METALS-Drude’s classical theory

® Theory by Paul Drude in 1900, only three years
after the electron was discovered.

® Drude treated the (free) electrons as a classical
ideal gas but the electrons should collide with the

stationary ions, not with each other. average speed
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Drude’s classical theory

relaxation time T

scattering probability per unit time 1/7‘

mean free path X\ = T
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Drude theory: electrical conductivity

and we can define neT _
the conductivity o= "= nue
e
and the  me 1
resistivity P= 2.~ nue
and the €T
mobility H = classical ideal gas



Validity of Ohm’s law

® Vvalid for metals.

® Valid for homogeneous semiconductors



Failures of the Drude model: heat capacity

consider the classical energy for one mole of solid in a heat
bath: each degree of freedom contributes with 1,
2

® Experimentally, one finds a value of about 3Nakg at room
temperature, independent of the number of valence
electrons (rule of Dulong and Petit), as if the electrons do
not contribute at all !!!!

Description by DOS - electron continuum
Only state close to so called Fermi energy contribute
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Description by DOS- electron continuum
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Element Electron Fermi  Fermi Fermi Fermi Work
Density,n7. Energy Temperature Wavelength Velocity Function
102 m3 Er[eV] Te[10'K] A [A] Ve [10° m/s]  @[eV]
Cu 8.47 7.00 8.16 4.65 1.57 4.44
Au 5.90 5.53 6.42 5.22 1.40 4.3
Fe 17.0 11.1 13.0 2.67 1.98 4.31

Al 18.1 11.7 13.6 3.59 2.03 4.25



Number and Energy Densities

classical ideal gas replaced by Electron Density of States- DOS
N 00
= [ f(E)Dg(E)dE;
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Number density: /]a =

Energy density: — % — f Ef (E)De(E)dE
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Density of States - Number of electron states available between

energy E and E+dE
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Effect of Temperature

Fermi-Dirac equilibrium distribution 1

for the probability of electron
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Metals, Semimetal & Half-metal

Conduction
( Band
Er
Valence
Band
DOS DOS DOS
Metal Semimetal Half -metal

In a metal thé=ermilevel cuts through a band to produce a partially filled band. A
semimetal results when the band gap goes to zero. A half estidtsrwhen there is only
one spin (up or down) of charge carriers.



Semiconductors, Hopping conductors & Insulators
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In a semiconductor/insulator there is an energy gap betweéiligtddands and the empty
bands. The distinction between a semiconductor and an ingslattificial, but as the gap
becomes large the material usually becomes a poor conductectnicdy. A hopping
semiconductor results when tRermilevel falls within narrow band, W T, polarons
Impurities, disorder.
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Electrical transport-Temperature Dependence-

o o =n et/ m*
In Metals

® The carrier concentration, n, changes very slowly with
temperature.

® tisinversely proportional to temperature (t a 1/T), due to
scattering by lattice vibrations (phonons).

® Therefore, a plot of o vs. 1/T (or p vs. T) is essentially linear.

® Conductivity goes down as temperature increases
®In Semiconductors-

®The carrier concentration increases as temperature goes up, due
to excitations across the band gap, E,.

®n is proportional to exp{-E,/2KT}.
® 1 is inversely proportional to temperature

®The exponential dependence of n dominates, therefore, a plot of
In o vs. 1/T is essentially linear.

®Conductivity increases as temperature increases.
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The Wiedemann-Franz law
link between thermal and electrical conductivity
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® Wiedemann and Franz found in 1853 that the ratio of
thermal and electrical conductivity for ALL METLALS is
constant at a given temperature (for room temperature and

above). Later it was found by L. Lorenz that this constant is
proportional to the temperature.

® Let's try to reproduce the linear behaviour and to calculate L
here.
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The Wiedemann Franz law

estimated thermal conductivity

Thermal conductivity (from a classical ideal gas)
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the actual quantum mechanical result is
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Comparison of the Lorenz number to
experimental data

at 273 K
metal 108 Watt Q K2
Ag 2.31
Au 2.35
Cd 2.42
Cu 2.23
Mo 2.61
Pb 2.47
Pt 2.51
Sn 2.52
W 3.04
Zn 2.31
2 1.2
P %k—fT = LT L =2.45 108 Watt Q K=
g e



The electronic properties of metals, semimetals, half-metals, semiconductors
and insulators

Band diagram

Er : Fermi energy

1

CB : Valence band
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