THE NAVIER - STOKES EQUATIONS WITH MATERIAL DIFFERENCES

Nazgul Asanalieva, Werner Varnhorn
University of Kassel

Introduction

Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with smooth boundary $\partial \Omega$. In the present paper we construct a method for the approximate solution of the nonstationary Navier-Stokes equations for incompressible fluid flow contained in Ω for $0<t<T$. The approach is based on a coupling of the Lagrangian and the Eulerian representation of the fluid.

The Lagrangian representation of stationary fluid flow is given by a function $t \rightarrow x(t)=: X\left(t, x_{0}\right)$ solving the autonomous system

$$
\begin{equation*}
\dot{x}(t)=v(x(t)), \quad x(0)=x_{0} \tag{1}
\end{equation*}
$$

where $x_{0} \in \Omega$ and $v: \Omega \rightarrow \mathbb{R}^{3}$ is a continuous velocity field. This function represents the trajectory of a particle of the fluid, which at initial time $t=0$ is located in x_{0}. The initial value problem (1) has a uniquely determined global solution if we assume $v \in C_{0}^{\text {lip }}(\Omega)$, i.e. v is a lipschitz continuous function with compact support in Ω.

Due to the uniqueness of the solution the set of mappings $\{X(t, \cdot): \bar{\Omega} \rightarrow \bar{\Omega} \mid t \in \mathbb{R}\}$ defines a commutative group of C^{1} - diffeomorphisms in the closure $\bar{\Omega}$ with the inverse mapping $X(t, \cdot)^{-1}=X(-t, \cdot)$. Moreover, if in addition we require $\nabla \cdot v=0$ in Ω, then from Liouville's differential equation $\partial_{t} \operatorname{det} \nabla X(t, x)=\operatorname{det} \nabla X(t, x) \nabla_{X} \cdot v(X(t, x))=0$ we obtain the identity $\operatorname{det} \nabla X(t, x)=\operatorname{det} \nabla X(0, x)=\operatorname{det} \nabla x=1$. This property of the mappings $X(t, \cdot)$ means the conservation of measure. As a consequence, for $v \in L^{p}(\Omega), 1 \leq p \leq \infty$, we find $\|v(X(t, \cdot))\|_{p}=\|v\|_{p}$, where $\|\cdot\|_{p}$ denotes the norm in $L^{p}(\Omega)([2])$.

Besides the representation of steady flow by the trajectories $t \rightarrow x(t)=X\left(t, x_{0}\right)$, for nonstationary flow we use the Eulerian representation in form of the nonlinear Navier-Stokes equations concerning the unknown velocity field $(t, x) \rightarrow v(t, x)=\left(v_{1}(t, x), v_{2}(t, x), v_{3}(t, x)\right)$ and an unknown pressure function $(t, x) \rightarrow p(t, x)$ satisfying

$$
\begin{align*}
& \partial_{t} v-\nu \Delta v+v \cdot \nabla v+\nabla p=f \quad \text { in } \quad(0, T) \times \Omega, \\
& \nabla \cdot v=0 \quad \text { in } \quad(0, T) \times \Omega, \tag{2}\\
& \left.v\right|_{\partial \Omega}=0,\left.\quad v\right|_{t=0}=v_{0} .
\end{align*}
$$

The constant $\nu>0$ (kinematic viscosity), the external force density f, and the initial velocity v_{0} are given data.

Results

Due to the strong nonlinearity of the convective term the system (2) does not allow a global unique solution. Since the convective term $v(t, x) \cdot \nabla v(t, x)$ arises from a material derivative we use material differences for approximation and replace the convective term by

$$
\frac{1}{2 \varepsilon}\left\{v\left(t, X_{s}(\varepsilon, x)\right)-v\left(t, X_{s}(-\varepsilon, x)\right)\right\} .
$$

It can be shown ([1]) that this term tends to $v(t, x) \cdot \nabla v(t, x)$ as $\varepsilon \rightarrow 0$ if v is divergence free and sufficiently smooth.

Now assume $0<T \in \mathbb{R}, N \in \mathbb{N}(N \geq 2), \varepsilon:=\frac{T}{N}, t_{k}=k \varepsilon$. Then for $t \in\left[t_{k}, t_{k+1}\right)$ we can replace the nonlinear term $v \cdot \nabla v$ as follows:

$$
v(t, x) \cdot \nabla v(t, x) \sim \frac{1}{2 \varepsilon}\left(v\left(t, X_{k}\right)-v\left(t, X_{k}^{-1}\right)\right)=: L_{\varepsilon}^{k} v(t)
$$

Here $X_{k}:=X_{k}(\varepsilon, x)$, where $X_{k}(t, x)$ denotes the solution of

$$
\dot{x}(t)=v_{k}(x(t)):=v\left(t_{k}, x(t)\right), \quad x(0)=x_{0}
$$

The resulting discontinuity caused by the piecewise constant interpolation above can be avoided using piecewise linear interpolation as follows: For $t \in\left[t_{k}, t_{k+1}\right]$ replace the nonlinear term $v \cdot \nabla v$ by

$$
v(t, x) \cdot \nabla v(t, x) \sim \frac{t-t_{k}}{\varepsilon} L_{\varepsilon}^{k} v(t)+\frac{t_{k+1}-t}{\varepsilon} L_{\varepsilon}^{k-1} v(t)=: Z_{\varepsilon}^{k} v(t)
$$

This leads to the following regularized piecewise linear Navier-Stokes system:

$$
\begin{align*}
\partial_{t} v-\nu \Delta v+Z_{\varepsilon} v+\nabla p & =f \text { in } \Omega_{T}, \\
\nabla \cdot v & =0 \text { in } \Omega_{T}, \tag{3}\\
v_{\mid \partial \Omega} & =0, \\
v_{\left.\right|_{t \leq 0}} & =v_{0} .
\end{align*}
$$

Here for $(t, x) \in\left[t_{k}, t_{k+1}\right] \times \bar{\Omega}, k=0,1, \ldots, N-1$ we use $Z_{\varepsilon} v(t, x):=Z_{\varepsilon}^{k} v(t, x)$.
If $H^{m}(\Omega)$ denotes the usual Sobolev space of functions with weak derivatives up to and including the order m in $L^{2}(\Omega)$, and if $\mathcal{H}^{0}(\Omega):={\overline{C_{0, \sigma}^{\infty}(\Omega)}}^{\|\cdot\|}, \mathcal{H}^{1}(\Omega):={\overline{C_{0, \sigma}^{\infty}(\Omega)}}^{\|\nabla \cdot\|}$ denote the closure of divergence-free C_{0}^{∞}-vector functions having compact support in Ω with respect to the L^{2} - and the H^{1}-norm, respectively, then our main result reads as follows:

Theorem. Let $v_{0} \in H^{3}(\Omega), f \in L^{2}\left(0, T, H^{1}(\Omega)\right)$. Then there exists a uniquely determined solution $v \in C\left([0, T], H^{2}(\Omega) \cap \mathcal{H}^{1}(\Omega)\right)$ with $\partial_{t} v \in C\left([0, T], \mathcal{H}^{0}(\Omega)\right)$ and a uniquely determined function $\nabla p \in C\left([0, T], L^{2}(\Omega)\right)$ of (3). The solution satisfies for all $t \in[0, T]$ the energy equation

$$
\|v(t)\|^{2}+2 \nu \int_{0}^{t}\|\nabla v(\tau)\|^{2} d \tau=\left\|v_{0}\right\|^{2}+\int_{0}^{t}(f(\tau), v(\tau)) d \tau
$$

Reference

[1] Varnhorn, W.: The Navier-Stokes Equations with Particle Methods. Necas Center Lecture Notes, 2 (2007), 121-157.
[2] Asanalieva, N., Varnhorn W.: The Navier-Stokes Equations with Regularization. P.A.M.M (2009), to appear

