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Introduction
A numerical investigation of the blood flow is presented in this paper. Human blood is assumed to be
shear-thinning non-Newtonian fluid. The viscosity of blood decreases with increasing shear rate (velocity
gradient). The shear-thinning viscosity model is used.
In this paper we have investigated the influence of the flow rate on the viscosity magnitude, that is
generated by the shear-thinning viscosity model. There were performed a number of simulations with
different flow rates to explore the dependencies between the width of the blood vessel and the flow rate
of the blood.
We have assumed two-dimensional, steady flow of incompressible fluid. All the regimes of flow are
considered to be laminar, the highest Reynolds number is about 300. Numerical method we have used is
based on solving Navier-Stokes equations using Finite Volume Method.

System of Generalized Navier-Stokes equations

PWt + Fx + Gy = Rx + Sy (1)

where: W = (p, u, v)T denotes the vector of unknowns (conservative quantities), F = (u, u2+p, uv)T ,G =
(v, uv, v2 + p)T are the vectors of inviscid (convective) fluxes, R = (0, ηux, ηvx)T , S = (0, ηuy, ηvy)T

are the vectors of viscous (diffusive) fluxes, P = diag(0, 1, 1). Discretization of these equations is
achieved using Finite Volume Method and MacCormack scheme, details can be found e.g. in [2] or [5].

Calculation of viscosity
For computing variable viscosity there was used Modified Cross Model, where the viscosity decreases
from η0 to η∞. Such a model is created by fitting an experimental data [4]. Modified Cross Model is
given by formula:

η = η∞ + (η0 − η∞)
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where: η0 = 0.056 Pa.s, η∞ = 0.00345 Pa.s, λ = 3.736 s, m = 2.406, a = 0.254. More information
about blood viscosity models can be found e.g. in [4] or [5].

Test geometries: axisymmertric stenosis & aneurysm
Both computational domains are cosine narrowed/widened channels to imitate vessel stenosis/aneurism.
Computational domains are two-dimensional channels with diameter D = 2R = 6.2mm:
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Results
There were performed twelve computations for decreasing flow rates: Q/Q0 = 16
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128 , where Q0 = 2cm2/s. For transparent interpretation of the viscosity magnitude, lets

introduce relative viscosity: η̄ = (η(γ̇)− η∞)/η∞ as a measure of viscosity changes. We can find three
viscosity regions with different characteristics. For 0 ≤ η̄ < 1 (blue area), the viscosity is close to η∞
and doesn’t change much. This is Low-viscosity region, showing ”pseudo-Newtonian” behavior. For
1 ≤ η̄ < 10 (green area), one can see Highly non-Newtonian region, where the viscosity strongly differs
with changing shear rate. For 10 ≤ η̄ (red area), there is High-viscosity region, where the viscosity
is high due to the low shear rate (small velocity changes). In the following set of figures, one can see
relative viscosity magnitude for some selected flow rates:

(a) Q/Q0 = 16 (b) Q/Q0 = 8

(c) Q/Q0 = 4 (d) Q/Q0 = 2

(e) Q/Q0 = 1 (f) Q/Q0 = 1/2

(g) Q/Q0 = 1/4 (h) Q/Q0 = 1/8

(i) Q/Q0 = 1/16 (j) Q/Q0 = 1/32

(k) Q/Q0 = 1/64 (l) Q/Q0 = 1/128

Figure 1: Relative viscosity magnitude, η̄ = (η(γ̇)− η∞)/η∞, stenosis geometry



Colloquium FLUID DYNAMICS 2007
Institute of Thermomechanics AS CR, Prague. October 24 - 26, 2007 p.

(a) Q/Q0 = 16 (b) Q/Q0 = 8

(c) Q/Q0 = 4 (d) Q/Q0 = 2

(e) Q/Q0 = 1 (f) Q/Q0 = 1/2

(g) Q/Q0 = 1/4 (h) Q/Q0 = 1/8

(i) Q/Q0 = 1/16 (j) Q/Q0 = 1/32

(k) Q/Q0 = 1/64 (l) Q/Q0 = 1/128

Figure 2: Relative viscosity magnitude, η̄ = (η(γ̇)− η∞)/η∞, aneurism geometry
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Conclusion
One can see that the viscosity magnitude strongly depends on the flow rate (having constant diameter of
the channel). For higher flow rates the viscosity is low due to the high shear-rate. Decreasing flow rate
the viscosity is increasing due to the low shear-rate.
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