
A NOTE ON FRAGMENTABILITY AND WEAK-Gδ SETS

V. P. FONF, R. J. SMITH, AND S. TROYANSKI

Abstract. In terms of fragmentability, we describe a new class of Banach spaces
which may be c0-saturated but do not contain weak-Gδ open bounded subsets. In
particular, none of these spaces is isomorphic to a separable polyhedral space.

1. Introduction and Preliminaries

All Banach spaces under consideration in this note are assumed to be real and
infinite-dimensional.

According to a well known theorem of Lindenstrauss and Phelps [9, Corollary
1.2], if X is a reflexive space then every closed convex and bounded body in X has
uncountably many extreme points. The first named author has obtained different
generalisations of this result. In particular, in [2], it is proved that every infinite-
dimensional Banach space X which is not c0-saturated does not admit a countable
boundary. Moreover, if X is not c0-saturated then [3, Corollary 3]

(a) X does not contain an open, bounded weak-Gδ set.

In [4, Theorem 3] it is shown that if a separable space X does not contain c0 then

(b) the polar A◦ of any closed convex and bounded body A ⊂ X with 0 ∈ intA
contains uncountably many w∗-exposed points.

Recall that a set B ⊆ BX∗ is said to be a boundary for X if, for every x ∈ X,
there is f ∈ B such that f(x) = ||x||. Assume that {fn}∞n=1 is a countable boundary
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for X (for example, X is separable and polyhedral [5, Theorem 1]), then

intBX =
∞⋂
n=1

{x ∈ X : fn(x) < 1}.

Thus int BX is an open, bounded weak-Gδ set. Next let G ⊂ X be a bounded,
convex, closed body and 0 ∈ intG. A point x ∈ ∂G is said to be smooth if the
Minkowski functional p of G is Gâteaux differentiable at x. A point f of a subset
A ⊂ X∗ of the dual space X∗ is said to be a w∗-exposed point of A if there is
x ∈ X such that f(x) > g(x) for every g ∈ A, g 6= f . Moreover, we say that this x
w∗-exposes f . Let us recall also the following well known fact.

Fact 1. A point x ∈ G is smooth for G if and only if x w∗-exposes some point f in
the polar G◦ of G, with f(x) = 1.

In this note we describe (by means of special fragmentable sets) a new class K
of Banach spaces X which have both properties (a) and (b) and which may be
c0-saturated.

Definition 2 (Namioka [11, p. 259]). A set M in a Banach space X is said to be
fragmentable if, for any subset A of M and any ε > 0, there is a weak open set V
which meets A and diam(A ∩ V ) < ε.

Additionally, a set M is dentable if, for any ε > 0, there is an open half space
H which meets M and diam(A ∩ H) < ε. Clearly, if every subset of a set M is
dentable then M is fragmentable. It is known that if M is a weakly compact subset
of a Banach space, or a bounded subset of a dual space of an Asplund space, then
every subset of M is dentable (see e.g. [1, pp. 31, 60 and 91]).

We define the class K as follows.

Definition 3. A Banach space X belongs to K if X contains a non-empty frag-
mentable set M ⊂ intBX satisfying the following condition

(∗) for any ε > 0, any weak open set V and any x0 ∈ V ∩M , there is a finite
sequence {xi}ni=1 ⊂ V ∩ M such that ||xi − xi−1|| < ε, i = 1, . . . , n, and
||xn|| ≥ 1− ε.

Our main result is the following

Theorem 4. If X ∈ K then X does not contain open bounded w−Gδ sets. Moreover,
if X ∈ K is separable and G is a convex bounded open set then the set of all smooth
points of clG cannot be covered by a countable union of weak closed sets which does
not meet G. In particular, if 0 ∈ G then the set w∗-exp G◦ is uncountable.

The following corollary complements the main result from [4].

Corollary 5. Assume that a separable Banach space X contains a subspace with
the Radon-Nikodým property (e.g. reflexive or l1). If F ⊂ X is a bounded closed
convex body with 0 ∈ intF then the set w∗-exp F ◦ is uncountable.
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Hitherto, there were no c0-saturated Banach spaces known to satisfy the conclu-
sions of Theorem 4. Despite the fact that the proof of Theorem 4 uses some ideas
from [4], we give examples of c0-saturated Banach spaces which admit sets satisfying
the hypotheses of Theorem 4.

2. Proof of Theorem 4

The proof of the following fact is standard.

Fact 6. Let K be a weak compact subset of a weak open subset V of a Banach space
X. Then there is a non-empty weak open neighbourhood W of the origin such that
K +W ⊂ V .

The following rather technical proposition will be our main tool.

Proposition 7. Let G be an open bounded subset of a Banach space X and assume
0 ∈ K ⊂ G, where K is compact. Put GK = {x ∈ X : x + K ⊂ G}. Assume that
M is a non-empty fragmentable subset of clGK, such that for any weak open set U
with U ∩M 6= ∅, for any weak closed subset E with E ∩G = ∅, and for any ε > 0,
there is y ∈ M ∩ U such that (y + K) ∩ E = ∅ and d(y, ∂GK) < ε. Then, for any
w-Fσ set F with F ∩G = ∅, there is x ∈ X such that x+K ⊂ clG, (x+K)∩F = ∅,
and (x+K) ∩ ∂G 6= ∅.

Proof. Let F =
⋃∞
n=1 Fn, where {Fn} is an increasing sequence of weak closed sets.

Set F0 = ∅ and let {εn}∞n=0 be a sequence of positive numbers tending to 0, where
ε0 > diam(GK). We construct a sequence {xn}∞n=0 ⊂ M and decreasing sequences
of w-open sets {Un}∞n=0 and {Vn}∞n=0 with the following properties

(1) xn ∈ Un and xn +K ⊂ Vn;
(2) w-clVn ∩ Fn = ∅;
(3) diam(Un ∩M) < εn;
(4) d(xn, ∂GK) < εn

for all n. To begin, let x0 ∈ M be arbitrary and U0 = V0 = X. Assume we have
constructed xn, Un and Vn. By Fact 6, we can take a weak open neighbourhood W
of xn such that W + K ⊂ Vn. Since xn ∈ Un ∩W ∩M and M is fragmentable,
there exists weak open Un+1 ⊂ W ∩ Un such that Un+1 ∩ M is non-empty and
diam(Un+1 ∩M) < εn+1. From our hypothesis, there exists xn+1 ∈ Un+1 ∩M with
the property that (xn+1 +K)∩Fn+1 = ∅. Since xn+1 +K ⊂ Un+1 +K ⊂ W+K ⊂ Vn
and xn+1 +K ⊆ X\Fn+1, again by Fact 6 we can pick a weak open neighbourhood
W ′ of xn+1, satisfying w-clW ′ + K ⊆ Vn\Fn+1. Define Vn+1 = W ′ + K to complete
the construction.

From the conditions above, it follows that {xn} is a Cauchy sequence. Let x =
|| · ||-limxn. We have x + K ⊂

⋂∞
n=0w-clVn and x ∈ ∂GK . Hence x + K ⊂ clG

and (x + K) ∩ F = ∅. Since K is a compact set and x ∈ ∂GK , it follows that
(x+K) ∩ ∂G 6= ∅. The proof is complete. �

Recall that a Banach space X is called polyhedral [7, p. 265] if the unit ball
of any its finite-dimensional subspace is a polytope. It was proved in [5] that a
separable polyhedral space admits a countable boundary. The next assertion shows
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that fragmentable subsets of the unit sphere of a separable polyhedral space are
quite small.

Corollary 8. Let G be an open bounded subset of a Banach space X, and let M ⊂
∂G be a fragmentable set such that for any weak open set U with U ∩M 6= ∅, and
for any weak closed set F with F ∩ G = ∅, we have (U ∩M) \ F 6= ∅. Then G
is not a weak Gδ set. In particular, if X is polyhedral then, for every fragmentable
set M ⊂ SX , there is a weak open set U which meets M and a finite number of
hyperplanes {Hi}mi=1 in X, such that U ∩M ⊂

⋃m
i=1Hi.

Proof. We can assume that 0 ∈ G. If we put K = {0} and apply Proposition 7, we
see that G is not a weak Gδ set. If X is polyhedral then [5, Theorem 1] it has a
countable boundary and hence there is a sequence of hyperplanes {Hi}∞i=1 in X with
SX ⊂

⋃∞
i=1Hi. Setting Fn =

⋃n
i=1Hi for n ≥ 1, using the proof of Proposition 7, we

find a weak open set U and m ∈ N such that (M ∩U)\Fm = ∅ and M ∩U 6= ∅. �

Proof of Theorem 4. Let M ⊂ X be as in Definition 3. It will help to assume that
0 ∈M . If necessary, this can be done by replacing M with the set(

M − z
1− ||z||

)
∩ intBX

where z ∈ M is arbitrary. Assume that G ⊂ X is an open bounded set and
0 ∈ K ⊂ G, with K a compact set which we specify later. We will check the
conditions of Proposition 7. First of all 0 ∈M ∩GK . Now let GK , U, E, and ε > 0,
be as in Proposition 7. Pick x0 ∈ U ∩M ∩GK and by using the condition (∗), find
{xi}ni=1 ⊂ U ∩M with ‖xi − xi−1‖ < ε, i = 1, . . . , n, ‖xn‖ ≥ 1 − ε. Assume that
xn ∈ M ∩ GK . Then since ||xn|| ≥ 1 − ε and xn ∈ M ∩ GK ⊂ GK ⊂ G ⊂ BX , it
follows that d(xn, ∂G) < ε. If xn 6∈M ∩GK then there is m < n with xm ∈M ∩GK

and xm+1 6∈ M ∩ GK . Since ||xm − xm+1|| < ε, it follows that d(xm, ∂GK) < ε.
Set y = xm if xn 6∈ M ∩ GK , and y = xn otherwise. Hence d(y, ∂GK) < ε. Since
y ∈ M ∩ GK ⊂ GK we get that y ∈ G. Having in mind that E ∩ G = ∅, we get
(y +K) ∩ E = ∅.

Now assume to contrary that G is a weak Gδ set. Put F = X \ G. Then F
is a weak Fσ set and by Proposition 7 there is x ∈ X such that x + K ⊂ clG,
(x+K) ∩ F = ∅, and (x+K) ∩ ∂G 6= ∅, contradicting ∂G ⊂ F.

The proof of the second part of the theorem uses an idea from the proof of [4,
Theorem 2]. Given a separable Banach space X and a convex, bounded open set G
with 0 ∈ G, we let K = T (B(`2)), where T : `2 → X is a linear, compact operator
with dense range, and chosen so that K is contained in the interior of G. If F is a
weak Fσ set with F ∩G = ∅ then by Proposition 7 we obtain x ∈ clG satisfying

(2.1) x+K ⊂ clG, (x+K) ∩ ∂G 6= ∅, (x+K) ∩ ∂G ∩ F = ∅.
Now assume to the contrary that w∗-exp G◦ is countable. Then by Fact 1 the set
sm(clG) of all smooth points of clG is w − Fσ. Put F = sm(clG) and apply (2.1).
We get a point z ∈ (x + K) ∩ (∂G \ F ). However by using that K = T (B(`2))
and cl spanK = X it is easy to see that z ∈ F, a contradiction. The proof is
complete. �
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3. Examples

Let X be a Banach space with a normalized shrinking basis {ei}, such that there
is a sequence of numbers {ti}, limi ti = 0, with two further properties:

(a) supn ||
∑n

i=1 tiei|| =∞;
(b) for any subsequence {tik} such that supn ||

∑n
k=1 tikeik || <∞, the series∑∞

k=1 tikeik converges.

We show there exists a relatively weakly compact subset M ⊂ BX , satisfying con-
dition (∗) of Theorem 4.

Let {e∗i } be the biorthogonal sequence for {ei} and

Pnx =
n∑
i=1

e∗i (x)ei, x ∈ X, n = 1, 2, . . .

Denote

M = {x =
∑
i∈σ

tiei : σ ⊂ N, |σ| <∞, ||Pnx|| ≤ 1, n = 1, 2, . . .}.

Now pick x0 =
∑

i∈σ0
tiei ∈M , ||x0|| < 1− ε, and a weak open set V containing x0.

Find δ > 0 and m ∈ N such that

x0 ∈ U = {u ∈ X : |e∗i (x0 − u)| < δ : i = 1, . . . ,m} ⊂ V.

Given ε > 0, find l ∈ N such that |ti| < ε for i > l. Denote i0 = max σ and pick
j > max{i0, l,m}. Set

xk+1 = x0 +

j+k∑
i=j

tiei, k = 0, 1, . . .

Clearly, {xk} ⊂ U , ||xk − xk+1|| < ε, k = 0, 1, . . ., and limk ||xk|| = ∞. Let n be
the minimal index for which ||xn|| < 1 and ‖xn+1‖ ≥ 1. Then ||xk|| < 1, xk ∈ M ,
k = 1, . . . , n, and ||xn|| ≥ ||xn+1|| − ||xn − xn+1|| > 1− ε.

Next we show that M is relatively weakly compact. Given a sequence {yl} ⊂M ,
we have finite σl ⊂ N such that yl =

∑
i∈σl

tiei and supn ||Pnyl|| ≤ 1 for each n
and l. By taking a subsequence, we can find σ ⊂ N such that liml σl = σ in the
pointwise topology of the power set of N. We enumerate σ as a strictly increasing
sequence {ik}. Clearly liml Pinyl =

∑n
k=1 tikeik for each n, so by (b), y =

∑∞
k=1 tikeik

converges in X. Since {ei} is shrinking, it is evident that w-liml yl = y.

Example 9. There is a separable Banach space X with shrinking basis which is
c0-saturated but does not contain a bounded, open weak-Gδ set. Moreover, for any
equivalent norm ||| · ||| on X, the set expB(X,|||·|||)∗ is uncountable.

Indeed, in [8, Theorem 8] a non-degenerate Orlicz function M is constructed such
that there is a sequence {ti}, limi ti = 0, with

sup
i

M(Kti)

M(ti)
<∞,
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for any K > 0, and

αM = sup{q : sup
0<λ,t≤1

M(λt)

M(λ)tq
<∞} =∞.

From [10, p. 143], it follows that the space hM is c0-saturated. By repeating some of
the ti if necessary, we may assume that

∑
iM(ti) =∞. Then the unit vector basis

{ei} of hM and the sequence {ti} satisfy the conditions (a) and (b). Let us mention
that in [8], it is shown that such hM has no countable boundary for any equivalent
norm.
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