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Abstract. Let z 7→ A(z) be a regular function defined on a connected set whose values
are mutually commuting essentially Kato operators. Then the spaces R∞(A(z)) and
N∞(A(z)) are constant. This generalizes results of Aupetit and Zemánek.

Denote by B(X) the set of all bounded linear operators on a complex Banach
space X. For T ∈ B(X) denote by N(T ) the null space and by R(T ) the range of T ,
respectively.

Write also R∞(T ) =
⋂∞

k=1 R(T k) and N∞(T ) =
⋃∞

k=1 N(T k). It is well known that
the spaces R∞(T − zI) and N∞(T − zI) remain constant for all z in a neighbourhood
of zero for various classes of operators although the ranges R(T − zI) and kernels
N(T − zI) do change, see [GK1], [H], [MO].

As it was observed by Aupetit and Zemánek [AZ], this phenomenon is closely
related to the concept of regular functions.

Denote by γ(T ) = inf{‖Tx‖ : dist {x,N(T )} = 1} the reduced minimum modulus
of T . It is well known that γ(T ∗) = γ(T ), and γ(T ) > 0 if and only if T has closed
range.

Let G be a metric space, w ∈ G, and let A : G → B(X) be a continuous operator-
valued function. We say that A is regular at w if R(A(w)) is closed and A satisfies one
of the following equivalent conditions:
(i) the function z 7→ γ(A(z)) is continuous at w;

(ii) lim infz→w γ(A(z)) > 0;
(iii) the function z 7→ R(A(z)) is continuous at w in the gap topology;
(iv) the function z 7→ N(A(z)) is continuous at w in the gap topology.

Recall that the gap between two subspaces M, L ⊂ X is defined by δ̂(M, L) =
max{δ(M, L), δ(L,M)} where δ(M, L) = sup x∈M

‖x‖≤1
dist {x, L}.

Regular functions have been studied by a number of authors, see e.g., [Ma], [T],
[J], [S], [M2]. By property (ii), the set of all regularity points is open.

The regular functions are closely connected with the important class of Kato op-
erators (sometimes also called semiregular operators). An operator T ∈ B(X) is called
Kato if the function z 7→ T − z is regular at 0. It is well known, see e.g. [M2], p.113
that the following conditions are equivalent for an operator T with closed range:
(i) T is Kato;

(ii) N(T ) ⊂ R∞(T );
(iii) N∞(T ) ⊂ R(T );
(iv) N∞(T ) ⊂ R∞(T );
(v) N(T ) ⊂ ∨

z 6=0 N(T − zI);

(vi) R(T ) ⊃ ⋂
z 6=0 R(T − zI).
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201/03/0041 of GA ČR.
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It is known that the spaces R∞(T − z) and N∞(T − z) are constant on each
connected subset of the set {λ ∈ C : T − λ is Kato}; moreover, R∞(T − λ) is closed
whenever T − λ is Kato. This result was generalized in [AZ] to any regular analytic
function, whose values are mutually commuting semi-Fredholm operators.

The aim of this note is to show that the assumption of analycity is not neces-
sary. Moreover, semi-Fredholm operators can be replaced by a more general class of
essentially Kato operators, see below. Thus the spaces R∞(A(z)) and N∞(A(z)) are
constant on each connected set for each regular function whose values are mutually
commuting essentially Kato operators.

For an essential version of Kato operators we use the following notation. For
subspaces M, L ⊂ X write M

e⊂L if dim M/(L ∩ M) < ∞. Equivalently, dim(M +
L)/L < ∞.

An operator T ∈ B(X) is called essentially Kato if R(T ) is closed and T satisfies
any of the following equivalent conditions:
(i) N(T )

e⊂R∞(T );
(ii) N∞(T )

e⊂R(T );
(iii) N∞(T )

e⊂R∞(T ).
(iv) N(T )

e⊂∨
z 6=0 N(T − z);

(v)
⋂

z 6=0 R(T − z)
e⊂R(T ).

In particular, any semi-Fredholm operator is essentially Kato.

We summarize here the basic properties of essentially Kato operators, see [M2], p.
183–187.

Theorem 1.
(i) Let T ∈ B(X) be essentially Kato. Then R(T k) is closed for all k. Consequently,

R∞(T ) is closed;
(ii) T ∈ B(X) is essentially Kato if and only if T ∗ ∈ B(X∗) is essentially Kato;

(iii) T ∈ B(X) is essentially Kato if and only if there exists a closed subspace M ⊂ X
such that TM = M and the operator T̂ : X/M → X/M induced by T is upper
semi-Fredholm.
As the space M it is possible to take M = R∞(T );

(iv) Let T ∈ B(X) be essentially Kato. Then the limit limn→∞ γ(Tn)1/n exists and is
positive. Moreover,

lim
n→∞

γ(Tn)1/n = max
{
r : T − z is Kato for 0 < |z| < r

}
.

We start with the following example which shows that it is really necessary that
the values of the function are mutually commuting. It is not sufficient to assume that
the values A(z) commute with A(w) for a fixed w, even for analytic functions on finite
dimensional spaces.

Example 2. Let X = C3. For z ∈ C let

A(z) =




0 0 0
1 0 z
z 0 z2



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Clearly z 7→ A(z) is an analytic function and rank A(z) = 1 for all z ∈ C. It is easy to
see that A is regular. Moreover, A(0)A(z) = A(z)A(0) for all z ∈ C.

We have A(0)2 = 0, and so R∞(A(0)) = {0}. On the other hand, A(z)




0
1
z


 =

z2




0
1
z


, and so dim R∞(A(z)) = 1 for all z 6= 0.

Similarly, N∞(A(0)) = X and N∞(A(z)) 6= X for z 6= 0. Hence R∞(A(z)) and
N∞(A(z)) are not constant on a neighbourhood of 0.

Moreover, R(A(0)k) = {0} and R(A(z)k) 6= {0} for all z 6= 0 and k ≥ 2. So the
function z 7→ A(z)k is not regular at 0 for k ≥ 2.

Note that A(z) does not commute with A(z′) for z, z′ 6= 0, z 6= z′.

Remark 3. By [FK], the limit limk→∞ γ(A(z)k)1/k exists for each z ∈ C and

lim
k→∞

γ(A(z)k)1/k =max{r > 0 : dim N(A(z)−u) is constant for all u ∈ C, 0 < |u| < r}.

The previous example shows also that the function z 7→ lim γ(A(z)n)1/n is not contin-
uous although the function z 7→ γ(A(z)) is continuous and A(z) commutes with A(0)
for all z.

For our main theorem we need the following finite-dimensional lemma.

Lemma 4. Let dim X < ∞, let Ai ∈ B(X) (i = 0, 1, 2, . . .) be a sequence of mutually
commuting operators, let ‖Ai−A0‖ → 0 and rank Aj = rank A0 for all j. Suppose that
A0 is nilpotent. Then Aj is nilpotent for all j large enough.

Proof. We prove the statement by induction on the dimension of X.
The statement is clear if dim X = 1. Let dim X = k > 1 and suppose that the

statement is true for all spaces with dimension < k.
Suppose on the contrary that the statement is not true and fix a j such that Aj

is not nilpotent. Let M1 = N∞(Aj) and M2 = R∞(Aj). Then X = M1 ⊕ M2 is
the spectral decomposition of Aj corresponding to the sets {0} and C \ {0}. By the
assumptions, dim M1 < dim X and dim M2 ≤ rank Aj = rank A0 < dim X. Clearly the
spaces M1, M2 are invariant with respect to all operators Ai.

Since the rank is a lower semicontinuous function, rank Ai|M1 ≥ rank A0|M1 and
rank Ai|M2 ≥ rank A0|M2 for all i large enough. Thus

rank A0 = rank Ai = rank Ai|M1 + rank Ai|M2 ≥ rank A0|M1 + rank A0|M2 = rank A0.

Hence rank Ai|M1 = rank A0|M1 and rank Ai|M2 = rank A0|M2. By the induction
assumption, Ai is nilpotent for all i large enough.

The following result was proved by Livšak [L]; implicitly it is also contained in
papers of Gol’dman and Kratčkovskii. However, the existing proofs of the result [L],
[AZ] refer for the most difficult step of the proof to [GK2], Theorem 3, where it is stated
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in fact without proof. Therefore we feel that it is convenient to give a complete proof
here. Moreover, we give a quantitative estimate on the norm of perturbation S.

Note that if A is essentially Kato then the space R∞(A)+N∞(A) is automatically
closed. Moreover, we can write N∞(A) = F +

(
R∞(A)∩N∞(A)

)
, where F is a finite-

dimensional subspace and F ∩R∞(A) = {0}. Since F + R∞(A) ∩N∞(A) is closed, we
have N∞(A) = F + R∞(A) ∩N∞(A). Since R∞(A) ∩N∞(A) ⊂ R∞(A), we have

R∞(A) ∩N∞(A) = R∞(A) ∩N∞(A). (1)

Similarly one can show that

R∞(A∗) ∩N∞(A∗)
w∗

= R∞(A∗) ∩N∞(A∗)
w∗

. (2)

Theorem 5. (Livšak) Let A ∈ B(X) be essentially Kato, let S ∈ B(X), SA=AS and
‖S‖ < lim γ(Ak)1/k. Then A + S is essentially Kato,

R∞(A + S) ∩N∞(A + S) = R∞(A) ∩N∞(A)

and
R∞(A + S) + N∞(A + S) = R∞(A) + N∞(A).

Proof. We prove the statement in several steps.

(a) A + S is essentially Kato.

Proof. Set M = R∞(A). Then M is a closed subspace of X invariant with respect
to A and S. Let A1 = A|M and S1 = S|M be the corresponding restrictions. Denote
further by Â : X/M → X/M and Ŝ : X/M → X/M the operators induced by A and S,
respectively. By Theorem 1 (iii), A1 is onto and Â is upper semi-Fredholm. Moreover,

lim
k→∞

γ(Ak)1/k = min
{

lim
k→∞

γ(Ak
1)1/k, lim

k→∞
γ(Âk)1/k

}
,

see [KM]. Clearly ‖S1‖ ≤ ‖S‖ < limk→∞ γ(Ak
1)1/k and ‖Ŝ‖ ≤ ‖S‖ < limk→∞ γ(Âk)1/k.

By [Z], A1 + S1 is onto and Â + Ŝ is upper semi-Fredholm. By Theorem 1, A + S is
essentially Kato.

(b) R∞(A) ⊂ R∞(A + S).

Proof. Since (A + S)M = M , we have R∞(A + S) ⊃ M = R∞(A).

(c) N∞(A + S) ⊂ N∞(A).

Proof. We have

R∞(A) =
∞⋂

k=0

R(Ak) =
∞⋂

k=0

⊥N(A∗k) = ⊥
∞⋃

k=0

N(A∗k) = ⊥N∞(A∗)

and

N∞(A) = ⊥
(
N∞(A)⊥

)
= ⊥

( ∞⋂

k=0

N(Ak)⊥
)

= ⊥
( ∞⋂

k=0

R(A∗k)
)

= ⊥R∞(A∗).
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The analogous equalities are true also for the operator A + S. By duality argument we
have

N∞(A) = ⊥R∞(A∗) ⊃ ⊥R∞(A∗ + S∗) = N∞(A + S).

(d) R∞(A + S) ∩N∞(A + S) ⊂ R∞(A).
Proof. By induction on k we show that R∞(A + S) ∩ N((A + S)k) ⊂ R∞(A). The
statement is clear for k = 0. Let k ≥ 1 and suppose that R∞(A+S)∩N((A + S)k−1) ⊂
R∞(A).

Let x0 ∈ R∞(A + S) ∩N((A + S)k). Let m be larger than

dim(R∞(A) + N∞(A))/R∞(A) = dim(R∞(A) + N∞(A))/R∞(A)

= dim N∞(A)/(R∞(A) ∩N∞(A)).

Since (A + S)R∞(A + S) = R∞(A + S), we can find vectors x1, . . . , xm ∈ R∞(A + S)
such that (A + S)xk = xk−1 (k = 1, . . . , m). It is easy to see that the vectors xk

are linearly independent and belong to N∞(A + S) ⊂ N∞(A). Therefore there is a
nontrivial linear combination y =

∑m
i=0 αixi ∈ R∞(A). Let αm′ 6= 0 and αi = 0 for

i > m′. Then (A + S)m′
y ∈ R∞(A). But

(A + S)m′
y ∈ αm′x0 +

(
R∞(A + S) ∩N((A + S)k−1)

)
.

By the induction assumption, x0 ∈ R∞(A). Hence R∞(A+S)∩N((A+S)k) ⊂ R∞(A)
and, by (1), we have statement (d).

(e) Let c be a positive number such that S′ = cS satisfies ‖S′‖ < 1
2γ(A|M). Then

R∞(A) ∩N∞(A) ⊂ N∞(A + S′).
Proof. By (1), it is sufficient to show that R∞(A) ∩N(An) ⊂ N∞(A + S′) for all n.

Let n ≥ 1 and x0 ∈ N(An) ∩M , where M = R∞(A). Since AM = M , SM ⊂ M
and ‖S′‖ < γ(A|M), we have (A + S′)M = M and

γ((A + S′)|M) ≥ γ(A|M)− ‖S′‖ ≥ 1
2
γ(A|M).

Therefore we can find inductively vectors x1, x2, . . . ∈ M such that (A + S′)xk = xk−1

and ‖xk‖ < 2γ(A|M)−1‖xk−1‖ for all k ≥ 1.
For k ≥ n set yk = x0 −

∑n−1
j=0

(
k
j

)
AjS′k−jxk. Then yk ∈ M and we have

(A + S′)kyk = (A + S′)kx0 −
n−1∑

j=0

(
k

j

)
AjS′k−jx0 = 0.

Thus yk ∈ N∞(A + S′) for all k. Moreover,

‖yk − x0‖ =
∥∥∥

n−1∑

j=0

(
k

j

)
AjS′k−jxk

∥∥∥ ≤
n−1∑

j=0

kj‖Aj‖ · ‖S′‖k−j · ‖xk‖

≤
n−1∑

j=0

kj‖Aj‖ · ‖x0‖
‖S′‖j

·
( 2‖S′‖

γ(A|M)

)k

→ 0
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as k →∞. Thus x0 ∈ N∞(A + S′), and so N∞(A) ∩R∞(A) ⊂ N∞(A + S′).

Proof of the Theorem 5. By statements (a) – (e), the spaces R∞(A + aS) ∩
N∞(A + aS) are constant for all complex numbers a with |a| small enough

(|a| <
γ(A|M)

2‖S‖
)
. By a standard argument, these spaces are constant on each connected set for

which A + aS is essentially Kato. In particular,

R∞(A + S) ∩N∞(A + S) = R∞(A) ∩N∞(A).

The second statement can be obtained by duality argument. As in (c), we have

N∞(A)⊥ = R∞(A∗) and R∞(A)⊥ =
(
⊥N∞(A∗)

)⊥
= N∞(A∗)

w∗
.

By (2), we have

N∞(A) + R∞(A) = ⊥
((

N∞(A) + R∞(A)
)⊥)

= ⊥
(
N∞(A)⊥ ∩R∞(A)⊥

)

=⊥
(
R∞(A∗) ∩N∞(A∗)

w∗)
= ⊥

(
R∞(A∗) ∩N∞(A∗)

)−w∗

.

Similarly,

N∞(A + S) + R∞(A + S) = ⊥
(
R∞(A∗ + S∗) ∩N∞(A∗ + S∗)

)−w∗

,

and so
N∞(A + S) + R∞(A + S) = N∞(A) + R∞(A).

We need the following simple lemma.

Lemma 6. Let A ∈ B(X) be a surjective operator. Then A−1
(
N∞(A)

) ⊂ N∞(A).

Proof. Let x ∈ A−1
(
N∞(A)

)
. Let 0 < c < γ(A) and ε > 0.

Find u ∈ N∞(A) such that ‖Ax−u‖ < cε. Since A is onto, we can find v ∈ X such
that Av = u. Thus v ∈ N∞(A) and ‖A(x− v)‖ < cε. Therefore there is a w ∈ X with
Aw = A(x − v) and ‖w‖ < ε. Consequently, x − v − w ∈ N(A) and x − w ∈ N∞(A).
Hence dist {x, N∞(A)} ≤ ‖w‖ < ε. Since ε was arbitrary, we have x ∈ N∞(A).

Theorem 7. Let G be a metric space, let A : G → B(X) be a regular function.
Suppose that the values of A are mutually commuting operators. Let w ∈ G and
A(w) be essentially Kato. Then the spaces R∞(A(z)) and N∞(A(z)) are constant on
a neighbourhood of w.

Proof. Set M = R∞(A(w)) + N∞(A(w)). By Theorem 5, there is a neighbourhood
U of w such that A(z) is essentially Kato and R∞(A(z)) + N∞(A(z)) = M for each
z ∈ U .

Write A1(z) = A(z)|M : M → M . Since M contains the null spaces of A(z) for
all z ∈ U , the function z 7→ A(z)|M is regular at w. Moreover, the operators A1(z) are
lower semi-Fredholm with finite descent since codim R∞(A1(z)) = dim M/R∞(A(z)) <
∞.
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Let M ′ = R∞(A(w)) ∩N∞(A(w)). Define B(z) : M/M ′ → M/M ′ by

B(z)(m + M ′) = A(z)m + M ′ (z ∈ U).

Since R(A1(z)) ⊃ R∞(A(z)) ⊃ M ′, we have R(B(z)) = R(A1(z))/M ′. It is easy to
check that δ(L1/M

′, L2/M
′) ≤ δ(L1, L2) for all subspaces L1, L2 ⊂ M with L1 ⊃ M ′,

L2 ⊃ M ′. Therefore

δ̂
(
R(B(z)), R(B(w))) ≤ δ̂(R(A1(z)), R(A1(w))

)
,

and so the function z 7→ R(B(z)) is continuous at w in the gap topology. Thus the
function z 7→ B(z) is regular at w.

Clearly codim R∞(B(w)) ≤ dim M/R∞(A(w)) < ∞, and so the operator B(w)
has finite descent. We show that it has also finite ascent.

The Kato decomposition for the operator A1(w) implies that there exists a finite-
dimensional subspace N ⊂ M invariant with respect to A1(w) such that M = N ⊕
R∞(A1(w)) and A1(w)|N is nilpotent. By Lemma 6 for the operator A1(w)n|R∞(A)
we have for each n that

A1(w)−nM ′ ⊂ N + R∞(A1(w)) ∩N∞(A1(w)) = N + M ′,

and so
dim N(B(w)n) = dim

(
A1(w)−nM ′)/M ′ ≤ dim N.

Thus dim N∞(B(w)) < ∞ and B(w) has finite ascent.
Let L1 = R∞(B(w)) and L2 = N∞(B(w)). Then M/M ′ = L1 ⊕ L2, B(w)|L1

is invertible and B(w)|L2 is a finite-dimensional nilpotent. By Lemma 4, there is
a neighbourhood U ′ of w such that B(z)|L1 is invertible and B(z)|L2 is nilpotent
for all z ∈ U ′. Thus R∞(A(z)) = R∞(A1(z)) = π−1

(
R∞(B(z))

)
= π−1(L1) and

N∞(A(z)) = N∞(A1(z)) = π−1
(
N∞(B(z))

)
= π−1(L2), where π : M → M/M ′ de-

notes the canonical projection. Hence the spaces R∞(A(z)) and N∞(A(z)) are constant
on a certain neighbourhood of w.

Remark 8. In fact the functions z 7→ Aj(z) are regular at w for all j sufficiently large.
Clearly this is true for all j satisfying B(w)j |L2 = 0. In particular, this happens for

j ≥ dim
((

R∞(A(w)) + N∞(A(w))
)
/R∞(A(w))

)
.

Corollary 9. Let G be a connected metric space, Let A : G → B(X) be a regu-
lar operator-valued function whose values are mutually commuting essentially Kato
operators. Then the spaces R∞(A(z)) and N(A(z)) are constant on G.

If the operator A(w) is even Kato, then the function A is automatically regular at
w and a weaker version of commutativity is sufficient.

Theorem 10. Let G be a metric space, w ∈ G, let A : G → B(X) be a continuous
function, let the operator A(w) be Kato and let A(z)A(w) = A(w)A(z) for all z ∈ G.
Then the function A is regular at w and there is a neighbourhood U of w such that
A(z) is Kato and the spaces R∞(A(z)) and N(A(z)) are constant for z ∈ U .
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Proof. Set M = R∞(A(w)). Then A(w)M = M and the operator Â(w) : X/M →
X/M induced by A(w) is bounded below. Thus A(z)M = M and the operator Â(z) :
X/M → X/M induced by A(z) is bounded below for all z close to w. So A(z) is Kato.
Let U be an open connected neighbourhood of w such that A(z) is Kato for all z ∈ U
(by [KM], it is possible to take U = {z ∈ G : ‖A(z)−A(w)‖ < lim γ(Ak(w))1/k}).

Since N∞(A(z)) ⊂ R∞(A(z)) for all z ∈ U , by Theorem 5 the spaces R∞(A(z))
and N∞(A(z)) are constant on U .

Let A1(z) ∈ B(M) be the restriction of A(z) to M . Since A1(z) is onto for all
z ∈ U , the function z 7→ A1(z) si regular. Thus the null space N(A1(z)) is changing
continuously in the gap topology. Since N(A(z)) = N(A1(z)) (z ∈ U), the function
z 7→ A(z) is regular in U .
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