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Abstract. Let T be a bounded linear Banach space operator such that » -, ﬁ <
0o. Then T is orbit-reflexive. In particular, every Banach space operator with spectral
radius different from 1 is orbit-reflexive. Better estimates are obtained for operators in
Hilbert spaces.

We also exhibit an example of a reflexive but non-orbit-reflexive operator and a
simple example of a non-orbit-reflexive Hilbert space operator.

1. Introduction

Let X be a Banach space. Denote by B(X) the set of all bounded linear opera-
tors acting on X. All Banach spaces are considered to be complex unless it is stated
otherwise.

The notion of orbit-reflexive operators on a Hilbert space was introduced and
studied in [HNRR]. While the reflexivity of operators is connected to the invariant
subspace problem, its natural analogue of orbit-reflexivity is in the same way connected
to the problem of existence of closed invariant subsets.

We say that T is reflexive if every A € B(X) belongs to the closure of {p(T) :
p polynomial} in the strong operator topology, whenever Au € {p(T")u : p polynomial}~
for each u € X. Analogously, T is orbit-reflexive if every A € B(X) belongs to the
closure of the set {T™ : n € N} in the strong operator topology, whenever Au € {T"u :
n € N}~ for each u € X.

Many operators are known to be reflexive: e.g.

e subnormal operators on a Hilbert space [OT] (in particular, normal operators and
isometries),

e compact operators,

e Hilbert space contractions with isometrical H°°-calculus, see [BC].

The orbit-reflexivity of many classes of Hilbert space operators was shown in
[HNRR], e.g. for normal operators, contractions, algebraic operators, weighted shifts
and compact operators. Among others, each operator whose spectrum does not inter-
sect the unit circle is orbit-reflexive.

In this paper, we improve this result and show that each Banach space operator T'
satisfying Y |T™]| 7! < oo is orbit-reflexive. In particular, if the spectral radius of T is
different from 1, then T is orbit-reflexive.

Better estimates are obtained for Hilbert space operators.
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On the other hand, it is much more difficult to find operators that are not orbit-
reflexive. In fact, up till recently the only known example of a non-orbit-reflexive
operator was the Read operator [R]. We construct an operator which is not orbit-
reflexive but in the same time it is reflexive. Note that it is very easy to find an
orbit-reflexive operator that is not reflexive, since all Hilbert space contractions are
orbit-reflexive.

The first example of a non-orbit-reflexive Hilbert space operator was given recently
in [GR]. The operator is obtained by a modified Read-type construction and it is quite
complicated. We exhibit a relatively simple example of a non-orbit-reflexive Hilbert
space operator. Moreover, our operator T' € B(H) satisfies inf,, ||7"z|| = 0 for each
x € H, but there are two points u,v € H with inf,, (||7"u|| + ||7™v]|) > 0, which is of
independent interest. In particular, it gives a negative answer to Question 3 of [HNRR].

2. Orbit-reflexive operators

Our basic tool in this section will be the following solution to the plank problem.
Proposition 1. (K. Ball [1]) Let X be a (real or complex) Banach space, y € X any
vector and f1, fs,... € X™ unit functionals. For each n € N, let «,, > 0 be such that
> an < 1. Then there is a point © € X such that ||z —y|| <1 and |(z, )| > a
for every n.

A stronger result is known for operators on a complex Hilbert space.

Proposition 2. (K. Ball [2]) Let X be a complex Hilbert space and f1, fo... € X unit
vectors. For each n € N, let o, > 0 be such that > >, a? < 1. Then there is a point

x € X such that ||z|| =1 and |(z, f,))| > «a,, for every n.

First we show that the conditions in Propositions 1 or 2 imply the existence of a
dense set of vectors whose orbits tend to infinity. This improves the results of [MV].

Theorem 3. Let X be a (real or complex) Banach space and S,, € B(X), n € N. If
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then the set {x € X : ||S,z|| — oo} is dense in X.

Proof. Let u € X and € > 0. We find = € X such that ||z — u|| < e and || Spz| — .
There are positive real numbers 3, (n € N) tending to infinity such that

— Bn
S = < 0.
nzzl 15,1l

Let




Then > 7, o, < 1.
For each n € N find y,, € X* such that ||y,|| < 1 and ||S}yn| > 5 [|1S5]] = 3 [|Sal-

_SpYn
IS5synll”

By Theorem 1, there is an 2’ € X with Hx’ - %H < 1 such that ‘< HSQLy"H >‘ > ay,

for every n. Let x :=ez’. Then ||z — u|| < € and

Consider the unit functionals

|Snz| > e ||Snz’|| = € [(Snx’, yn)|
gan“SnH:: efn
2 2(s+1)

= e (2", Syym)| = eom [|Shynl| =

for all n. Hence ||S,z| — oo. O

The analogous assertion holds also for complex Hilbert spaces. However, the com-
plex plank theorem (Theorem 2) is valid only for planks centered at the origin (“y = 0”),
so that we don’t obtain the density directly. To this end, we introduce one additional
plank that places the obtained point z into the given ball.

Theorem 4. Let X be a complex Hilbert space and S,, € B(X), n € N. If

oo

1
2
=t 15l

o,

then the set {x € X : ||Spz|| — oo} is dense in X.

Proof. Choose any point v € X with ||u| = 1 and any number ¢ with 0 < ¢ < 1.
By linearity, it is sufficient to prove that there is an € X such that ||z —u|| < e and
| Snx|| — oc.

Set § :=1— % Using the condition from the theorem, there is a sequence (3,,) of
positive real numbers tending to infinity such that

LS H

Thus the sequence of coeflicients
152\ /2 1/2
(8+1> 15|

oo
524—204% <1 and ap ||Sn|| — oo.

satisfies both

Now consider the adjoint operators S*. For each n € N find y,, € X such that
lynll < 1 and [|Siynll = 21155 = 31ISnll. At this point, we apply the complex
Siy1 S5y2
Siwal]” 1|S5v2[”

plank theorem, using the points wu, | . as the functionals and numbers
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d,aq,Qa, ... as the coefficients. Thus, there is an ' € X with ||2’| = 1 such that
[{(x',u)| > § and [{(x', SZyn)| > an [|Skyn|| for every n. Therefore

||Snx/|| > |<Snx/vyn>| = |<x/75;:yn>|

> o ||y || > 0‘7 1Sa] = 00, asn — oo.

Moreover, |[(x’,u)| > §. Let z := 25,3613' -2'. Then ||S,z|| — oo and
/
() = T (ot ) = (! )| 2 5,

[{u, ")

and therefore
2 —ull* = ||z]* + [[u]|* — 2Re (z,u) < 2 — 26 = .
Hence ||z — u|| <e. O

Remark 5. (i) Note that in Theorems 3 and 4 we have proved the existence of a dense
set of points # € X such that ||S,x| — oo and inf,, ||S,z|| # 0.

(ii) Note that in general, the results proved in Theorems 3 and 4 are not true with
bigger exponents, i.e., for Banach space operators satisfying » W < oo or Hilbert

space operators with > W < oo for € > 0, see [MV].

Let us turn now to the orbit-reflexivity. First, a simple observation shows that
operators with spectral radius less than 1 are orbit-reflexive. In fact, we obtain more.

Theorem 6. Let T' € B(X). Then T is orbit-reflexive in any of the following cases:
(i) the orbit {T"z :n =0,1,...} is closed for each x € X;

(ii) ||T"z| — oo for all x € X;

(iii) ||T"z|| — 0 for all x € X.

Proof. (i) Let A € B(X) satisfy Au € {T"u:n=0,1,...}- = {T"u:n=0,1,...}

for each u € X. Then Au = T"u for some n and |J, ., ker(A —T") = X. By the Baire

category theorem, there exists m such that ker(A—T"") has a nonempty interior. Since
ker(A —T™) is a linear subspace, we have ker(A — T7T") = X, and so A =T".

(ii) follows from (i) and (iii) can be proved similarly. ]

Theorem 7. Suppose that T € B(X) satisfies y ., ﬁ < 00. Then T is orbit-

reflexive. In case X is a complex Hilbert space, then it is sufficient to assume that

o0 1
anl HT"HE < 00.

Proof. Let > 7, ﬁ < co. Let A € B(X) be such that Au € {T"u : n € N}~ for
each u € X and suppose for contradiction that A # T™ for all n € N. Observe that

o0

1
2 A <

n=1
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Indeed, since ||[T"| — oo we have [|[T™ — A|| > ||T™| — ||A|| > 3 ||T™]| for all n large
enough. So for certain ng € N we have

> 1 > 1 <. 2
— < — < — < Q.
Z [T — Al Z |7 — || Al Z 7|

n=ngo n=no n=no

Therefore, the operators S, := T" — A satisfy the conditions in Theorem 3. So
there exists (in fact a dense set of points) z € X with |[(7" — A)z|| > 0 for all n
and ||(T™ — A)z|| — oo, cf. Remark 5. Thus there is a constant C' > 0 such that
inf, ||[(T™ — A)z|| > C > 0 and we have a contradiction with the assumption that
Az € {T"x :n € N} .

The second statement can be proved similarly by using Theorem 4 for the operators
™ — A. ]

Corollary 8. Every operator T € B(X) with r(T') # 1 is orbit-reflexive.

Proof. If r(T') < 1 then lim,,_, ||7"| = 0. Now apply Theorem 6.
If (T) > 1 then |T"| > n? for all n large enough, since otherwise r(T) =

inf, oo |[T77]|*'™ < 1. Now apply Theorem 7. i

Denote by {T'}’ the commutant of an operator 7' € B(X), i.e., the set of all
operators S € B(X) commuting with 7. Denote by {7} the bicommutant of T, i.e.,
the set of all operators commuting with all operators in {T'}'.

Proposition 9. Let T € B(X). Suppose that there is a nonzero x € X such that the
closure of its orbit {T™x : n € N}~ has cardinality less than continuum. Then either T

has a nontrivial closed hyperinvariant subspace or each operator A € B(X) satisfying
Au € {T"u : n € N}~ for each u € X belongs to {T}".

Proof. Let « # 0 be a point such that the cardinality of the set W := {T"z : n € N}~
is less than 2¢.

Set M := {Bxz : B € {T}'}. If M is a proper subspace of X, then it is a nontrivial
closed hyperinvariant subspace.

Suppose that M = X.

Let A € B(X) be such that Au € {T"u :n € N}~ for every u € X. Let B € {T}'.
We will prove that BAx = ABx.

Fix any a € o(B) (the resolvent set of B). According to our assumption on A, we
have A(al — B)x € {T"(al — B)x : n € N}~. But since af — B commutes with 7"
and is an invertible operator, we can rewrite the latter set as (al — B)W. In this way,
we can assign to each o € p(B) a point w, € W for which A(al — B)z = (al — B)w,,.
Since the cardinality of W is smaller than the cardinality of o(B), there are two distinct
complex numbers «, § € o(B) with w, = wg =: w, i.e.,

A(ax — Bx) = aw — Bw,
A(Bx — Bx) = pw — Buw,

which yields the identities

(@ = p)Az = (a = fw,
(8 —a)ABx = (f — a) Bw.
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So Ar = w, ABx = Bw and BAx = Bw = ABx.
Therefore, for each C' € {T'}' we have ABCx = BCAx = BAC<z. Since the set
{Cz:C e {T}} is dense in X, we have AB = BA and so A € {T'}". O

3. Reflexive operator that is not orbit-reflexive

Example 10. There exists a reflexive operator on ¢; which is not orbit-reflexive.

Construction. For N = 1,2,3... let ey := 1/VN. Let ay, k = 1,2,3..., be an
increasing sequence of positive integers such that ag,.1 > 6&%.
The underlying space will be the ¢;-direct sum

X:Z@éYk
k=1

where Z is the ¢, space with standard basis {e;, f; : 7 = 0,1,2...} and Y}, are the /;
spaces with standard bases {u i, v :i=1,2,...,5a3}.

We construct inductively integers kny, N = 0,1,2..., and elements w, € Z,
k= 1,2,3..., in the following way. Set formally ky := 0 and ag := 0. Write
for short by := ag,. Let N > 1 and suppose that the integer kn_; and elements
w1, ..., Wk, , have already been defined. Let Zy := Span{e;,f; : j = 0,...,by_1}
and let wi,_,+1,..., Wk, be an 5?\,-net in the closed unit ball of Zp.

Using induction, we continue the construction in the above described way.

Now we define the operator 7' € B(X) by:

2
— 1 a
T@ak = Cap+1 + g Zlil Uk 4, Tfak . fak+1 + T Zz 1 Uk,is

Teak+3a2 = 8N€ak+3ai+17 Tfak—|—3ai = ngak+3ak+1 (kN—l <k< kN)’
Te _1/ TF. = _1/6‘% X
ej i =en ' ey, fi=en " fin
(k?Nfl <k<kn, ap + 3@% <7< ag —f—4a%),
Tej:=¢€jt1, Tf; = fj+1 otherwise.

Thus T acts on the standard basis of Z as a pair of weighted shifts, up to the
points of the form e,, and f,, .
Further, let

Tuk,SaZ =0, TUk,Bai =0,
x Rl . 2 2 _ 2
Tug; = Uk it+1, Tk = Vkit1 (1 <i<2aj or2a; <i<baj).

It remains to define 7" on Span{uy, 202, Uk Qaz} Since wy € Zn for kny_1 < k < kp,

we have wy = b1 (-k) ﬁ(k)f for some complex coefficients a( ) B(k). For
i=0 \&;

1 = 0,...,by_1 we have T“k ‘e = [t;€q, and T~ if, = i fa, for some p; € C
satlsfymg i| < ey’ Set alF) = ZbN Yo a(k) and 3K = Z?ﬁ(jl ,uiﬁz-(k). Without loss
of generality we may assume that |a(’“)| # | ﬁ(k)|

N0
If |a®)| < |B%)| then set Tug 902 = Up 90241 and Ty, 942 = ﬂ(k) Uk 202 11- 1f
)
|a®)| > |8*)| then set Tg 242 = Vg 24241 a0d Tuy 9,2 = —g(k) Uk 242 +1- Note that in

both case we have T(Oé(k)uk,zai + ﬁ(k)vk,zai) = 0.
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Let Y = @Zozl Y. Denote by Pz, Py, Pz, and Py, the natural projections onto
the corresponding subspace of X.

It is easy to check that ||T] < 2. Note also that for each & € N, we have
T =%-1e, | = eq, since PyT»~%-1e, . =0 while by definition

ak—|—4ai )
ap—ag— —1/a
Py % 1e, | =€en- H En | Feqp = €qy-

j=ar+3ai+1

Similarly T ~%-1f, = fa,-

We prove now that T is not orbit-reflexive. On one hand we show that
[T eoll + [T foll = 1

for all n = 0,1,2... On the other hand, for each x € X and € > 0 thereis a j € N
such that ||Tj m” < e. A proof of these two statements will automatically yield that T
is not orbit-reflexive. Indeed, the zero operator satisfies 0z € {T"z : n = 0,1,2...}~
for each by the second statement, but it is not in {7" : n = 0,1,2...} 99T by the
first statement.

To prove the first statement, let n € N. If n ¢ ;—,{ar +3af +1,..., a5 + 4a3}
then PzT"ey = e, and so [|[T"eo|| + || T fol| > || PzT™eo]|| = 1.

Let ay, +3ak < n < ag +4a? for some k. Recall that wy, = Zfl\’gl( Ek) i+ﬁ(k)fi)
alk) = ZbN ! ( ) and gk = ZbN ! ulﬁ(k) where T% ~e; = p;e,, and T f; =

im0
i fa, . First suppose that }a(’m < |ﬁ(k)| so that 7" is a shift on uy ;. It is then easy to
show that

n—ak—i—ai—l

1
Py, T"ey = o) E Uk,
k

1=n—aj

and so ||[T"ep|| > 1. If }a(k)| > W(k)!, then we obtain in the same way that |77 fo|| > 1.
Hence ||T™eo|| + [T fo|| > 1 for all n.

To prove the second statement, suppose that z € X is of norm 1 and 0 < e < 1.
There exists M > 2 such that [[(Pz — Pz, )z| < 75. There exists N > M such
that / €€M
/2
< —_
9

18
by_1eny > —
g

o (1)
g
> Pl <

k'=kn_1+1
||PZN+1$ — PZN.fH < 8?\[.

Indeed, the first three conditions of (1) are satisfied for all IV sufficiently large. Suppose
on the contrary that ||Pz,,,x — Pz, x| > €% for all N > Ny. Then

12”'77”2 Z HPZNJrlx_PZN'r”Z Z 6?\/:00

N=Np N=Np



a contradiction. Fix N with properties (1).
Find k, ky_1 < k < ky such that ||Pzyz — wg|| < &%. Set j = ax + 3a; + 1. We
have

e < | Z Urvel+] 30 TPy 1Pt Paal

k'=kn_-1+

+ ||PZT](PZN - PZM)xH + ||PZTJ(PZN+1 - PZN):BH + HPZTJ(PZ - PZN+1)x||
+ ||PyT? (Pz — Pzy,.)z|| + [Py T/ (Pzy,y — Pzy)z|
+ 4+ ||PyTj(PZN$ — wk)” + HPyTjwk” .

Since k > kny_1 and j > aj, > 50L,2C , we have Zk, LT Pyk,x =0.
For k' > ky_1 we have ||T7]y,, || < 1, and )

| 5 mrels] ¥ pa <

k'=kn_1+1 =kn_1+1

It is easy to see that

. _ 2 13
|P2TI Pa,, | < exfenen™ % < eifelf? < 2

and so |PzT7 Py, x| < £|| Pz, <
Similarly,

£
9

|PzT?(Pz, — Pz,,)|| = max{||PzT7¢;|| : bapr—1 <i <bn_1} <2,

1PzT7 (Pzy 4y — Pzy)|l = max{||[PzTVeq|| : by—y <i < by} < ey’

and
|PzT(Py — Pz,.,)|| = max{||PzT7¢;| : by <i} < 2.
Thus ' R
HPZTJ(PZN - PZM):EH < 2H(PZN - PZM)x|| < 57
) B 15
1P2T? (Pzy.y — Pry )zl < eylel =en < 9
and _ c
“PZTJ(PZ - PZN+1):EH < 2H(PZ - PZN+1)CL.H < 5
We have

IPyT?(Pz — Pzy.,)ll = max{|| Py T e; ||, | Py T" fil : i > bn}

—j/aj Ay +1 <2

< max{|PzT7 &, | PzT7 fil| : ' < j,i > by} < eniy

and similarly
|PyT? Py, || < max{[|PzT7 e, [|P2T7 fill : 5 < j,i < by} <en'
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Thus
A £
|PyT?(Pz — Pzy )| < 2|[(Pz — Pzy )|l < g’
[Py T?(Pzy .,y — Pzy)z)|| < en' [[(Pzyyy — Pay)z| <ey'el =en < g

and
[Py 7 (Pgya — wi)|| < et [ Paw — wil| < ex'ed < g

It remains to estimate || Py T7wy||. We have

1Py T wy|| = HPYijwkH

(k) 9k
=\\T‘°’“k2(“’ak . & S
/=1

(k)

= —2HT3“k (uoao Uiy + 11035 V1 + (uoa( )

+ 1l Yug

k
+ (0" + B Yo + - + Z (@Pug o+ 8P vp o) + -+
s=bn_1+1
k k
ot 'ubN—lal(JN)flukvai‘FbN—l T 'ubN—lﬁlSN)flvk»ai‘FbN_l) H

1 _ 2 2 €
< 7 2 v Dl < < <

enar ~ enbn_1 9

Hence ||T7z|| < e. This implies that 7" is not orbit-reflexive.

We show now that T is reflexive. Suppose that an operator A € B(X) leaves
invariant all the closed subspaces which are invariant for 7. Without loss of generality
we may assume that ||A|| = 1. We have to show that A is a limit of polynomials of T
in the strong operator topology.

Let K € Nand let y € Y, v # 0. Let s satisfy 7%y # 0 and T°"'y = 0. Since
Span{y, Ty, ..., Ty} is invariant for A, there are numbers Ag,...,A\s € C such that
Ay =37 o NTy.

Fix any natural numbers [ > k such that o] < |8%)| (so that T is a shift on u; ;
such a number certainly exists) and consider the spaces invariant for 7' generated by
the vectors u;; and y + u;,1, respectively. Since these subspaces are invariant for A,
there are complex numbers &; and 7; such that

2
S5a;—1

Au g = § & w1
i=0

and
5(1, —1

Aly +uq1) = Zm (y+ug1).



Thus

5“1—1 5‘11_1

anle‘i_erhTull‘f’ > nzTUll—Z)\le"i‘ZszUll"i‘ > &GT .

1=s+1 1=s+1

Since the vectors Ty (0 <i < s) and T%u;; (0 <4 < 5a? — 1) are linearly indepen-
dent, we have \; =&, =m; (0<i<s) and Ay = 25%_1 &T'y. Note that this equal-
ity does not depend on y € Y. Note also >, "¢ 5aj. ~1 &i] < ‘Z?’fk ! &TZULIH < | Aug 1| <

|Al| = 1. Moreover, if Ay = 25% ETiyforally € Yy then & = ¢ (0 <i<ba2—1).

Thus there are numbers &y, {1, . .. such that >~ & < 1 and Ay = Z?i{)_l &Thy
for all j € Nand y € Y].

For k € N let pr(z) := 25%_1 &2 Then ||px(T)|y] < 1, and so we have Ay =
limy o0 pi(T)y for all y € Y.

Let £ := Span{e; : j > 0} and F := Span{f; : j > 0}. Let z1,...,2, € E and
Tptls---,Tm € F be unit vectors, ¢ € N and let 0 < € < 1. It is sufficient to show that
there is a k > ¢ such that ||pg(T)z; — Az;|| <e (i =1,...,m). This will show that A
belongs to the closure of polynomials of 7" in the strong operator topology.

As above, it is possible to show that there is an N such that

e
6N<§,
kN+1
> gl <ek,
j=kn+1
||(I—PZN+1)$Z||<E (i=1,...,m), (2)
||(PZN+1_PZN)xi||<5N (izla"'7m)>
kn c
H(I—PZN—;PYk,)Axi <T G=1...m)

Set k = kn. Fix i € {1,...,n} (for n+ 1 < i < m the proof will be similar). Let z; =

Z;)ijo vje; with v, # 0. Clearly jo < by_1. Let s = 5a?+ar—jo. Let @ be the natural

projection onto the space Span{ey, . .. 7€5a§+ak7Yk’ (K" <k),vk411,---,Vkt1 541}
Consider the vectors x;, vi4+1,1 and z; + vg41,1. We have

S
QAVE 411 = Z T Vg1

J=0

and there are complex numbers v;,7n; such that
=0
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and

QA(z; + V41, 1) =Q Z n; T $z + Vg1, 1)

As above, we have v; = §; =1n; (0<j <s). So QAz; =QY 75, T,
We have

(A = pr(T))zil| < (I = Q) Azi|| + |Q(A = pr(T))zil| + [|(I = @)px(T)i-

By (2), [|(I — Q)Az;|| < &/4 and

Q- p@al = o ¥ 6T <HZ &To e,

jSa 35(1

s
< Y 4] max{||T7]] : 50} < j < s} < ek -2y =2y <e/4
j:5ai

Furthermore, since (I — Q)px(T) Pz, x; = 0, we have

(I — Q)p(T)z:|l
<N = Q)pe(T)I = Pzy.y)will + (I = Q)pi(T)(Pzy.y — Pzy )|
< ” ( )(I - PZN+1)xiH + Hpk(T)(PZN+1 - PZN)xiH7

where
5(12—1
Ipk(T)(T = Pay, )il = || Y2 6T/ = Pry )
=0
5ai—1 ' 46
= ( Z ’gj‘) maX{HT](I_ PZN+1)H :0< .] < 50% - 1} ’ H(I - PZN+1)xZ|| = ].6
=0
and

Hpk(T)(PZI\l+1 - PZN)':EiH < Hpk(T)H ’ ”(PZN+1 - PZN)xiH
<max{||T7]|: 0 < j < 5ai — 1} -e% < 2ey'ely = 2en < £/4.

_ £
4

Hence ||(A — pr(T'))zi|| < € for each i, 1 < i < n, and similarly, for n+1 < i < m.
This implies that A is a limit of polynomials of 7" in the strong operator topology and

hence, T is reflexive.

4. A non-orbit-reflexive Hilbert space operator

The example constructed in the previous section can be modified to the Hilbert

space setting. However, we are not able to prove the reflexivity of the operator.

Denote by m the normalized Lebesgue measure on the unit circle T. Denote by

| ||2 and || - ||oc the norms in the Hardy spaces H?(m) and H®°(m), respectively.
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Lemma 11. Let p,q be polynomials, |p|la < 1, |lqll2 < 1 and let 0 < ¢ < 1/3.
Then there exist polynomials r, s such that ||rp + sq|l2 < €, ||7]|cc < 1, [|S|lec < 1 and
max{r 2, sll2} = 1/3.

Proof. Let M; :={z € T : |p(2)| > |¢(2)|}, M2 = T \ M;. Without loss of generality
we can assume that m(M;) > 1/2. Define functions g,h : T — C by

1 (z € My)
h(z) = { o

a(z)
2) = P(z) (ZGMl)
9(z): {0() (z € M>)

(if p(z) = q(z) = 0 then set g(z) := 0). Note that ||g]|cc < 1, ||h|loo < 1 and pg+qh = 0.
Let K = max{l, ||p||co, ||q|lcc}. There exist continuous functions g;,h; : T — C
such that [|g1 — gll2 < ;% and ||h1 — A2 < §%.

Define go,he : T — C by ga2(2) = m, ho(z) = ﬁ(fﬁ(m Clearly

g, h are continuous, g2l < L, [lhalloe < 1. g2 — gll2 < g5 and s — Alls < .
There exist trigonometric polynomials g3, hs such that ||gs — g2]lcc < /4K, ||hs —
hallso < €/4K. Moreover, we may assume that ||gs||co <1, ||h3]lec < 1.

Choose I € N such that 7 := 2'g3 and s := z'hs are polynomials. Then ||7]|. < 1,
|s]loc <1 and

7D + gsll2 = ||2'g3p + 2 haqll2 < ||2'gp + 2'hqll2 + |12 (g3 — g9)pll2 + ||2' (hs — R)q||2
< K|lgs — gll2 + K||hs — hl|2
< K(|lgs — g2ll2 + llg2 — gll2) + K(||hs — hall2 + [[h2 — h]2) < e.

Finally,
Isll2 = [|kslla = [hll2 = llhs = hlle 2 1/2 — /2K > 1/3.

If m(M;) < 1/2 then m(Mz) > 1/2 and we can proceed similarly. At the end we obtain
7|2 > 1/3. mi

Example 12. There exists a Hilbert space X and an operator 7' € B(X) such that
(i) inf, ||T"z|| = 0 for all z € X;
(i) there are points eg, fo € X such that inf,, (||[T"eo|| + || 7™ fol|) > 0.
Consequently, T' is not orbit-reflexive.

Construction. The construction is similar to the ¢; case. For N = 1,2,3... let
ey =N —1/3 .
The underlying Hilbert space will be

X:Z@éYk,
k=1

where Z is the Hilbert space with an orthonormal basis {e;, f; : j =0,1,2...} and Y}

are finite-dimensional Hilbert spaces (they will be determined in the construction).
We construct inductively integers kny, N = 0,1,2..., integers ax, spaces Y and

elements wy, € Z, k =1,2,3..., in the following way. Set formally ko := 0 and ag := 0.
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Let N > 1 and suppose that the integers kx_1, a, spaces Y; and elements w; € Z
have already been defined for 1 < k < ky_;. Write for short by_1 := ak,_,. Let
Zy := Span{ej, f; : 5 = 0,...,by—_1} and let wyy ,41,..., Wy be an e%-net in the
closed unit ball of Zy.

For k =kny_1+1,...,kxy we can write wy, = nggl (agk)ei —|—ﬁi(k)fi) with complex
coefficients ozgk), ﬂgk). We define numbers p; (0 < i < by_1) in the following way. If
1<MIN-1,ky1<l<ky andal<i§2althenset,ui:€];[1. If 2a; < 1 < 3q

7(3al7i)
then pu; =¢e,, " . Set u; = 1 otherwise.

Ek)zi and g (z) :=

Consider the polynomials pg, ¢ defined by pi(z) := ?20_ Yo
b — k) i _ _
SNt i 2. We have [[pxlla < 3t and [lgrll2 < 3.

By Lemma 11 for the polynomials ex_1px, EN—1qk, there exist my € N and poly-
nomials ry(z) = > % 'yi(k)zi, sp(z) = Yok 5§k)zi such that ||7g]lcc < 1, ||kl < 1,
max{||rx |2, [|skll2} > 1/3 and ||repr + skqrll2 < en-

Choose numbers a, (ky—1+1 <k < ky) such that a;+; > ajz +3a;+m; (j=
k]\]_l,. ..,kN — 1)

Let Y}, be the finite-dimensional Hilbert space with an orthonormal basis uy ; (j =
O,...,mk—|—2ak—1).

Using induction, we continue the construction in the above described way.

Now we define the operator T € B(X) by:

Tug,; = Ug 41 (ke N,0 <i<my+2a; —2),
Tukvmk+2akfl = 07

my
Teak = ENE€g,+1 T Z’Yi(k)uk,i (kN—l <k< kN),
1=0

my
Tfak = ENfak—i—l + ngk)uk,i (kN—l <k< ]{TN),
1=0
T e —1/ak . N
€ = E&pn €j+1 (]{JNfl <k<kn,2ar<j< 3ak),

Tfi=en’™fis1  (knoy <k < kn,2ax < J < 3az),
Tej :=ejy1 and Te; = fj41 otherwise.

That is, T" acts on the standard basis of Z as a pair of weighted shifts, up to the
points of the form e,, and f,,. It is easy to see that 1" defines a bounded linear operator
on X.

Let E := Span{e; : i = 0,1,...}, F := Span{f; : 1 =0,1,...} and Y := P, Yz.
For a closed subspace M C X denote by P,; the orthogonal projection onto M.

To prove (ii), let j € N. If j ¢ |Jr—{ax +1,...,3ax} then ||T7eo| > ||PzT7eo|| =
lej|| = 1. So we may assume that a, + 1 < j < 3ay, for some k. Then

IT7eoll + 177 foll > 1Py, T eoll + 1Py, TV foll
=[Py, 77" eap || + ([P T7 ™ fay | = |1 Py, Tea, | + | Py T fa

mp mg
1=0 i=0

13

= [|rrll2 + [|s&ll2 > 1/3.



So || T7eo|| + | T7 fo| > 1/3 for all j.

To prove (i), suppose that x € X is of norm 1 and 0 < ¢ < %
There exists M > 1 such that |[(Pz — Pz, )z|| < 15. There exists N > M such

that / ecns
/2
< —9 ,

| > s <5
=kn_1+1
||PZN+1 PZNIH < 63/2.

Indeed, the first two conditions are satisfied for all N sufficiently large. Suppose on the
contrary that ||Pz, ,x — Pzyx| > 5?1’\{2 for all N > Ny. Then

o0 oo
L=z > Y [[Pryz = Poyal[ = - ek =

N=N, N=N,

a contradiction. Fix N with these properties.
Find k, kx_—1 < k < ky such that ||Pzyz — wy| < e%. Set j = 2a; + 1. We have

||T75c“<“ZT9Pyk, H+H Z TPy, x H+||PZT7PZM95H

=kn_1
+IP2T (P2, — Pay)all + | P2T (Py,, — Pzl + | P2T? (Pz — Pay el
+ ”PYTj(PZ - PZN+1):EH + ||PYTj(PZN+1 - PZN)x”
4 || Py T (P — wp) || + || Py TV wi |-

All the terms but the last one can be estimated analogously to the ¢; case. We
show the estimates only briefly without details.

Since k > kny_1 and j > ar > 2a,_, + Mk, _,, we have Z:f\’:_f TIPy,,x = 0.
For k' > kn_1 we have || T7]y,, || <1, and so

| S <] S md<on

k'=kn_1+1 k'=kn_1+1

The next four terms can be estimated by /9 exactly as in Example 10. Therefore we
omit the proof.

We show that ||Py,T7Pz| < 2ey'. Clearly |Py,T7Pg| = || Py, T’ Pg,|| where
E, = Span{eg,...,eq, . Let y = Z% Xi€i, ||yl = 1. There are numbers p; <
eyt (0<i<ay) such that T~ ‘e; = p;e,, . We have

mg
[ (ypemed B
1=0
Mk 1/2 3 /2 B
< (D mil?) éle(ZM )" =
1=0

1=0

mp
1P Tyl = |[r(z) > A=’
1=0
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So || Py, T7 Pg|| < ey' and similarly, || Py, T’ Pr|| < ey'. Hence
1Py, T Py || < || Py, T’ Pg|| + || Py 77 Pr|| < 2e'.

It is easy to show that for ¥’ > k we have ||Py,, T'Pz|| < 2 and ||PyT?Py| =
supy:>1 || Py, T7 Pz || < 2¢'. Furthermore,

|PyT?(Pz — Pzy.,)ll = sup [Py, TV(Pz — Pzy.,)| < 2.

k'>kn
So ‘ -
prTj(PZ - PZN+1)xH < ZH(PZ - PZN+1)'rH < §7
. _ _ I
|PyT (Pgy., — Pay)z| < 268t |(Pzyy — Pay)z|| < 2e3ted” = 2e)° < 5
and . B
|PyT? Pz —wy)|| < 265t |Pzyx — wal| < 2e5'ed = 2en < 5
Finally,

, €
| Py T’ wi|| = ||repk + skqrll2 < en < 9°

Hence ||T7z|| < . Consequently, T is not orbit-reflexive since the zero operator is not
in the strong operator topology closure of polynomials of T but 0 € {T"x : n € N}~
for each z € X.
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