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A NOTE ON GROTHENDIECK DUALITY THEOREM

PETR HAJEK

ABSTRACT. We prove that the canonical mapping Y* ®» X — (L(X,Y),7)*
in the Grothendieck duality theorem is not always injective. This answers a
question posed in the book by Defant and Floret.

An important result in the topological theory of tensor products is the theorem of
Grothendieck, which gives a description the linear topological dual of the space of
bounded linear operators £(X,Y), equipped with the topology of uniform conver-
gence on compact sets.

Theorem 0.1. (Grothendieck) Let X,Y be Banach spaces. By T we denote the LCS
topology on L(X,Y) of uniform convergence on compact sets in X. The continuous
linear functionals on (L(X,Y),T) consist of all
[ee] o0
S(T) = (Y7, Tai),wi € X,yf € V7, |laalllyf]l < oo (1)
i=1 i=1

This formulation of Grothendieck theorem is taken from [LT] (Prop. 1.e.3.). Its ad-
vantage is that it uses only standard functional analytic language, and in particular
it is not relying on tensor products. However, it is more natural to rephrase this
result using the language of the theory of tensor products in the following way: The
canonical mapping (which is described by the formula (1)) Y*®,X — (£(X,Y),7)*
is surjective. This is the formulation to be found in [DF] (Prop. 5.5). A natural
question immediately follows, namely is the canonical mapping above also injective?
In their book, Defant and Floret [DF] (p. 65) pose this problem explicitly, along
with some partial positive solutions (see below). Of course, a positive solution
would provide a useful duality pair ready for proving more isomorphisms, apart
from its obvious elegance.
The main result of this note is a negative solution to this problem. This is achieved
by combining some known results in the theory of tensor products. As a main
ingredient we are using the existence of a Banach space X with the approximation
property, such that X* fails to have the A.P.. The construction of such a space
relies of course on the fundamental result of Enflo [E], and is shown e.g. in [LT]
(Thm. 1.e.7.) (using the method of [J] and [L]). Alternatively, one can use the
space constructed in [FJ].
We are also using an equivalent condition describing when X* has an A.P., which is
almost certainly known to the specialists in the field, but which we have not found
explicitly in the literature. Before being able to formulate our results and proofs,
in order to make the note understandable to non-specialists in tensor products,
we need to recall some known results. Most of these are contained in the books
[DF], [Ja] and [LT]. We assume that the reader is familiar with the algebraic tensor

Date: March 2009.

2000 Mathematics Subject Classification. 46B28, 46 A32.

Key words and phrases. projective tensor product, duality.

Supported by grants: Institutional Research Plan AV0Z10190503, GA CR 201/07/0394,
A100190801.

1



A NOTE ON GROTHENDIECK DUALITY THEOREM 2

product of two Banach spaces X ® Y. We recall that a couple (£(X,Y*), X ® V)
forms a duality pair defined as follows. For T' € L(X,Y*), z =Y I | 2;®y; € XQV
put

n

(T,z) =Y (T(x:),:)- (2)

The pairing enables us to introduce a Il);;jective norm 7 on X ® Y as follows.
Definition 0.2. Let X,Y be Banach spaces. We define a projective norm w(-) on
XRY forz€ X®Y as follows:

m(z) = sup{(T,2),[|T|| < 1,T € L(X,Y™)}. (3)
We denote by X ®,Y the projective tensor product, that is the completion of (X ®
Y, 7).
A more concrete description of the elements of X ®, Y uses infinite series.
Proposition 0.3. ([DF], Chap. 3) Let X,Y be Banach spaces. FEvery element

z € X®,;Y admils a representation z = ;- x;®y;, such that Y oo, ||lz:l|||lyil| < oo
(WLOG (||z:]|) € co and (|lysll) € &) and

m(z) = inf{z zillllysll - z = sz ®yi} (4)

Moreover, we have

Proposition 0.4. ([DF], Chap. 8) Let X,Y be Banach spaces. Then the canonical
dual pairing gives a topological linear duality

(X ®: V)" = L(X, V™). (5)

Closely connected to the projective tensor product X* ®, Y is the notion of nuclear
operator.

Definition 0.5. Let X,Y be Banach spaces. An operator T : X — Y is called
nuclear if there exists a couple of sequences {xF}22, in X*, and {y;}32, inY, such

that 32, |z |||lyill < 0o and Tx =332 (2}, z)y;. We introduce the nuclear norm

N(T) = inf{z 23 il - Tz = Z('T::w)yi}- (6)

By N(X,Y) we denote the space of all nuclear operators, with the nuclear norm.

It is well-known that NV'(X,Y’) is a Banach space. Let J : >0 27 Qy; = Y ooy Tf ®
y; be the formal identity mapping defined for all pairs of sequences {z}, }32, € X*,
{yi}32, € Y such that > .2, |lz}||[lyi]] < oo. As we have seen above such series
represent all elements of X* ®, Y as well as of N'(X,Y).

Proposition 0.6. ([DF], Chap. 3)

The formal identity J is a well-defined quotient mapping J : X* ®,Y — N(X,Y).
More precisely, let z = 221 x; ®y; be a representation of z € X* ®, Y, then the
nuclear operator T represented by the same sum J(z)

T =13 i @), T(a) = i (@) 7)

i=1

is independent of the concrete representation of the tensor z.

We pass now to a description of the topology 7, and its close relationship to the
approximation property.
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Definition 0.7. Let X,Y be Banach spaces. By T we denote the LCS topology
on L(X,Y) of uniform convergence on compact sets in X, generated by seminorms
IT||k, K C X norm compact set.

Definition 0.8. We say that a Banach space X has the approximation property
(A.P. for short), if

Ide F (X)
Next theorem contains a list of conditions characterizing the A.P. for a Banach

space X. It combines some conditions from Thm. 1.e.4. of [LT] and Theorem 5.6
of [DF].

Theorem 0.9. (Grothendieck)

Let X be a Banach space. The following conditions are equivalent:

1. X has the A.P..

2. For every Banach space Y, ?T(X, Y)=L(X,Y).

3. For every Banach space Y, F (Y, X) = L(Y, X).

4. J: X*®, X = N(X) is injective, or equivalently it is an isometry.

5. For every Banach space Y, J : Y* @, X — N (Y, X) is injective, or equivalently
it 18 an 1sometry.

The next theorem is almost certainly known to the specialists. As we have not
found an explicit reference, we include its proof for the readers convenience.

Theorem 0.10. Let X be a Banach space. The following conditions are equivalent:
1. X* has AP.
2. For every Banach space Y, J: X* 0, Y — N(X,Y) is an isometry.

Proof. Tt is well-known ([Ja], p.326) that the formal transposition mapping t :
E®.F = FR,E t(} 0, e;®fi) = > o0, fi®e; is an isometric linear isomorphism.
Next, we note that N (X, X**) and N(X*, X*) are canonically isometric, via the
transposition of their elements z = .7, 2f @ 2}* <> 2/ = > 2| 2f* ® 2. Indeed,
N(X,X**) is a quotient (via J) of X* ®, X**, while N(X*, X*) is a quotient
(via J') of the isometric transpose t(X* ®, X**) = X** ®, X*. The kernels are
described as follows.

Ker(J)={z= fo @zt fo(m)xf* =0for all z € X}. (8)
i=1 i=1

o0 o0
Ker(J') ={z'= Zx:* ®x;: fo*(z*)z: =0 for all z* € X*}. (9)
i—1 i=1

Both of these conditions are indeed equivalent to a single condition z € Ker(J) &
t(z) € Ker(J'), if and only if > ;2 i*(z*)z}(z) =0 for all z € X, z* € X*.
Substituting ¥ = X** into condition 2., and using the transposition we may trans-
form 2. into an equivalent statement, that J' : X** @, X* — N(X* X*) is an
isometry. By condition 4. of Theorem 0.9 we conclude that X* has the A.P..

It remains to show 1. = 2. Let 0 # z = >0 2} ®y; € X* ®, Y, our goal
is to show that J(z) # 0. WLOG we may assume that Y .o, |lyi]] < oo and
lim; oo ||2f|| = 0. (Recall that J(z) is a nuclear operator, so in particular is it
also a compact operator from X to Y). We proceed by contradiction, assuming
that J(2)(y) = Y iy i (z)y; = 0 for all z € X. Given € > 0, by condition 3. in
Theorem 0.9 (it is well-known that {z}}29 is contained into some compact set, [F]),
there is a

n
F= Zuz* ®uj, € F(X™), such that sup [|F(z]) — z}|| < e. (10)
k=1 :
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Welet 2/ =372 F(z})®y; € X*®,Y. Note the important fact that 2’ € X* @V
is actually a finite tensor. Indeed,

n

z:zz Zu ul) @y = Zuk® Zu (11)

i=1 k=1

Next, J(z') satisfies the following:

oo oo

J()(x) =D (F(x}),z)yi = Y (2], F*(x))y; = 0, for every x € X. (12)

i=1 i=1
Hence J(z') = 0, as an element of £(X,Y"), and since 2’ is also a finite tensor we
conclude that 2’ =0 as an element of X* ®, Y. Hence we have an estimate

7(2) = 7z — ') zmyz ZF ®yz<sz||yz|| (13)

Since € was arbitrarily small, we conclude that 7(z) = 0 as desired. It is clear by
the Banach open mapping theorem that J is an isomorphism. Once we know that
J is an isomorphism, we obtain that it is actually an isometry for free. Indeed, we
may pass from a a nuclear representation to a tensor one freely and get the norm
estimate. g

By Proposition 0.4 (and the transposition isometry Y* @, X = (X ®, Y*)) we
have (Y* ®, X)* = L(X,Y**). Denote by i : L(X,Y) = L(X,Y™*) the formal
identity embedding. Then we have the following.

Lemma 0.11. The mapping
i:(L(X,Y), 1) = (L(X,Y™),w") (14)
s continuous. In particular, the dual mapping
i Y e, X = (L(X,)Y), )" (15)
is w — w* continuous (the topologies come from the duality pairs described above).

Proof. By Proposition 0.3 every z € Y*®, X admits a representation z = >~ y¥®
x;, such that (||z;]]) € co and (||yF]]) € ¢1. Let K = conv{x;}2, be a compact
and convex set in X. Let U be a 7-open set in £(X,Y") defined as U = {T :
sup,ex [|T(2)]] < 1}. Clearly, T € U implies |[y*(T'(z))| < |ly*|| for all y* € Y,
z € K. Thus (T,>2, yf @ ;)] < > ooy |lyf|l < oo for all T € U, which finishes
the proof. The second result follows by duality. O

The following is a more complete formulation of the Grohtendieck duality result in
Theorem 0.1.

Theorem 0.12. (Grothendieck, [DF], Prop. 5.5)
The mapping i* : Y*®, X — (L(X,Y),7)* from (15) is surjective. In other words,
the continuous linear functionals on (L(X,Y),T) consist of all

o0

o0
¢(T) = (yi, Tai),zi € X,yf € Y™,y lzillllyfll < oo (16)

i=1 i=1

In some cases, the mapping i* is injective, leading to a perfect duality pairing. For
example:
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Theorem 0.13. ([DF], p. 65) Let X,Y be Banach spaces. Suppose that either
X or Y* has the A.P., or that Y is reflexive. Then the mapping i* : V* @, X —
(L(X,Y),7)* from (15) is injective. In particular, we may write (L(X,Y),7)* =
Y* ®, X. The pairing is canonical,

o) o)
i=1 i=1

Our main result is contained in the next characterization.

Theorem 0.14. Let Y be a Banach space with the A.P.. Then the mapping i* :
Y*®, X = (L(X,Y),n)* from (15) is injective if and only if Y* has the A.P.

Proof. We first assume the injectivity of i*. Our goal is to establish that Y* has
the A.P.. By using Theorem 0.10, it suffices to show that J : Y* @, X — N (Y, X)
is an isometry for every Banach space X. Recall that

Ker(i*)={z=> yf®mz;:(2,S)=> (y;,S(z:)) =0, for all S € L(X,Y)}
=1 i=1

(18)
As Y is assumed to have the A.P.,; we have by condition 3. in Theorem 0.9 that
for every X, F (X,Y) = £(X,Y). Thus by the bipolar and Hahn-Banach theorem
(18) is equivalent to the next condition.

[ee] [ee]
Ker(i*) ={z= Zyz* ®z;:(z,8) = Z(yz*,S(a:l» =0, forall S € F(X,Y)}
i=1 i=1
(19)
Next, compare this condition with the condition describing the kernel of J:
o0 [ee]
Ker(J)={z= Zyl* Qa;: (T, z) = Z(T(y:),zz) =0, forall T € Fps (Y, X ")}
i=1 i=1
(20)

We claim that (19) and (20) are equivalent conditions. Indeed, it suffices to
note that taking the adjoints S — S* makes an isometry from F(X,Y) onto
Fuw(Y*, X*), and thus a reformulation of (19)

Ker(i*) ={z= ny ®x;:(z,S) = Z(S*(yf),zz) =0, forall S € F(X,Y)}
i=1 i=1

(21)
is precisely (20). Since ¢* is assumed to be injective, so is J. It is clear by the
Banach open mapping theorem that J is an isomorphism. Once we know that
J is an isomorphism, we obtain that it is actually an isometry for free. Indeed,
we may pass from a a nuclear representation to a tensor one freely and get the
norm estimate. This proves that Y* has indeed the A.P.. The opposite implication
follows from Theorem 0.13. O

As pointed out in the introduction, there do exist Banach spaces with A.P. whose
dual fails A.P.. Therefore we obtain a negative solution to the original problem.

Corollary 0.15. Let Y be a Banach space with the A.P., whose dual Y* fails the
A.P.. Then there ezists a Banach space X such that i* : Y*®, X — (L(X,Y), 7)*
1s not injective.
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