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Abstract

After a brief review of a nonlinearity test based on information-theoretic
functionals (redundancies) and surrogate data technique, we discuss problems
of this and similar tests for nonlinearity. In particular, we stress that a for-
mal rejection of a linear stochastic null hypothesis does not automatically mean
an evidence for nonlinear dynamical origin of studied data. In an example we
show how a variable variance could be mistaken for nonlinearity in a series of
surface air pressure. Therefore we find a detection of nonlinearity in a series
of sunspot numbers insufficient for an identification of a mechanism underlying
the sunspot cycle. As a solution in this case we propose to test for a property of
nonlinear oscillators — mutual dependence between their instantaneous ampli-
tude and frequency. This behavior is detected in yearly and monthly records of
the sunspot numbers using histogram-adjusted isospectral surrogate data and
Barnes model as ARMA surrogates. The instantaneous amplitudes and frequen-
cies are obtained by means of the analytic signal approach using the discrete
Hilbert transform. In several tests the amplitude-frequency correlation has been
found significant on levels ranging from p < 0.03 to p < 0.07, which supports
the hypothesis of a driven nonlinear oscillator as a mechanism underlying the
sunspot cycle.

1 Introduction

Let {y(t)} be a time series, i.e., a series of measurements done on a system in consec-
utive instants of time ¢ = 1,2,.... Can we identify a mechanism underlying temporal
evolution of such a system?

The time series {y(¢)} can be considered as a realization of a stationary linear
stochastic process {Y(t)}. Without loss of generality we can set its mean to zero.
Then the linear stochastic process Y (t) can be written as:

Y()=Y(0)+ Y a(@)Y(t—i)+ > bE)N(t—1), (1)
=1 =0

where b(0) =1, 3.2, |a(i)] < 00, Yoo |b(3)] < 00, {N(t)} is an independent, identi-
cally distributed (iid), normally distributed process with zero mean and finite (con-
stant) variance. (For more details see [Priestley, 1981].)

Alternatively, the time series {y(¢)} can be considered as a projected trajectory
of a dynamical system, evolving in some measurable d-dimensional state space. To
be more specific, let X; denote a state vector in R?. Then the measurements y(t)
are obtained as y(t) = g(X}), where g(.) is a projection (measurement function), and
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temporal evolution of X; may be described by a discrete-time dynamical system (a
difference equation):
Xy = F(X4-1), (2)

with X, € R? and for ¢t > 1.
Due to ubiquity of noise, it is more realistic to replace the above states by random
variables and the dynamics by a Markovian model such as

Xi = F(Xt—1, et), (3)

where t € Z,, F : R?® — R? {e;} is a sequence of independent and identically
distributed d-dimensional random vectors and e; is independent of X, 0 < s < t. We
call {e;} the dynamic noise. Following [Tong, 1995], we refer to equation (2) as the
skeleton of model (3), considering F(X) = F(X,0). For convenience, it is frequently
assumed that the dynamic noise is additive so that equation (3) reduces to the model
with additive noise

Xt = F(Xt_l) + €. (4)

Detection of nonlinearity in experimental time series, i.e., identification from
experimental data of underlying mechanism such as the model (4) with a nonlinear
function F' is usually based on rejection of a linear null hypothesis by a statistical
test. Typically, the considered null hypothesis is a linear Gaussian process such as (1)
or a Gaussian process passed through a static nonlinear transformation, or a similar
simple alternative. Rejection of such a null is frequently interpreted as a detection
of a deterministic nonlinear relation (2 or 4) in data under study. This is, however,
only one of possible alternatives. Other alternatives will be discussed in Sec. 3, in
the following section we will briefly review a test for nonlinearity proposed by in
[Palug, 1995]. Then we will present an example of a spurious nonlinearity detection
due to a variable variance in a case of air surface pressure data (Sec. 4). Nonlinearity
in a series of sunspot numbers is tested in Sec. 5. Section 6 introduces the amplitude-
frequency correlation in nonlinear oscillators. Detection of such a behavior in the
sunspot cycles is presented in Sec. 7, and results are discussed in Sec. 8.

2 A test for nonlinearity based on redundancies and
surrogate data

Consider n discrete random variables Xi, ..., X,, with sets of values Zy,...,Z5,, re-
spectively. The probability distribution for an individual X is p(x;) = Pr{X; = z;},
z; € E;. We denote the probability distribution function by p(z;), rather than
px,;(x;), for convenience. Analogously, the joint distribution for the n variables
X1,...,Xy is p(z1,...,2,). The redundancy R(Xi;...;X,), in the case of two
variables also known as mutual information I(X;;X5), quantifies average amount
of common information, contained in the n variables X1, ..., X,:

R(Xi5..5X%) = 3 ... % p(xl,...,xn)logIM (5)

z1€E TnEEn (931) . p(xn)

When the discrete variables X, ..., X,, are obtained from continuous variables
on a continuous probability space, then the redundancies depend on a partition &
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chosen to discretize the space. Various strategies have been proposed to define an op-
timal partition for estimating redundancies of continuous variables (see [Palus, 1995,
Weigend and Gershenfeld, 1993] and references therein). Here we use the “marginal
equiquantization” method described in detail in [Palus, 1993, Palus, 1995].

Now, let the n variables Xi,..., X,, have zero means, unit variances and
correlation matrix C. Then, we define the linear redundancy L(Xi;...;X,) of
Xl,XQ,...,Xn as

L(Xi5Xa) = =3 D log(en), (6)

where o; are the eigenvalues of the n X n correlation matrix C.

If X;,...,X, have an n-dimensional Gaussian distribution, then L(Xy;...;X,)
and R(Xy;...;X,) are theoretically equivalent.

In practical applications one deals with a time series {y(t)}, considered as a
realization of a stochastic process {Y'(¢)}, which is stationary and ergodic. Then, due
to ergodicity, all the subsequent information-theoretic functionals are estimated using
time averages instead of ensemble averages, and the variables X; are substituted as

Xi=y(t+ (- 1D7). (7)
Due to stationarity the redundancies
R™(7) = R(y(@); y(t + 7). ;y(t + (n —1)7)) (8)

and
L™(r) = L(y(t);y(t + 7);...59(t + (n — 1)7)) 9)

are functions of n and 7, independent of .

The surrogate-data based nonlinearity tests [Theiler et al., 1992, Palus, 1995]
consist of computing a nonlinear statistic from data under study and from an en-
semble of realizations of a linear stochastic process, which mimics “linear properties”
of the studied data. If the computed statistic for the original data is significantly dif-
ferent from the values obtained for the surrogate set, one can infer that the data were
not generated by a linear process; otherwise the null hypothesis, that a linear model
fully explains the data, cannot be rejected and the data can be analyzed, character-
ized and predictions can be obtained by using well-developed linear methods. For the
purpose of such test the surrogate data must preserve the spectrum and consequently,
the autocorrelation function of the series under study. An isospectral linear stochas-
tic process to a series can be constructed by computing the Fourier transform (FT)
of the series, keeping unchanged the magnitudes of the Fourier coefficients, but ran-
domizing their phases and computing the inverse FT into the time domain. Different
realizations of the process are obtained using different sets of the random phases.

The FT surrogates tend to have a Gaussian distribution which is not always the
case of the tested data. In order to avoid a possible influence of different histograms
of the data and of the surrogates, the histogram adjusted FT (HAFT) surrogates are
constructed. (In [Theiler et al., 1992] the term “amplitude-adjusted” — AAFT surro-
gates is used.) In this case, the raw data undergo a nonlinear transformation which
leads to a Gaussian distribution of the transformed data (“gaussianization” — see
[Palug, 1995] and references within). The gaussianized data are used to generate the
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FT surrogates as described above, and the obtained surrogate data are transformed
in order to have the same histogram as the original raw data. An application of
the HAFT surrogates effectively means a reformulation of the null hypothesis of a
Gaussian linear stochastic process (1) into a hypothesis of a process (1), realizations
of which are passed through a static nonlinear transformation.

To evaluate the test, usually, as well as in [Palug, 1995], the test statistic is
defined as a difference between the redundancy obtained for the original data and
the mean redundancy of a set of surrogates, in the number of standard deviations
(SD’s) of the latter. Such an approach requires a relative small number of surrogate
replications, however, a normal distribution of the test statistic is considered. The
latter is not always the case, and therefore, as a more reliable approach, in Sec. 5
we generate a large number of surrogate realizations and estimate percentiles (e.g.,
2.5th and 97.5th percentile) of the surrogate distribution. Then redundancy values
are simply compared with related percentile values. It is also possible to directly
estimate the “significance”, i.e., the p value of the test by counting the percentage
of the surrogate realizations yielding redundancy values equal to or greater than the
related redundancy obtained from analyzed data.

Note, that both the redundancies and redundancy-based statistics can be eval-
uated as functions of lag 7 and embedding dimension n. Evaluating the re-
dundancies and related statistics for broad ranges of lags (and several dimen-
sions), however, can bring the problem of simultaneous statistical inference (see
[Palus, 1995, Palus and Novotnd, 1994] and references within for details). This ap-
proach, however, can be more reliable than single-valued tests, as it was demonstrated
in [Palus, 1995].

The redundancy R"(7), based on probability distributions, measures general de-
pendences among the series {y(t)} and its lagged versions, whereas the linear redun-
dancy L™(7), based on correlations, reflects only their linear relations. Comparing
the plots of R™(7) and L™(7) can provide an informal test for important nonlinearities
in the studied data [Palus et al., 1993]. This approach, in [Palus, 1995] referred to as
qualitative testing, or, qualitative comparison, can bring some additional information
to the results of the quantitative (surrogate data based) test. Moreover, one can not
always construct good surrogate data. That is, despite theoretical expectations, in
numerical practice linear properties of the surrogates may differ from those of the
data under study. Changes in linear properties are reflected in nonlinear statistics
as well, and thus they may result in spurious detection of nonlinearity in linear data
[Palus, 1995]. Therefore, we also evaluate a statistic based on the linear redundancy
L™(7) (defined analogously to the statistic based on R"™(7)), which specifically reflects
changes in linear properties. Then, only those significant differences in the nonlin-
ear statistic can reliably count for nonlinearity, which are not detected in the linear
statistic [Palug, 1995].
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3 The null hypothesis of nonlinearity tests and its
negations

Consider that the above described test yielded a significant result, i.e., the null hy-
pothesis was reliably rejected. The null hypothesis was equivalent! to a linear stochas-
tic process such as that described by the ARMA model (1). It is very common in
nonlinear dynamics literature to consider the rejection of the null (1) as an evidence
for a process such as (4) with a nonlinear skeleton (2). This is, however, only one of
possible negations of (1). A number of different processes should be considered, which
possess a linear deterministic skeleton?, i.e., a linear AR part — the first sum in (1),
or no deterministic skeleton at all (MA processes), however, their innovations {N(¢)}
do not fulfill the conditions given above. Generally, one or more of the following
properties could reject the null (1):

1. The innovations {N(¢)} are not Gaussian.

2. The innovations {N(¢)} are not an iid process, where iid means that the inno-
vations should be not only uncorrelated, but generally independent.

3. The variance of {N(¢)} is not constant.

4 An example of surface air pressure series

A series of daily recordings of surface air pressure {P(t)} (¢ = 1 — 65,536 days; i.e.,
180 years) was described and analyzed in [Palus and Novotnd, 1994]. Here we ana-
lyze differences from long-term daily averages. This transformation of data (almost
entirely) removes the oscillations with the period of one year (seasonality in mean).
We ask the question about possible long-term nonlinear dependence and perform the
linear redundancy — redundancy surrogate data test, described above.

The results are presented in Fig. 1. For lags larger than a few days there is only a
weak linear dependence, as measured by the linear redundancy (Fig. 1a) and reflected
in the surrogates, but the (nonlinear) redundancy detects a clear dependence as an
oscillatory structure with a yearly periodicity. This difference is highly significant (10
— 30 SD’s, Fig. 1d), while no significance in the linear statistic (Fig. 1c) confirm the
quality of the surrogates, which reflect correctly “the linear properties” of the data
(in the sense of the model (1)). Can this result be understood as an evidence for the
model (4) with a nonlinear periodic skeleton F', which could provide predictability of
the atmospheric pressure for several years in advance?

The seasonality in mean present in this data (Fig. 2, upper panel) was mostly
removed by considering differences from the long term averages.> The problem is
that also the variance of this data is not constant, but clearly seasonal (Fig. 2, lower
panel, the standard deviation (SD) is the square root of variance). This property is
“nonlinear” in the sense that the surrogate data and the model (1) possess a constant

1Principal equivalence and technical differences between the surrogate data constructed by
using the Fourier transform and the ARMA modeling are discussed in [Theiler et al., 1992,
Theiler and Prichard, 1996].

2Obviously, for a linear function F, the model (4) is a special case of (1).

3The seasonality in mean can be entirely removed by filtration in spectral domain, as done in
[Palu§ and Novotnd, 1994].
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Figure 1: (a): Linear redundancy L(y(¢); y(t+7)) (solid line), (b): nonlinear (general)
redundancy R(y(t); y(t+7)) (solid line), for a series of differences from the long term
averages of the surface air pressure (Prague-Klementinum station) and for its FT
surrogates (thin solid and dashed lines present mean and mean+SD, respectively, of
a set of 30 surrogate realizations); (c): linear (L-based), and d): nonlinear (R-based)
statistics; as functions of the time lag 7, measured in days.

variance and cannot reproduce the seasonality in variance. After rescaling the data
in order to obtain a constant variance, the effect of the false long-term nonlinear
dependence is lost (Fig. 3). In the rescaled data there is no long-term dependence
except of weak linear link due to not entirely removed seasonality in mean.

The above example of the surface air pressure clearly demonstrated the influence
of variable variance on the redundancy — surrogate data nonlinearity test (introduced
in Sec. 2 and in detail in [Palug, 1995]). The effect of non-Gaussian innovations
{N(t)} was discussed in [Palu§, 1995], and a possible influence of non-iid {N (%)}
(i-e., innovations containing (nonlinear) temporal structures) is understandable. It is
important to note that similar effects of “defective” innovations in a process under
study would effect not only this particular test for nonlinearity, but all tests which use
some type of FT/ARMA surrogates, and also any method which contain the process
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Figure 2: Seasonality in mean (upper panel) and in variance (lower panel) of the
surface air pressure series — long term means (upper panel) and standard deviations
(square root of variance, lower panel) for each day in a year. The days are consecu-
tively numbered, January 1 has the index 1, January 2 has the index 2, ..., February
1 has the index 32, etc.

(1) at least implicitly in its construction. Also, all entropy-related statistics, that is,
not only the above information-theoretic functionals, but also, for instance, statistics
based on correlation integral [Prichard and Theiler, 1995], are extremely sensitive to
variable variance and/or to (non)Gaussianity of data/innovations. Therefore one
must very carefully assess results of nonlinearity tests in order to avoid confusing this
kind of effects with actual nonlinear functional dependence in the data under study.

5 Nonlinearity in the sunspot cycle

An energy output of the Sun as the main basis of life on the Earth is nearly constant.
However, the Sun is far from being uniform. The best observed solar inhomogeneities
are spots on the solar surface in which the luminosity is diminished but magnetic fields
appear which are stronger than usual magnetic fields on the rest of the solar surface.
Appearance of the spots on the Sun is quantified by so-called sunspot numbers, or
index, which have been collected from the beginning of the 18th century.

The historical data of the sunspot index have been attracting researchers for
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Figure 3: (a): Linear redundancy L(y(t); y(t+7)) (solid line), (b): nonlinear (general)
redundancy R(y(t); y(t+7)) (solid line), for a series of differences from the long term
averages of the surface air pressure, rescaled in order to have a constant variance,
and for its FT surrogates (thin solid and dashed lines present mean and mean+SD,
respectively, of a set of 30 surrogate realizations); (c): linear (L-based), and d):
nonlinear (R-based) statistics; as functions of the time lag 7, measured in days.

more than a century. The now well-know 1l-year cycle was reported already in
[Wolf, 1852]. Of course, the sunspot cycle is not strictly periodic, but fluctuations in
its amplitude as well as in its frequency (i.e., in the cycle duration) occur. Therefore
researchers have turned towards stochastic models in order to make predictions of a
future behavior of the sunspot cycle (see [Withbroe, 1989] and references therein).
On the other hand, development in nonlinear dynamics and theory of deterministic
chaos, namely methods and algorithms for analysis and prediction of (potentially)
nonlinear and chaotic time series have naturally found their way into the analyses
of the sunspot series. Several authors ([Mundt et al., 1991, Kremliovsky, 1994] and
references therein) have claimed an evidence for a deterministic chaotic origin of the
sunspot cycle, based on estimations of correlation dimension, Lyapunov exponents
and an increase of a prediction error with a prediction horizon. The dimensional
algorithms, however, have been found unreliable when applied to relatively short ex-
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Figure 4: (a) The series of yearly sunspot numbers (1700 — 1997). (b) A realization
of the HAFT surrogate data for the “last” 256 samples. (c) A 298-sample realization
of the Barnes model.

perimental data, and properties consistent with stochastic processes (colored noises)
such as autocorrelations can lead to a spurious convergence of dimensional estimates
[Theiler, 1986]. Similar behavior has been observed also for Lyapunov exponent esti-
mators [Ddmmig and Mitschke, 1993, Palus, 1998]. And the increase of a prediction
error with an increasing prediction horizon is not a property exclusive for chaos, but it
can also be observed in systems with a deterministic skeleton and an intrinsic stochas-
tic component (“dynamical noise”). Therefore, such results cannot be considered as
a convincing evidence for a nonlinear dynamical origin of the sunspot cycle.

In this section we present results of the test for nonlinearity (Sec. 2) applied to
the sunspot data. The series of yearly sunspot numbers from the period 1700 — 1997
was obtained from the Sunspot Index Data Center*, and is illustrated in Fig. 4a.
As test results, here we do not present differences from surrogate mean in number of
standard deviations as in the previous section, but using 15,000 surrogate replications
we estimate the 2.5th and 97.5th percentiles of distributions of redundancies com-
puted from surrogate data. If values of related redundancy obtained from the studied
data lies outside the range given by these two percentile values, the null hypothesis
is rejected since the test is significant with p < 0.05. It means that the probability of
the null hypothesis (that the studied data can be explained by the surrogate model)
is less than 5%.

The linear redundancy L(y(t); y(t+7)) (solid line in Fig. 5a) lies clearly inside the
2.5th and the 97.5th percentiles of the L(y(t); y(¢t + 7)) HAFT surrogate distribution
(dashed lines in Fig. 5a). This test is just a check of quality of the surrogate data

4Sunspot Index Data Center, Royal Observatory of Belgium, Av. Circulaire, 3, B-1180 Brussels,
Internet address: http://www.oma.be/KSB-0RB/SIDC, file yearssn.dat.
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Figure 5: (a): Linear redundancy L(y(t); y(t+7)) (solid line) for the series of sunspot
numbers as a function of the lag 7; linear redundancy L(y(#); y(t + 7)) for the related
HAFT surrogate set: dash-and-dotted line presents the mean, dashed lines illustrate
the 2.5th and the 97.5th (bottom and top line, respectively) percentile of the surrogate
L(y(t); y(t + 7)) distribution. (b): Nonlinear (general) redundancy R(y(t);y(t+ 7))
(solid line), for the series of sunspot numbers as a function of the lag 7; nonlinear
redundancy R(y(t); y(t + 7)) for the related HAFT surrogate set, the same line codes
as in (a). (c): Nonlinear redundancy R(y(¢);y(t + 7)) (solid line), for the series of
sunspot numbers as a function of the lag 7; nonlinear redundancy R(y(t);y(t + 7))
for the Barnes model surrogate set, the same line codes as in (a). (d): Nonlinear
redundancy R(y(t);y(t + 7)) (solid line), for a realization of the Barnes model as a
function of the lag 7; nonlinear redundancy R(y(t);y(t + 7)) for the related HAFT
surrogate set, the same line codes as in (a).

and it says that the linear properties (dependence structures) in the sunspot data
do not differ from those of the HAFT surrogates (a realization of which is presented
in Fig. 4b), so that the surrogates should not be a source of a spurious detection of
nonlinearity.

The nonlinearity test itself is presented in Fig. 5b, where the (nonlinear) redun-
dancy R(y(t);y(t + 7)) (solid line in Fig. 5b) is, for majority of studied lags, higher
than the 97.5th percentile of the HAFT surrogate distribution (the upper dashed
line in Fig. 5b). Thus the null hypothesis of a linear stochastic process (1), possibly
passed through a static nonlinear transformation, is rejected.

Does this rejection really mean that a nonlinear dynamical system such as (2)
or (4) underlies the sunspot cycle, or can this rejection be explained by any of the
reasons listed in Sec. 3 ? This question is hard to answer. For instance, we can-
not evaluate properties of innovations (model residuals) without a-priory knowl-
edge of a valid model. And no direct connection of the sunspot data to any
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physically inspired nonlinear dynamical model is known. Physical models trying
to explain the variation of the solar activity come from the dynamo theory (cf.
[Krause and Raedler, 1980, Proctor and Gilbert, 1994]). The principle of such a self-
exciting dynamo is that the magnetic field is amplified and maintained by the inter-
action of mainly three types of hydrodynamic plasma motions, namely differential
rotation, turbulent convection and helicity. It is interesting to mention that there
are some rather simple conceptual dynamo models which show a rich dynamical be-
havior and can explain several facts known from observations [Feudel et al., 1993].
Such models, however, are not fitted directly to the experimental data, and are eval-
uated only in a qualitative way. Therefore, we should also consider concurrent linear
stochastic models, such as the Barnes model [Barnes et al., 1980]:

2i = 0q2i—1 + a2zi—2 + a; — Bra;—1 — Bea;—2, (10)

si =z +9(2 — 2i4)% (11)

where oy = 1.90693, oy = —0.98751, B; = 0.78512, B2 = —0.40662, v = 0.03 and a;
are IID Gaussian random variables with zero mean and standard deviation SD=0.4.
The Barnes model (10, 11) is a rather simple but efficient model to mimic essential
properties of the sunspot numbers. It incorporates the structure of an autoregressive
moving average ARMA(2,2) model (10) with a nonlinear transformation (11) which
ensures that the generated series remains asymmetric and positive and tends to in-
crease more rapidly than it decreases. Moreover, the stochastic Barnes model can
mimic some seemingly nonlinear properties such as behavior of correlation integrals
[Weiss, 1990] and phase portraits [Smith, 1997] obtained from the sunspot series.

We can evaluate, in the sense of the above nonlinearity test, whether the Barnes
model can explain the sunspot data, by using realizations of the Barnes model as
surrogate data. The result of such a test is presented in Fig. 5c.

The nonlinear redundancy R(y(t);y(t + 7)) (solid line in Fig. 5c) only slightly
exceeds the 97.5th percentile of the Barnes surrogate distribution in 3 from the 30
studied lags. The rejection of the Barnes model by this test is not very convincing.

On the other hand, when we test for nonlinearity in a realization of the Barnes
model (Fig. 5d), the HAFT surrogates are rejected. (The rejection is clear only
in the lags 21 and 22, however, R(y(t);y(t + 7)) of the tested series there exceeds
the whole range of the surrogate values, i.e., p = 0 and the test is significant even
considering the simultaneous statistical inference (see [Palus, 1995] and references
therein). This result could be expected, since the nonlinear transformation (11) is
not static, therefore the HAFT surrogates are rejected.

To summarize the last two tests, the realization of the Barnes model appeared
in the nonlinearity test as nonlinear, and the rejection of the Barnes model as the
null hypothesis is not very convincing. Can we find any solid argument for a non-
linear dynamical origin of the sunspot cycle, or should we accept a linear stochastic
explanation, such as the Barnes model?

6 Amplitude-frequency correlation in nonlinear os-
cillators

In this section we demonstrate a typical property of nonlinear oscillators (a class of
nonlinear dynamical systems), namely the correlation between instantaneous ampli-
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tude and frequency of signals (solutions) generated by such systems.
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Figure 6: (a) A solution of the nonlinear Duffing oscillator without any external
driving force, and (b) the related instantaneous amplitude (thick line) and frequency
(thin line).

As a demonstrative example of a nonlinear oscillator (not a model for the sunspot
cycle) we will consider the Duffing oscillator

#+0.052 + = + 2 = F(t). (12)

If F(t) = 0 and without the cubic member z*, the equation (12) represents a damped
linear oscillator with a constant frequency and an exponentially decreasing amplitude.
The presence of the nonlinear (cubic) member 2® in the equation (12) leads to a time
dependent frequency, and considering again F(t) = 0, both the amplitude A(¢) and
frequency w(t) exponentially decrease and are correlated (Figs. 6a,b).

Now, consider that the nonlinear oscillator (12) is driven by a random driving
force F(t). In the numerical examples presented here we consider a simple random
walk with a few jumps as the driving force F(t).

The relation between A(t) and w(t) is a nonlinear function and may vary in time,
however, the level of the correlation between A(t) and w(t) depends on the driving
force: With a relatively weak driving (Fig. 7a), A(t) and w(t) are almost perfectly
correlated (Fig. 7c), with a stronger driving force F(t) (Fig. 8a) some differences
between A(t) and w(t) emerge, however, A(t) and w(t) are still correlated (Fig. 8c).

The above presented amplitude-frequency correlation is a property which can
be tested in experimental signals, even in scalar cases (single measured time se-
ries). The instantaneous amplitude and phase of a signal s(t) can be determined
by using the analytic signal concept of Gabor [Gabor, 1946], recently introduced
into the field of nonlinear dynamics within the context of chaotic synchronization
by [Rosenblum et al., 1996]. The analytic signal ¥(¢) is a complex function of time
defined as

() = s(t) + ja(t) = A, (13)
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Figure 7: (a) A random driving force (a random walk with a few jumps). (b) A
solution of the nonlinear Duffing oscillator with the random driving force F(t) plot-
ted in panel (a); (c) instantaneous amplitude (thick line) and frequency (thin line)
extracted from the solution in panel (b).

where the function §(¢) is the Hilbert transform of s(¢)
1 < (1)
5(t) =— P.V. ——dr. 14
s=zrv. [ A (14)

(P.V. means that the integral is taken in the sense of the Cauchy principal value.)
A(t) is the instantaneous amplitude and the instantaneous phase ¢(t) of the signal
s(t) is
5(t)
t) = arctan —=. 15
¢(t) = arctan S (15)
The instantaneous frequency w(t) is the temporal derivative ¢(t) of the instantaneous
phase ¢(t).

7 Amplitude-frequency correlation in the sunspot
cycle

A possible amplitude-frequency correlation (AFC thereafter) in the sunspot cycle, in
particular, the importance of the amplitude in determining the length of the related
cycle has already been noted in thirties by [Waldmeier, 1935] and recently discussed in
[Hathaway et al., 1994]. In this section we demonstrate that the amplitude-frequency
correlation found in the sunspot cycle is probably a non-random phenomenon and
propose its explanation by an underlying nonlinear dynamical system.
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Figure 8: (a) Another example of a random driving force (“stronger”, i.e., with higher
amplitude than in the previous case in Fig. 7). (b) A solution of the nonlinear Duffing
oscillator with the random driving force F(t) plotted in panel (a); (c) instantaneous
amplitude (thick line) and frequency (thin line) extracted from the solution in panel

(b).

The series of yearly sunspot numbers from the period 1700 — 1997 (Fig. 4a)
has been filtered by a simple moving average (MA) band-pass filter: First, the MA’s
from a 13-sample window have been subtracted from the data in order to remove
slow processes and trends, and then a 3-sample MA smoothing has been used in
order to remove high-frequency components and noise. Then the discrete version of
the Hilbert transform (14) using the window length of 25 samples has been applied in
order to obtain the instantaneous amplitude A(t) and the instantaneous phase ¢(t).
For obtaining a more robust estimation of the instantaneous frequency w(t) than
the one yielded by a simple differencing the phase ¢(t), the robust linear regression
[Press et al., 1986] in a 7-sample moving window has been used. Finally, the series
of A(t) and w(t) have been smoothed using a 13-sample MA window. The resulting
series of the instantaneous amplitude and frequency of the yearly sunspot numbers,
plotted in Fig. 9a, yield the crosscorrelation equal to 0.505. Does this value mean
that the amplitude and frequency of the sunspot cycle are correlated as a consequence
of an underlying dynamics, or could this correlation occur by chance? Searching for
an answer, we test the statistical significance of this correlation using the surrogate
data approach.

In the first step we use the FT and HAFT surrogates, defined in Sec. 2, where
this kind of surrogates play the role of a linear stochastic process with the same
spectrum and histogram as the studied data. Testing nonlinearity in general, it is
stressed that the (HA)FT surrogates replicate the linear “properties” (more exactly,
temporal dependences), while do not contain any nonlinear dependence structure.
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Figure 9: The instantaneous amplitude (thick line) and frequency (thin line) of
(a) the yearly sunspot numbers series, (b) a realization of the related HAFT surrogate
data, and (c) a realization of the Barnes model.

Here, testing the significance of AFC, we consider the (HA)FT surrogates as a data
with cycles oscillating with the same frequencies as the sunspot cycles, however,
not possessing any systematic amplitude-frequency correlation. Since for generating
the (HA)FT surrogates we use the Fast Fourier Transform (FFT) [Press et al., 1986]
which requires the number of samples equal to a power of two, we perform two tests,
using the “first” and the “last” 256 samples, i.e., the subseries of the whole 298
sample series obtained by cutting away 42 samples at the end, or at the beginning,
respectively, from the whole yearly sunspot numbers record. Thus, in each test, the
surrogate data replicate the sample spectrum of the related 256-sample subseries.

The (HA)FT surrogates are generated from the raw (unfiltered) 256-sample seg-
ments of the sunspot data. Also, the 256-sample subseries are used for estimating the
amplitude-frequency correlation related to the particular subseries, applying the pro-
cedures described above. Then, each realization of the (HA)FT surrogates, generated
with respect to the raw data, undergoes the same processing as the raw data, i.e., the
MA bandpass filtering, the Hilbert transform and the robust linear regression for the
w(t) estimation, and the final A(¢) and w(t) smoothing are performed before comput-
ing the AFC for each surrogate realization. Then the absolute values of the AFC’s for
150,000 surrogate realizations are evaluated in order to assess the significance of the
related AFC value found in the sunspot data. The first 256-sample subseries of the
sunspot yearly numbers yields the AFC equal to 0.605, while the mean value of the
absolute AFC for the HAFT surrogate set is 0.26 with the standard deviation (SD)
equal to 0.17.

In usual surrogate tests the significance is derived from the difference between
the data value and the surrogate mean, divided by the surrogate SD, provided normal
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distribution of the surrogate values. Having generated the large amount of the surro-
gate replications, here we directly estimate the p-value of the test, i.e., the probability
that the assessed correlation occurred by chance (randomly) within the chosen null
hypothesis (surrogate model), by simply counting the occurrences in the surrogate
set of absolute AFC values greater or equal to the assessed raw data value, i.e., 0.605
in this case. The number obtained is 3637, which is equal to 2.43%. Statistically
speaking, the test result is significant on p < 0.03, or, in other words, the probability
that the amplitude-frequency correlation found in studied segment of the sunspot
data occurred by chance (as a random event) is smaller than 3%.

Processing the “last” 256-sample segment of the yearly sunspot numbers, the
obtained AFC is equal to 0.532, while the values from the HAFT surrogates are the
same as above, however, the p-value in this case is 6.58%. Still, we can conclude
that the test result is significant on p < 0.07. An example of the HAFT surrogate
realization is plotted in Fig. 4b, its instantaneous amplitude and frequency in Fig.
9b.

The results from the tests using simple FT surrogates (i.e., without the histogram
adjustment) are practically the same as those from the above HAFT surrogates. Test-
ing the monthly sunspot numbers®, the segments of (“first” and “last”) 2048 samples
were used. The same data processing has been applied as described above in the case
of the yearly data with the windows lengths equivalent in real time, i.e., multiplied
by 12 in number of samples. The obtained results are perfectly equivalent to those
yielded by the yearly data, i.e., p < 0.03 and p < 0.07 for the “first” and the “last”
2048-sample segments, respectively.

In the second step of testing the significance of the sunspot cycle AFC, we use
realizations of the Barnes model as surrogate data. As noted above, the Barnes model
mimics some important properties of the sunspot data and it is hard to reject it by
standard nonlinearity tests, however, realizations of the Barnes model do not possess
any systematic amplitude-frequency correlation. A realization of the Barnes model
is plotted in Fig. 4c, its instantaneous amplitude and frequency in Fig. 9c.

In the test, 150,000 298-sample realizations of the Barnes model have been gener-
ated and processed by the same way as the sunspot series. The mean absolute AFC
is equal to 0.21, SD=0.15, comparison with the AFC obtained for the whole 298-
sample yearly sunspot series (AFC=0.505) yields the p-value equal to 4.36%. Thus,
considering the Barnes model, the probability that the whole yearly sunspot series
AFC=0.505 occurred by chance is p < 0.05.

8 Discussion

Recent development in the art of identifying nonlinear dynamics underlying exper-
imental time series has led several authors to find ways of preventing a spurious
detection of nonlinearity due to flawed surrogate data. In [Palug, 1995] we have
proposed to test whether linear dependences contained in data under study were
prefectly reproduced in the surrogates. Other authors have proposed sophisticated
methods for constructing special constrained surrogate data. Nevertheless, we should

5Monthly sunspot numbers from the period 1749 — 1997 were also obtained from the Sunspot
Index Data Center, http://www.oma.be/KSB-0RB/SIDC, file monthssn.dat.
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be aware of the fact that a formal rejection of a linear stochastic null hypothesis does
not automatically mean an evidence for nonlinear dynamical origin of studied data.
Looking for a more concrete explanation of a process under study, we propose to
test specific features of nonlinear dynamical systems. Such a feature, present in non-
linear oscillators, is their amplitude-frequency correlation. Using the analytic signal
approach and the Hilbert transform we can estimate the instantaneous amplitude
and frequency even from scalar signals and test significance of obtained amplitude-
frequency correlation using a proper null model, as demonstrated here in the case of
the sunspot index series.

Using two different types of stochastic models (scaled isospectral surrogates and
the Barnes model) which replicate some properties of the sunspot cycle, we have
obtained a statistical support for the hypothesis that the amplitude-frequency cor-
relation observed in the sunspot cycle did not occur by chance (as a random event)
but is probably a property of an underlying dynamical mechanism. Well-known sys-
tems, possessing this property, are nonlinear oscillators, in which a significant AFC
can be observed also in cases of external, even random, driving force. Therefore the
presented results can be considered as a statistical evidence for a nomnlinear oscil-
lator (with an external, possibly random driving force) underlying the dynamics of
the sunspot cycle, unless the amplitude-frequency relation is explained by a different
mechanism.

Although no particular model for the solar cycle has been proposed here, the
presented statistical evidence for a nonlinear dynamical mechanism underlying the
sunspot cycle can be understood as a first step in bridging the gap between reliable
statistical analyses of the experimental sunspot data (dominated by linear stochastic
methods) and physical models such as nonlinear dynamo models [Feudel et al., 1993,
Kurths et al., 1997] (compared with data only on a qualitative level). In a next step,
we can consider statistical comparison of the data with the dynamo models, with the
aim to construct a realistic data-driven model for the solar cycle. Another interesting
problem is identification of a force driving the sunspot cycle.

In conclusion we state that the proposed method for identification in experimen-
tal time series of amplitude-frequency correlation, a feature of nonlinear oscillators,
have brought interesting information about the sunspot cycle. The method can also
be applied in different fields where time series generated by possibly nonlinear pro-
cesses are registered and studied.
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