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Abstract

The aim of this paper is to give a survey of results and ideas con-
cerning orbits of operators and related notions of weak and polynomial
orbits. These concepts are closely related to the invariant subspace/subset
problem. Most of the proofs are not given in full details, we rather try
to indicate the basic ideas. The central problems in the field are also
formulated.
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1 Introduction

Denote by B(X) the algebra of all bounded linear operators acting on a complex
Banach space X. Let T ∈ B(X). By an orbit of T we mean a sequence
{Tnx : n = 0, 1, . . .} where x ∈ X is a fixed vector.

The concept of orbits comes from the theory of dynamical systems. In the
context of operator theory the notion was first used by Rolewicz [Ro]. Orbits
of operators are closely connected with the local spectral theory, the theory of
semigroups of operators [N], and especially, with the invariant subspace problem,
see e.g. [B2].

The invariant subspace problem is the most important open problem of
operator theory. Recall that a subset M ⊂ X is invariant with respect to an
operator T ∈ B(X) if TM ⊂M . The set M is nontrivial if {0} 6= M 6= X.

Problem 1.1. (invariant subspace problem) Let T be an operator on a Hilbert
space H of dimension ≥ 2. Does there exist a nontrivial closed subspace invari-
ant with respect to T?

It is easy to see that the problem has sense only for separable infinite-
dimensional spaces. Indeed, if H is nonseparable and x ∈ H any nonzero vector,
then the vectors x, Tx, T 2x, . . . span a nontrivial closed subspace invariant with
respect to T .
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If dimH < ∞, then T has at least one eigenvalue and the corresponding
eigenvector generates an invariant subspace of dimension 1. Note that the ex-
istence of eigenvalues is equivalent to the fundamental theorem of algebra that
each nonconstant complex polynomial has a root. Thus the invariant subspace
problem is nontrivial even for finite-dimensional spaces.

Examples of Banach space operators without nontrivial closed invariant sub-
spaces were given by Enflo [E], Beuzamy [B1] and Read [R1]. Read [R2] also
gave an example of an operator T with a stronger property that T has no non-
trivial closed invariant subset.

It is not known whether such an operator exists on a Hilbert space. The
following “invariant subset problem” may be easier than Problem 1.1.

Problem 1.2. (invariant subset problem) Let T be an operator on a Hilbert
space H. Does there exist a nontrivial closed subset invariant with respect to
T?

Both Problems 1.1 and 1.2 are also open for operators on reflexive Banach
spaces. More generally, the following problem is open:

Problem 1.3. Let T be an operator on a Banach space X. Does T ∗ have a
nontrivial closed invariant subset/subspace?

It is easy to see that an operator T ∈ B(X) has no nontrivial closed invariant
subspace if and only if all orbits corresponding to nonzero vectors span all the
space X (i.e., each nonzero vector is cyclic).

Similarly, T ∈ B(X) has no nontrivial closed invariant subset if and only if
all orbits corresponding to nonzero vectors are dense, i.e., all nonzero vectors
are hypercyclic.

Thus orbits provide the basic information about the structure of an operator.

Typically, the behaviour of an orbit {Tnx : n = 0, 1, . . .} depends much on
the initial vector x ∈ X. An operator can have some orbits very regular and
other orbits extremely irregular.

Example 1.4. Let H be a separable Hilbert space with an orthonormal basis
{e0, e1, . . .}. Let S be the backward shift, i.e., S is defined by Se0 = 0 and
Sei = ei−1 (i ≥ 1). Consider the operator T = 2S. Then:

(i) there is a dense subset M1 ⊂ H such that ‖Tnx‖ → 0 (x ∈M1);
(ii) there is a dense subset M2 ⊂ H such that ‖Tnx‖ → ∞ (x ∈M2);
(iii) there is a residual subset M3 ⊂ H (i.e., H \M3 is of the first cetegory) such
that the set {Tnx : n = 0, 1, . . .} is dense in H for all x ∈M3.

As the set M1 it is possible to take the set of all finite linear combinations
of the basis vectors ei. Properties (ii) and (iii) follow from general results that
will be discussed in the subsequent sections.
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The paper is organized as follows. In the following section we study regular
orbits. Of particular interest are the orbits satisfying ‖Tnx‖ → ∞. It is easy
to see that if an operator T has such an orbit, then {Tnx : n = 0, 1, . . .}− is a
nontrivial closed invariant subset for T .

In the third section we study the other extreme — hypercyclic vectors, i.e.,
the vectors with very irregular orbits.

In the subsequent sections we study weak and polynomial orbits. A weak
orbit of T is a sequence {〈Tnx, x∗〉 : n = 0, 1, . . .} and a polynomial orbit of T
is a set of the form {p(T )x : p polynomial}, where x ∈ X and x∗ ∈ X∗.

Polynomial orbits are closely related with the notions of capacity and local
capacity of an operator. These concepts are studied in Section 6.

In the last section we discuss the Scott Brown technique which is the most
efficient method of constructing invariant subspaces of operators. In an illustra-
tive example we show the basic ideas of the method, which are closely connected
with orbits.

For simplicity we consider only complex Banach spaces. However, some re-
sults concerning orbits remain true also for real Banach spaces. In particular, all
results based on the Baire category theorem remain unchanged for real Banach
spaces.

Although the invariant subspace problem is usually formulated for complex
Hilbert spaces, the corresponding question for real spaces (of dimension ≥ 3)
is also open; it is very easy to find an operator on a 2-dimensional real Hilbert
space without nontrivial invariant subspaces.

2 Regular orbits

Let X be a complex Banach space and let T ∈ B(X). If T is power bounded
(i.e., supn ‖Tn‖ < ∞) then all orbits are bounded. The converse follows from
the Banach-Steinhaus theorem.

Theorem 2.1. Let T ∈ B(X). Then T is power bounded if and only if
supn ‖Tnx‖ <∞ for all x ∈ X.

A more precise statement is given by the following theorem. Recall that a
subset M ⊂ X is called residual if its complement X \M is of the first category.
Equivalently, M is residual if and only if it contains a dense Gδ subset.

Theorem 2.2. Let T ∈ B(X) and let (an) be a sequence of positive numbers
such that limn→∞ an = 0. Then the set of all points x ∈ X with the property
that ‖Tnx‖ ≥ an‖Tn‖ for infinitely many n is residual.

Proof. The statement is trivial if T is nilpotent. In the following we assume
that Tn 6= 0 for all n.

For k ∈ N set

Mk =
{
x ∈ X : there exists n ≥ k such that ‖Tnx‖ > an‖Tn‖

}
.
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Clearly Mk is an open set. We prove that Mk is dense. Let x ∈ X and ε > 0.
Choose n ≥ k such that anε

−1 < 1. There exists z ∈ X of norm one such that
‖Tnz‖ > anε

−1‖Tn‖. Then

2an‖Tn‖ < ‖Tn(2εz)‖ ≤ ‖Tn(x+ εz)‖+ ‖Tn(x− εz)‖,

and so either ‖Tn(x+ εz)‖ > an‖Tn‖ or ‖Tn(x− εz)‖ > an‖Tn‖. Thus either
x+εz ∈Mk or x−εz ∈Mk, and therefore dist {x,Mk} ≤ ε. Since x and ε were
arbitrary, the set Mk is dense.

By the Baire category theorem, the intersection
⋂∞

k=1Mk is a dense Gδ set,
hence it is residual. Clearly each x ∈ ⋂∞

k=1Mk satisfies ‖Tnx‖ ≥ an‖Tn‖ for
infinitely many n.

Denote by r(T ) = max{|λ| : λ ∈ σ(T )} the spectral radius of an operator
T ∈ B(X). By the spectral radius formula we have r(T ) = limn→∞ ‖Tn‖1/n =
infn ‖Tn‖1/n. Recall that r(Tn) =

(
r(T )

)n
for all n.

For x ∈ X let rx(T ) denote the local spectral radius defined by rx(T ) =
lim supn→∞ ‖Tnx‖1/n (the limit limn→∞ ‖Tnx‖1/n in general does not exist).
The local spectral radius plays an important role in the local spectral theory.
Note that the resolvent z 7→ (z − T )−1 =

∑∞
n=0

T n

zn+1 is analytic on the set
{z : |z| > r(T )}. Similarly, the local resolvent z 7→ (z − T )−1x =

∑∞
n=0

T nx
zn+1

can be analytically extended to the set {z : |z| > rx(T )}.
It is easy to see that rx(T ) ≤ r(T ) for all x ∈ X.

Corollary 2.3. cf. [V] Let T ∈ B(X). Then the set {x ∈ X : rx(T ) = r(T )} is
residual.

Proof. Let an = n−1. By Theorem 2.2, there is a residual subset M ⊂ X such
that for each x ∈M we have ‖Tnx‖ ≥ n−1‖Tn‖ for infinitely many n. Thus

rx(T ) = lim sup
n→∞

‖Tnx‖1/n ≥ lim sup
n→∞

(‖Tn‖
n

)1/n

= r(T )

for all x ∈M .

As we have seen, it is relatively easy to construct vectors x such that infinitely
many powers Tnx are large. It is much more difficult to construct orbits such
that all powers Tnx are large in the norm. The result (and many other results
concerning orbits) is based on the spectral theory and therefore it is valid only
for complex spaces. For real Banach spaces see Remark 2.14.

Denote by σe(T ) the essential spectrum of T ∈ B(X), i.e., the spectrum of
ρ(T ) in the Calkin algebra B(X)/K(X), where K(X) is the ideal of all compact
operators on X and ρ : B(X) −→ B(X)/K(X) is the canonical projection.
Equivalently, σe(T ) = {λ ∈ C : T − λ is not Fredholm}. Let re(T ) denote the
essential spectral radius, re(T ) = max{|λ| : λ ∈ σe(T )}.

If X is an infinite dimensional Banach space and T ∈ B(X) then σe(T )
is a nonempty compact subset of σ(T ). Moreover, the difference σ(T ) \ σe(T )
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is equal to the union of some bounded components of C \ σe(T ) and of at
most countably many isolated points. In particular, if λ ∈ σ(T ) belongs to the
unbounded component of C \ σe(T ) then λ is an isolated point of the spectrum
σ(T ), it is an eigenvalue of finite multiplicity and the corresponding spectral
subspace is finite dimensional.

Denote further by σπe(T ) the essential approximate point spectrum of T ,
i.e., σπe(T ) is the set of all complex numbers λ such that

inf
{‖(T − λ)x‖ : x ∈M, ‖x‖ = 1

}
= 0

for every subspace M ⊂ X with codimM <∞.
It is easy to see that λ /∈ σπe(T ) if and only if dimKer (T − λ) < ∞ and

T − λ has closed range, i.e., if T − λ is upper semi-Fredholm. It is known [HW]
that σπe(T ) contains the topological boundary of the essential spectrum σe(T ).
In particular, σπe(T ) is a nonempty compact subset of the complex plane for
each operator T on an infinite dimensional Banach space X.

The elements of the essential approximate point spectrum σπe(T ) are very
useful for the study of orbits. For each λ ∈ σπe(T ) there are “approximate
eigenvectors” — vectors x ∈ X of norm 1 such that ‖(T − λ)x‖ is arbitrarily
small. Moreover, the approximate eigenvectors can be chosen in an arbitrary
subspace of finite codimension. This property is particularly useful in various
inductive constructions.

The following result was proved in [M1]; for Hilbert space operators see [B2].

Theorem 2.4. Let T be an operator on a Banach space X, let ε > 0 and let
(an) be a sequence of positive numbers such that limn→∞ an = 0. Then:

(i) there exists a vector x ∈ X such that ‖x‖ < supn an + ε and ‖Tnx‖ ≥
an · r(Tn) for all n;

(ii) there exists a dense subset of points x ∈ X such that ‖Tnx‖ ≥ anr(Tn) for
all but a finite number of n.

Outline of the proof. Let λ ∈ σ(T ) satisfy |λ| = r(T ). We distinguish two
cases:

(a) Suppose that r(T ) > re(T ). Then λ is an eigenvalue of T . The corresponding
eigenvector x of norm one satisfies ‖Tnx‖ = ‖λnx‖ = r(Tn) for all n.

Moreover, λ is an isolated point of the spectrum of T and the spectral
subspace X0 corresponding to λ is finite dimensional. Let u ∈ X \X0. It is easy
to verify that there is a positive constant c = c(u) such that ‖T ju‖ ≥ c · r(T j)
for all j. Thus in this case the set of all points satisfying (ii) is even residual.

(b) Let r(T ) = re(T ). Since λ ∈ σπe(T ), for all ε > 0, n ∈ N and M ⊂ X of
finite codimension there exists x ∈ M such that ‖x‖ = 1 and ‖(T j − λj)x‖ <
ε (j ≤ n). These “approximate eigenvectors” are basic building stones used in
the construction of the vector with the required properties.

We indicate the proof for Hilbert space operators.
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Without loss of generality it is possible to assume that 1 > a1 > a2 > · · ·,
r(T ) = 1 and λ = 1. For k ≥ 0 set rk = min{j : aj < 2−k}.

We construct inductively vectors xk ∈ X of norm 1 such that T jxk is ap-
proximately equal to xk for j ≤ rk and

T jxk ⊥ T jxi (i < k, j ≤ rk)

(note that the subspace
{
u : T ju ⊥ T jxi (i < k, j ≤ rk)

}
is of finite codimen-

sion).
Set x =

∑∞
i=1 2−i+1xi.

Let rk−1 < j ≤ rk. Since T jxi ⊥ T jxk (i 6= k), we have

‖T jx‖ =
∥∥∥
∞∑

i=1

2−i+1T jxi

∥∥∥ ≥ ‖2−k+1T jxk‖.

The last term is approximately equal to 2−k+1, which is greater than aj . Thus
x satisfies ‖T jx‖ ≥ aj for all j.

The full statement of Theorem 2.4 can be obtained by a modification of this
argument; we omit the details.

For Banach spaces the proof is a little bit more complicated. The basic idea
is to use instead of the orthogonal complement of a finite dimensional subspace
(which was in fact used here) the following lemma.

Lemma 2.5. Let X be a Banach space, let F ⊂ X be a finite dimensional sub-
space and let ε > 0. Then there exists a subspace M ⊂ X of finite codimension
such that

‖m+ f‖ ≥ (1− ε)max{‖f‖, ‖m‖/2}
for all f ∈ F and m ∈M .

An immediate consequence of Theorem 2.4 is the following corollary.

Corollary 2.6. Let T ∈ B(X). Then:

(i) the set
{
x ∈ X : lim infn→∞ ‖Tnx‖1/n = r(T )

}
is dense;

(ii) the set
{
x ∈ X : lim supn→∞ ‖Tnx‖1/n = r(T )

}
is residual;

(iii) the set of all x ∈ X such that the limit limn→∞ ‖Tnx‖1/n exists (and is
equal to r(T )) is dense.

As another corollary we get that the infimum and the supremum in the
spectral radius formula

r(T ) = inf
k
‖T k‖1/k = inf

k
sup
‖x‖=1

‖T kx‖1/k

can be exchanged.
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Corollary 2.7. Let T ∈ B(X). Then

r(T ) = sup
‖x‖=1

inf
k
‖T kx‖1/k.

Example 2.8. Let H be a separable Hilbert space with an orthonormal basis
{ej : j = 0, 1, . . .} and let S be the backward shift, Se0 = 0, Sej = ej−1 (j ≥
1). Then the set

{
x ∈ H : lim infn→∞ ‖Snx‖1/n = 0

}
is residual.

Since r(S) = 1 and the set
{
x ∈ H : lim supn→∞ ‖Snx‖1/n = 1

}
is also

residual, we see that the set
{
x ∈ H : the limit limn→∞ ‖Snx‖1/n exists

}
is of

the first category (but it is always dense by Corollary 2.6).

Proof. For k ∈ N let

Mk =
{
x ∈ X : there exists n ≥ k such that ‖Snx‖ < k−n

}
.

Clearly Mk is an open subset of X. Further, Mk is dense in X. To see this, let
u ∈ X and ε > 0. Let u =

∑∞
j=0 αjej and choose n ≥ k such that

∑∞
j=n |αj |2 <

ε2. Set y =
∑n−1

j=0 αjej . Then ‖y − u‖ < ε and Sny = 0. Thus y ∈Mk and Mk

is a dense open subset of X.
By the Baire category theorem, the set M =

⋂∞
k=0Mk is a dense Gδ subset

of X, hence it is residual.
Let x ∈ M . For each k ∈ N there is an nk ≥ k such that ‖Snkx‖ < k−nk ,

and so lim infn→∞ ‖Snx‖1/n = 0.

It is also possible to combine conditions of Theorems 2.2 and 2.4 and to
obtain points x ∈ X with ‖Tnx‖ ≥ an · ‖Tn‖ for all n; in this case, however,
there is a restriction on the sequence (an).

Theorem 2.9. Let T ∈ B(X), let (an) be a sequence of positive numbers such

that
∑

n a
2/3
n <∞. Then there exists x ∈ X such that ‖Tnx‖ ≥ an‖Tn‖ for all

n. There is a dense subset L ⊂ X such that for each x ∈ L there is a k ∈ N
with the property that

‖Tnx‖ ≥ an‖Tn‖ (n ≥ k).

Outline of the proof: Fix k ∈ N. We indicate the construction of a vector x
satisfying ‖T jx‖ ≥ aj‖T j‖ (j ≤ k). The vector satisfying this relations for all
n can be then obtained by a limit procedure.

For j = 1, 2, . . . , k fix a vector zj ∈ X of norm one which almost attains the
norm of T j , i.e., ‖T jx‖ .= ‖T j‖ (we omit the exact calculations).

Let Λ =
{
λ = (λ1, . . . , λk) ∈ Ck : |λj | ≤ a

2/3
j for all j

}
. For λ ∈ Λ let

uλ =
∑k

j=1 λjzj . Consider the Lebesgue measure µ on Λ.
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For j = 1, . . . , k let Λj = {λ ∈ Λ : ‖T juλ‖ < aj‖T j‖}. The basic idea of the
proof is to show that µ(Λ \⋃k

j=1 Λj) > 0, which means that there exists λ ∈ Λ
such that ‖T juλ‖ ≥ aj‖T j‖ for all j = 1, . . . , k. For details see [M5].

A better estimate can be obtained if we replace the norm ‖S‖ of an operator
S ∈ B(X) by the quantity ‖S‖µ = inf

{‖S|M‖ : M ⊂ X, codimM <∞}
.

If S is an operator on a separable Hilbert space H then ‖S‖µ coincides with
the essential norm ‖S‖e = inf{‖S +K‖ : K ∈ K(H)}.

For the proof of the next result see [M5].

Theorem 2.10. Let T ∈ B(X). Let (an) be a sequence of positive numbers
satisfying

∑
n an < ∞. Then there exists x ∈ X such that ‖Tnx‖ ≥ an‖Tn‖µ

for all n.

The results of Theorems 2.9 and 2.10 can be improved for Hilbert space
operators, see [B2].

Theorem 2.11. Let T be an operator on a Hilbert space H, let (an) be a
sequence of positive numbers.

(i) if
∑

n an < ∞ then there exists x ∈ H such that ‖Tnx‖ ≥ an‖Tn‖ for all
n ∈ N;

(ii) if
∑

n a
2
n < ∞ then there exists x ∈ H such that ‖Tnx‖ ≥ an‖Tn‖e for all

n ∈ N.

The following result is true for Hilbert space operators; in Banach spaces it
is false.

Theorem 2.12. [B2] Let T be a non-nilpotent operator on a Hilbert space H.

Then the set
{
x ∈ H :

∑
n

‖T nx‖
‖T n‖ = ∞

}
is residual.

Example 2.13. Let X be the `1 space with the standard basis {ei : i = 0, 1 . . .}.
Let T ∈ B(X) be defined by Te0 = 0 and Ten = (n+1

n )2en−1 (n ≥ 1). Then∑
n

‖T nx‖
‖T n‖ <∞ for all x ∈ X.

This can be verified by a direct calculation, see [M5].

Remark 2.14. Some results from this section remain true for real Banach
spaces as well, see [M5]. This is true for Theorem 2.2.

Theorem 2.4 can be reformulated as follows: if an > 0, an → 0, then there

exists a dense subset L ⊂ X such that for each x ∈ L there is a constant c > 0
with ‖Tnx‖ > canr(T )n for all n.

Theorem 2.9 can be modified in the following way: let T be an operator on
a real Banach space X, let (an) be a sequence of positive numbers such that
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∑
n a

1/2
n < ∞. Then there exists x ∈ X such that ‖Tnx‖ ≥ an‖Tn‖ for all n.

There is a dense subset L ⊂ X such that for each x ∈ L there is a k ∈ N with
the property that

‖Tnx‖ ≥ an‖Tn‖ (n ≥ k).

3 Hypercyclic vectors

Vectors with extremely irregular orbits are called hypercyclic. More precisely,
a vector x ∈ X is called hypercyclic for an operator T ∈ B(X) if the set
{Tnx : n = 0, 1, . . .} is dense in X. An operator T is called hypercyclic if there
is at least one vector hypercyclic for T .

Recall also that a vector x ∈ X is called cyclic for T ∈ B(X) if the set
{p(T )x : p polynomial} is dense in X, and supercyclic for T if {λTnx : λ ∈
C, n = 0, 1 . . .}− = X.

These notions make sense only for separable Banach spaces. It is easy to see
that an operator in a non-separable Banach space can not have cyclic (super-
cyclic, hypercyclic) vectors. Moreover, it is not difficult to show that there are
no hypercyclic operators on finite-dimensional Banach spaces (this follows from
the fact that T ∗ has eigenvalues, cf. the proof of Theorem 3.2 below). In the
rest of this section we assume that all Banach spaces are infinite dimensional
and separable.

It is easy to find an operator that is not hypercyclic. For example, any
contraction (or more generally, a power bounded operator) is not hypercyclic.
On the other hand, the existence of hypercyclic operators is not so obvious. The
first example of a hypercyclic vector was given by Rolewicz [Ro]. In the last
years, hypercyclic vectors have been studied intensely by a number of authors.
For a survey of results with an extensive bibliography see [Gr].

It turns out that hypercyclic vectors are not so exceptional that they may
seem at the first glance. The first result shows that if an operator has at least
one hypercyclic vector then almost all vectors are hypercyclic.

Theorem 3.1. Let T ∈ B(X) be a hypercyclic operator. Then there is a resid-
ual set of vectors hypercyclic for T .

Proof. Let x ∈ X be hypercyclic for T . For each k ∈ N the vector T kx is
hypercyclic for T , and so the set of all hypercyclic vectors is dense.

Let (Uj) be a countable base of open subsets in X. It is easy to see that
the set of all vectors hypercyclic for T is equal to

⋂
j

⋃
n T

−nUj , which is a Gδ

subset.

Theorem 3.2. [Bo] Let T ∈ B(X) be a hypercyclic operator. Then there exists
a dense linear manifold L ⊂ X such that each nonzero vector in L is hypercyclic
for T .

Proof. We show first that T ∗ has no eigenvalues. Suppose on the contrary that
there are λ ∈ C and a nonzero vector x∗ ∈ X∗ such that T ∗x∗ = λx∗.
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Let x ∈ X be a hypercyclic vector for T . Then

C =
{〈Tnx, x∗〉 : n = 0, 1, . . .

}− = 〈x, x∗〉 · {λn : n = 0, 1, . . .
}−
.

It is easy to see that the last set can not be dense in C. Thus λ is not an
eigenvalue of T ∗, and so (T − λ)X is dense in X for each λ ∈ C.

Let x be a hypercyclic vector for T . We show that p(T )x is also hypercyclic
for each nonzero polynomial p. Write p(z) = α(z−λ1) · · · (z−λn) where α 6= 0,
λ1, . . . , λn ∈ C. Then

{
Tnp(T )x : n = 0, 1, . . .

}
= α(T − λ1) · · · (T − λn){Tnx : n = 0, 1, . . .}.

The last set is dense in X since x is hypercyclic for T , and the operators T −λj

have dense ranges for each j. Thus p(T )x is hypercyclic for T .

The following criterion provides a simple way of constructing hypercyclic
vectors, see [K], [GS]. It also implies property (iii) in Example 1.4.

Theorem 3.3. Let T ∈ B(X). Suppose that there is an increasing sequence of
positive integers (nk) such that:

(i) there is a dense subset X0 ⊂ X such that limk→∞ Tnkx→ 0 for all x ∈ X0;

(ii)
⋃

k T
nkBX is dense in X, where BX denotes the closed unit ball in X.

Then T is hypercyclic. By Theorem 3.1, this means that the set of all
hypercyclic vectors is residual.

Conversely, suppose that T is hypercyclic. Then it is not difficult to show
that T satisfies both conditions (i) and (ii), but not necessarily for the same
subsequence (nk). Thus the conditions in Theorem 3.3 are close to the notion
of hypercyclicity (cf. Problem 3.12).

A similar criterion may be used to construct closed infinite dimensional sub-
spaces consisting of hypercyclic vectors, see [Mo], [GLMo] and [LMo].

Theorem 3.4. Let T ∈ B(X). Suppose that T satisfies the conditions of
Theorem 3.3 and that the essential spectrum σe(T ) intersects the closed unit
ball. Then there is a closed infinite dimensional subspace M ⊂ X such that
each nonzero vector in M is hypercyclic for T .

Theorems 3.1 – 3.4 indicate that hypercyclic vectors and operators are quite
common, that in some sense it is a typical behavior of an orbit.

Similarly as in Theorem 3.1 it is possible to show that the set of all hyper-
cyclic operators on a Banach space X is a Gδ set. It is not dense since the
operators with ‖T‖ < 1 can not be hypercyclic. Thus the set of all hypercyclic
operators is a residual subset of its closure.

By [He], it is possible to characterize the closure of hypercyclic operators
on a separable Hilbert space. For Banach spaces such a characterization is not
known.
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Theorem 3.5. Let H be a separable Hilbert space, let T ∈ B(H). Then
T belongs to the closure of hypercyclic operators if and only if the following
conditions are satisfied:

(i) the set σW (T ) ∪ {z ∈ C : |z| = 1} is connected;

(ii) σ0(T ) = ∅;
(iii) ind (λ− T ) ≥ 0 for all λ ∈ C such that λ− T is semi-Fredholm.

Here σW (T ) denotes the Weyl spectrum of T , σW (T ) =
⋂

K∈K(H) σ(T +K).
Equivalently, λ /∈ σW (T ) if and only if T − λ is Fredholm and ind (T − λ) = 0.

Recall that an operator S is called semi-Fredholm if it has closed range
and either dimkerS < ∞ or codimSX < ∞. The index of a semi-Fredholm
operator S is defined by indS = dim kerS − codimSX.

Furthermore, σ0(T ) denotes the set of all isolated points of σ(T ) such that
the corresponding spectral subspace is finite dimensional.

Theorem 3.6. Let T ∈ B(X) be an operator and let x ∈ X be hypercyclic for
T . Then:

(i) x is hypercyclic for Tn for each n ∈ N;

(ii) x is hypercyclic for λT for each λ ∈ C, |λ| = 1;

(iii) if T is invertible then T−1 is hypercyclic.

The first two statements of Theorem 3.6 are quite deep, the third one is an
easy consequence of the observation that T is hypercyclic if and only if for all
nonempty open subsets U, V ⊂ X there exists n ∈ N such that TnU ∩ V 6= ∅.

Statement (i) was proved by Ansari [A] and it in fact started the serious
study of hypercyclic operators. For (ii) see [LM].

Although it is relatively easy to construct an operator with a residual set
of hypercyclic vectors (see Example 1.4), it is extremely difficult to construct
an operator with all nonzero vectors hypercyclic (recall that such an operator
gives a counterexample to the invariant subspace problem). The first example
of this type was constructed by Read [R2] on the space `1. Equivalently, such
an operator has no nontrivial closed invariant subset. It is an open problem
whether this can happen in Hilbert spaces, cf. Problems 1.2 and 1.3.

It follows from the previous results that such an operator must satisfy certain
rather narrow conditions on the norms ‖Tn‖.

Theorem 3.7. Let T be an operator on a Banach space X which has no
nontrivial closed invariant subsets. Then r(T ) = re(T ) = 1, supn ‖Tn‖ = ∞,∑

n ‖Tn‖−2/3 <∞ and
∑

n ‖Tn‖−1
µ <∞.

If X is a Hilbert space then
∑

n ‖Tn‖−1 <∞ and
∑

n ‖Tn‖−1/2
e <∞.

Indeed, if T does not satisfy the conditions above, then either T is power
bounded or there exists a vector x ∈ X with ‖Tnx‖ → ∞, see Theorems 2.4,
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2.9, 2.10 and 2.11. Hence {Tnx : n = 0, 1 . . .}− is a nontrivial closed invariant
subset with respect to T .

Thus it is a very interesting question for which operators there are orbits
satisfying ‖Tnx‖ → ∞.

Problem 3.8. What are the best exponents in Theorem 3.7?

Example 3.9. There is an operator T on a Hilbert space H such that ‖Tn‖ →
∞ and there is no x ∈ H with ‖Tnx‖ → ∞, see [B2]. As an example it is
possible to take a unilateral weighted shift with suitable weights; the operator
satisfies ‖Tn‖ = (lnn)1/2.

It is also possible to construct an operator T ∈ B(H) such that infn ‖Tnx‖ =
0 and supn ‖Tnx‖ = ∞ for all nonzero vectors x ∈ H.

We mention now some other open problems.

Problem 3.10. Let T be a Hilbert space operator such that limn→∞ ‖Tn‖ = ∞
and the norms ‖Tn‖ form a nondecreasing sequence. Does there exist a vector
x ∈ H such that ‖Tnx‖ → ∞?

Problem 3.11. Is the characterization of the closure of hypercyclic operators
(Theorem 3.5) true also for Banach spaces?

Problem 3.12. Does there exist a hypercyclic operator T ∈ B(X) that does
not satisfy conditions of Theorem 3.3?

There are other equivalent formulations of this problem. The most interest-
ing reformulation is: does there exist a hypercyclic operator T such that T ⊕ T
is not hypercyclic, see [BP], [He]?

We finish this section with a remark about weakly hypercyclic operators that
have been introduced in [Fe].

An operator T ∈ B(X) is called weakly hypercyclic if there exists a vector
x ∈ X such that the orbit {Tnx : n = 0, 1, . . .} is weakly dense in X.

Note that the corresponding notion of weakly cyclic vectors makes no sense
since a closed linear manifold is automatically weakly closed by the Hahn-
Banach theorem. However, it is possible that a weakly dense orbit is not dense,
cf. [Fe]. Also, there is a weakly hypercyclic operator that is not hypercyclic, see
[ChS].

4 Weak orbits

Weak orbits were introduced and first studied by van Neerven [N]. Many results
for orbits of operators can be modified also for weak orbits. For a survey of
results see e.g. [N], [M5].

The following three results are analogous to the corresponding statements
for orbits.
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Theorem 4.1. Let T ∈ B(X) and let (an) be a sequence of positive numbers
such that limn→∞ an = 0. Then the set of all pairs (x, x∗) ∈ X ×X∗ with the
property that |〈Tnx, x∗〉| > an‖Tn‖ for infinitely many n is a residual subset of
X ×X∗.

Theorem 4.2. Let T be an operator on a Banach space X, let (an) be a

sequence of positive numbers such that
∑

n a
1/3
n <∞. Then there exist x ∈ X

and x∗ ∈ X∗ such that |〈Tnx, x∗〉| ≥ an‖Tn‖ for all n.

Theorem 4.3. Let T ∈ B(X). Then:

(i) the set
{
(x, x∗) ∈ X ×X∗ : lim inf

n→∞
|〈Tnx, x∗〉|1/n = r(T )

}
is dense;

(ii) the set
{
(x, x∗) ∈ X ×X∗ : lim sup

n→∞
|〈Tnx, x∗〉|1/n = r(T )

}
is residual;

(iii) the set of all pairs (x, x∗) ∈ X × X∗ such that the limit lim
n→∞

|〈Tnx〉|1/n

exists (and is equal to r(T )) is dense.

The statement analogous to Theorem 2.12 for weak orbits is not true:

Example 4.4. There exists an operator T on a Hilbert space H such that∑
n

|〈T nx,y〉|
‖T n‖ <∞ for all x, y ∈ H.

As an example it is possible to take the operator T =
⊕∞

k=1 Sk, where Sk is
the shift operator on a (k + 1)-dimensional Hilbert space, see [M5].

The statement analogous to Theorem 2.4 for weak orbits is an open problem:

Problem 4.5. Let T ∈ B(X), let (an) be a sequence of positive numbers
satisfying limn→∞ an = 0. Do there exist x ∈ X and x∗ ∈ X∗ such that
|〈Tnx, x∗〉| ≥ anr(Tn) for all n?

The statement is false for real Banach spaces. A partial positive answer is
given in the following case which is important from the point of view of the
invariant subspace problem. Some other partial results were given in [N].

Theorem 4.6. Let T be an operator on a Hilbert space H such that 1 ∈ σ(T )
and Tnx → 0 for all x ∈ H. Let (an) be a sequence of positive numbers
satisfying limn→∞ an = 0. Then there exists x ∈ H such that Re 〈Tnx, x〉 > an

for all n.

Using Theorem 4.6 and techniques of [LM] it is possible to obtain the fol-
lowing result.

Theorem 4.7. Let T be a power bounded operator on a Hilbert space H
satisfying r(T ) = 1. Then there is a nonzero vector x ∈ H such that x is
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not supercyclic. Moreover, if 1 ∈ σ(T ) then T has a nontrivial closed invariant
positive cone, i.e., there is a nontrivial closed subsetM ⊂ H such that TM ⊂M ,
M +M ⊂M and tM ⊂M (t ≥ 0).

It is a natural question whether the previous result can be improved in order
to obtain an invariant real subspace.

Problem 4.8. Let T be a power bounded operator on a Hilbert space such that
1 ∈ σ(T ). Does T have a nontrivial closed invariant real subspace, i.e., does
there exists a nontrivial closed subset M ⊂ H such that TM ⊂M , M+M ⊂M
and tM ⊂M (t ∈ R)?

Problem 4.9. Is Theorem 4.7 true for operators on reflexive Banach spaces?

5 Polynomial orbits

If x is an eigenvector of T , Tx = λx for some complex λ, then p(T )x = p(λ)x for
every polynomial p, and so we have complete information about the polynomial
orbit {p(T )x : p polynomial}. Unfortunately, operators on infinite dimensional
Banach spaces have usually no eigenvalues. The proper tool appears to be the
notion of the essential approximate point spectrum σπe(T ).

The following result is an analogue of Theorem 2.4.

Theorem 5.1. [M3] Let T be an operator on a Banach space X, let λ ∈ σπe(T ).
Let (an) be a sequence of positive numbers with limn→∞ an = 0. Then:

(i) there exists x ∈ X such that

‖p(T )x‖ ≥ adeg p · |p(λ)|

for every polynomial p;

(ii) let u ∈ X, ε > 0. Then there exists y ∈ X and a positive constant C = C(ε)
such that ‖y − u‖ ≤ ε and

‖p(T )y‖ ≥ C · adeg p · |p(λ)|

for every polynomial p.

In the previous theorem we expressed the estimate of ‖p(T )x‖ by means
of |p(λ)| where λ was a fixed element of σπe(T ). Next we are looking for an
estimate in terms of max{|p(λ)| : λ ∈ σπe(T )}. Since ∂σe(T ) ⊃ σπe(T ), by the
spectral mapping theorem for the essential spectrum σe we have

max
λ∈σπe(T )

|p(λ)| = max
λ∈σe(T )

|p(λ)| = max {|z| : z ∈ σe(p(T ))} = re(p(T )).

An important tool for the results in this section is the following classical
lemma of Fekete [F]. It enables to estimate the maximum of a polynomial on
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a (in general very complicated) compact set σπe(T ) by means of its values at
finitely many points.

Lemma 5.2. Let K be a non-empty compact subset of the complex plane and
let k ≥ 1. Then there exist points u0, u1, . . . , uk ∈ K such that

max{|p(z)| : z ∈ K} ≤ (k + 1) · max
0≤i≤k

|p(ui)|

for every polynomial p with deg p ≤ k. Moreover, we have

max{|p(z)| : z ∈ K} ≤ (k + 1)1/2
( k∑

i=0

|p(ui|2
)1/2

for all polynomials p with deg p ≤ k.

By using the previous lemma we can get ([M2], [M4])

Theorem 5.3. Let T be an operator on a Banach space X, let ε ≥ 0 and k ≥ 1.
Then:

(i) if cardσπe(T ) ≥ k + 1 then there exists x ∈ X with ‖x‖ = 1 and

‖p(T )x‖ ≥ 1− ε

k + 1
re(p(T ))

for every polynomial p with deg p ≤ k.

(ii) let x ∈ X and ε > 0. Then there exists y ∈ X and a positive constant
C = C(ε) such that ‖y − x‖ ≤ ε and

‖p(T )y‖ ≥ C · (1 + deg p)−(1+ε) re(p(T ))

for every polynomial p.

The proof of Theorem 5.3 is much simpler for operators on Hilbert spaces.
The same result for Banach space operators can be obtained by a Dvoret-
zky’s theorem type argument. A simpler proof based on Lemma 2.5 is avail-
able for weaker estimates ‖p(T )x‖ ≥ 1−ε

2(k+1)2 re(p(T )) and ‖p(T )x‖ ≥ C · (1 +
deg p)−(2+ε)re(p(T )), respectively.

The estimates in Theorem 5.3 (i) are the best possible.

Example 5.4. [M4] Let k ∈ N. There exists a Banach space X and an operator
T ∈ B(X) such that for each x ∈ X of norm one there is a polynomial p of
degree ≤ k with ‖p(T )x‖ ≤ (k + 1)−1re(p(T )).
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6 Capacity

The notion of capacity of an operator (or more generally, of a Banach algebra
element) was introduced and studied by Halmos [H]. If T ∈ B(X) then

capT = lim
k→∞

(capkT )1/k = inf
k

(capkT )1/k,

where
capkT = inf

{‖p(T )‖ : p ∈ P1
k

}

and P1
k is the set of all monic (i.e., with leading coefficient equal to 1) polyno-

mials of degree k.
This is a generalization of the classical notion of capacity (sometimes also

called Tshebyshev constant) of a nonempty compact subset K of the complex
plane:

capK = lim
k→∞

(capkK)1/k = inf
k

(capkK)1/k

where

capkK = inf
{‖p‖K : p ∈ P1

k

}
and ‖p‖K = sup{|p(z)| : z ∈ K}.

The classical capacity capK is equal to the capacity of the identical function
f(z) = z considered as an element of the Banach algebra of all continuous
functions on K with the sup-norm.

Another connection between these two notions is given by the following main
result of [H].

Theorem 6.1. capT = capσ(T ) for each operator T ∈ B(X).

Let x ∈ X. The local capacity of T at x can be defined analogously. We
define

capk(T, x) = inf
{‖p(T )x‖ : p ∈ P1

k

}

and
cap (T, x) = lim sup

k→∞
capk(T, x)1/k

(in general the limit does not exist).
It is easy to see that cap (T, x) ≤ capT for every x ∈ X.
Note that there is an analogy between the spectral radius and the capacity

of an operator:

r(T ) = lim
k→∞

‖T k‖1/k = inf ‖T k‖1/k,

rx(T ) = lim sup
k→∞

‖T kx‖1/k,

capT = lim
k→∞

(cap kT )1/k = inf(cap kT )1/k,

cap (T, x) = lim sup
k→∞

(
cap k(T, x)

)1/k
.
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Furthermore, capT ≤ r(T ) and cap (T, x) ≤ rx(T ) for all x ∈ X.

Theorem 6.2. Let T ∈ B(X). Then:

(i) the set {x ∈ X : lim infk→∞ capk(T, x)1/k = capT} is dense in X;

(ii) the set {x ∈ X : cap(T, x) = capT} is residual in X;

(iii) the set {x ∈ X : limk→∞ cap k(T, x)1/k = capT} is dense in X.

Outline of the proof. By Theorem 5.3, there is a dense subset of vectors
x ∈ X with the property that ‖p(T )x‖ ≥ C · (1 + deg p)−2re(p(T )) for all
polynomials p. Thus we have

cap k(T, x) = inf
{‖p(T )x‖ : p ∈ P1

k

}
≥ C · (1 + k)−2 inf

{
re(p(T )) : p ∈ P1

k

}
= C(1 + k)−2cap kσe(T ).

Hence
lim inf
k→∞

(cap kT )1/k ≥ lim inf
k→∞

(cap kσe(T ))1/k = capσe(T ).

Using the general relations between σ(T ) and σe(T ), it is possible to see that
capσe(T ) = capσ(T ). Hence, by Theorem 6.1, lim infk→∞(cap (T, x))1/k =
capT for all x in a dense subset of X.

The second statement requires a more refined arguments, see [M5].

An operator T ∈ B(X) is called quasialgebraic if and only if capT = 0.
Similarly, T is called locally quasialgebraic if cap (T, x) = 0 for every x ∈ X.

It follows from Theorem 6.2 that these two notions are equivalent.

Corollary 6.3. An operator is quasialgebraic if and only if it is locally quasial-
gebraic.

Corollary 6.3 is an analogy to the well-known result of Kaplansky: an oper-
ator is algebraic (i.e. p(T ) = 0 for some non-zero polynomial p) if and only if it
is locally algebraic (i.e., for every x ∈ X there exists a polynomial px 6= 0 such
that px(T )x = 0).

7 Scott Brown technique

The Scott Brown technique is an efficient way of constructing invariant sub-
spaces. It was first used for subnormal operators but later it was adapted to
contractions on Hilbert spaces and, more generally, to polynomially bounded
operators on Banach spaces. Some results are also known for n-tuples of com-
muting operators.

We are going to give an illustrative example showing how this method works,
but first we need some preliminary results.
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The basic idea of the Scott Brown technique is to construct a weak orbit
{〈Tnx, x∗〉 : n = 0, 1, . . .} which behaves in a precise way. Typically, vectors
x ∈ X and x∗ ∈ X∗ are constructed such that

〈Tnx, x∗〉 =
{ 0 n ≥ 1;

1 n = 0.

Equivalently,
〈p(T )x, x∗〉 = p(0) (1)

for all polynomials p. Then T has a nontrivial closed invariant subspace. Indeed,
either Tx = 0 (and x generates a 1-dimensional invariant subspace) or the
vectors {Tnx : n ≥ 1} generate a nontrivial closed invariant subspace.

The vectors x and x∗ satisfying the above described conditions are con-
structed as limits of sequences that satisfy (1) approximately.

Let D = {z ∈ C : |z| < 1} denote the open unit disc in the complex plane
and T = {z ∈ C : |z| = 1} the unit circle. Denote by P the normed space of all
polynomials with the norm ‖p‖ = sup{|p(z)| : z ∈ D}. Let P∗ be its dual with
the usual dual norm.

Let φ ∈ P∗. By the Hahn-Banach theorem, φ can be extended without
changing the norm to a functional on the space of all continuous function on T
with the sup-norm. By the Riesz theorem, there exists a Borel measure µ on
T such that ‖µ‖ = ‖φ‖ and φ(p) =

∫
p dµ for all polynomials p. Clearly, the

measure is not unique.
Let L1 be the Banach space of all complex integrable functions on T with

the norm ‖f‖1 = (2π)−1
∫ π

−π
|f(eit)|dt.

Of particular interest are the following functionals on P:

(i) Let λ ∈ D. Denote by Eλ the evaluation at the point λ, i.e., Eλ is defined by
Eλ(p) = p(λ) (p ∈ P).

(ii) Let f ∈ L1. Denote by Mf ∈ P∗ the functional defined by

Mf (p) = (2π)−1

∫ π

−π

p(eit)f(eit)dt (p ∈ P).

Then ‖Mf‖ ≤ ‖f‖1.
The evaluation functionals Eλ are also of this type. Indeed, for λ ∈ D we

have Eλ = MPλ
, where Pλ(eit) = 1−|λ|2

|λ−eit|2 is the Poisson kernel. In particular, if
g = 1 then Mg(p) = p(0) for all p, and so Mg is the evaluation at the origin.

(iii) Let k > 0 and let T : X → X a polynomially bounded operator with
constant k, i.e., T satisfies the condition ‖p(T )‖ ≤ k‖p‖ for all polynomials p.
Fix x ∈ X and x∗ ∈ X∗. Let x⊗ x∗ ∈ P∗ be the functional defined by

(x⊗ x∗)(p) = 〈p(T )x, x∗〉 (p ∈ P).

Since T is polynomially bounded, x ⊗ x∗ is a bounded functional and we have
‖x⊗ x∗‖ ≤ k‖x‖ · ‖x∗‖.
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Of course the definition of x ⊗ x∗ depends on the operator T but since we
are going to consider only one operator T , this can not lead to a confusion.

By the von Neumann inequality, any contraction on a Hilbert space is poly-
nomially bounded with constant 1. More generally, every operator on a Hilbert
space which is similar to a contraction is polynomially bounded. Recall that
there are polynomially bounded Hilbert space operators that are not similar to
a contraction. This was shown recently by Pisier [P] who gave thus a negative
answer to a well-known longstanding open problem given by Halmos.

Denote by L∞ the space of all bounded measurable functions on T with the
sup-norm. Since P ⊂ L∞ = (L1)∗, the space P inherits the w∗-topology from
L∞.

Of particular importance for the Scott Brown technique are those functionals
on P that are w∗-continuous, i.e., that are continuous functions from (P, w∗) to
C. Equivalently, these functionals can be represented by absolutely continuous
measures.

The next result summarizes the basic facts about w∗-continuous functionals
on P.

Theorem 7.1.

(i) Let (pn) ⊂ P be a sequence of polynomials. Then pn
w∗−→0 if and only if (pn)

is a Montel sequence, i.e., supn ‖pn‖ <∞ and pn(z) → 0 (z ∈ D);
(ii) The w∗ closure of P in L∞ is the Hardy space H∞ of all bounded functions
analytic on D.

(iii) ψ ∈ P∗ is w∗-continuous if and only if it can be represented by an absolutely
continuous measure. By the F. and M. Riesz theorem, in this case each measure
representing ψ is absolutely continuous. By the Radon-Nikodym theorem, there
exists f ∈ L1 such that ‖f‖1 = ‖ψ‖ and ψ = Mf .

(iv) Let ψ ∈ P∗ be w∗-continuous. Let Λ ⊂ D be a dominant subset, i.e.,
supλ∈Λ |f(λ)| = ‖f‖ for all f ∈ H∞. Let ε > 0. Then there are num-
bers λ1, . . . , λn ∈ Λ and α1, . . . , αn ∈ C such that

∑n
i=1 |αi| ≤ ‖ψ‖ and∥∥ψ −∑n

i=1 αiEλi

∥∥ < ε.

Let T ∈ B(X) be a polynomially bounded operator such that ‖Tnu‖ → 0
for all u ∈ X. Then all the functionals x⊗ x∗ can be represented by absolutely
continuous measures. Equivalently, these functionals are w∗-continuous, i.e.,
they are continuous on the space (P, w∗). These results can be shown using
classical results from measure theory.

We summarize the results in the following theorem. Conditions (iii) and
(iv) are not necessary for our purpose, we include them only for the sake of
completeness.

Theorem 7.2. Let T be a polynomially bounded operator on a Banach space
X. Suppose that ‖Tnu‖ → 0 for all u ∈ X. Then:
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(i) x⊗x∗ can be represented by an absolutely continuous measure for all x ∈ X
and x∗ ∈ X∗. Equivalently, x⊗ x∗ is w∗-continuous;

(ii) the set {p(T )x : p ∈ P, ‖p‖ ≤ 1} is precompact for all x ∈ X;

(iii) the functional p 7→ 〈p(T )x, x∗〉 extends to the w∗-closure of P in L∞, i.e.,
to the Hardy space H∞ of all bounded functions analytic on D;

(iv) it is possible to define the H∞-functional calculus, i.e., an algebraic homo-
morphism Φ : H∞ → B(X) such that Φ(1) = I and Φ(z) = T . Moreover, Φ
is (w∗, SOT ) continuous, i.e., the mapping h→ Φ(h)x is a continuous function
from (H∞, w∗) to X for each x ∈ X.

Now we are able to give an illustrative example how the Scott Brown tech-
nique works.

Theorem 7.3. Let T be a contraction on a Hilbert space H such that σ(T )∩D
is dominant in D and ‖Tnx‖ → 0 for all x ∈ H. Then T has a nontrivial closed
invariant subspace.

Outline of the proof. Without loss of generality we may assume that neither
T nor T ∗ has eigenvalues. In particular, σπe(T ) = σ(T ).

The first step in the proof is that we can approximate (with an arbitrary
precision) the evaluation functionals Eλ for λ ∈ σπe(T ) by the functionals of the
type x⊗ x with x ∈ H.

(a) Let λ ∈ σπe(T ), ε > 0, let x ∈ H, ‖x‖ = 1 and ‖(T − λ)x‖ < ε. Then

‖x⊗ x− Eλ‖ < 2kε
1− |λ| .

Indeed, we have
∥∥x⊗ x− Eλ

∥∥ = sup
‖p‖=1

∣∣〈p(T )x, x〉 − p(λ)
∣∣.

For p ∈ P, ‖p‖ = 1 write q(z) = p(z)−p(λ)
z−λ . Then ‖q‖ ≤ 2‖p‖

1−|λ| = 2
1−|λ| . Thus

∣∣〈p(T )x, x〉 − p(λ)
∣∣ =

∣∣〈q(T )(T − λ)x, x〉
∣∣ ≤ ‖q(T )‖ · ‖(T − λ)x‖ ≤ 2kε

1− |λ| .

For the approximation procedure we need a stronger version of (a).

(b) Let u1, . . . , un ∈ H be given. Let λ ∈ σπe(T ) and ε > 0. Then there exists
x ∈ H of norm 1 such that x ⊥ {u1, . . . , un} and

‖x⊗ x− Eλ‖ < ε,
‖x⊗ ui‖ < ε (i = 1, . . . , n),
‖ui ⊗ x‖ < ε (i = 1, . . . , n).

Indeed, since λ ∈ σπe(T ), we can choose a vector x ⊥ {u1, . . . , un} such
that ‖(T − λ)x‖ is small enough. Thus the inequality ‖x⊗ x− Eλ‖ < ε follows
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from (a). Using the same estimates it is possible to obtain also that ‖x⊗ ui‖ <
ε (i = 1, . . . , n).

For the last inequality (note that the second and third inequalities are not
symmetrical!) it is possible to use the compactness of the set {p(T )ui : ‖p‖ ≤
1, i = 1, . . . , n}−, see Theorem 7.2 (ii). Indeed, it is possible to choose x ”almost
orthogonal” to all vectors of the form p(T )ui where ‖p‖ ≤ 1 and i = 1, . . . , n.

In the following we use the fact that any w∗-continuous functional can be
approximated by convex linear combinations of the evaluations at points of
σπe(T ), see Theorem 7.1 (iv). We show that if ψ ∈ P∗ is any w∗-continuous
functional and x ⊗ y its approximation, then it is possible to find a better
approximation x′ ⊗ y′ of ψ that is not too far from x⊗ y.

(c) Let ψ ∈ P∗ be a w∗-continuous functional, let x, y ∈ H and ε > 0. Then
there are x′, y′ ∈ H such that

‖x′ ⊗ y′ − ψ‖ < ε,
‖x′ − x‖ ≤ ‖x⊗ y − ψ‖1/2,
‖y′ − y‖ ≤ ‖x⊗ y − ψ‖1/2.

Indeed, by Theorem 7.1 (iv) there are elements λ1, . . . , λn ∈ σπe(T ) and
nonzero complex numbers α1, . . . , αn such that

∑n
i=1 |αi| ≤ ‖x⊗ y − ψ‖ and

∥∥∥x⊗ y − ψ +
n∑

i=1

αiEλi

∥∥∥ < ε/2.

Let δ be a sufficiently small positive number.
By (b), we can find inductively mutually orthogonal unit vectors u1, . . . , un ∈

H such that

‖x⊗ ui‖ < δ,
‖ui ⊗ y‖ < δ,
‖ui ⊗ uj‖ < δ (i 6= j),
‖ui ⊗ ui − Eλi‖ < δ.

Set x′ = x +
∑n

i=1
αi

|αi|1/2ui and y′ = y +
∑n

i=1 |αi|1/2ui. Since the vectors

u1, . . . , un are orthonormal, we have ‖x′ − x‖2 =
∑n

i=1 |αi| ≤ ‖x⊗ y − ψ‖, and
similarly, ‖y′ − y‖2 ≤ ‖x⊗ y − ψ‖. Furthermore,

‖x′ ⊗ y′ − ψ‖ ≤
∥∥∥x⊗ y − ψ +

n∑

i=1

αiEλi

∥∥∥ +
∥∥∥

n∑

i=1

αi

(
ui ⊗ ui − Eλi

)∥∥∥

+
n∑

i=1

|αi|1/2‖ui ⊗ y‖+
n∑

i=1

|αi|1/2‖x⊗ ui‖+
∑

i6=j

|αi|1/2 · |αj |1/2 · ‖ui ⊗ uj‖

≤ ε/2 + δ
( n∑

i=1

|αi|+ 2
n∑

i=1

|αi|1/2 +
∑

i 6=j

|αi|1/2|αj |1/2
)
< ε
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provided δ is sufficiently small.

(d) There are x, y ∈ H such that x⊗y = E0. As it was shown above, this implies
that T has a nontrivial invariant subspace.

Set x0 = 0 = y0. Using (c) it is possible to construct inductively vectors
xj , yj ∈ H (j ∈ N) such that

‖xj ⊗ yj − E0‖ ≤ 2−2j ,

‖xj+1 − xj‖ ≤ ‖xj ⊗ yj − E0‖1/2 ≤ 2−j and
‖yj+1 − yj‖ ≤ 2−j .

Clearly the sequences (xj) and (yj) are Cauchy. Let x and y be their limits. It
is easy to verify that x⊗ y = E0.

The condition that Tnx → 0 for all x ∈ H can be omitted by a standard
reduction argument.

Theorem 7.4. [BCP1] Let T be a contraction on a Hilbert space H such that
the spectrum σ(T ) ∩ D is dominant in D. Then T has a nontrivial invariant
subspace.

Outline of the proof. Let M1 = {x ∈ H : Tnx → 0}. It is easy to see that
M1 is a closed subspace of H invariant with respect to T . If M1 = H then T has
a nontrivial invariant subspace by Theorem 7.3. Thus we can assume without
loss of generality that M1 = {0}.

Since a subspace M ⊂ H is an invariant subspace for T if and only if M⊥ is
an invariant subspace for T ∗, we can do all the previous considerations also for
T ∗ instead of T . Thus we can also assume that M2 = {x ∈ H : T ∗nx → 0} =
{0}.

Contractions T ∈ B(H) satisfying M1 = {0} = M2 are called contractions
of class C11 in [NF]. It is proved there that such T is quasisimilar to a unitary
operator (i.e., there is a Hilbert space K, a unitary operator U ∈ B(K) and
injective operators A : H → K, B : K → H with dense ranges such that
UA = AT and BU = TB). Consequently, T has many invariant subspaces, see
[NF].

Theorem 7.4 is a classical application of the Scott Brown technique. By
refined methods it is possible to obtain the following much deeper result.

Theorem 7.5. [BCP2] Let T be a contraction on a Hilbert space H such that
σ(T ) contains the unit circle {z ∈ C : |z| = 1}. Then T has a nontrivial closed
invariant subspace.

Theorem 7.5 can be also generalized to the Banach space setting.

Theorem 7.6. [AM] Let T be a polynomially bounded operator on a Banach
space X such that σ(T ) contains the unit circle. Then T ∗ has a nontrivial
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invariant subspace. In particular, if X is reflexive then T has an invariant
subspace.

Note that Theorem 7.6 is stronger than Theorem 7.5 even for Hilbert space
operators.
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