k2
τ

)
− I

(
k1τ, q

k1
τ

)
(44)347

+
k2∑

k=k1+1

D
(
qk−1
τ , qk

τ

)
.348

We rewrite this inequality in terms of qτ to see that it is the first inequality in (41),349

−
∫ t2

t1

L̇ (t, qτ (t − τ)) dt ≤ I
(
k2τ, q

k2
τ

)
− I

(
k1τ, q

k1
τ

)
+

k2∑

k=k1+1

D
(
qk−1
τ , qk

τ

)
350

= I
(
k2τ, q

k2
τ

)
− I

(
k1τ, q

k1
τ

)
+ Var (D, qτ ; [t1, t2])351

352

(the explicit form of Var (D, qτ ; [t1, t2]) holds since we consider a step function). To prove the validity of the second353

inequality in (41), we rely on the minimality of qk
τ , when compared with qk−1

τ in (42). That is,354

I
(
kτ, qk

τ

)
+ D

(
qk−1
τ , qk

τ

)
≤ I

(
kτ, qk−1

τ

)
= I

(
(k − 1)τ, qk−1

τ

)
+ L

(
(k − 1)τ, qk−1

τ

)
− L

(
kτ, qk−1

τ

)
.355

Similarly as in the previous argument, a summation over k = k1 + 1, . . . , k2 is employed to find that356

I
(
k2τ, q

k2
τ

)
− I

(
k1τ, q

k1
τ

)
+

k2∑

k=k1+1

D
(
qk−1
τ , qk

τ

)
357

≤
k2∑

k=k1+1

[
L

(
(k − 1)τ, qk−1

τ

)
− L

(
kτ, qk−1

τ

)]
,358

so that359

I
(
k2τ, q

k2
τ

)
− I

(
k1τ, q

k1
τ

)
+ Var (D, qτ ; [t1, t2]) ≤ −

∫ t2

t1

L̇ (t, qτ (t)) dt,360

which is the second inequality in (41).361

The next proposition gives the a priori bounds needed to pass to the limit as the step size goes to zero.362

Proposition 3.10. Let (33) and (34) be satisfied. Then there is κ ∈ R such that363

‖yτ‖L∞(0,T ;W 1,d(Ω;Rn)) ≤ κ, (45)364

365

Var(D, qτ ; [0, T ])) ≤ κ, (46)366
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for Îτ (t) := Iτ (t, qτ (t)),367

‖Îτ‖BV (0,T ) ≤ κ. (47)368

369 ‖zτ‖L∞(0,T ;W 1,α(Ω;Rn×n)×W 1,β(Ω;Rm)) ≤ κ, (48)370

P r o o f. Set for q = (y, Fp, p) ∈ Q.371

V (q) =
∫

Ω

W(x,∇y(x)F−1
p , Fp(x),∇Fp, p(x),∇p(x)) dx .372

The growth conditions on W imply that373

‖y‖d
W 1,d(Ω;Rn) + ‖Fp‖β

W 1,β(Ω;Rn×n)
+ ‖p‖ω

W 1,ω(Ω;Rm) ≤ V (q) . (49)374

Using this inequality for q := qk2
τ and the energy inequality for k1 = 0 we get375

V (qk2
τ ) − L(k2τ, q

k2
τ ) − V (q0

τ ) + L(0, q0
τ ) ≤

k2∑

k=1

[
L

(
(k − 1)τ, qk−1

τ

)
− L

(
kτ, qk−1

τ

)]
.376

Hence,377

V (qk2
τ ) ≤

k2∑

k=1

[
L

(
(k − 1)τ, qk−1

τ

)
− L

(
kτ, qk−1

τ

)]
+ L(k2τ, q

k2
τ ) . (50)378

So, denoting Yτ := max1≤�≤T/τ ‖y�
τ‖d

W 1,d(Ω;Rn) we have379

Yτ ≤
k2∑

k=1

[
L

(
(k − 1)τ, qk−1

τ

)
− L

(
kτ, qk−1

τ

)]
+ C . (51)380

This gives the bound (45). This estimate together with (50) gives us the estimates (46)–(48).381

The following lemma is proved in [20]. Let us first denote X := Lβ(Ω; Rn×n) × Lω(Ω; Rm). Notice that if (16) and382

(17) hold for D and Z then they hold in X with the strong convergence in X.383

Lemma 3.11. Let D : X × X → [0, +∞]. Let K be a compact subset of X. Then for every sequence {zk}k∈N, zk :384

[0, T ] → K for which supk∈N Var(Dp, zk; [0, T ]) < C, C > 0, there exists a subsequence (not relabeled), a function385

z : [0, T ] → K, and a function Δ : [0, T ] → [0, C] such that:386

(i) Var(D, zk; [0, t]) → Δ(t) for all t ∈ [0, T ],387

(ii) zk → z for all t ∈ [0, T ], and388

(iii) Var(Dp, z; [t0, t1]) ≤ limt→t1+ Δ(t) − limt→t0− Δ(t) for all 0 ≤ t0 < t1 ≤ T .389

Finally, we proved the existence of an energetic solution.390

Theorem 3.12. Let α−1 + β−1 ≤ d−1 < n−1 < 1 and ω > n. Let q0 ∈ Q be a stable initial condition. Let the391

assumptions on W , D, f and g from Section (3.3) hold. Let further (36) or (A), (B), (C) hold. Then there is a process392

q : [0, T ] → Q with q(t) = (y(t), z(t)) such that q is an energetic solution according to Definition 2.2. The following limit393

passages are also valid:394

(i) for a t-dependent (not relabeled) subsequence w-limτ→0 yτ (t) = y(t) in W 1,d(Ω; Rn) for all t ∈ [0, T ],395

(ii) for a (not relabeled) subsequence limτ→0 zτ (t) = z(t) in X for all t ∈ [0, T ],396

(iii) for a (not relabeled) subsequence limτ→0 Iτ (t, qτ ) = I(t, q(t)) for all t ∈ [0, T ], and397

(iv) for a (not relabeled) subsequence limτ→0 Var(D, qτ ; [0, t]) = Var(D, q; [0, t]) for all t ∈ [0, T ].398

P r o o f. The proof is divided into two steps and follows [11].399

Step 1: The points (i), (ii), and (iii) follow from the a-priori estimates in Proposition 3.10 and Lemma 3.11. Notice also,400

θτ (t) := ∂L
∂t (t, qτ ) is bounded in L∞(0, T ), so that there is a weak* limit of a subsequence (not relabeled) called θ.401

Following [24] we set θi(t) := lim infτ→0 θτ (t). By the Fatou’s lemma θi ≤ θ. Altogether, it implies the existence of the402

limit q(t) = (y(t), z(t)). We immediately get that q ∈ Q.403

Put S(t, τ) := mink∈N∪{0}{kτ ; kτ ≥ t}. Then limτ→0 S(t, τ) = t and by the definition qτ (t) := qτ (S(t, τ)) ∈404

S(S(t, τ)). Moreover, by our assumptions on D we know that (35) holds. Therefore q(t) ∈ S(t), i.e., the limit is stable by405

Proposition 3.6. Proposition 3.6) also implies (iii) .406
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Step 2: We have qτ (t) = qτ (kτ) if 0 ≤ t − kτ ≤ τ . Hence, using (41) we get for some C, C1 > 0407

I(t, qτ (t)) + Var(D, qτ ; [0, t]) ≤ I(kτ, qτ (kτ)) + Var(D, qτ ; [0, kτ ]) + Cτ408

≤ I(0, qτ (0)) −
∫ kτ

0

L̇(s, qτ (s)) ds + Cτ409

≤ I(0, qτ (0)) −
∫ t

0

L̇(s, qτ (s)) ds + C1τ .410

Further, using Lemma 3.11 (i) and weak lower semicontinuity of the variation we get for τ → 0411

I(t, q(t)) + Δ(t) + Var(D, q; [0, t]) ≤ I(0, q(0)) −
∫ t

0

θ(s) ds .412

Let us denote θi(s) := lim infτ→0 L̇(s, qτ (s))413

As Δ(t) ≥ Var(D, q; [0, t]) and by the Fatou’s lemma
∫ t

0
θ(s) ds ≥ ∫ t

0
θi(s) ds for a.a. t ∈ [0, T ] we get414

I(t, q(t)) + Var(D, q; [0, t]) ≤ I(0, q(0)) −
∫ t

0

θi(s) ds .415

Moreover, we have due to Step 2 we get that θi(s) = L̇(s, q(s)). Altogether we get the upper energy estimate416

I(t, q(t)) + Var(D, q; [0, t]) ≤ I(0, q(0)) −
∫ t

0

L̇(s, q(s) ds . (52)417

In order to get the lower estimate we exploit the fact that q(t) is stable for all t ∈ [0, T ]. Take a (possibly non-uniform)418

partition of a time interval [t1, t2] ⊂ [0, T ] such that t1 = ϑ0 < ϑ1 < ϑ2 < ϑK = t2 such that maxi(ϑi −ϑi−1) =: ϑ → 0419

as K → ∞ and we are going to test the stability of q(ϑk−1) with q(ϑk), k = k1 + 1, . . . , , k2. Analogously as in (44) we420

get421

K∑

k=1

[L ((ϑk−1, q(ϑk)) − L (ϑk, q(ϑk))] ≤ I (t2, q(t2) − I (t1, q(t1)) (53)422

+
K∑

k=+1

D (q(ϑk−1), q(ϑk)) .423

Hence,424

K∑

k=1

−
∫ ϑk

ϑk−1

L̇(s, q(ϑk)) ds ≤ I (t2, q(t2) − I (t1, q(t1)) + Var(D, q; [t1, t2]) . (54)425

Finally, we realize that426

K∑

k=1

∫ ϑk

ϑk−1

L̇(s, q(kτ)) ds =
K∑

k=+1

L̇(ϑk, q(ϑk))(ϑk − ϑk−1)427

+
K∑

k=1

∫ ϑk

ϑk−1

(L̇(s, q(ϑk)) − L̇(ϑk, q(ϑk))) ds . (55)428

The second term on the right-hand side of (55) tends to zero as ϑ → 0 because the time derivative of external forces is429

uniformly continuous in time by (33) and (34). The first term on the right-hand side converges to
∫ t2

t1
L̇(s, q(s)) ds by Dal430

Maso et al. [7], Lemma 4.12.431

The upper and lower estimates give us the energy balance432

I(t, q(t)) + Var(D, q; [0, t]) = I(0, q(0)) −
∫ t

0

L̇(s, q(s) ds . (56)433
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Moreover,434

I(0, q(0)) +
∫ t

0

θ(s) ds ≤ I(t, q(t)) + Var(D, q; [0, t])) ≤ I(t, q(t)) + Δ(t)435

≤ I(0, q(0)) +
∫ t

0

θi(s) ds ≤ I(0, q(0)) +
∫ t

0

θ(s) ds . (57)436

Thus, all inequalities in (57) are equalities and we get that (iv) holds.437

4 Conclusions438

This paper provides a mathematical framework for a general plasticity theory where the full gradient of the plastic strain439

is included; cf. [15]. On the other hand, the structure of incremental problems (37) in our approach motivates numerical440

methods used to approximate energetic solutions. Namely, after suitable approximation of y and z = (Fp, p) by piecewise441

affine elements, for instance, we must numerically solve a sequence of global minimization problems. We hope to address442

this problem in a future paper. We refer to [27] for a general numerical approach to rate-independent problems.443
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[27] A. Mielke and T. Roubı́ček, Numerical approaches to rate-independent processes and applications in inelasticity, Preprint No.1169494

(WIAS, Berlin, 2006).495

[28] A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis. In: Models of Contin-496

uum Mechanics in Analysis and Engineering, edited by H.-D. Alder, R. Balean, and R. Farwig, (Shaker Verlag, Aachen, 1999),497

pp. 117–129.498

[29] A. Mielke, F. Theil, and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum499

principle, Arch. Ration. Mech. Anal. 162, 137–177 (2002).500
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[33] J. Simo, A framework for finite strain elastoplasticity based on maximum plastic dissipation and multiplicative decomposition. Part505

I. Continuum formulation, Comp. Meth. Appl. Mech. Eng. 66, 199–219. Part II. Computational Aspects, Comput. Methods Appl.506

Mech. Eng. 68, 1–31 (1988).507

[34] I. Tsagrakis and E. C. Aifantis, Recent developments in gradient plasticity, J. Eng. Mater. Tech. 124, 352–357 (2002).508

[35] M. Zaiser, M. Carmen Miguel, and I. Groma, Statistical dynamics of dislocation systems: The influence of dislocation-dislocation509

correlations, Phys. Rev. B 64, 224102 (2001).510

c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org


