
Preemptive Online Scheduling:

Optimal Algorithms for All Speeds

Tomáš Ebenlendr∗ Wojciech Jawor† Jǐŕı Sgall∗

Abstract

Our main result is an optimal online algorithm for preemptive scheduling on uniformly
related machines with the objective to minimize makespan. The algorithm is determin-
istic, yet it is optimal even among all randomized algorithms. In addition, it is optimal
for any fixed combination of speeds of the machines, and thus our results subsume all the
previous work on various special cases. Together with a new lower bound it follows that
the overall competitive ratio of this optimal algorithm is between 2.054 and e ≈ 2.718.
We also give a complete analysis of the competitive ratio for three machines.

1 Introduction

We study an online version of the classical problem of preemptive scheduling on uniformly
related machines.

We are given m machines with speeds s1 ≥ s2 ≥ . . . ≥ sm and a sequence of jobs, each
described by its processing time (length). The time needed to process a job with length p on a
machine with speed s is p/s. In the preemptive version, each job may be divided into several
pieces, which can be assigned to different machines in disjoint time slots. (A job may be
scheduled in several time slots on the same machine, and there may be times when a partially
processed job is not running at all.) The objective is to find a schedule of all jobs in which
the maximal completion time (makespan) is minimized.

In the online problem, jobs arrive one-by-one and we need to assign each incoming job
to some time slots on some machines, without any knowledge of the jobs that arrive later.
This problem, also known as list scheduling, was first studied in Graham’s seminal paper [12]
for identical machines (i.e., s1 = . . . = sm = 1), without preemption. In the preemptive
version, upon arrival of a job its complete assignment at all times must be given and we are
not allowed to change this assignment later. In other words, the online nature of the problem
is in the order in the input sequence and it is not related to possible preemptions and the
time in the schedule.

The offline scheduling with makespan objective is well understood, and results for uni-
formly related machines were usually obtained using similar methods as for identical machines.
Exact solutions can be computed with preemptions [16, 15, 10] and approximation schemes
exist for the non-preemptive version [14, 13], which is NP-hard to solve exactly.

∗Mathematical Institute, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic. Partially supported by Insti-
tutional Research Plan No. AV0Z10190503, by Inst. for Theor. Comp. Sci., Prague (project 1M0545 of MŠMT
ČR), grant 201/05/0124 of GA ČR, and grant IAA1019401 of GA AV ČR. Email: {ebik,sgall}@math.cas.cz.

†Department of Computer Science, University of California, Riverside, CA 92521. Supported by NSF grants
CCF-0208856 and OISE-0340752. Email: wojtek@cs.ucr.edu.

1

Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-10 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic

In the online version, the situation is quite different. For non-preemptive scheduling, tight
results are known only for two related or three identical machines. Even for deterministic
algorithms on m identical machines, there still remains a small gap between the lower bound
of 1.880 [17] and the upper bound of 1.923 [9], and a much larger gap for uniformly related
machines, where the current bounds are 2.438 and 5.828 [2].

For randomized non-preemptive scheduling even less is known, the bounds are 1.581 and
1.916 for identical machines [3, 18, 1] and 2 and 4.311 for related machines [8, 2]. It is still
open whether randomized algorithms are better than deterministic.

The study of preemptive scheduling was partially motivated by studying the power of
randomization in the non-preemptive setting. All previous lower bounds for randomized
non-preemptive scheduling, except for [19], use speed sequences where tight bounds for pre-
emptive scheduling are known and the same lower bound (but not the algorithm) works also
in randomized non-preemptive setting.

Preemptive scheduling appears to be easier compared to non-preemptive, as we can com-
pute an optimal solution exactly, yet up to now the tight results have been limited as well (see
below). Thus our optimal algorithm for preemptive online scheduling on related machines is
a significant progress. It involves new technical ideas compared to both the previous optimal
algorithms for special cases of speeds and the non-optimal algorithms for general speeds.

All previous online algorithms that work for arbitrary speeds, preemptive or not, were
obtained by a doubling approach. This means that a competitive algorithm is designed
for the case when the optimum is approximately known in advance, and then, without this
knowledge, it is used in phases with geometrically increasing guesses of the optimum. Such an
approach probably cannot lead to an optimal algorithm for this type of scheduling problems.
Instead, our algorithm computes exactly the current optimum at each step of the sequence
and takes full advantage of this knowledge.

In all the previously known optimal algorithms for special cases, the optimal algorithms
try to maintain certain fixed ratio of loads on the machines, generally with largest part of each
job scheduled on the fast machine. These algorithms create no “holes” in the schedules, i.e.,
each machine is always busy from time 0 until some time t and idle afterwards. In contrast,
our algorithm attempts to schedule the whole job on as slow machine as possible without
violating the desired competitive ratio. This is done even at the cost of creating “holes” in
the schedule, and using these holes efficiently is the key issue.

Previous results for preemptive online scheduling. The study of online preemptive
scheduling was started by Chen et al. [4], who studied the case of m identical machines. They
gave an optimal algorithm with the competitive ratio 1/(1 − (1 − 1/m)m), which is 4/3 for
m = 2 and approaches e/(e − 1) ≈ 1.582 when m→∞.

An optimal online algorithm for the special case of two related machines was given by
Wen and Du [20], and by Epstein et al. [7]. The optimal competitive ratio in this case is
1 + s1s2/(s

2
1 + s1s2 + s2

2).
A special case with non-decreasing speed ratios, i.e., si−1/si ≤ si/si+1 for i = 2, . . . ,m−1,

was studied by Epstein [6]; note that this subsumes both identical and two related machines.
Epstein gave an optimal competitive ratio for each sequence of speeds in this class; this ratio
is equal to

R =

(

m
∑

i=1

si

S

(

1 − s1

S

)i−1

)−1

, where S =

m
∑

i=1

si.

2

All these algorithms are deterministic and matching lower bounds are known to hold also for
randomized algorithms.

For the general case, Ebenlendr and Sgall [5] obtained a 4-competitive deterministic algo-
rithm and an e-competitive randomized algorithm, where e ≈ 2.718.

Epstein and Sgall [8] gave lower bounds on the competitive ratio for the worst case com-
bination of speeds for any fixed m. These bounds approach 2 when m→∞ and all hold for
randomized algorithms.

Our results. Our main result is an optimal online algorithm for preemptive scheduling on
uniformly related machines. The algorithm achieves the best possible competitive ratio not
only in the general case, but also for any number of machines and any particular combination
of machine speeds. We show that although our algorithm is deterministic, its competitive ratio
matches the best competitive ratio of any randomized algorithm. This proves that, similarly
to the case of identical machines and other special cases studied before, randomization does
not help for preemptive scheduling.

For any fixed set of speeds the competitive ratio of our algorithm can be computed by
solving a linear program. We do not know, however, what is its worst case value over all speed
combinations. Nevertheless, using the fact that there exists an e-competitive randomized
algorithm [5], we conclude that our (deterministic) algorithm is also e-competitive.

In Section 3 we present the linear program that gives the optimal competitive ratio and
the lower bound, in Section 4 we describe the algorithm and its analysis.

In Section 5 we prove that no algorithm can be better than 2.054-competitive, by providing
an explicit numerical instance on 100 machines. This improves the lower bound of 2 of Epstein
and Sgall [8]. Numerical calculations also give sequences that show that for m ≥ 8 the lower
bounds given by Epstein and Sgall [8] are not tight.

In Section 6 we analyze the linear program for computing the optimal competitive ratio
for certain cases of speed sequences.

We show that the formula for non-decreasing speed ratios, given by Epstein [6] and men-
tioned above, gives an upper bound on the competitive ratio for all possible speed combina-
tions, and we extend the region where it is proven to be optimal.

For m = 3 and m = 4 we give an exact formula for the competitive ratio for any speed
combination. The global upper bound in these cases matches the lower bound in Epstein and
Sgall [8].

2 Preliminaries

Let Mi, i = 1, 2, . . . ,m denote the m machines, and let si be the speed of Mi. Without loss
of generality we assume that the machines are sorted by decreasing speeds, i.e., s1 ≥ s2 ≥
. . . ≥ sm. To avoid degenerate cases, we assume that s1 > 0.

Let J = (pj)
n
j=1 denote the input sequence of jobs, where n is the number of jobs and

pj is the length, or processing time, of jth job. Given J , let Jj denote a sequence that is
obtained from J by removing the last j − 1 jobs.

The time needed to process a job with length p on machine with speed s is equal to
p/s; each machine can process at most one job at any time. Preemption is allowed, which
means that each job may be divided into several pieces, which can be assigned to different
machines, but any two time slots to which a single job is assigned must be disjoint (no parallel

3

processing of a job); there is no additional cost for preemptions. Formally, if ti denotes the
total length of the time intervals when the job is assigned to machine Mi, it is required that
t1s1 + t2s3 + · · · + tmsm = p.

The objective is to find a schedule of all jobs in which the maximal completion time
(makespan) is minimized. In Graham’s three-field notation [11] the problem is denoted
Q|pmtn|Cmax.

For an algorithm A, let CA
max[J] denote the makespan of the schedule of J , produced by

A. By C∗
max[J] we denote the makespan of the optimal offline schedule of J .

In the online version of this problem, denoted Q|online-list,pmtn|Cmax, jobs arrive one-by-
one and we need to assign each incoming job to some time slots on some machines, without
the knowledge of the jobs that arrive later. Upon release of each job a complete assignment
of this job at all times must be given.

Online algorithms are evaluated using competitive analysis. An online algorithm A is
called R-competitive if for every input J , the makespan is at most R times the optimal
makespan, i.e., CA

max[J] ≤ R·C∗
max[J]. In case of a randomized algorithm, the same must hold

for every input for the expected makespan of the online algorithm, E[CA
max[J]] ≤ R ·C∗

max[J],
where the expectation is taken over the random choices of the algorithm.

There are two easy lower bounds on C∗
max[J]. First, C∗

max[J] can be bounded by the total
work done on all machines. i.e.,

C∗
max[J] ≥

∑n
j=1

pj
∑m

i=1
si

. (1)

Second, the makespan of the optimal schedule is at least the makespan of the optimal schedule
of any ℓ jobs. For ℓ < m this latter schedule uses only ℓ fastest machines, so the work of any
ℓ jobs must fit on these machines. So,

C∗
max[J] ≥ Pℓ

∑ℓ
i=1

si

for ℓ = 1, . . . ,m − 1, (2)

where Pℓ denotes the sum of ℓ largest processing times in J . The following is a known
fact [15, 10, 5].

Fact 2.1 the value of C∗
max[J] is the minimal value that satisfies (1) and (2).

The following lemma is due to Epstein and Sgall [8]. We include the proof, as it is very
helpful in understanding our results.

Lemma 2.2 ([8]) For any randomized R-competitive on-line algorithm A for preemptive
scheduling on m machines, and for any input sequence J we have

n
∑

j=1

pj ≤ R ·
m
∑

i=1

siC
∗
max[Ji].

For non-preemptive scheduling, the same holds if C∗
max refers to the non-preemptive optimal

makespan.

4

Proof: Fix a sequence of random bits used by A. Let Ti denote the last time when at most i
machines are running and set Tm+1 = 0. First observe that

n
∑

j=1

pj ≤
m
∑

i=1

siTi. (3)

During the time interval (Ti+1, Ti] at most i machines are busy, and their total speed is at
most s1 + s2 + . . . + si. Thus the maximum possible work done in this interval is (Ti −
Ti+1)(s1 + s2 + . . . + si). Summing over all i, we obtain

∑m
i=1

siTi. In any valid schedule all
the jobs are completed, so (3) follows.

Since the algorithm is online, the schedule for Ji is obtained from the schedule for J by
removing the last i− 1 jobs. At time Ti there are at least i jobs running, thus after removing
i− 1 jobs at least one machine is busy at Ti. So we have Ti ≤ CA

max[Ji] for any fixed random
bits. Averaging over random bits of the algorithm and using (3), we have

n
∑

j=1

pj ≤ E

[

m
∑

i=1

siC
A

max[Ji]

]

=

m
∑

i=1

siE

[

CA

max[Ji]
]

.

Since A is R-competitive, i.e., E[CA
max[Ji]] ≤ R · C∗

max[Ji], the lemma follows. �

3 The optimal competitive ratio and the lower bound

The optimal competitive ratio for given speeds s1, . . . , sm turns out to be equal to the best
lower bound obtained by Lemma 2.2. In this section we formalize this bound using a linear
program and prove the lower bound.

For each input sequence J = (pj)
n
j=1, Lemma 2.2 shows that the competitive ratio is at

least
∑n

j=1
pj/(

∑m
i=1

siC
∗
max[Ji]). The set of input sequences can be restricted in two ways.

First, we may assume that the processing times of jobs are non-decreasing: Sorting the jobs
can only decrease the values of C∗

max[Ji], as in each of these partial instances some jobs are
possibly replaced by smaller jobs; thus the bound on R can only increase. Second, the bound
is invariant under scaling, so we may assume that

∑m
i=1

siC
∗
max[Ji] = 1. The lower bound is

then simply the sum of all processing times.
Now it is easy to give a linear program to compute the optimal lower bound, given the

parameters s1 ≥ · · · ≥ sm. The linear program has variables q1, q2, . . ., qm, O1, O2, . . ., Om.
Variable q1 corresponds to the sum of all processing times in Jm, variables q2, . . . , qm to the
processing times of the last m − 1 jobs, and variables Ok correspond to C∗

max[Jm−k+1].

Definition 3.1 Let r(s1, . . . , sm) denote the value of the objective function of the optimal
solution of the following linear program:

maximize r(s1, . . . , sm) = q1 + q2 + q3 + . . . + qm

subject to
q1 + . . . + qk ≤ (s1 + s2 + . . . + sm)Ok for k = 1, . . . ,m

qj + qj+1 + . . . + qk ≤ (s1 + s2 + . . . + sk−j+1)Ok for 2 ≤ j ≤ k ≤ m
1 = s1Om + s2Om−1 + . . . + smO1

qj ≤ qj+1 for j = 2, . . . ,m − 1
0 ≤ q1

0 ≤ q2

(4)

5

The linear program has a feasible solution with the only non-zero variable Om = 1/s1.
It is also easy to see that the objective function is bounded, the constraints imply that
q1 + q2 + . . . + qm ≤ (s1 + s2 + . . . + sm)Om ≤ m · s1Om ≤ m. Thus the value r(s1, . . . , sm)
is well-defined. Finally, note that the linear program has a quadratic number of constraints,
and thus it can be solved efficiently.

Theorem 3.2 Any randomized online algorithm for m machines with speeds s1 ≥ s2 ≥ · · · ≥
sm has competitive ratio at least r(s1, . . . , sm).

Proof: There exist values q∗1, q∗2, . . . , q∗m, O∗
1, O∗

2, . . . , O∗
m of variables q1, q2, . . . , qm, O1,

O2, . . . , Om, which satisfy all the constraints of the linear program (4) and r(s1, . . . , sm) =
q∗1 + q∗2 + . . . + q∗m. Create instance I as follows: The first m jobs have processing times
p1 = · · · = pm = q∗1/m. The remaining m − 1 jobs have processing times pm+1 = q∗2 ,
pm+2 = q∗3, . . . , p2m−1 = q∗m.

We claim that the first two families of constraints of (4) guarantee that the values O∗
k

satisfy (1) and (2) for C∗
max[Im−k+1]. This is obvious for (1) and also for the bound (2) if the

set of ℓ largest jobs contains only jobs larger than p1. However, if ℓ largest jobs include a job
with processing time p1 then we claim that the right-hand side of (2) is upper-bounded either
by (2) for ℓ′ < ℓ such that ℓ′ largest jobs do not contain any job of processing time p1, or
by (1) which includes all m jobs with processing time p1: Suppose that the bound including
some job of size p1 and machines up to speed sℓ for ℓ < m is maximal and strictly larger than
(1) and choose the largest such ℓ. Then we have (p1 + X)/(sℓ + Y) ≥ X/Y where X and
Y denote the remaining sums of processing times and speeds, so that X/Y is the previous
bound from (2). In this case we have p1/sℓ ≥ X/Y , thus also p1/sℓ+1 ≥ p1/sℓ ≥ X/Y and
(p1 + p1 + X)/(sℓ+1 + sℓ + Y) ≥ (p1 + X)/(sℓ + Y). Thus the bound for a larger ℓ (or the
bound in (1)) is at least as large, contradicting the choice of ℓ and completing the proof of
the claim. Fact 2.1 now implies that C∗

max[Im−k+1] ≤ O∗
k for k = 1, 2, . . . ,m.

Finally, Lemma 2.2 implies that the competitive ratio of any algorithm is at least

q∗1 + q∗2 + . . . + q∗m
∑m

i=1
siC∗

max[Ji]
≥ q∗1 + q∗2 + . . . + q∗m

s1O∗
m + . . . + smO∗

1

= r(s1, . . . , sm),

using the constraint s1O
∗
m + . . . + smO∗

1 = 1 in the last step. �

4 The optimal algorithm

In this section we present the r(s1, . . . , sm)-competitive algorithm RatioStretch for all combi-
nations of speeds.

The idea of the algorithm is fairly natural. First we compute the desired competitive ratio
for the given speeds, r = r(s1, . . . , sm). Next, for each arriving job, we compute the optimal
makespan for jobs that have arrived so far and run the incoming job as slow as possible so
that it finishes at r times the computed optimal makespan. There are many ways of creating
such a schedule given the flexibility of preemptions. We choose a particular one based on
the notion of a virtual machine from [5]. Given a schedule, a virtual machine at each time
corresponds to one of the real machines that are idle. This assignment can vary at different
times in the schedule. Due to preemption, a virtual machine can be thought and used as a
single machine with changing speed. Initially virtual machines are the real machines. The

6

idea of the algorithm is to schedule each job on two adjacent virtual machines, and update
the virtual machines as necessary.

We define the ith virtual machine, denoted Vi, so that at each time τ contains the ith
fastest machine among those real machines M1, M2, . . ., Mm that are idle at time τ . When we
schedule (a part of) a job on a virtual machine during some interval, we actually schedule it on
the corresponding real machines that are uniquely defined at each time; this is always possible
to achieve using preemptions. To simplify the description of the algorithm, we assume that
there are infinitely many real machines of speed zero, i.e., si = 0 for any i > m. Scheduling
a job on one of these zero-speed machines means that we do not schedule the job at the
given time at all. Initially, each virtual machine Vi corresponds to the real machine Mi; as
the incoming jobs are scheduled, the assignment of the real machines to the virtual machines
changes.

In our algorithm, upon arrival of a job j we compute a value Tj defined as r times the
current optimal makespan. Then we find two adjacent virtual machines Vk and Vk+1, and
time tj, such that if we schedule j on Vk+1 in the time interval (0, tj] and on Vk from tj on,
then j finishes exactly at time Tj . It is essential that each job is stretched over the whole
interval (0, Tj], which is the maximal time interval which it can use without violating the
desired competitive ratio. Next we update the virtual machines, which means that in the
interval (0, Tj] we merge Vk and Vk+1 into Vk and shift machines Vi+1, i > k, to Vi. Then
we continue with the next job. This gives a complete informal description of the algorithm
sufficient for its implementation.

To prove that our algorithm works, it is sufficient to show that each job j scheduled on
V1, completes by time Tj; this is equivalent to the fact that we can schedule j as described
above. We show that this is true due to our choice of r.

To facilitate the proof, we maintain an assignment of scheduled jobs (and consequently
busy machines at each time) to the set of virtual machines, i.e., for each virtual machine Vi

we compute a set Si of jobs assigned to Vi. Although the incoming job j is split between two
different virtual machines, at the end of each iteration each scheduled job belongs to exactly
one set Si, since right after j is scheduled the virtual machines executing this job are merged
(during the execution of j). We stress that the sets Si serve only as means of bookkeeping
for the purpose of the proof, and their computation is not an integral part of the algorithm.

See Figure 1 for an example.
At each time τ , machine Mi′ belongs to Vi if it is the ith fastest idle machine at time τ , or

if it is running a job j ∈ Si at time τ . At each time τ the real machines belonging to Vi form
a set of adjacent real machines, i.e., all machines Mi′ ,Mi′+1, . . . ,Mi′′ for some i′ ≤ i′′. This
relies on the fact that we always schedule a job on two adjacent virtual machines which are
then merged into a single virtual machine during the times when the job is running, and on
the fact that these time intervals (0, Tj] increase with j, as adding new jobs cannot decrease
the optimal makespan.

Let vi(t) denote the speed of the virtual machine Vi at time t, which is the speed of the
unique idle real machine that belongs to Vi. Let Wi(t) =

∫ t

0
vi(τ)dτ be the total work which

can be done on machine Vi in the time interval (0, t]. By definition we have vi(t) ≥ vi+1(t)
and thus also Wi(t) ≥ Wi+1(t) for all i and t. Note also that Wm+1(t) = vm+1(t) = 0 for all
t.

7

R · OPT1

R · OPT2

R · OPT1

R · OPT2

Figure 1: An illustration of a schedule of two jobs on three machines produced by RatioStretch.
Vertical axis denotes the time, horizontal axis corresponds to the speed of the machines. The
pictures on the left depict the schedule on the real machines, with bold lines separating the
virtual machines. The pictures on the right show only the idle time on the virtual machines.
The top pictures show the situation after the first job, with the second job being scheduled on
the first two virtual machines. The bottom pictures show the situation with after the second
job is scheduled and virtual machines updated.

Algorithm RatioStretch. First solve the linear program (4) for a fixed sequence of speeds
s1 ≥ s2 ≥ · · · ≥ sm given on input. Let r = r(s1, . . . , sm) be the optimal objective value.
Also initialize T0 := 0, Si := ∅, vi(τ) := si, and vm+1(τ) := 0 for all i = 1, 2, . . . ,m and τ ≥ 0.
For each arriving job j, compute the output schedule as follows:

(1) Let Tj := r · C∗
max[(pi)

j
i=1

].

(2) Find the smallest k such that Wk(Tj) ≥ pj ≥ Wk+1(Tj). If such k does not exist,
then output “failed” and stop. Otherwise find time tj ∈ [0, Tj] such that Wk+1(tj) +
Wk(Tj) − Wk(tj) = pj.

(3) Schedule job j on Vk+1 in time interval (0, tj] and on Vk in time interval (tj , Tj].

(4) Set vk(τ) := vk+1(τ) for τ ∈ (tj , Tj], and vi(τ) := vi+1(τ) for i = k + 1, . . . ,m and
τ ∈ (0, Tj]. Also set Sk := Sk ∪ Sk+1 ∪ {j}, and Si := Si+1 for i = k + 1, . . . ,m.

We leave out implementation details. We only note that job j can be preempted only at
times Tj′ for j′ < j or at times tj′ for j′ ≤ j, i.e., at most 2j − 1 times. The total number of
preemptions is at most n(m+1), since at most m−1 jobs are preempted at each time Tj and
at most two jobs are preempted at each time tj. This also implies that the functions vi and
Wi are piecewise linear with at most 2n parts. Thus it is possible to represent and process
them efficiently. The computation of r and Tj is efficient as well.

We also note that if we use any r′ ≥ r(s1, . . . , sm) in place of r in the algorithm, we obtain

8

an r′-competitive algorithm. Thus if for some sets of speeds we know a good upper bound on
r(s1, . . . , sm), we may use it instead of solving the linear program exactly.

Theorem 4.1 Algorithm RatioStretch is r = r(s1, . . . , sm) competitive for online preemptive
scheduling on m uniformly related machines with speeds s1 ≥ s2 ≥ · · · ≥ sm.

Proof: If RatioStretch schedules a job, it is always completed at time Tj ≤ r · C∗
max[(pi)

n
i=1].

Thus to prove the theorem, it is sufficient to guarantee that the algorithm does not fail to find
machines Vk and Vk+1 for the incoming job j. This is equivalent to the statement that there is
always enough space on V1, i.e., that pj ≤ W1(Tj) in the iteration when j is to be scheduled.
Since Wm+1 ≡ 0, this is sufficient to guarantee that required k exists. Given the choice of k, it
is always possible to find time tj as the expression Wk+1(tj) + Wk(Tj)−Wk(tj) is continuous
in tj, for tj = 0 it is equal to Wk(Tj) ≥ pj, and for tj = Tj it is equal to Wk+1(Tj) ≤ pj.

To avoid cases, we assume that the input sequence starts by m − 1 jobs with processing
time 0. Adding these jobs does not affect any of the optimal makespans computed during
the algorithm. In RatioStretch, they are assigned to V1, but they are actually never running
(they complete at time 0) and thus do not affect the schedule produced by RatioStretch.

Consider now all the jobs scheduled on the first virtual machine, i.e., the set S1. Let
j1, j2, . . . , jm−1 denote the last m − 1 jobs in S1, ordered as they appear on input. Let I be
the sequence of the remaining jobs in S1, and let P be the total processing time of jobs in I.
Finally, let jm = j be the incoming job.

Consider any i = 1, . . . ,m and any time τ ∈ (0, Tji
]. Using the fact that the times Tj are

non-decreasing in j and that the algorithm stretches each job j over the whole interval (0, Tj],
there are at least m − i jobs from S1 running at τ , namely jobs ji, ji+1, . . . , jm−1. Including
the idle machine, there are at least m + 1 − i real machines belonging to V1. Since V1 is the
first virtual machine and the real machines are adjacent, they must include the fastest real
machines M1, . . . , Mm+1−i. It follows that the total work that can be processed on the real
machines belonging to V1 during the interval (0, Tjm] is at least s1Tjm +s2Tjm−1

+ · · ·+smTj1 .
The total processing time of jobs in S1 is P + pj1 + pj2 + · · · + pjm−1

. Thus to prove that jm

can be scheduled on V1 we need to verify that

pjm ≤ s1Tjm + s2Tjm−1
+ · · · + smTj1 − (P + pj1 + pj2 + · · · + pjm−1

). (5)

Let ν1, ν2, . . . , νm be the sequence of jobs j1, j2, . . . jm ordered so that the processing
times pνi

are non-decreasing, i.e., pνi
≤ pνi+1

for i = 1, . . . ,m − 1. We claim that for each
i = 1, . . . ,m,

Tji
= r · C∗

max[(p1, p2, . . . , pji
)] ≥ r · C∗

max[(I, pj1, pj2 , . . . , pji
)] (6)

≥ r · C∗
max[(I, pν1

, pν2
, . . . , pνi

)].

The first equality is the definition of Tji
. The next inequality follows since removing some

jobs from the input sequence cannot increase C∗
max. Finally, replacing the jobs pj1, pj2, . . . , pji

by jobs pν1
, pν2

, . . . , pνi
can be thought as replacing some of the jobs by smaller ones and then

permuting them; this also cannot increase C∗
max.

The inequality (6) and the fact that pj1 + pj2 + · · ·+ pjm = pν1
+ pν2

+ · · ·+ pνm together
imply that to prove (5), it is sufficient to prove

P + pν1
+ pν2

+ · · · + pνm ≤ r ·
m
∑

i=1

siC
∗
max[(I, pν1

, pν2
, . . . , pνm−i+1

)]. (7)

9

Let σ =
∑m

i=1
siC

∗
max[(I, pν1

, pν2
, . . . , pνi

)]. Let q1 = (P + pν1
)/σ, qj = pνj

/σ, for j =
2, 3, . . . ,m, and let Ok = C∗

max[(I, pν1
, pν2

, . . . , pνk
)]/σ for k = 1, . . . ,m. These values satisfy

all constraints of (4), as follows by using inequalities (1) and (2) for instances (I, pν1
, pν2

, . . . , pνk
).

Thus (P + pν1
+ pν2

+ · · · + pνm)/σ = q1 + q2 + · · · + qm ≤ r, as r is defined as the maximum
of the objective of the linear program (4). This proves (7) and thus also (5) and correctness
of the algorithm. �

Theorems 3.2 and 4.1 show that Algorithm RatioStretch is as good as any randomized
algorithm. Together with the e-competitive randomized algorithm from [5] we obtain the
following:

Corollary 4.2 Algorithm RatioStretch is e-competitive for online preemptive scheduling on
uniformly related machines with arbitrary speeds, where e ≈ 2.718.

5 Numerical lower bounds

We have the optimal algorithm for arbitrary speeds, but we do not know the numerical value
of its competitive ratio. The competitive ratio for m machines is equal to the solution of a
quadratic program obtained from (4) by considering si to be variables (in addition to qj and
Ok). However, this quadratic program is not convex and we do not know how to solve it. We
have obtained some lower bounds numerically using mathematical software Maple.

A lower bound is simply a feasible solution of (4). Once the values of si are given,
verification only involves solving a linear program. Once also the optimal values q∗j are given,
it is trivial to compute values O∗

k and verify the constraints of (4). A file with our solutions
for m = 3, . . . , 70 and m = 100 in a format suitable for computer verification is available at
http://math.cas.cz/sgall/ps/optrel/.

We obtain lower bounds improving the bounds from [8] for m ≥ 8. For m ≥ 58 the bounds
are above 2, and for m = 100 we obtain a speed combination with optimal competitive ratio
above 2.054, see appendix A. Thus we have:

Theorem 5.1 For any online algorithm for preemptive scheduling on uniformly related ma-
chines, the competitive ratio is at least 2.054.

6 Special cases

One approach to analyze the optimal competitive ratio is to give a symbolic solution to the
linear program (4). A feasible primal solution gives a lower bound (which can be easily turned
into an sequence of jobs, as we have seen before). A feasible solution of a dual linear program
gives an upper bound on the competitive ratio. A dual solution actually means that we form
a positive linear combination of some of the linear constraints so that the resulting inequality
bounds the objective function by the desired competitive ratio.

A basic solution of the linear program is described by giving a subset of constraints where
equality holds. If for some range of speeds this subset does not change in the optimal solution,
the optimal competitive ratio is given by a solution of this system of equation with m variables
and coefficients that are linear functions of speeds. Thus it is a rational function of the speeds
of degree m. However, in general, for different speed sequences we need to use different subsets

10

of the constraints. In general, therefore, the competitive ratio is a piecewise rational function
of degree m of speeds.

We give two cases where we can provide analysis along these lines. First we generalize
the case of non-decreasing speed ratios from [6]. We prove that the same formula is a general
upper bound on the competitive ratio and that it is actually optimal for a slightly larger region
of speed sequences. Then we give a complete analysis of the case m = 3 and the resulting
formula for m = 4. The proof for m = 4 involves more of similar case analysis, which will
appear in a separate publication. It turns out that the result involves two (for m = 3) and
four (for m = 4) regions with different formulas for the optimal competitive ratio, always one
coming from the (extension of) the case of non-decreasing speed ratios. Our analysis of the
cases m = 3, 4 also implies that the lower bound for m = 3, 4 from [8] is tight. Finally, let us
remark that in the table in [8] describing these bounds, there is an error, namely the column
of k shows wrong values; however the actual bounds are computed correctly.

We denote S =
m
∑

i=1

si, α = 1 − s1

S
=

s2 + · · · + sm

s1 + s2 + · · · + sm

.

6.1 Beyond non-decreasing speed ratios

Theorem 6.1 Let

R =

(

m
∑

i=1

si

S
αi−1

)−1

.

Then r(s1, . . . , sm) ≤ R for any speeds s1 ≥ · · · ≥ sm and thus RatioStretch is R-competitive.
Furthermore r(s1, . . . , sm) = R whenever

(

1 + α + . . . + αi−1
)

s1 ≤ s1 + . . . + si for all i = 2, . . . ,m − 1. (8)

Proof: The upper bound. As described in the outline above, we form a positive linear
combination of some constraints of the linear program (4). Here we use the constraints
corresponding to (2) with only one largest job and two constraints corresponding to (1). We
put x1 = 0 and add up

qk ≤ s1Ok for 2 ≤ k ≤ m, times xk =

k
∑

i=2

sm−k+iα
i−2 (9)

q1 + . . . + qk ≤ SOk for 1 ≤ k ≤ m, times yk = sm−k+1 −
s1

S
xk

We need to show that yk ≥ 0 and simplify the resulting inequality. For all k = 1, . . . ,m we
have

xk + yk = sm−k+1 +
(

1 − s1

S

)

k
∑

i=2

sm−k+iα
i−2

=

k
∑

i=1

sm−k+iα
i−1 =

k+1
∑

i=2

sm−k+i−1α
i−2, (10)

and thus yk =

k+1
∑

i=2

sm−k+i−1α
i−2 − xk ≥

k
∑

i=2

(sm−k+i−1 − sm−k+i)α
i−2 ≥ 0.

11

In addition, (10) implies that xk + yk = xk+1 for k < m, and xm + ym =
∑m

i=1
siα

i−1 = S/R.
Using also the fact that y1 = sm = x2, the left-hand side of the linear combination given by
(9) is equal to

q1(y1 + y2 . . . + ym) + q2(x2 + y2 + . . . + ym) + q3(x3 + y3 + . . . + ym) + · · · + qm(xm + ym)

= (q1 + . . . + qm)
S

R
.

The right-hand side of the linear combination given by (9) is equal to

y1SO1 + (x2s1 + y2S)O2 + . . . + (xms1 + ymS)Om = S(s1Om + . . . + smO1) = S,

using the definitions of xk and yk and the third constraint of (4). We conclude that any
feasible solution of (4) satisfies the linear combination given by (9), which simplifies to (q1 +
. . . + qm)S/R ≤ S, and thus r(s1, . . . , sm) ≤ R for any speeds si.

The lower bound. Now we give a primal solution of (4) with the value of objective R,
assuming (8). Naturally, this exactly corresponds to the lower bound from [6]. The solution
is:

Ok = R
αm−k

S
for k = 1, . . . ,m

q1 = Rαm−1

qk = s1Ok = R
s1

S
αm−k for k = 2, . . . ,m.

We verify all the constraints of (4). The verification is straightforward; it uses the assump-
tion (8) for the second constraint of (4).

Trivially q1 ≥ 0, q2 ≥ 0. From α ≤ 1 we get qk ≤ qk+1 for i = 2, . . . ,m − 1. For the third
constraint of (4) we have

s1Om + . . . + smO1 = R
(s1

S
α0 +

s2

S
α1 + . . . +

sm

S
αm−1

)

= 1

For the first constraint of (4), summing a geometric sequence and using the definition of α
we have

q1 + . . . + qk = R
(

αm−1 +
s1

S

(

αm−2 + . . . + αm−k
))

= R

(

αm−1 +
s1

S
· αm−k − αm−1

1 − α

)

= R
(

αm−1 + αm−k − αm−1
)

= SOk.

This also shows that the objective function is q1 + . . . + qm = SOm = R. Finally, we check
the second constraint of (4). We have

qi + . . . + qk =
Rs1

S
(αm−i + . . . + αm−k)

= Oks1(1 + α + . . . + αk−i) ≤ Ok(s1 + . . . sk−i+1).

The last inequality is trivial for k = i and follows from the assumption (8) for 2 ≤ i < k ≤ m.
�

12

We remark that the upper bound in the previous theorem is not bounded by any constant
in the region where the condition (8) does not hold.

Epstein [6] in Claim 1 exactly proves that the condition (8) is satisfied by speed sequences
with non-decreasing speed ratios. In her notation, speeds are listed in reversed order and
normalized so that the maximal speed is sm = 1; her x is our 1/α. However, (8) is satisfied
for a slightly wider range of speeds. One example is s1 = 2, s2 = s3 = 1.

6.2 Three machines

For m = 3, the condition (8) has only one inequality s1α ≤ s2 and this is equivalent to
s1

s2
≤ s2

s3
+ 1. (Substituting for α in the first formula, it is equivalent to s1(s2 + s3) ≤

s2(s1 + s2 + s3), which after canceling equal terms and dividing by s2s3 gives the second
formula.) This inequality turns out to be the condition that distinguishes two cases of the
formula computing the optimal competitive ratio.

Theorem 6.2 For m = 3 and any speeds s1 ≥ s2 ≥ s3,

r(s1, s2, s3) =



















(s1

S
+ (1 − s1

S
)
s2

S
+ (1 − s1

S
)2

s3

S

)−1

if
s1

s2

≤ s2

s3

+ 1

S2

s2
1
+ s2

2
+ s2

3
+ s1s2 + s1s3 + s2s3

if
s1

s2

≥ s2

s3

+ 1

The function r(s1, s2, s3) has maximal value 37+7
√

7

38
≈ 1.461, and thus this is also the optimal

competitive ratio for m = 3 over all speeds.

Proof: The first case follows directly from Theorem 6.1 and the observation that the case
condition is equivalent to (8).

For the second case, let R = S2/(s2
1 + s2

2 + s2
3 + s1s2 + s1s3 + s2s3).

The upper bound. We again form a positive linear combination of some constraints of the
linear program (4). We add up

q1 ≤ SO1 times s3

q1 + q2 ≤ SO2 times s2

q1 + q2 + q3 ≤ SO3 times (s2
1 − s2s3)/S

q2 + q3 ≤ (s1 + s2)O3 times s3

q3 ≤ s1O3 times s2.

Note that s2
1 ≥ s2s3 by the ordering of the speeds, so we have a non-negative linear

combination. In the resulting inequality, the coefficients of all qk are equal to

s3 + s2 +
s2
1 − s2s3

S
=

s1s3 + s2s3 + s2
3 + s1s2 + s2

2 + s2
1

S
=

S

R
.

The coefficient of O3 equals s2
1−s2s3 +(s1 +s2)s3 +s1s2 = s1S. Thus the resulting inequality

is (q1 + q2 + q3)S/R ≤ S(s1O3 + s2O2 + s3O1) = S, using the third constraint of (4). We
obtain r(s1, s2, s3) ≤ R.

The lower bound. We put qk = s4−kR/S and Ok = (s4−k + · · · + s3)R/S2, for k = 1, 2, 3.
We have q1 + q2 + q3 = R which gives the desired value of the objective. We check that

13

this is a feasible solution of (4). For the inequality bounding q2 we use the case condition
s1/s2 ≥ s2/s3 + 1.

q1 + · · · + qk = (s1 + · · · + s4−k)R/S = SOk,

q2 = (s1s2 + s2(s2 + s3))R/S2 ≤ (s1s2 + s1s3)R/S2 = s1O2,

q3 = s1R/S = s1O3,

q2 + q3 = (s1 + s2)R/S = (s1 + s2)O3,

s1O3 + s2O2 + s3O1 = (s1(s1 + s2 + s3) + s2(s2 + s3) + s2
3)R/S2 = 1

q2 = s2R/S ≤ s1R/S = q3

The overall ratio. Given the explicit formula, it is straightforward to calculate the overall
competitive ratio for m = 3. First we note that if s2 > s3 then r(s1, s2−ε, s3+ε) > r(s1, s2, s3)
for a sufficiently small ε > 0 such that both points are covered by the same case of the formula.
Thus the maximum is achieved on a point with s2 = s3. We can scale the speeds so that
S = 1, and then we are maximizing a polynomial function of a single variable. The case
s1/s2 ≤ s2/s3 + 1 is maximized by s1 = 6, s2 = s3 = 1 +

√
7. That gives worst case

ratio R = 37+7
√

7

38
≈ 1.461. The other case is maximized by s1 = 2, s2 = s3 = 1, with

R = 16

11
≈ 1.454. �

6.3 Four machines

Theorem 6.3 For m = 4 and any speeds s1 ≥ s2 ≥ s3 ≥ s4,

r(s1, s2, s3, s4) =



































































S

s1 + αs2 + α2s3 + α3s4

if αs1 ≤ s2

and (α + α2)s1 ≤ s2 + s3

S2

∑

4

i=1

∑

4

j=i sisj + α(s3 + s4)s4 − s2
4

if αs1 ≥ s2

and s1(s3 + s4) ≤ s3S

S2

∑

4

i=1

∑

4

j=i sisj

if αs1 ≥ s2

and s1(s3 + s4) ≥ s3S

S2

(s1 + αs2 + α2s3)S + s2
4

if αs1 ≤ s2

and (α + α2)s1 ≥ s2 + s3

The function r(s1, s2, s3, s4) has maximal value approximately 1.550, and thus this is also the
optimal competitive ratio for m = 4 over all speeds. The maximum is achieved for speed vector
approximately (0.3584, 0.2300, 0.2058, 0.2058), and this vector is unique up to scaling.

The first case is already analyzed in Section 6.1. For the sketch of the proof of the
remaining cases, see Appendix B.

The cases are exhaustive, as the first and the last case together cover αs1 ≥ s2 and the
middle cases cover αs1 ≤ s2. Also, when s1 = αs2, then the second conditions in the first two
cases turn out to be equivalent.

The maximal value of r(s1, s2, s3, s4) is achieved at the border between the first two cases,
see also Appendix B. Note also that the third case is a natural extension of the second case
for three machines.

14

Conclusions. The main open problem is to find better bounds on the overall competitive
ratio, and perhaps to find an explicit formula for further special cases. With the knowledge of
the optimal algorithm, this “only” involves analyzing the linear program better. In general,
the formula for computing the optimal competitive ratio may need to have many cases. Still,
it is plausible that a good overall bound can be proved with only a few upper bounds similar
to the ones in Section 6.

Another question concerns the idle times in the schedule. Our algorithm relies on creating
idle periods on some machines during the schedule. In contrast, all the previously known
optimal algorithms for special cases create no “holes”. However, we are not able to show
whether these idle periods are really necessary to achieve the optimal competitive ratio or
not, even for any particular combination of speeds. In particular, we do not know if idle
times are necessary for three machines, even in the case which extends Epstein’s algorithm
for non-decreasing speed ratios where no idle times are needed.

Acknowledgments. We are grateful to anonymous referees for many useful comments.

References

[1] S. Albers. On randomized online scheduling. In Proc. 34th Symp. Theory of Computing
(STOC), pages 134–143. ACM, 2002.

[2] P. Berman, M. Charikar, and M. Karpinski. On-line load balancing for related machines.
J. Algorithms, 35:108–121, 2000.

[3] B. Chen, A. van Vliet, and G. J. Woeginger. Lower bounds for randomized online
scheduling. Inform. Process. Lett., 51:219–222, 1994.

[4] B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm for preemptive on-line
scheduling. Oper. Res. Lett., 18:127–131, 1995.

[5] T. Ebenlendr and J. Sgall. Optimal and online preemptive scheduling on uniformly
related machines. In Proc. 21st Symp. on Theoretical Aspects of Computer Science
(STACS), volume 2996 of Lecture Notes in Comput. Sci., pages 199–210. Springer, 2004.

[6] L. Epstein. Optimal preemptive scheduling on uniform processors with non-decreasing
speed ratios. Oper. Res. Lett., 29:93–98, 2001.

[7] L. Epstein, J. Noga, S. S. Seiden, J. Sgall, and G. J. Woeginger. Randomized on-line
scheduling for two uniform machines. J. Sched., 4:71–92, 2001.

[8] L. Epstein and J. Sgall. A lower bound for on-line scheduling on uniformly related
machines. Oper. Res. Lett., 26(1):17–22, 2000.

[9] R. Fleischer and M. Wahl. On-line scheduling revisited. J. Sched., 3:343–353, 2000.

[10] T. F. Gonzales and S. Sahni. Preemptive scheduling of uniform processor systems. J.
ACM, 25:92–101, 1978.

[11] R. Graham, E. Lawler, J. Lenstra, and A. R. Kan. Optimization and approximation
in deterministic sequencing and scheduling: A survey. Ann. Discrete Math, 5:287–326,
1979.

15

[12] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical J.,
45:1563–1581, 1966.

[13] D. S. Hochbaum and D. Shmoys. A polynomial approximation scheme for scheduling
on uniform processors: Using the dual approximation approach. SIAM J. Comput., 17,
1988.

[14] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling
problems: Theoretical and practical results. J. ACM, 34:144–162, 1987.

[15] E. Horwath, E. C. Lam, and R. Sethi. A level algorithm for preemptive scheduling. J.
ACM, 24:32–43, 1977.

[16] R. McNaughton. Scheduling with deadlines and loss functions. Management Sci., 6:1–12,
1959.

[17] J. F. Rudin III. Improved Bound for the Online Scheduling Problem. PhD thesis, The
University of Texas at Dallas, 2001.

[18] J. Sgall. A lower bound for randomized on-line multiprocessor scheduling. Inform.
Process. Lett., 63:51–55, 1997.

[19] T. Tichý. Randomized on-line scheduling on 3 processors. Oper. Res. Lett., 32:152–158,
2004.

[20] J. Wen and D. Du. Preemptive on-line scheduling for two uniform processors. Oper. Res.
Lett., 23:113–116, 1998.

16

A Numerical lower bounds

In the table below we list the set of speeds si and the sequence of values qj that witness a lower
bound on competitive ratio of 2.054, using the linear program (4). The values Ok can be com-
puted directly from qj and si. A file with the solutions for m = 3, . . . , 70 and m = 100 in a for-
mat suitable for computer verification is available at http://math.cas.cz/sgall/ps/optrel/.

m = 100 q19 = 0.0050550746
R = 2.0546772231 q20 = 0.0051466351

q21 = 0.0051995053
s1 = 1.0000000000 q22 = 0.0052910658
s2 = 0.7659834007 q23 = q24 = q25 = 0.0054482328
s3 = 0.6666239047 q26 = q27 = 0.0056362745
s4 = 0.5899144526 q28 = q29 = q30 = 0.0058587447
s5 = 0.4904674968 q31 = q32 = q33 = q34 = 0.0061230671
s6 = 0.4077851701 q35 = q36 = q37 = q38 = 0.0063914475
s7 = 0.3390413148 q39 = q40 = q41 = 0.0066927997

s8 = s9 = 0.2818862027 q42 = q43 = 0.0069965575
s10 = s11 = 0.2588311627 q44 = 0.0076316457

s12 = 0.2250940836 q45 = 0.0079780138
s13 = 0.1957544290 q46 = q47 = 0.0081351134

s14 = s15 = s16 = 0.1823338592 q48 = . . . = q52 = 0.0085782005
s17 = s18 = s19 = 0.1759567132 q53 = q54 = q55 = q56 = 0.0091448116

s20 = 0.1562503561 q57 = 0.0096482182
s21 = s22 = s23 = s24 = 0.1489918576 q58 = 0.0104048975

s25 = 0.1489918632 q59 = q60 = q61 = q62 = 0.0112209208
s26 = 0.1411121793 q63 = 0.0113871238

s27 = . . . = s31 = 0.1269310036 q64 = 0.0124483391
s32 = 0.1234155094 q65 = 0.0136084536
s33 = 0.1128943928 q66 = . . . = q70 = 0.0139960908

s34 = s35 = s36 = s37 = 0.1112466212 q71 = 0.0155597830
s38 = 0.1031563909 q72 = 0.0172981764

s39 = . . . = s47 = 0.0977740900 q73 = 0.0182641041
s48 = 0.0958859454 q74 = q75 = q76 = q77 = 0.0182641034
s49 = 0.0917230259 q78 = 0.0191538833

s50 = . . . = s100 = 0.0840900444 q79 = 0.0215695787
q80 = q81 = q82 = 0.0242899426

q1 = 0.1127872610 q83 = q84 = q85 = 0.0251702756
q2 = 0.0026172659 q86 = 0.0270229180

q3 = q4 = 0.0027483680 q87 = 0.0310731103
q5 = 0.0028129098 q88 = 0.0357303451

q6 = q7 = 0.0031721583 q89 = q90 = 0.0410856057
q8 = 0.0032527701 q91 = q92 = 0.0447452511
q9 = 0.0033327815 q93 = 0.0538177769

q10 = 0.0034657286 q94 = 0.0647298436
q11 = 0.0038636996 q95 = 0.0778544359
q12 = 0.0038916544 q96 = 0.0936401642

q13 = q14 = 0.0039963547 q97 = 0.1126265992
q15 = 0.0045675782 q98 = 0.1272719849
q16 = 0.0047388936 q99 = 0.1462417221
q17 = 0.0049106439 q100 = 0.1909202236
q18 = 0.0050022044

17

In the figure below we show graphical representation of the set of speeds si and of the
sequence of values qj that witness a lower bound on competitive ratio of 2.054, using the
linear program (4). The values Ok can be computed directly from qj and si. A file with
the solutions for m = 3, . . . , 70 and m = 100 which is in a format suitable for computer
verification is available at http://math.cas.cz/sgall/ps/optrel/.

The following figures show some of the sets of speeds with corresponding sets of jobs that
witness our currently best lower bounds for each value of m. For each m, the solution was
found by Maple as a local optimum of the quadratic program.

The red bold curve shows speeds si, green dashed bold curve (bottom one) shows scaled
job variables, and the thin dashed blue curve (top one) shows inverses of the speed ratios,
i.e., si−1/si.

The values of qj are printed in reverse order, i.e., column i shows qm−i+1. The values are
scaled so that qm = 1 = s1. This ordering and scaling shows best the relations between job
sizes and speeds.

m = 7, R = 1.69092894058601216

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

m = 8, R = 1.71774233074317562

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

18

m = 9, R = 1.74070209102756923

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

m = 10, R = 1.76082012794551313

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

m = 20, R = 1.87132273399129545

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

19

m = 30, R = 1.92550514434682540

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

m = 58, R = 2.00149068251007378

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

m = 100, R = 2.05468102078419612

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

20

B Four machines

We prove the remaining three cases now by giving an explicit solution of the primal lin-
ear program for the lower bounds and a dual solution in the form of a non-negative linear
combination of the constraints for the upper bounds on the competitive ratio.

Case II. We have

αs1 ≥ s2 (11)

s1(s3 + s4) ≤ s3S , (12)

and we put

R =
S2

(

∑

4

i=1

∑

4

j=i sisj

)

+ α(s3 + s4)s4 − s2
4

To prove that R is a lower bound on the competitive ratio, we give a solution of the primal
program:

q1 = α(s3 + s4)R/S O1 = α(s3 + s4)R/S2

q2 = s1(s3 + s4)R/S2 O2 = (s3 + s4)R/S2

q3 = s2R/S O3 = αR/S
q4 = s1R/S O4 = R/S

It is easy to check that in the following constraints equality holds:

q1 + . . . + qk ≤ SOk for k = 1, 2, 3, 4
q2 ≤ s1O2

q2 + q3 ≤ (s1 + s2)O3

q3 + q4 ≤ (s1 + s2)O4

q4 ≤ s1O4

1 = s4O1 + s3O2 + s2O3 + s1O4

Thus we also have the objective equal to q1 + q2 + q3 + q4 = SO4 = R. The remaining two
constraints are actually equivalent to the case conditions:

q2 + q3 + q4 ≤ (s1 + s2 + s3)O4 This is equivalent to (12).
q3 ≤ s1O3 This is equivalent to (11).

To prove that R is an upper bound on the competitive ratio, we sum

q1 ≤ SO1 times s4S
q1 + q2 ≤ SO2 times s3S − s1s4

q1 + q2 + q3 ≤ SO3 times s2S
q1 + q2 + q3 + q4 ≤ SO4 times s2

1 + s1s4 − s2s3 − αs4(s1 + s2)
q2 ≤ s1O2 times s4S

q3 + q4 ≤ (s1 + s2)O4 times (s3 + αs4)S
q4 ≤ s1O4 times s2S

21

We first verify that all the coefficients are non-negative. The second coefficient is non-negative
as S ≥ s1 and s3 ≥ s4. The middle coefficient is non-negative, since, using (11) in the first
inequality, we have

s2
1 + s1s4 − s2s3 − αs4(s1 + s2) = (1 − α)(s2

1 + s1s4 + s2s4) + αs2
1 − s2(s3 + s4)

≥ (1 − α)(s2 + s3 + s4)s4 + αs2
1 − αs1(s3 + s4)

= αs1(s1 − s3) ≥ 0

After some calculation, it can be verified that resulting inequality is

(q1 + q2 + q3 + q4)S
2/R ≤ (s1O4 + s2O3 + s3O2 + s4O1)S

2 = S2 .

Thus we obtain r(s1, s2, s3, s4) ≤ R, which completes the case.

Case III. We have

αs1 ≥ s2 (13)

s1(s3 + s4) ≥ s3S (14)

and put

R =
S2

∑

4

i=1

∑

4

j=i sisj

For the lower bound, we use the primal solution

qk + . . . + q4 ≤ (s1 + . . . + s5−k)O4 for k = 1, 2, 3, 4,
Ok = (s5−k + . . . + s4)R/S2 for k = 1, 2, 3, 4.

In the following constraints equality holds:

q1 + . . . + qk ≤ SOk for k = 1, 2, 3, 4
qk + . . . + q4 ≤ (s1 + . . . + s5−k)O4 for k = 2, 3, 4

1 = s4O1 + s3O2 + s2O3 + s1O4

Thus also q1 + . . . + q4 = SO4 = R. The constraints q2 ≤ s1O2 and q2 + q3 ≤ (s1 + s2)O3 are
both equivalent to (14). The last constraint q3 ≤ s1O3 is equivalent to (13).

For the upper bound, we sum

q1 + . . . + qk ≤ SOk times s5−k for k = 1, 2, 3
q1 + . . . + q4 ≤ SO4 times s1 − S + S/R
qk + . . . + q4 ≤ (s1 + . . . + s5−k)O4 times s6−k for k = 2, 3, 4.

From (14) and s3 ≥ s4 we have s1 ≥ S/2. It is easy to see that R ≤ 2, so the middle
coefficient is non-negative. The resulting inequality is

(q1 + . . . + q4)S/R ≤ (smO1 + . . . + s1Om)S,

which gives the desired bound.

22

Case IV. We have

s1α ≤ s2 (15)

s1(α + α2) ≥ s2 + s3 (16)

and we put

R =
S2

(s1 + αs2 + α2s3)S + s2
4

.

To prove the lower bound, we use the primal solution

q1 = s4R/S O1 = s4R/S2

q2 = (α(s2 + s3 + s4) − s4)R/S O2 = α2R/S
q3 = αs1R/S O3 = αR/S
q4 = s1R/S O4 = R/S

We prove that q2 is non-negative. The inequality is due to (16):

q2S
2/R = (s2 + s3)S − s1(s2 + s3 + s4)

≥ s1(α + α2)S − s1αS ≥ 0

In the following constraints equality holds:

q1 + . . . + qk ≤ SOi for k = 1, 2, 3, 4
q2 + q3 + q4 ≤ (s1 + s2 + s3)O4

q3 ≤ s1O3

q4 ≤ s1O4

1 = s4O1 + s3O2 + s2O3 + s1O4

Thus we also have q1 + q2 + q3 + q4 = SO4 = R. The following constraints are equivalent to
the case conditions:

q2 ≤ s1O2 This is equivalent to (16).
q3 + q4 ≤ (s1 + s2)O4 This is equivalent to (15).

It remains to verify the last constraint

q2 + q3 ≤ (s1 + s2)O3.

This constraint is equivalent to

s2 + s3 ≤ (s1 + s2)α . (17)

This follows from (16) and (15), as we have s2 + s3 ≤ (α + α2)s1 ≤ (s1 + s2)α.
Later, we will use another form of (17), which can be derived by multiplying by S and

subtracting the same terms from both sides:

s3(s2 + s3 + s4) ≤ s1s4 . (18)

23

For the optimality (dual program), we sum:

q1 ≤ SO1 times s4S
q1 + q2 ≤ SO2 times s3S
q1 + q2 + q3 ≤ SO3 times s2S − s3s1

q1 + q2 + q3 + q4 ≤ SO4 times s1S − (s1 + s2 + s3)s4 − s1(s2 + αs3)
q2 + q3 + q4 ≤ (s1 + s2 + s3)O4 times s4S

q3 ≤ s1O3 times s3S
q4 ≤ s1O4 times S(s2 + αs3)

The third coefficient is non-negative since s2 ≥ s3 and S ≥ s1. We prove that the middle
coefficient is non-negative; we use (18) in the second inequality below:

s1S − (s1 + s2 + s3)s4 − s1(s2 + αs3) = s2
1 + (1 − α)s1s3 − (s2 + s3)s4

≥ s2
1 − (s2 + s3 + s4)s3

≥ s2
1 − s1s4 ≥ 0

The resulting inequality is

(q1 + q2 + q3 + q4)S
2/R ≤ (s1O4 + s2O3 + s3O2 + s4O1)S

2 ,

and this proves the upper bound and completes all the cases.

The overall ratio Given the explicit formula, it is possible to find the global maximum of
the competitive ratio. It turns out that for the maximum we have s3 = s4, s1 = αs2, and
that the maximum lies on the border between Case I and Case II; we sketch the proof below.

After substitution of these equalities we get

R−1 =
1

2
α5 +

1

2
α4 − α3 + α2 − α + 1.

Numerical optimization by Maple gives the unique maximum at R = 1.5503, α = 0.6416,
which corresponds to the speed vector given in the theorem.

To prove the properties of the maximum claimed above, we show that in all the cases
but Case II we can move the speed vector towards the case boundary while increasing
r(s1, s2, s3, s4). Then we optimize Case II using standard calculus. As a technicality, note
that r(s1, s2, s3, s4) is continuous and bounded, and the domain is essentially compact (we
may assume that si are bounded because of scaling), so there exists a maximum on any closed
subdomain.

Case III. We claim that the maximum of r(s1, s2, s3, s4) over sets of speeds satisfying
conditions of Case III is equal to 1.5.

Suppose that the maximum is achieved at some point (s1, s2, s3, s4). First we claim that
s2 = s3 = s4. Suppose not. If s3 > s4 then for small ε > 0 the point (s1, s2, s3 − ε, s4 + ε) is a
valid speed vector still in Case III, as both case conditions are maintained. It is easy to check
that r(s1, s2, s3 − ε, s4 + ε) > r(s1, s2, s3, s4), contradicting the maximality of r(s1, s2, s3, s4).
If s2 > s3 = s4 then for small ε > 0, we use the point (s1, s2 − 2ε, s3 + ε, s4 + ε). The value
of r increases and case conditions are maintained as well.

Having s2 = s3 = s4, (14) is equivalent to s1 ≥ S/2 and if this is true, then (13) is valid. If
s1 > S/2 the we can take the point (s1 − 3ε, s2 + ε, s3 + ε, s4 + ε) and the value of r increases.
This implies that the maximum in Case III is r(S/2, S/6, S/6, S/6) = 1.5 for any S.

24

Case IV. We claim that the maximum of r(s1, s2, s3, s4) over Case IV is achieved on a point
for which in (15) equality holds, i.e., on a boundary with Case III.

Suppose for a contradiction that the maximum is achieved at some other point (s1, s2, s3, s4).
The case conditions imply that s2 > s3, as otherwise 2s2 = s2 + s3 ≤ (α + α2)s1 ≤ (1 + α)s2,
contradicting α < 1. We take the point (s1, s2 − ε, s3 + ε, s4) for small ε > 0. The value of r
increases, while (16) is maintained.

Case I. We claim that the maximum of r(s1, s2, s3, s4) over Case I is achieved on a point
for which in αs1 = s2, i.e., on a boundary with Case II.

Suppose for a contradiction that the maximum is achieved at some other point (s1, s2, s3, s4).
If s2 > s3 then we take the point (s1, s2 − ε, s3 + ε, s4). The value of r increases and the

second case condition is maintained.
If s2 = s3 > s4 then we take (s1, s2 − ε, s3 − ε, s4 + 2ε). The value of r increases and the

second case condition is maintained, since it is implied by αs1 ≤ s2 and s2 = s3.
If s2 = s3 = s4 then r(1 − α,α/3, α/3, α/3)−1 = 1 − α + α2/3 + α3/3 + α4/3. The case

condition αs1 ≤ s2 implies that α ≥ 2/3, and for such α this polynomial is increasing. Thus
in this subcase r is maximized for α = 2/3, which satisfies αs1 = s2.

Case II. If in (12) equality holds, then we are in the intersection with Case III and the
value of r is at most 1.5, which we know is not a global maximum. Thus for the rest of the
proof we assume that in (12) we have sharp inequality.

Assume that the maximum of the case is achieved at some point (s1, s2, s3, s4) with s3 > s4.
We take the point (s1, s2, s3 − ε, s4 + ε). The value of r increases and (11) is maintained. We
conclude that any maximum has s3 = s4.

Suppose now that the maximum is achieved at some point (s1, s2, s3, s4) not on the bound-
ary of the case. We scale the point so that S = 1 and express r(s1, s2, s3, s4)

−1 in terms of s2

and s3, using substitutions α = s2 + 2s3, s1 = 1 − s2 − 2s3, and s4 = s3. We obtain

r(s1, s2, s3, s4)
−1 = 1 − s2 − 2s3 + s2

2 + 2s2s3 + 2s2
3 + 2s2s

2
3 + 4s3

3.

In any maximum not on the boundary, both derivatives of this polynomial must be 0. Taking
the derivative in s2, we obtain s2 = 1/2−s3−s2

3. After this substitution, we get a polynomial
whose minimum is at s3 ≈ 0.198 and the resulting speed vector turns out to be out of the
feasible range of Case II. Thus any maximum is on the boundary of Case II. Since we have
excluded the boundary with Case III, it must be on the boundary with case I and satisfy
s1 = αs2.

25

