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M. Paluš1 and D. Novotná2
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Abstract. Using the extension of Monte Carlo Singular Sys-
tem Analysis (MC SSA), based on evaluating and testing the
regularity of the dynamics of the SSA modes against the col-
ored noise null hypothesis, we demonstrate detection of os-
cillatory modes with period of about 27 months in records
of monthly average near-surface air temperature from sev-
eral European locations, as well as in the monthly North At-
lantic Oscillation index. According to their period, the de-
tected modes can be attributed to the quasi-biennial oscilla-
tions (QBO). The QBO modes extracted from the temper-
ature and from the NAO index underwent synchronization
analysis and their phase synchronization has been confirmed
with high statistical significance.

1 Introduction

The North Atlantic Oscillation (NAO) is a dominant pat-
tern of atmospheric circulation variability in the extratropi-
cal Northern Hemisphere, accounting for about 60% of the
total sea-level pressure variance. The NAO has a strong ef-
fect on European weather conditions, influencing meteoro-
logical variables including temperature (Hurrell et al., 2001).
The NAO-temperature relationship, however, is not straight-
forward and its mechanism is not yet fully understood. Re-
cent studies show that the relationship between the NAO and
the winter Northern Hemisphere surface temperature (NHT)
might be a function of the NAO state (Pozo-V́azques et al.,
2001). There are energetic modes of coherent variability be-
tween temperature and the NAO in the time domain of 2–6
years for 1857–1879 and 1978–1984, and in the domain of
6–10 years from 1961 to 1991 (Pozo-V́azques et al., 2001).
Changes of the strength and character of correlations be-
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tween the NAO and the NHT seems to be modulated by the
phase of the solar activity cycle (Gimeno et al., 2003).

The long-term dynamical behaviour of the NAO phe-
nomenon itself is far from being understood and is also in-
vestigated in connection with studies of predictability of the
NAO and the ability of climate numerical models of simulat-
ing it (Eden et al., 2002; Bojariu and Gimeno, 2003). Some
authors are pessimistic, claiming that the NAO index can be
considered just as pink noise with very little predictability
(Fernandez et al., 2003). On the other hand, Ǵamiz-Fortis
et al. (2002) have applied the Monte Carlo Singular System
Analysis (MC SSA) to the winter NAO index, i.e., yearly
sampled values obtained by averaging December, January
and February index values, and, using an embedding window
of lengthn=40 years, were able to identify an oscillatory
mode with a period of about 7.7 years. Paluš and Novotńa
(2004) have introduced the so called enhanced MC SSA,
based on evaluating and testing the regularity of the dynam-
ics of the SSA modes against the colored noise null hypothe-
sis, in addition to the test based on variance (eigenvalues).
The application of the regularity index, computed from a
coarse-grained estimation of mutual information, enhances
the test sensitivity and reliability in the detection of dynam-
ical modes which are relatively more regular than those ob-
tained by decomposition of colored noise, in particular, in
the detection of irregular oscillations embedded in red noise.
This enhanced MC SSA was successfully applied in the de-
tection of oscillatory modes of period 7.8 years in records of
monthly average near-surface air temperature from several
European locations, as well as in the monthly North Atlantic
Oscillation index (Palǔs and Novotńa, 2004).

In this paper we continue and refine the enhanced MC SSA
analysis of the temperature records and the monthly North
Atlantic Oscillation index by focusing on higher (than near-
decadal) frequencies and demonstrate the presence of several
oscillatory modes with periods in the range from 20 to 64
months. The most prominent oscillatory mode (besides the
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288 M. Palǔs and D. Novotńa: Phase-synchronized QBO in the NAO and temperature records

above mentioned mode with period 7.8 years) is the mode
with the average period 27 months. We identify this mode
with the quasi-biennial oscillation (QBO) and extract this os-
cillatory mode from both the temperature data and the NAO
index. The extracted oscillatory modes (projections on the
SSA/EOF basis) are further studied by the means of synchro-
nization analysis (Pikovsky et al., 2001) and the existence
of phase synchronization between the QBO modes from the
temperature and from the NAO index is demonstrated and
statistically proven.

A brief introduction into Monte Carlo singular system
analysis and its enhancement is given in Sect.2. The ana-
lyzed data are described in Sect.3. Section4 summarizes
the application of enhanced MC SSA to monthly average
near-surface temperature records and to the monthly NAO
index. Synchronization analysis is introduced and applied
to the QBO modes in Sect.5. The results are discussed in
Sect.6 and conclusions are given in Sect.7.

2 Monte Carlo singular system analysis

Singular system (or singular spectrum) analysis (SSA) in its
original form (also known as principal component analysis,
or Karhunen-Lòeve decomposition) is a method for the iden-
tification and distinction from noise of important informa-
tion in multivariate data. It is based on an orthogonal de-
composition of a covariance matrix of multivariate data un-
der study. SSA provides an orthogonal basis onto which the
data can be transformed, thus making individual data compo-
nents (“modes”) linearly independent. Each of the orthogo-
nal modes (projections of the original data onto new orthog-
onal basis vectors) is characterized by its variance, which is
given by the related eigenvalue of the covariance matrix.

Here we will deal with a univariate version of SSA in
which the analyzed data is a univariate time series and the
decomposed matrix is a time-lag covariance matrix, i.e., in-
stead of several components of multivariate data, a time se-
ries and its time-lagged versions are considered. This form
of SSA, which has frequently been used in the field of mete-
orology and climatology (Vautard and Ghil, 1989; Ghil and
Vautard, 1991; Keppenne and Ghil, 1992; Yiou et al., 1994;
Allen and Smith, 1994), can provide a decomposition of the
studied time series into orthogonal components (modes) with
different dynamical properties, and thus “interesting” phe-
nomena such as slow modes (trends) and regular or irregular
oscillations (if present in the data) can be identified and re-
trieved from the background of noise and/or other “uninter-
esting” non-specified processes.

In traditional SSA, the distinction of “interesting” com-
ponents (signal) from noise is based on finding a threshold
(jump-down) to a “noise floor” in a sequence of eigenvalues
given in a descending order. This approach might be prob-
lematic if the signal-to-noise ratio is not sufficiently large,
or the noise present in the data is not white but “colored”.

For such cases, statistical approaches utilizing Monte Carlo
simulation techniques have been proposed (Ghil and Vautard,
1991; Vautard et al., 1992) for reliable signal/noise separa-
tion. The particular case of Monte Carlo SSA (MC SSA) that
considers “red” noise, usually present in geophysical data,
has been introduced byAllen and Smith(1996).

Now, we present a few necessary details of the SSA
method in the form of a technical recipe:

Take the analyzed time series{y(i)}, i=1, . . . , N0, and
construct a map (“embedding”) into a space ofn-dimensional
vectorsx(i) with componentsxk(i), given as

xk(i) = y(i + k − 1), (1)

wherek=1, . . . , n; andn is the embedding dimension.
Construct a symmetricn×n matrix C=XTX, with ele-

ments:

ckl = (1/N)
N∑
i=1

xk(i)xl(i), (2)

where 1/N is the proper normalization and the components
xk(i), i=1, . . . , N , are supposed to have a zero mean. The
symmetric matrixC can be decomposed as

C = V6VT , (3)

where then×n matrix V={vij } gives an orthonormal basis
in the space of vectorsx(i), 6=diag(σ1, σ2, . . . , σn), σi are
non-negative eigenvalues giving the variance of orthogonal
modes

ξ k(i) =

n∑
l=1

vlkx
l(i), (4)

into which the original series can be decomposed. For more
details, see, e.g.,Vautard et al.(1992).

Of course, the original time seriesxk(i) can be recon-
structed from the modes, as

xk(i) =

n∑
l=1

vklξ
l(i). (5)

In Eq. (5), the modesξ k(i) can also be interpreted as time-
dependent coefficients and the orthogonal vectorsvk={vkl}

as basis functions, usually called the empirical orthogonal
functions (EOFs).

The clear signal/noise distinction based on the eigenvalues
σ1, σ2, . . . , σn can only be obtained in particularly idealized
situation when the signal/noise ratio is large enough and the
background consists of white noise. In many geophysical
processes, however, so-called “red” noise with power spec-
trum of the 1/f type is present (Allen and Smith, 1996). Its
SSA eigenspectrum also has the 1/f character (Gao et al.,
2003), i.e., an eigenspectrum of red noise is equivalent to a
coarsely discretized power spectrum, where the number of
frequency bins is given by the embedding dimensionn. The
eigenvalues related to the slow modes are much larger than
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the eigenvalues of the modes related to higher frequencies.
Thus, in the classical SSA approach applied to red noise,
the eigenvalues of the slow modes might incorrectly be in-
terpreted as a (nontrivial) signal, or, on the other hand, a
nontrivial signal embedded in red noise might be neglected if
its variance is smaller than the slow-mode eigenvalues of the
background red noise. Therefore,Allen and Smith(1996)
proposed comparing the SSA spectrum of the analyzed sig-
nal with SSA spectra of a red-noise model fitted to the stud-
ied data. Such a red-noise process can be modeled by using
an AR(1) model (autoregressive model of the first order):

u(i)− û = α(u(i − 1)− û)+ γ z(i), (6)

whereû is the process mean,α andγ are process parameters,
andz(i) is Gaussian white noise with a zero mean and a unit
variance.

In order to correctly detect a signal in red noise, the follow-
ing approach has been proposed (Allen and Smith, 1996):
First, the eigenvalues are plotted not according to their val-
ues, but according to a frequency associated with a particular
mode (EOF), i.e., the eigenspectrum in this form becomes
a sort of a (coarsely) discretized power spectrum in general,
not only in the case of red noise (when the eigenspectrum
naturally has this form, as mentioned above).
Second, an eigenspectrum obtained from studied data is com-
pared, in a frequency-by-frequency way, with eigenspectra
obtained from a set of realizations of an appropriate noise
model (such as the AR(1) model (6)), i.e., an eigenvalue re-
lated to a particular frequency bin obtained from the data is
compared with a range of eigenvalues related to the same
frequency bin, obtained from the set of realizations of the
chosen AR(1) model.

The detection of a nontrivial signal in an experimental time
series becomes a statistical test in which the null hypothe-
sis that the experimental data were generated by a chosen
noise model is tested. The realizations of the considered
noise model (“null hypothesis”), i.e., the artificial data gen-
erated by the chosen noise model, are usually called “sur-
rogate data” (Theiler et al., 1992; Allen and Smith, 1996;
Palǔs, 1995; Palǔs and Novotńa, 2004). When an eigenvalue
associated with some frequency bin differs with a statistical
significance from the range of related noise model eigenval-
ues, then one can infer that the studied data cannot be fully
explained by the null hypothesis and could contain an addi-
tional (nontrivial) signal.

The above MC SSA is a sophisticated technique, but it still
assumes that the signal of interest has been linearly added to
a specified noise background and therefore that the variance
in the frequency band, characteristic of the signal, is signifi-
cantly greater than the typical variance in this frequency band
obtained from the noise model. If the studied signal has a
more complicated origin, e.g., when an oscillatory mode is
embedded into a background process without significantly
increasing variance in a particular frequency band, the stan-
dard MC SSA can fail. In order to be able to detect any inter-

esting dynamical mode independently of its (relative) vari-
ance,Palǔs and Novotńa (2004) have proposed testing also
dynamical properties of the SSA modes against the modes
obtained from surrogate data. In their particular implemen-
tation, the dynamics of the modes is characterized by their
predictability (or regularity) measured by means of informa-
tion theory.

The mutual informationI (X;Y ) of two random variables
X and Y is given by I (X;Y )=H(X)+H(Y)−H(X, Y ),
where the entropiesH(X), H(Y ), H(X, Y ) are defined in
the usual Shannonian sense (Cover and Thomas, 1991). For
a time series{x(t)}, considered as a realization of a sta-
tionary and ergodic stochastic process{X(t)}, t=1, 2, 3, . . .,
we compute the mutual informationI (x; xτ ) as a function
of time lag τ . In the following, we will markx(t) as x
andx(t+τ) asxτ . Let us find suchτmax that for τ ′

≥τmax:
I (x; xτ ′)≈0 for the analyzed datasets. Then we define the
regularity index to be the norm of the mutual information:

||I (x; xτ )|| =
1τ

τmax − τmin +1τ

τmax∑
τ=τmin

I (x; xτ ) (7)

with τmin=1τ=1 (sample) as a usual choice.
Since the mutual informationI (x; xτ ) measures the

average amount of information contained in the process
{X} about its futureτ time units ahead, the regularity index
||I (x; xτ )|| gives an average measure of predictability of
the studied signal and is inversely related to the signal’s
entropy rate, i.e., to the rate at which the system, or process,
producing the studied signal “forgets” information about its
previous states (Palǔs, 1996a).

Finally, we realize the enhanced MC SSA as follows:

1. The studied time series undergoes SSA as briefly de-
scribed above, or, in detail inPalǔs and Novotńa(2004),
i.e., using an embedding window of lengthn, then×n
lag-correlation matrixC is decomposed using the SVD-
CMP routine (Press et al., 1986). In the eigenspectrum,
the position of each eigenvalue on the abscissa is given
by the dominant frequency associated with the related
EOF, i.e., detected in the related mode. That is, the stud-
ied time series is projected onto the particular EOF, the
power spectrum of the projection (mode) is estimated,
and the frequency bin with the highest power is iden-
tified. This spectral coordinate is mapped onto one of
then frequency bins, which equidistantly divide the ab-
scissa of the eigenspectrum.

2. An AR(1) model is fitted to the series under study, and
the residuals are computed.

3. The surrogate data are generated using the above AR(1)
model, where “scrambled” (randomly permutated in
temporal order) residuals are used as innovations, i.e.,
the noise termγ z(i) in Eq. (6) .
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Fig. 1. Enhanced MC SSA analysis of the NAO index(a, c) and
Prague near-surface air temperature series(b, d). Low-frequency
parts of eigenspectra – logarithms of eigenvalues (“LOG POWER”)
(a, b) and regularity index spectra (c, d). Bursts – eigenvalues or
regularity indices for the analysed data; bars – 95% of the surrogate
eigenvalues or regularity index distribution, i.e., the bar is drawn
from the 2.5th to the 97.5th percentiles of the surrogate eigenval-
ues/regularity indices distribution. Both datasets span the period
1824–2002, the embedding dimensionn=480 months was used.

4. Each realization of the surrogates undergoes SSA as de-
scribed in step 1. Then, the eigenvalues for the whole
surrogate set, in each frequency bin, are sorted and the
values for the 2.5th and 97.5th percentiles are found. In
eigenspectra, the 95% range of the surrogates’ eigen-
value distribution is illustrated by a horizontal bar be-
tween the above percentile values.

5. For each frequency bin, the eigenvalue obtained from
the studied data is compared with the range of the surro-
gate eigenvalues. If an eigenvalue lies outside the range
given by the above percentiles, the null hypothesis of
the AR(1) process is rejected, i.e., there is a probability
p<0.05 that the data can be explained by the null noise
model.

6. For each SSA mode (a projection of the data onto a
particular EOF), the regularity index is computed, as
well as for each SSA mode for all the realizations of
surrogate data. The regularity indices are processed
and statistically tested in the same way as the eigenval-
ues. The regularity index is based on mutual informa-
tion obtained by a simple box-counting approach with
marginal equiquantization (Palǔs, 1995, 1996a, 1997a).

3 The data

The NAO index is traditionally defined as the normalized
pressure difference between the Azores and Iceland. The
NAO data used here and their description are available at
http://www.cru.uea.ac.uk/cru/data/nao.htm.

In the initial stage of this study, we used monthly average
near-surface air temperature time series from ten European
stations (seePalǔs and Novotńa, 2004, for details) obtained
from the Carbon Dioxide Information Analysis Center Inter-
net server (ftp://cdiac.esd.ornl.gov/pub/ndp041) and a time
series from the Prague–Klementinum station from the pe-
riod 1781–2002. The long-term monthly averages were sub-
tracted from the data, so that the annual cycle was effectively
filtered out. In this paper, which should be considered as a
methodological one, i.e., introducing the method of detec-
tion and extraction of oscillatory modes from raw data and
their subsequent synchronization analysis, we focus on the
latter data from the Prague-Klementinum station, taken from
the period 1824–2002 in order to have the same time span
as the used NAO index data. Further results from other sta-
tions as well as from NCEP/NCAR reanalysis series will be
published elsewhere.

4 Enhanced MC SSA: detection and extraction of oscil-
latory modes

The results from the enhanced MC SSA for the considered
NAO index and the Prague near-surface air temperature time
series are presented in Fig. 1. In order to have the results
comparable with previous studies (Palǔs and Novotńa, 2004;
Gámiz-Fortis et al., 2002), we used the embedding dimen-
sion n=480 months. In the standard MC SSA, the only
eigenvalue undoubtedly distinct from the surrogate range is
the trend (zero frequency) mode in the temperature (Fig. 1b).
Further, there are two modes at the frequency 0.0104 just
above the surrogate bar in both the temperature and NAO test
(Figs. 1a, b). The eigenvalue for the temperature is slightly
closer to significance than inPalǔs and Novotńa(2004). This
better distinction is due to the larger number of surrogate re-
alizations (5000) used in this study. These results, however,
are still “on the edge” of significance and are not very con-
vincing.

A quite different picture is obtained from the analyses
based on the regularity index (Figs. 1c, d). InPalǔs and
Novotńa (2004), slow modes were the main interest, so that
in the estimation of the regularity index (7), the parameter
τmax was extended up to four decades. We expected that such
a choice could diminish the test sensitivity for faster oscil-
lations and therefore in the present study we setτmax=120
months. This strongly increased the significance of the pe-
riod 8 yr modes (frequency 0.0104), and in addition several
other new significant modes appeared in both the NAO and
temperature (Figs. 1c, d). The distinction of the regularity
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indices of these modes from the related surrogate ranges
is clear and even the simultaneous statistical inference (see
Palǔs, 1995, and references therein) cannot jeopardize the
significance of the results. The significant modes in the
NAO are located at the frequencies (in cycles per month)
0.004, 0.006, 0.0104, 0.014, 0.037 and 0.049, corresponding
to the periods of 240, 160, 96, 73, 27 and 20 months, respec-
tively. Besides the zero frequency (trend) mode, the signifi-
cant modes in the temperature are located at the frequencies
0.0104, 0.014, 0.016, 0.018, 0.025, 0.037 and 0.051, cor-
responding to the periods of 96, 68, 64, 56, 40, 27 and 20
months, respectively. The modes with period 8 years were
extracted and presented inPalǔs and Novotńa (2004), their
mean frequency was estimated with higher precision as 7.8
years. Besides the latter modes (and the trend mode in the
temperature), the highest regularity index was obtained for
the modes with the period of 27 months (frequency 0.037).
This frequency lies within the range of the quasi-biennial
oscillations (QBO), therefore we will use the term “QBO
modes”. The QBO modes were extracted from both the NAO
index and the temperature, i.e., the raw data were projected
on the related eigenvector, and are illustrated in Figs. 2a, b.
The extracted modes are shorter than the original time series
by the embedding dimensionn=480 months, and there is an
uncertainty of the exact timing of the modes equal to the em-
bedding window of 40 years. We adjusted the temporal coor-
dinate of the modes by maximizing their correlation with the
original data, although this approach does not always give an
unambiguous result.

5 Synchronization analysis: the method and results

Based on the concept of phase synchronization of chaotic
oscillators (Rosenblum et al., 1996; Pikovsky et al., 2001),
a novel technique has been developed to analyze complex,
even non-stationary, bivariate data (Pikovsky et al., 2001;
Palǔs, 1997b). First, we calculate the instantaneous phases
φ1(t) andφ2(t) of analyzed signals, in this case, of the QBO
modes extracted from the NAO and the temperature data.
The instantaneous phase and amplitude of a signals(t) can
be determined by using the analytic signal concept ofGabor
(1946), recently introduced into the field of nonlinear dynam-
ics within the context of chaotic synchronization (Rosenblum
et al., 1996). The analytic signalψ(t) is a complex function
of time defined as

ψ(t) = s(t)+ j ŝ(t) = A(t)ejφ(t). (8)

Usually, the imaginary part̂s(t) of the analytic signalψ(t)
can be obtained by using the Hilbert transform ofs(t)

ŝ(t) =
1

π
P.V.

∫
∞
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s(τ )

t − τ
dτ. (9)
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Fig. 2. The QBO mode extracted from the monthly NAO index
(a) and the monthly Prague near-surface air temperature series(b).
The instantaneous phase difference of the NAO and the temperature
QBO modes obtained from the instantaneous phases computed from
the SSA modes(c) and the same phase difference computed from
the instantaneous phases estimated using the complex continuous
wavelet transform(d).

(P.V. means that the integral is taken in the sense of the
Cauchy principal value.)A(t) is the instantaneous amplitude
and the instantaneous phaseφ(t) of the signals(t) is

φ(t) = arctan
ŝ(t)

s(t)
. (10)

Having the analyzed signals extracted as the SSA modes,
each oscillatory mode usually exists together with its orthog-
onal (π/2-delayed or advanced) version. These two modes
can be considered to be the real and imaginary parts of the
analytic signal and the phaseφ(t) can be obtained according
to Eq. (10). Another approach, also considered here, is based
on the wavelet transform (Torrence and Compo, 1998). Ap-
plying a continuous complex wavelet transform directly to
the NAO index and the temperature time series, the complex
coefficients related to the scale (frequency) of the studied cy-
cles (the period of 27 months) can directly be used in Eq. (10)
to estimate the phaseφ(t). Having the instantaneous phases
φ1(t) andφ2(t) of the NAO and the temperature QBO modes,
respectively, we define the instantaneous phase difference

1φ(t) = φ1(t)− φ2(t). (11)

In the classical case of periodic self-sustained oscillators,
phase synchronization is defined as phase locking, i.e.,
the phase difference is constant. In the case of phase-
synchronized chaotic or other complex noisy systems, fluc-
tuations of phase difference typically occur. Therefore, the
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Fig. 3. (a)The instantaneous phase difference of the NAO and the
temperature QBO modes obtained from the instantaneous phases
computed from the SSA modes (thick solid line) compared with
the instantaneous phase difference of the oscillatory modes of fre-
quency 0.0407 (thin dashed line), again extracted by SSA from the
monthly NAO index and the monthly Prague near-surface air tem-
perature series.(b) The instantaneous phase difference of the NAO
and the temperature QBO modes computed from the instantaneous
phases estimated using the complex continuous wavelet transform
(thick solid line) compared with the instantaneous phase differences
computed in the same way, but with realization of the isospec-
tral surrogate data used instead of the temperature time series (thin
dashed/dotted lines).

criterion for phase synchronization is that the absolute val-
ues of1φ must be bounded (Rosenblum et al., 1996). When
the instantaneous phases are not represented as cyclic func-
tions in the interval[0, 2π ] but as monotonously increasing
functions on the whole real line, then the instantaneous phase
difference1φ(t) is also defined on the real line and is an
unbounded (increasing or decreasing) function of time for
asynchronous states of systems, while epochs of phase syn-
chronization appear as plateaus in the1φ(t) vs. time plots.
The phase difference1φ(t) of the NAO and the temperature
QBO modes obtained from the instantaneous phases com-
puted from the SSA modes as the real and the imaginary
parts of the analytic signals is presented in Fig. 2c. After
an initial decrease and a jump, there is a clear plateau start-
ing at about the year 1870, extending to 1955, when the SSA
estimate of the phases ends due to the embedding dimension
n=480 months. A larger part of the data can be exploited
using the wavelet transform, which gives the phase differ-
ence1φ(t) of the NAO and the temperature QBO modes
presented in Fig. 2d. Paluš et al. (2005) compared the three
above mentioned methods for the estimation of instantaneous

phase and demonstrated their equivalency. There are, how-
ever, some differences in the numerical properties of the es-
timates. SSA uses the natural basis of the empirical orthog-
onal functions and thus is more precise and sensitive to local
extrema. Its drawback is the above mentioned uncertainty
of the temporal localization of the modes and the phases.
The cross-correlation method for the temporal localization
does not always give unambiguous results and can hardly be
fully automatized for the processing of large amounts of data.
The wavelet method caused some smoothing of the estimates
given by the shape of the wavelet basis functions leading to
decreased precision of the estimates, however, the estimated
phases are exactly localized in time and thus automated pro-
cessing of large amounts of data is possible. Nevertheless,
in the period 1870–1955, both methods consistently estimate
the plateau in the1φ(t) vs. time plot, i.e. they indicate phase
synchronization between the QBO modes in the NAO and in
the temperature. The flatness of the plateau in the1φ(t)

vs. time plot is indeed visually convincing, demonstrating
the bounded character of1φ(t). One can doubt, however,
whether this is indeed a demonstration of the physical phe-
nomenon of phase synchronization. The extraction of the
SSA modes is in fact a very narrow band filtration of the
analyzed signal. Two sine waves with the same frequency
would be formally phase-locked without any physical inter-
action. In order to demonstrate that the plateau in Figs. 1c, d
is not a trivial consequence of the filtration, we compute the
instantaneous phase difference for two SSA modes of close
frequency. The modes on the frequency 0.0407 in both the
NAO and the temperature series (Fig. 1) are not significant
in our enhanced MC SSA test and thus do not represent any
physically existing oscillation but just the narrow-band filtra-
tion of the background noise. Their phase difference (Fig. 3a,
thin dashed line) behaves as an unbounded random walk.

We can go further and compute the instantaneous phase
difference of oscillatory modes on the same frequency (pe-
riod 27 months) using the wavelet method applied to the
NAO index, but instead of the temperature data we use so-
called isospectral surrogate data (Theiler et al., 1992; Palǔs,
1995). In the above MC SSA, we used the AR(1) model as
the surrogate data which preserved the 1/f character of the
spectrum of the data but not possible cycles. In this case,
we need to preserve the possible existence of cycles, i.e.,
we need to preserve the whole spectrum of the signal, but to
randomize phases of such cycles in order to destroy any de-
pendence on the NAO possibly contained in the temperature
data. The isospectral surrogate data are constructed from the
real temperature data by means of the Fast Fourier Transform
(FFT): The FFT is computed, the magnitude of the FFT coef-
ficients (i.e. the power spectrum) is preserved, but the Fourier
phases are randomized. After inverse FFT, we obtain a sig-
nal with the same power spectrum as the temperature series,
but independent of the NAO or any other real atmospheric
process.
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The instantaneous phase differences1φ(t) obtained us-
ing four different (independently randomized) realizations of
the isospectral surrogate data are presented in Fig. 3b as thin
dashed and/or dotted lines. They are apparently unbounded,
they look smoother due to their estimation by means of the
wavelet transform.

We will not rely on the above visual evidence but will
prove the existence of phase synchronization in a statistical
way. First, we express the flatness of the plateau in the1φ(t)

vs. time plot in a quantitative way. Now, we consider1φ(t)
as1φ(t) mod(2π) and use a simple trigonometric statistic,
known also as the mean resultant length (MRL) (Allefeld and
Kurths, 2004):

MRL =

√
〈cos(1φ(t))〉2

+ 〈sin(1φ(t))〉2 (12)

where〈〉 means the temporal average. The MRL tends to zero
for asynchronous processes and to one for phase locked sys-
tems. Considering real noisy data, neither 0 nor 1 is reached,
but we can expect that the MRL for synchronized oscillations
will be significantly larger than for unsynchronized (surro-
gate) processes.

Palǔs (1997b) demonstrated that the instantaneous phases
φ1, φ2 of phase-synchronized systems are confined in strip-
like structures when plotted in the plane(0,2π)×(0, 2π),
while the instantaneous phasesφ1, φ2 of asynchronous pro-
cesses almost homogeneously fill the plane(0,2π)×(0, 2π).
The dependence betweenφ1 andφ2, i.e., the structure in the
φ1, φ2 plot, can be quantified by using various statistical or
information-theoretic approaches. Here we use the mutual
information (Cover and Thomas, 1991), defined as

I (φ1, φ2) =∫ 2π

0

∫ 2π

0
p1,2(φ1, φ2) log

p1,2(φ1, φ2)

p1(φ1)p2(φ2)
dφ1dφ2, (13)

wherep1(φ1) andp2(φ2) are probability distributions of the
phasesφ1 andφ2, respectively, andp1,2(φ1, φ2) is their joint
distribution. Theoretically, independence of the phases, i.e.,
the absence of phase synchronization, means homogeneous
distribution of the points(φ1, φ2) and I (φ1, φ2)=0; while
for phase synchronization, i.e., a mutual dependence of the
phases,I (φ1, φ2)>0 holds. For reliable detection of the
phase synchronization in experimental data, it is necessary
to establish thatI (φ1, φ2)>0 with a statistical significance.
Therefore, we compute both the MRL andI (φ1, φ2) for a
large number (5000) of realizations of the surrogate data,
construct histograms and cumulative histograms of the MRL
and I (φ1, φ2) surrogate distributions (Fig. 4) and compare
them with the MRL andI (φ1, φ2) values obtained for the
NAO and temperature data (solid vertical lines in Fig. 4).
The cumulative histograms can be used for estimation of the
significance of the test – thep value which is in fact the
probability, that such a value of the MRL orI (φ1, φ2), as
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Fig. 4. Histograms (a,b) and cumulative histograms (c,d) for the
surrogate distribution of the mean resultant length (a,c) and the mu-
tual information I(φ1, φ2) (b,c). The related values obtained from
the QBO phases extracted from the monthly NAO index and the
monthly Prague near-surface air temperature series are presented
as the solid vertical lines. The wavelet transform was used for the
phase estimation.

like structures when plotted in the plane (0, 2π) × (0, 2π),
while the instantaneous phases φ1, φ2 of asynchronous pro-
cesses almost homogeneously fill the plane (0, 2π)×(0, 2π).
The dependence between φ1 and φ2, i.e., the structure in the
φ1, φ2 plot, can be quantified by using various statistical or
information-theoretic approaches. Here we use the mutual
information (Cover & Thomas, 1991), defined as

I(φ1, φ2) =
∫ 2π

0

∫ 2π

0

p1,2(φ1, φ2) log
p1,2(φ1, φ2)
p1(φ1)p2(φ2)

dφ1dφ2, (13)

where p1(φ1) and p2(φ2) are probability distributions of the
phases φ1 and φ2, respectively, and p1,2(φ1, φ2) is their joint
distribution. Theoretically, independence of the phases, i.e.,
the absence of phase synchronization, means homogeneous
distribution of the points (φ1, φ2) and I(φ1, φ2) = 0; while
for phase synchronization, i.e., a mutual dependence of the
phases, I(φ1, φ2) > 0 holds. For reliable detection of the
phase synchronization in experimental data, it is necessary
to establish that I(φ1, φ2) > 0 with a statistical significance.
Therefore, we compute both the MRL and I(φ1, φ2) for a
large number (5,000) of realizations of the surrogate data,
construct histograms and cumulative histograms of the MRL
and I(φ1, φ2) surrogate distributions (Fig. 4) and compare
them with the MRL and I(φ1, φ2) values obtained for the
NAO and temperature data (solid vertical lines in Fig. 4).
The cumulative histograms can be used for estimation of the
significance of the test – the p value which is in fact the
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Fig. 5. Histograms (a,b) and cumulative histograms (c,d) for the
distribution of the mean resultant length (a,c) and the mutual infor-
mation I(φ1, φ2) (b,c) obtained from the bivariate surrogate data
preserving the crosscorrelation between the NAO and temperature
series. The related values obtained from the QBO phases extracted
from the monthly NAO index and the monthly Prague near-surface
air temperature series are presented as the solid vertical lines. The
wavelet transform was used for the phase estimation.

probability, that such a value of the MRL or I(φ1, φ2), as
obtained from the NAO and temperature data, can be ob-
tained by chance from unsynchronized or independent pro-
cesses with the same frequency spectra. The obtained val-
ues are p < 0.0005 for the MRL and p < 0.00002 for the
I(φ1, φ2) test. We can conclude that phase synchronization
of the NAO and temperature QBO modes has been proven
with a high statistical significance.

6 Discussion of results

An introduction of relatively new, nonlinear methods to anal-
ysis of experimental time series always evokes two types
of questions: 1) Does the new method bring more infor-
mation than common, already verified linear methods? 2)
Does the the new nonlinear method indeed reflect a nonlin-
ear phenomenon or is a linear model/explanation sufficient?
In this case, cannot a simple cross-correlation mimic the phe-
nomenon of phase synchronization? Searching for answers
to both questions, we perform the same testing as above
(Fig. 4), but instead of (independent) surrogate data which
preserved spectral properties of individual time series, now
we construct bivariate surrogate data (Prichard & Theiler,
1994; Paluš, 1996b) preserving also the cross-correlations of
the original (NAO and temperature) time series. Looking at
the resulting histograms (Fig. 5) we can see that bivariate
FFT surrogate data can reject the null hypothesis of inde-
pendence used in the previous test (Fig. 4) and, indeed, even

Fig. 4. Histograms(a, b) and cumulative histograms(c, d) for the
surrogate distribution of the mean resultant length (a, c) and the mu-
tual informationI (φ1, φ2) (b, c). The related values obtained from
the QBO phases extracted from the monthly NAO index and the
monthly Prague near-surface air temperature series are presented
as the solid vertical lines. The wavelet transform was used for the
phase estimation.

obtained from the NAO and temperature data, can be ob-
tained by chance from unsynchronized or independent pro-
cesses with the same frequency spectra. The obtained values
arep<0.0005 for the MRL andp<0.00002 for theI (φ1, φ2)

test. We can conclude that phase synchronization of the NAO
and temperature QBO modes has been proven with a high
statistical significance.

6 Discussion of results

An introduction of relatively new, nonlinear methods to anal-
ysis of experimental time series always evokes two types
of questions: 1) Does the new method bring more infor-
mation than common, already verified linear methods? 2)
Does the the new nonlinear method indeed reflect a nonlin-
ear phenomenon or is a linear model/explanation sufficient?
In this case, cannot a simple cross-correlation mimic the phe-
nomenon of phase synchronization? Searching for answers
to both questions, we perform the same testing as above
(Fig. 4), but instead of (independent) surrogate data which
preserved spectral properties of individual time series, now
we construct bivariate surrogate data (Prichard and Theiler,
1994; Palǔs, 1996b) preserving also the cross-correlations
of the original (NAO and temperature) time series. Look-
ing at the resulting histograms (Fig. 5) we can see that bi-
variate FFT surrogate data can reject the null hypothesis of
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Fig. 4. Histograms (a,b) and cumulative histograms (c,d) for the
surrogate distribution of the mean resultant length (a,c) and the mu-
tual information I(φ1, φ2) (b,c). The related values obtained from
the QBO phases extracted from the monthly NAO index and the
monthly Prague near-surface air temperature series are presented
as the solid vertical lines. The wavelet transform was used for the
phase estimation.

like structures when plotted in the plane (0, 2π) × (0, 2π),
while the instantaneous phases φ1, φ2 of asynchronous pro-
cesses almost homogeneously fill the plane (0, 2π)×(0, 2π).
The dependence between φ1 and φ2, i.e., the structure in the
φ1, φ2 plot, can be quantified by using various statistical or
information-theoretic approaches. Here we use the mutual
information (Cover & Thomas, 1991), defined as

I(φ1, φ2) =
∫ 2π

0

∫ 2π

0

p1,2(φ1, φ2) log
p1,2(φ1, φ2)
p1(φ1)p2(φ2)

dφ1dφ2, (13)

where p1(φ1) and p2(φ2) are probability distributions of the
phases φ1 and φ2, respectively, and p1,2(φ1, φ2) is their joint
distribution. Theoretically, independence of the phases, i.e.,
the absence of phase synchronization, means homogeneous
distribution of the points (φ1, φ2) and I(φ1, φ2) = 0; while
for phase synchronization, i.e., a mutual dependence of the
phases, I(φ1, φ2) > 0 holds. For reliable detection of the
phase synchronization in experimental data, it is necessary
to establish that I(φ1, φ2) > 0 with a statistical significance.
Therefore, we compute both the MRL and I(φ1, φ2) for a
large number (5,000) of realizations of the surrogate data,
construct histograms and cumulative histograms of the MRL
and I(φ1, φ2) surrogate distributions (Fig. 4) and compare
them with the MRL and I(φ1, φ2) values obtained for the
NAO and temperature data (solid vertical lines in Fig. 4).
The cumulative histograms can be used for estimation of the
significance of the test – the p value which is in fact the
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series. The related values obtained from the QBO phases extracted
from the monthly NAO index and the monthly Prague near-surface
air temperature series are presented as the solid vertical lines. The
wavelet transform was used for the phase estimation.

probability, that such a value of the MRL or I(φ1, φ2), as
obtained from the NAO and temperature data, can be ob-
tained by chance from unsynchronized or independent pro-
cesses with the same frequency spectra. The obtained val-
ues are p < 0.0005 for the MRL and p < 0.00002 for the
I(φ1, φ2) test. We can conclude that phase synchronization
of the NAO and temperature QBO modes has been proven
with a high statistical significance.

6 Discussion of results

An introduction of relatively new, nonlinear methods to anal-
ysis of experimental time series always evokes two types
of questions: 1) Does the new method bring more infor-
mation than common, already verified linear methods? 2)
Does the the new nonlinear method indeed reflect a nonlin-
ear phenomenon or is a linear model/explanation sufficient?
In this case, cannot a simple cross-correlation mimic the phe-
nomenon of phase synchronization? Searching for answers
to both questions, we perform the same testing as above
(Fig. 4), but instead of (independent) surrogate data which
preserved spectral properties of individual time series, now
we construct bivariate surrogate data (Prichard & Theiler,
1994; Paluš, 1996b) preserving also the cross-correlations of
the original (NAO and temperature) time series. Looking at
the resulting histograms (Fig. 5) we can see that bivariate
FFT surrogate data can reject the null hypothesis of inde-
pendence used in the previous test (Fig. 4) and, indeed, even

Fig. 5. Histograms(a, b) and cumulative histograms(c, d) for the
distribution of the mean resultant length (a, c) and the mutual infor-
mationI (φ1, φ2) (b, c) obtained from the bivariate surrogate data
preserving the crosscorrelation between the NAO and temperature
series. The related values obtained from the QBO phases extracted
from the monthly NAO index and the monthly Prague near-surface
air temperature series are presented as the solid vertical lines. The
wavelet transform was used for the phase estimation.

independence used in the previous test (Fig. 4) and, indeed,
even cross-correlated linear processes could be erroneously
considered as phase-synchronized nonlinear oscillations. In
our case, however, the values of the mean resultant length
and the mutual informationI (φ1, φ2) show that the associa-
tion of the phases of the QBO modes in the NAO and tem-
perature data is still significantly stronger that that obtained
from bivariate surrogate data. The obtained significance val-
ues arep<0.02 for the MRL andp<0.008 for theI (φ1, φ2)

test (Fig. 5). So we can conclude that we have detected a
nonlinear interaction of the QBO modes in the NAO and tem-
perature records which neither can be explained by a linear
model, nor can be sufficiently described by linear measures.
On the other hand, the question whether we have detected
the phase synchronization sensu stricto is more subtle. Phase
synchronization is a phenomenon occurring in an interaction
of two autonomous (possibly chaotic and/or noisy) oscilla-
tory processes. The atmospheric temperature and pressure
(giving the NAO index) are two variables of one large non-
linear spatio-temporal system – the atmosphere. It is a ques-
tion of the level of description and/or approximation whether
some modes of atmospheric variability can or cannot be con-
sidered as autonomous processes interacting through a non-
linear and time variable coupling. It is known that the re-
lationship between the NAO and the NHT is time-variable

(Polyakova et al., 2006) and can be influenced by solar (Gi-
meno et al., 2003) and geomagnetic activity (Bochńıček and
Hejda, 2005). The long-term dynamics reflected in long-
range correlations or long-term memory have different prop-
erties in the NAO and in the temperature records (Fraedrich,
2003). Recently,Mokhov and Smirnov(2006) have demon-
strated that the NAO interacts, or is influenced by the other
global atmospheric oscillatory process – the El Niño South-
ern Oscillation. We believe that phase synchronization can
be at least a good working model and the above utilized tools
can be developed in the context of phase synchronization to
measure the association of phases. We also believe that mea-
sures characterizing the coupling direction (causality) in the
interaction of phases (Rosenblum and Pikovsky, 2001; Palǔs
and Stefanovska, 2003) can help in the understanding of the
interaction of modes of atmospheric variability (Mokhov and
Smirnov, 2006). This does not mean that, in particular stud-
ies, the new, nonlinear methods should not be accompanied
by standard approaches and their extensions, especially by
those that can cope with nonstationarity, e.g. cross-wavelet
or wavelet coherence approaches (Grinsted et al., 2004; Ma-
raun and Kurths, 2004).

7 Conclusions

In this paper, we demonstrate a sophisticated combination of
methods from nonlinear dynamics with an established linear
method in an application to multivariate geophysical data.
Monte Carlo Singular System Analysis has been extended
by evaluating and testing the regularity of the dynamics of
the SSA modes against the colored noise null hypothesis in
addition to the test based on variance (eigenvalues). The non-
linear approach to the measurement of regularity and pre-
dictability of the dynamics, based on a coarse-grained es-
timate of the mutual information, increases the MC SSA
test sensitivity and reliability in the detection of dynamical
modes which are relatively more regular than those obtained
by decomposition of colored noise.

Enhanced MC SSA has been applied to records of monthly
average near-surface air temperature from several European
locations as well as to the monthly NAO index and several
significant oscillatory modes have been detected by testing
the regularity of the modes. Then, we focused on the oscilla-
tory modes with the average period 27 months which can
be considered as realizations of the quasi-biennial oscilla-
tions (QBO) in both the NAO index and temperature data.
Another method from nonlinear dynamics, synchronization
analysis (Pikovsky et al., 2001; Palǔs, 1997b) gives the pos-
sibility to establish existence of coupling between the QBO
modes present in the NAO and in the temperature time series.
Applying the concept of surrogate data, we proved with high
statistical significance that the QBO modes in the NAO and
in the temperature time series are phase synchronized. We
also showed that the phenomenon of phase synchronization
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is probably a real physical phenomenon and its signatures do
not occur in phase relations of formally extracted, non sig-
nificant SSA modes, although they represent a very narrow-
band filtered colored noise which could erroneously be con-
sidered as real oscillations. The statistical evidence for the
phase synchronization between the QBO modes can be con-
sidered as additional evidence for the real existence of these
oscillatory modes in the dynamics of NAO and air temper-
ature and thus, in return, it confirms the validity of our en-
hanced MC SSA test.

The introduced set of methods will be applied to tempera-
ture data from other stations, as well as to other meteorologi-
cal measurements and to the NCEP/NCAR reanalysis series.
We believe that the results will help us to understand how
global atmospheric circulation processes influence European
weather and climate changes on various temporal scales.

Acknowledgements.This study is supported by the Grant Agency
of the Academy of Sciences of the Czech Republic, project
No. IAA3042401, and in part by the Institutional Research Plans
AV0Z10300504 and AV0Z30420517.

Edited by: M. Thiel
Reviewed by: two referees

References

Allefeld, C. and Kurths, J.: Testing for phase synchronization,
Int. J. Bif. Chaos, 14(2), 406–416, 2004.

Allen, M. R. and Smith, L. A.: Investigating the origins and signif-
icance of low-frequency modes of climate variability, Geophys.
Res. Lett. 21, 883–886, 1994.

Allen, M. R. and Smith, L. A.: Monte Carlo SSA: Detecting ir-
regular oscillations in the presence of colored noise, J. Climate,
9(12), 3373–3404, 1996.
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