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THE NAVIER - STOKES EQUATIONS WITH MATERIAL DIFFERENCES
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Introduction

Let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω. In the present paper we
construct a method for the approximate solution of the nonstationary Navier-Stokes equations
for incompressible fluid flow contained in Ω for 0 < t < T. The approach is based on a coupling
of the Lagrangian and the Eulerian representation of the fluid.

The Lagrangian representation of stationary fluid flow is given by a function
t→ x(t) =: X(t, x0) solving the autonomous system

ẋ(t) = v(x(t)) , x(0) = x0 , (1)

where x0 ∈ Ω and v : Ω → R3 is a continuous velocity field. This function represents the
trajectory of a particle of the fluid, which at initial time t = 0 is located in x0. The initial value
problem (1) has a uniquely determined global solution if we assume v ∈ C lip

0 (Ω), i.e. v is a
lipschitz continuous function with compact support in Ω.

Due to the uniqueness of the solution the set of mappings {X(t, ·) : Ω → Ω | t ∈ R} de-
fines a commutative group of C1− diffeomorphisms in the closure Ω with the inverse mapping
X(t, ·)−1 = X(−t, ·). Moreover, if in addition we require∇ · v = 0 in Ω, then from Liouville’s
differential equation ∂t det∇X(t, x) = det∇X(t, x) ∇X · v(X(t, x)) = 0 we obtain the
identity det∇X(t, x) = det∇X(0, x) = det∇x = 1. This property of the mappings X(t, ·)
means the conservation of measure. As a consequence, for v ∈ Lp(Ω), 1 ≤ p ≤ ∞, we find
||v(X(t, ·))||p = ||v||p, where || · ||p denotes the norm in Lp(Ω) ([2]).

Besides the representation of steady flow by the trajectories t→ x(t) = X(t, x0), for non-
stationary flow we use the Eulerian representation in form of the nonlinear Navier-Stokes equa-
tions concerning the unknown velocity field (t, x) → v(t, x) = (v1(t, x), v2(t, x), v3(t, x))
and an unknown pressure function (t, x)→ p(t, x) satisfying

∂tv − ν∆v + v · ∇v +∇p = f in (0, T )× Ω,

∇ · v = 0 in (0, T )× Ω, (2)
v|∂Ω = 0 , v|t=0 = v0 .

The constant ν > 0 (kinematic viscosity), the external force density f , and the initial velocity
v0 are given data.

Results

Due to the strong nonlinearity of the convective term the system (2) does not allow a global
unique solution. Since the convective term v(t, x) · ∇v(t, x) arises from a material derivative
we use material differences for approximation and replace the convective term by

1

2ε
{v(t,Xs(ε, x))− v(t,Xs(−ε, x))}.
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It can be shown ([1]) that this term tends to v(t, x) · ∇v(t, x) as ε → 0 if v is divergence free
and sufficiently smooth.

Now assume 0 < T ∈ R, N ∈ N (N ≥ 2), ε := T
N
, tk = kε. Then for t ∈ [tk, tk+1) we

can replace the nonlinear term v · ∇v as follows:

v(t, x) · ∇v(t, x) ∼ 1

2ε

(
v(t,Xk)− v(t,X−1

k )
)

=: Lkεv(t).

Here Xk := Xk(ε, x), where Xk(t, x) denotes the solution of

ẋ(t) = vk(x(t)) := v(tk, x(t)) , x(0) = x0 .

The resulting discontinuity caused by the piecewise constant interpolation above can be
avoided using piecewise linear interpolation as follows: For t ∈ [tk, tk+1] replace the nonlinear
term v · ∇v by

v(t, x) · ∇v(t, x) ∼ t− tk
ε

Lkεv(t) +
tk+1 − t

ε
Lk−1
ε v(t) =: Zk

ε v(t) .

This leads to the following regularized piecewise linear Navier-Stokes system:

∂tv − ν∆v + Zεv +∇p = f in ΩT ,

∇ · v = 0 in ΩT , (3)

v|∂Ω
= 0,

v|t≤0
= v0 .

Here for (t, x) ∈ [tk, tk+1]× Ω, k = 0, 1, . . . , N − 1 we use Zεv(t, x) := Zk
ε v(t, x).

If Hm(Ω) denotes the usual Sobolev space of functions with weak derivatives up to and

including the order m in L2(Ω), and if H0(Ω) := C∞0, σ(Ω)
||·||
, H1(Ω) := C∞0, σ(Ω)

||∇·||
denote

the closure of divergence-free C∞0 -vector functions having compact support in Ω with respect
to the L2- and the H1−norm, respectively, then our main result reads as follows:

Theorem. Let v0 ∈ H3(Ω), f ∈ L2(0, T,H1(Ω)). Then there exists a uniquely determined
solution v ∈ C([0, T ], H2(Ω)∩H1(Ω)) with ∂tv ∈ C([0, T ],H0(Ω)) and a uniquely determined
function ∇p ∈ C([0, T ], L2(Ω)) of (3). The solution satisfies for all t ∈ [0, T ] the energy
equation

||v(t)||2 + 2ν

t∫
0

||∇v(τ)||2dτ = ||v0||2 +

t∫
0

(f(τ), v(τ))dτ.
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