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Abstract. Let T1, . . . , Tn be bounded linear operators on a complex Hilbert space H.
Then there are compact operators K1, . . . , Kn ∈ B(H) such that the closure of the
joint numerical range of the n-tuple (T1−K1, . . . , Tn−Kn) equals to the joint essential
numerical range of (T1, . . . , Tn). This generalizes the corresponding result for n = 1.
We also show that if S ∈ B(H) and n ∈ N then there exists a compact operator

K ∈ B(H) such that ‖(S − K)n‖ = ‖Sn‖e. This generalizes results of C.L. Olsen.

1. Introduction

Let T be a bounded linear operator acting on a complex Hilbert space H. The
properties of T can be frequently improved by adding to it a compact perturbation.
For example:

• [S] there exists a compact operator K1 ∈ B(H) such that

σ(T +K1) = σW (T ),

where σW (T ) =
⋂{σ(T + L) : L ∈ B(H) compact} denotes the Weyl spectrum of

T ;

• [CSSW] there exists a compact operatorK2 such thatW (T +K2) =We(T ), where
W denotes the numerical range and We the essential numerical range;

• [OP] if p is a polynomial and p(T ) compact, then there exists a compact operator
K3 such that p(T +K3) = 0.

The present paper studies variations of the second and third result mentioned
above.
In the next section we generalize the second result for n-tuples of operators.
In section 3 we study the following problem of C.L. Olsen which is still open:

if S ∈ B(H) and p a polynomial, does there exists a compact operator L such that
‖p(S + L)‖ = ‖p(S)‖e?
A positive answer is known only for some special polynomials. In [O] it was proved

for p(z) = z, z2, z3. In [CLSW] a positive answer was given for all linear polynomials.
We improve the result of [O] and give a positive answer for all powers p(z) = zn.
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Olsen’s problem.
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IRP AV OZ 10190503.

1



The author wishes to thank to M. Mbekhta and M. González for drawing his atten-
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2. Joint numerical range and compact perturbations

Let T = (T1, . . . , Tn) be an n-tuple of operators on a complex Hilbert space H.
The joint numerical range W (T ) is defined by

W (T ) =
{

(〈T1x, x〉, . . . , 〈Tnx, x〉) : x ∈ H, ‖x‖ = 1
}

.

It is well known that the numerical range W (T ) is convex for n = 1 but not convex
in general for n ≥ 2.
Apart from the (spatial) numerical range W (T ) it is also possible to define an

algebraic numerical range. Let A be a Banach algebra with unit e, let a = (a1, . . . , an) ∈
An. The joint algebraic numerical range V (a,A) is defined by

V (a,A) =
{

(f(a1), . . . , f(an)) : f ∈ A∗, ‖f‖ = 1 = f(e)
}

.

It is well known that V (a,A) is always a compact convex subset of C
n, see [BD1], p.

24.
For n-tuples of Hilbert space operators the spatial and algebraic numerical ranges

are closely connected. Denote by B(H) the algebra of all bounded linear operators on
a Hilbert space H. By convM we denote the closed convex hull of a set M .

Theorem 1. Let T = (T1, . . . , Tn) ∈ B(H)n. Then V (T, B(H)) = convW (T ).

Proof. The statement is well known for n = 1 (see [BD1], p. 83). For n ≥ 2 it is more
or less a folklore. For the sake of convenience we indicate briefly the proof.
Clearly W (T ) ⊂ V (T, B(H)). Since V (T, B(H)) is closed and convex, we have

convW (T ) ⊂ V (T, B(H)).
Let z = (z1, . . . , zn) ∈ C

n \ convW (T ). Then there are numbers α1, . . . , αn ∈ C

such that

Re

n
∑

j=1

αjzj > sup
{

Re

n
∑

j=1

αjλj : (λ1, . . . , λn) ∈ W (T )
}

= sup
{

Re
〈

n
∑

j=1

αjTjx, x
〉

: x ∈ H, ‖x‖ = 1
}

= sup
{

Reµ : µ ∈ W
(

m
∑

j=1

αjTj

)}

= sup
{

Reµ : µ ∈ V
(

n
∑

j=1

αjTj , B(H)
)}

= sup
{

Re

n
∑

j=1

αjf(Tj) : f ∈ B(H)∗, ‖f‖ = 1 = f(I)
}

= sup
{

Re
n

∑

j=1

αjλj : (λ1, . . . , λn) ∈ V (T, B(H))
}

.

2



Hence (z1, . . . , zn) /∈ V (T, B(H)) and V (T, B(H)) = convW (T ).

Let H be an infinite-dimensional Hilbert space. The joint essential numerical range
We(T ) of an n-tuple T = (T1, . . . , Tn) ∈ B(H)n is the set of all (λ1, . . . , λn) ∈ C

n such
that there exists an orthonormal sequence (xk) ⊂ H with

λj = lim
k→∞

〈Tjxk, xk〉 (j = 1, . . . , n).

The essential numerical range for n = 1 was introduced and studied in [FSW]. The
joint essential numerical range was studied e.g. in [CT], [B], [LP].
Although W (T ) is not convex in general for n ≥ 2, it was shown in [LP] that

We(T ) is always convex. In fact, We(T ) is equal to the algebraic numerical range of
the corresponding classes in the Calkin algebra B(H)/K(H), where K(H) denotes the
ideal of all compact operators on H. Denote by π : B(H)→ B(H)/K(H) the canonical
projection. As usual we write π(T ) = (π(T1), . . . , π(Tn)).
We summarize the basic properties of the joint essential numerical range We(T ) in

the following theorem:

Theorem 2. Let H be an infinite-dimensional Hilbert space and let T = (T1, . . . , Tn) ∈
B(H)n. Then We(T ) is a compact convex subset of C

n and

We(T ) =
⋂

K∈K(H)n
W (T +K) =

⋂

K∈K(H)n
convW (T +K) = V

(

π(T ), B(H)/K(H)
)

.

Proof. The first two equalities were proved in [LP]. This also implies the compactness
and convexity of We(T ).
If f ∈ (B(H)/K(H))∗ and ‖f‖ = 1 = f(I + K(H)) then f ◦ π ∈ B(H)∗ and

‖f ◦ π‖ = 1 = (f ◦ π)(I). Moreover, f ◦ π annihilates compact operators. So

V
(

π(T ), B(H)/K(H)
)

⊂ V (T +K, B(H))

for all K ∈ K(H)n. So

V
(

π(T ), B(H)/K(H)
)

⊂
⋂

K∈K(H)n
V (T +K, B(H))

=
⋂

K∈K(H)n
convW (T +K) =We(T ).

Conversely, let λ = (λ1, . . . , λn) ∈ We(T ), i.e., there exists an orthonormal sequence
(xk) ⊂ H such that λj = limk→∞〈Tjxk, xk〉 for all j = 1, . . . , n. Let LIM be any
Banach limit. Define f ∈ B(H)∗ by f(S) = LIM k→∞〈Sxk, xk〉 (S ∈ B(H)). Then f
annihilates all compact operators and so it induces a functional f̃ ∈

(

B(H)/K(H)
)∗
.

Clearly ‖f̃‖ = 1 = f̃(I +K(H)) and f̃(π(T )) = λ. Hence λ ∈ V (π(T ), B(H)/K(H)).

The main result of this section is that for each n-tuple (T1, . . . , Tn) of Hilbert
space operators there exists an n-tuple of compact operators (K1, . . . , Kn) such that
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We(T1, . . . , Tn) = W (T1 − K1, . . . , Tn − Kn)
−. This improves the results of [LP] men-

tioned in Theorem 2.
For n = 1 the existence of the optimal compact perturbation was proved in

[CSSW]. We use the operator-theoretical method of [CLSW] (however, this method
is only sketched there in a not very clear way, the paper [CLSW] uses mainly another
method based on the notion of M -ideals).

Remark 3. In fact the joint essential numerical range We(T ) was studied in [LP] only
for n-tuples of selfadjoint operators. However, every operator S ∈ B(H) can be written
as S = ReS + i ImS, where ReS = 1

2 (S + S∗) and ImS = 1
2i (S − S∗) are selfadjoint

operators.
Any n-tuple T = (T1, . . . , Tn) ∈ B(H)n can be identified with the (2n)-tuple

(ReT1, ImT1, . . . ,ReTn, ImTn)

of selfadjoint operators and the joint essential numerical range We(T ) ⊂ C
n can be

identified with We(ReT1, ImT1, . . . ,ReTn, ImTn) ⊂ R
2n. So all the statements con-

cerning We(T ) can be reduced to the corresponding statements for tuples of selfadjoint
operators.

An important property of selfadjoint operators is that their numerical range is
real. The next proposition characterizes the numerical range of tuples of selfadjoint
operators.

Proposition 4. Let S = (S1, . . . , Sn) be an n-tuple of selfadjoint operators on a
Hilbert space H. Let z = (z1, . . . , z1) ∈ R

n. Then:
(i) z ∈ V (S, B(H)) if and only if

∣

∣

∣

n
∑

j=1

αjzj + λ
∣

∣

∣
≤

∥

∥

∥

n
∑

j=1

αjSj + λ
∥

∥

∥

for all α1, . . . , αn, λ ∈ R.
(ii) z ∈ We(S) if and only if

∣

∣

∣

n
∑

j=1

αjzj + λ
∣

∣

∣
≤

∥

∥

∥

n
∑

j=1

αjSj + λ
∥

∥

∥

e

for all α1, . . . , αn, λ ∈ R.

Proof. Let z ∈ V (S, B(H)). Then there exists f ∈ B(H)∗ such that ‖f‖ = 1 = f(I)
and f(Sj) = zj (j = 1, . . . , n). Let α1, . . . , αn, λ ∈ R. Then

∣

∣

∣

n
∑

j=1

αjzj + λ
∣

∣

∣
=

∣

∣

∣
f
(

n
∑

j=1

αjSj + λI
)
∣

∣

∣
≤

∥

∥

∥

n
∑

j=1

αjSj + λ
∥

∥

∥
.

Conversely, let
∣

∣

∣

∑n
j=1 αjzj + λ

∣

∣

∣
≤

∥

∥

∥

∑n
j=1 αjSj + λ

∥

∥

∥
for all α1, . . . , αn, λ ∈ R. Let

A be the real subspace of B(H) generated by S1, . . . , Sn, I. Let f : A → R be the
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real functional defined by f
(

∑n
j=1 αjSj + λI

)

=
∑n

j=1 αjzj + λ. Then ‖f‖ ≤ 1 and
f(I) = 1. So ‖f‖ = 1 and f(Sj) = zj (j = 1, . . . , n).

By the Hahn-Banach theorem there exists a real functional f̃ : B(H) → R ex-
tending f such that ‖f̃‖ = ‖f‖ = 1. Let g ∈ B(H)∗ be the complex functional
defined by g(V ) = f̃(V ) − if̃(iV ) (V ∈ B(H)). Then ‖g‖ = ‖f̃‖ = 1 and f̃ = Re g,
see [BD2], p. 3. We have |g(I)| ≤ 1 and Re g(I) = f̃(I) = 1, so g(I) = 1. Thus
g(S1, . . . , Sn) ∈ V (S, B(H)).
Moreover, V (S, B(H)) ⊂ ∏n

j=1 V (Sj, B(H)) ⊂ R
n. So

(z1, . . . , zn) =
(

f̃(S1), . . . , f̃(Sn)
)

=
(

Re g(S1), . . . ,Re g(Sn)
)

=
(

g(S1), . . . , g(Sn)
)

∈ V (S, B(H)).

(ii) can be proved similarly using the equality We(S) = V (π(S), B(H)/K(H)).

Lemma 5. Let H be a Hilbert space and let S ∈ B(H), x ∈ H, ‖x‖ = 1, t ≥ 5‖S‖.
Then

∣

∣

∣
‖(S + t)x‖ − t −Re 〈Sx, x〉

∣

∣

∣
≤ 2‖S‖

2

t
.

Proof. We have

‖(S + t)x‖ = (‖S + t)x‖2)1/2 =
(

t2 + 2tRe 〈Sx, x〉+ ‖Sx‖2
)1/2
= t(1 + s)1/2,

where s = 2Re 〈Sx,x〉
t + ‖Sx‖2

t2 . Then

s ≤ 2‖S‖
t
+

‖S‖2
t2

≤ 11‖S‖
5t

≤ 1
2
.

It is easy to verify that for s ≤ 1/2 we have

1 +
s

2
− s2

4
≤ (1 + s)1/2 ≤ 1 + s

2
.

So
∣

∣

∣
‖(S + t)x‖ − t − Re 〈Sx, x〉

∣

∣

∣
=

∣

∣

∣
t(1 + s)1/2 − t − Re 〈Sx, x〉

∣

∣

∣

≤
∣

∣

∣
t(1 + s)1/2 − t − ts

2

∣

∣

∣
+

∣

∣

∣

ts

2
− Re 〈Sx, x〉

∣

∣

∣
≤ t

∣

∣

∣
(1 + s)1/2 − 1− s

2

∣

∣

∣
+

‖Sx‖2
2t

≤ ts2

4
+

‖S‖2
2t

≤ ‖S‖2
t

( 112

4 · 52 +
1

2

)

≤ 2‖S‖
2

t
.

For S ∈ B(H) denote by ‖S‖e the essential norm of S, ‖S‖e = inf
{

‖S + L‖ : L ∈
K(H)

}

. For a subspace M ⊂ H denote by PM the orthogonal projection onto M .

Proposition 6. Let H be a separable infinite-dimensional Hilbert space, let (e1, e2, . . .)
be an orthonormal basis in H. Let S ∈ B(H). Then

‖S‖e = lim
k→∞

‖PH⊥

k
SPH⊥

k
‖,

where Hk =
∨k

j=1 ej (k ∈ N).
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Proof. For each k ∈ N, the operator S − PH⊥

k
SPH⊥

k
is of finite rank, so ‖S‖e ≤

‖PH⊥

k
SPH⊥

k
‖.

Clearly
‖PH⊥

1
PH⊥

1
‖ ≥ ‖PH⊥

2
SPH⊥

2
‖ ≥ · · · ,

so the limit lim
k→∞

‖PH⊥

k
SPH⊥

k
‖ exists and is greater or equal to ‖S‖e.

Suppose on the contrary that limk→∞ ‖PH⊥

k
SPH⊥

k
‖ > ‖S‖e. Then there exists

ε > 0 such that ‖PH⊥

k
SPH⊥

k
‖ > ‖S‖e + ε for all k ∈ N. Find xk ∈ H⊥

k , ‖xk‖ = 1 such
that ‖Sxk‖ ≥ ‖PH⊥

k
Sxk‖ > ‖S‖e + ε. Clearly xk → 0 weakly. Let L ∈ B(H) be a

compact operator. Then ‖Lxk‖ → 0 and ‖S + L‖ ≥ supk∈N
‖(S + L)xk‖ ≥ ‖S‖e + ε.

So ‖S‖e = infL∈K(H) ‖S + L‖ ≥ ‖S‖e + ε, a contradiction.

Corollary 7. Let H be a separable infinite-dimensional Hilbert space, S ∈ B(H),
t, t′ ≥ 5‖S‖2. Then:
(i)

∣

∣

∣
‖S + t‖ − ‖S + t′‖ − t+ t′

∣

∣

∣
≤ 4‖S‖2
min{t,t′} ;

(ii)
∣

∣

∣
‖S + t‖e − ‖S + t′‖e − t+ t′

∣

∣

∣
≤ 4‖S‖2
min{t,t′} .

Proof. Let x ∈ H, ‖x‖ = 1. By Lemma 5,
∣

∣

∣
‖(S + t)x‖ − t −Re 〈Sx, x〉

∣

∣

∣
≤ 2‖S‖

2

t

and
∣

∣

∣
‖(S + t′)x‖ − t′ −Re 〈Sx, x〉

∣

∣

∣
≤ 2‖S‖

2

t′
.

So
∣

∣

∣
‖(S + t)x‖ − ‖(S + t′)x‖ − t+ t′

∣

∣

∣
≤ 4‖S‖2
min{t, t′} .

Let (xk) ⊂ H be a sequence of unit vectors such that ‖(S + t)xk‖ → ‖S + t‖.
Without loss of generality we may assume that limk→∞ ‖(S + t′)xk‖ exists. Then

‖S + t‖ − ‖S + t′‖ − t+ t′ ≤ lim
k→∞

(

‖(S + t)xk‖ − ‖(S + t′)xk‖ − t+ t′
)

≤ 4‖S‖2
min{t, t′} .

By symmetry, we get (i).

By Proposition 6, we have ‖S + t‖e = limk→∞ ‖PH⊥

k
(S + t)PH⊥

k
‖, where Hk =

∨k
j=1 ej and (e1, e2, . . .) is an orthonormal basis in H. This together with (i) gives

∣

∣

∣
‖S + t‖e − ‖S + t′‖e − t+ t′

∣

∣

∣

= lim
k→∞

∣

∣

∣
‖PH⊥

k
(S + t)PH⊥

k
‖ − ‖PH⊥

k
(S + t′)PH⊥

k
‖ − t+ t′

∣

∣

∣

≤ lim
k→∞

4‖PH⊥

k
SPH⊥

k
‖2

min{t, t′} ≤ 4‖S‖2
min{t, t′} .
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Lemma 8. Let T = (T1, . . . , Tn) be an n-tuple of operators on a separable infinite-
dimensional Hilbert space H. Then there exist mutually orthogonal finite-dimensional
subspaces Fk ⊂ H such that H =

⊕∞
k=1 Fk and PrTjPs = 0 for all r, s ∈ N, |r − s| ≥ 2

and j = 1, . . . , n (i.e., the operators T1 . . . , Tn are simultaneously block 3-diagonal).

Proof. Let (e1, e2, . . .) be an orthonormal basis in H. Let F1 =
∨{e1}. Let G2 =

∨{F1, TjF1, T
∗
j F1 (1 ≤ j ≤ n), e2} and F2 = G2 ⊖ F1. Then dimF2 < ∞, TjF1 ⊂

F1 ⊕ F2 and T ∗
j F1 ⊂ F1 ⊕ F2 for all j = 1, . . . , n.

We continue this construction for k ∈ N inductively. If k ≥ 3 and the subspaces
F1, . . . , Fk−1 have already been constructed, then set

Gk =
∨

{F1, . . . , Fk−1, TjFk−1, T
∗
j Fk−1 (j = 1, . . . , n), ek}

and Fk = Gk ⊖ (F1 ⊕ · · · ⊕ Fk−1). Then dimFk < ∞, TjFk−1 ⊂ (F1 ⊕ · · · ⊕ Fk) and
T ∗

j Fk−1 ⊂ (F1 ⊕ · · · ⊕ Fk) for all j = 1, . . . , n.
If we continue this construction for all k ∈ N we get the required decomposition

(note that
⊕∞

k=1 Fk = H since ek ∈ F1 ⊕ · · · ⊕ Fk for each k).

The following lemma was proved in [CLSW], Lemma 6. We formulate it in a more
explicit form.

Lemma 9. Let S ∈ B(H) be block 3-diagonal, i.e., there are finite-dimensional sub-
spaces Fj such that H =

⊕∞
j=1 Fj and PFr

SPFs
= 0 whenever |r − s| ≥ 2. Denote by

Qk the orthogonal projection onto
⊕∞

j=k+1 Fj .
Let l, d ∈ N, k = l + 2d and let V ∈ B(H) satisfy V = QkV Qk. Then ‖S + V ‖ ≤

max
{

‖S‖, ‖Ql(S + V )Ql‖
}

+ ‖S‖√
d
.

Proof. Let x ∈ H, ‖x‖ = 1. Then

‖PFl+1
x+ PFl+2

x‖2 + ‖PFl+3
x+ PFl+4

x‖2 + · · ·+ ‖PFl+2d−1
x+ PFl+2d

x‖2 ≤ ‖x‖2 = 1.

So there exists j0, l+ 1 ≤ j0 ≤ l+ 2d− 1 ≤ k − 1 such that ‖PFj0
x+ PFj0+1

x‖2 ≤ d−1.

Write x = u+ v + w, where u ∈
j0−1
⊕

j=1
Fj , v = PFj0

x+ PFj0+1
x and w ∈

∞
⊕

j=j0+2
Fj .

We have (S+V )x = Su+Sv+(S+V )w, where ‖Sv‖ ≤ ‖S‖·‖v‖ ≤ ‖S‖√
d
, Su ∈ ⊕j0

j=1 Fj

and (S + V )w = Ql(S + V )Qlw ∈ ⊕∞
j0+1

Fj . Thus Su ⊥ (S + V )w and

‖Su+ (S + V )w‖ ≤ max
{

‖S‖, ‖Ql(S + V )Ql‖
}

.

Hence ‖(S + V )x‖ ≤ max
{

‖S‖, ‖Ql(S + V )Ql‖
}

+ ‖S‖√
d
.

Let T1, . . . , Tn ∈ B(H) be selfadjoint operators. We show that there exist compact
selfadjoint operators K1, . . . , Kn ∈ B(H) such that

∥

∥

∥

n
∑

j=1

αjTj + λ
∥

∥

∥

e
=

∥

∥

∥

n
∑

j=1

αj(Tj − Kj) + λ
∥

∥

∥
(1)
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for all α1, . . . , αn, λ ∈ R. Consequently, We(T1, . . . , Tn) =W (T1 − K1, . . . , Tn − Kn)
−.

We show (1) first under technical assumptions that the space H is separable and
Int RWe(T1, . . . , Tn) 6= ∅, where Int R denotes the interior in the sense of R

n. However,
these assumptions are not necessary.

Let T = (T1, . . . , Tn) ∈ B(H)n. For α = (α1, . . . , αn) write ‖α‖1 =
∑n

j=1 |αj| and
αT =

∑n
j=1 αjTj .

Theorem 10. Let H be a separable infinite-dimensional Hilbert space, let T =
(T1, . . . , Tn) ∈ B(H)n be an n-tuple of selfadjoint operators such that Int RWe(T ) 6= ∅.
Then there exist compact selfadjoint operators K1, . . . , Kn ∈ B(H) such that

∥

∥

∥

n
∑

j=1

αjTj + λ
∥

∥

∥

e
=

∥

∥

∥

n
∑

j=1

αj(Tj − Kj) + λ
∥

∥

∥

for all α1, . . . , αn, λ ∈ R.

Proof. Without loss of generality we may assume that ‖Tj‖ = 1 (j = 1, . . . , n) and
(0, . . . , 0) ∈ Int RWe(T ). Let ε > 0 be such that (µ1, . . . , µn) ∈ We(T1, . . . , Tn) for all
µ1, . . . , µn ∈ R, |µj | ≤ ε (j = 1, . . . , n).

By Lemma 8, there exist finite-dimensional subspaces F1, F2, . . . such that H =
⊕∞

j=1 Fj and the operators T1, . . . , Tn are simultaneously block 3-diagonal with re-
spect to this decomposition. Denote by Qk the orthogonal projection onto the space
⊕∞

j=k+1 Fj .

For m = 0, 1, . . . we construct inductively n-tuples S(m) = (S
(m)
1 , . . . , S

(m)
n ) ∈

B(H)n of selfadjoint operators and an increasing sequence (km) of nonnegative integers
such that

Qkm
S
(m)
j Qkm

= 2−mQkm
TjQkm

(j = 1, . . . , n), (2)

∥

∥

∥

n
∑

j=1

αj(Tj − S
(m)
j ) + λ

∥

∥

∥
≤

∥

∥

∥

n
∑

j=1

αjTj + λ
∥

∥

∥

e
− ε

2m+1
(3)

for all α1, . . . , αn, λ ∈ R,
∑n

j=1 |αj | = 1 and

‖S(m+1)j − S
(m)
j ‖ ≤ ‖Tj‖

2m+1
(j = 1, . . . , n). (4)

For m = 0 set formally k0 = 0 and S
(0)
j = Tj (j = 1, . . . , n). Clearly (2) is

satisfied.

Let α1, . . . , αn, λ ∈ R,
∑n

j=1 |αj| = 1. For µ ∈ R write signµ = 1 if µ ≥ 0 and
signµ = −1 (µ < 0). We have

∥

∥

∥

n
∑

j=1

αj(Tj − S
(0)
j ) + λ

∥

∥

∥
= |λ|
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and
∥

∥

∥

n
∑

j=1

αjTj + λ
∥

∥

∥

e
≥ max

{

|µ| : µ ∈ We

(

n
∑

j=1

αjTj + λ
)

}

≥ max
{
∣

∣

∣

n
∑

j=1

αjνj + λ
∣

∣

∣
: (ν1, . . . , νn) ∈ We(T1, . . . , Tn)

}

≥
∣

∣

∣

n
∑

j=1

εαjsignλ

signαj
+ λ

∣

∣

∣
= ε+ |λ|.

Thus

|λ| ≤
∥

∥

∥

n
∑

j=1

αjTj + λ
∥

∥

∥

e
− ε (5)

for all α1, . . . , αn, λ ∈ R, ‖α‖1 = 1. In particular, (3) is satisfied for m = 0.

Suppose that we have already constructed the n-tuples S(0), . . . , S(m) ∈ B(H)n

and numbers k0, . . . , km ∈ N satisfying (2)–(4).

Set r = 2m+6

ε
and δ = ε

2m+4 .

By Proposition 6, for all α ∈ R
n, ‖α‖1 = 1 and λ ∈ R, |λ| ≤ r we have

‖Qk(αT + λ)Qk‖ ց ‖αT + λ‖e

and the functions (α, λ) 7→ ‖Qk(αT + λ)Qk‖, (α, λ) 7→ ‖αT + λ‖e are continuous. By
the Dini theorem the convergence is uniform on the set A := {(α, λ) ∈ R

n × R, ‖α‖1 =
1, |λ| ≤ r}.
Let l > km satisfy

‖Ql(αT + λ)Ql‖ − ‖αT + λ‖e ≤ δ

for all (α, λ) ∈ A.

Find d ∈ N such that r+1√
d
≤ δ and set km+1 = l + 2d.

For j = 1, . . . , n set

S
(m+1)
j = S

(m)
j − 1

2m+1
Qkm+1

TjQkm+1
.

Clearly S
(m+1)
j is selfadjoint, ‖S(m+1)j − S

(m)
j ‖ ≤ ‖Tj‖

2m+1 and

Qkm+1
S
(m+1)
j Qkm+1

= 2−mQkm+1
TjQkm+1

− 2−(m+1)Qkm+1
TjQkm+1

=
1

2m+1
Qkm+1

TjQkm+1
.

9



To show (3), let first (α, λ) ∈ A. We have

∥

∥Ql

(

α(T − S(m+1)) + λ
)

Ql

∥

∥ =
∥

∥

∥
Ql

(

(1− 2−m)αT + λ
)

Ql +
1

2m+1
Qkm+1

αTQkm+1

∥

∥

∥

≤(1− 2−m)
∥

∥Ql(αT + λ)Ql

∥

∥+
1

2m+1
‖QlλQl‖

+
∥

∥

∥

1

2m+1
(Ql − Qkm+1

)λ(Ql − Qkm+1
) +

1

2m+1
Qkm+1

(αT + λ)Qkm+1

∥

∥

∥

≤(1− 2−m)
(

‖αT + λ‖e + δ
)

+
|λ|
2m+1

+
1

2m+1
max{|λ|, ‖αT + λ‖e + δ}

≤
(

1− 1

2m+1

)

(

‖αT + λ‖e + δ
)

+
1

2m+1
(

‖αT + λ‖e − ε
)

≤ ‖αT + λ‖e + δ − ε

2m+1

=‖αT + λ‖e −
ε

2m+1
+

ε

2m+4

(where we used (5)).
To estimate ‖α(T − S(m+1)) + λ‖, we use Lemma 9. Set S = α(T −S(m)) + λ and

V = 1
2m+1Qkm+1

αTQkm+1
. By (3), we have ‖S‖ ≤ ‖αT + λ‖ ≤ r + 1. Then

‖α(T − S(m+1)) + λ‖ = ‖S + V ‖ ≤ max
{

‖S‖, ‖Ql(S + V )Ql‖
}

+
r + 1√

d

≤max
{

‖αT + λ‖e −
ε

2m+1
, ‖αT + λ‖e −

ε

2m+1
+

ε

2m+4
}

+ δ

=‖αT + λ‖e −
ε

2m+1
+

ε

2m+3
.

For |λ| > r, by Corollary 7, we have

‖αT + λ‖e − ‖α(T − S(m+1)) + λ‖

=
∥

∥

∥

α

signλ
T +

λ

signλ

∥

∥

∥

e
−

∥

∥

∥

α

signλ
(T − S(m+1)) +

λ

signλ

∥

∥

∥

≥
∥

∥

∥

α

signλ
T + r

∥

∥

∥

e
−

∥

∥

∥

α

signλ
(T − S(m+1)) + r

∥

∥

∥
+
8

r

≤ ε

2m+1
− ε

2m+3
+
8

r
=

ε

2m+2
.

So S(m+1) satisfies (2)–(4).
Suppose that the n-tuples S(m) ∈ B(H)n have been constructed for all m ∈ N.

For j = 1, . . . , n, the sequence (S
(m)
j )m is norm convergent; denote by Kj its limit. We

have

‖Kj‖e = lim
m→∞

‖S(m)j ‖e ≤ lim
m→∞

‖Qkm
S
(m)
j Qkm

‖ ≤ lim
m→∞

2−m‖Tj‖ = 0.

Hence the operator Kj is compact for all j = 1, . . . , n. Obviously, Kj is selfadjoint.
For α ∈ R

n, λ ∈ R, ‖α‖1 = 1 we have

‖α(T − K) + λ‖ = lim
m→∞

‖α(T − S(m)) + λ‖ ≤ ‖αT + λ‖e.
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The opposite inequality is clear, so ‖α(T −K)+λ‖ = ‖αT +λ‖e for all α ∈ R
n, λ ∈ R,

‖α‖1 = 1. Consequently, ‖α(T − K) + λ‖ = ‖αT + λ‖e for all α ∈ R
n, λ ∈ R.

Corollary 11. Let H be a separable Hilbert space, let T = (T1, . . . , Tn) ∈ B(H)n be
an n tuple of selfadjoint operators. Then there exists an n-tuple K = (K1, . . . , Kn) ∈
B(H)n of compact selfadjoint operators such that

‖αT + λ‖e = ‖α(T − K) + λ‖

for all α ∈ R
n, λ ∈ R.

Proof. We prove the statement by induction on n. Let T = (T1, . . . , Tn) ∈ B(H)n be
an n-tuple of selfadjoint operators.
If Int RWe(T ) 6= ∅, then the statement follows from Theorem 10. Suppose on the

contrary that Int RWe(T ) = ∅.
Since We(T ) is a convex set, there are numbers β1, . . . , βn ∈ R, (β1, . . . , βn) 6=

(0, . . . , 0) such that
∑n

j=1 βjνj = 0 for all (ν1, . . . , νn) ∈ We(T ). So We

(

∑n
j=1 βjTj

)

=

{0}. Thus
∥

∥

∥

∑n
j=1 βjTj

∥

∥

∥

e
= 0 and L :=

∑n
j=1 βjTj is a compact operator. Without loss

of generality we may assume that βn 6= 0. Thus Tn = β−1
n

(

L − ∑n−1
j=1 βjTj

)

.

By the induction assumption, there are selfadjoint operatorsK1, . . . , Kn−1 ∈ K(H)
such that

∥

∥

∥

n−1
∑

j=1

αj(Tj − Kj) + λ
∥

∥

∥
=

∥

∥

∥

n−1
∑

j=1

αjTj + λ
∥

∥

∥

e

for all α1, . . . , αn−1, λ ∈ R. Set Kn = β−1
n

(

L − ∑n−1
j=1 βjKj

)

. Then Kn is a compact

selfadjoint operator.
Let α1, . . . , αn, λ ∈ R. Then

n
∑

j=1

αj(Tj − Kj) =
n−1
∑

j=1

αj(Tj − Kj)− αnβ−1
n

n−1
∑

j=1

βj(Tj − Kj).

By the induction assumption,

∥

∥

∥

n
∑

j=1

αj(Tj − Kj) + λ
∥

∥

∥
=

∥

∥

∥

n−1
∑

j=1

αjTj − αnβ−1
n

n−1
∑

j=1

βjTj + λ
∥

∥

∥

e
=

∥

∥

∥

n
∑

j=1

αjTj + λ
∥

∥

∥

e
.

The assumption of separability is not essential and can be omitted.

Theorem 12. Let H be an infinite-dimensional Hilbert space, let T = (T1, . . . , Tn) ∈
B(H)n be an n tuple of selfadjoint operators. Then there exists an n-tuple K =
(K1, . . . , Kn) ∈ B(H)n of compact selfadjoint operators such that

‖αT + λ‖e = ‖α(T − K) + λ‖

for all α ∈ R
n, λ ∈ R.

11



Proof. There exists a decomposition H =
⊕

ν∈J H(ν) such that all the subspaces H(ν)

are separable and reducing for the operators T1, . . . , Tn. Write T
(ν)
j = PH(ν)TjPH(ν) .

For all α ∈ R
n, λ ∈ R and ε > 0 there are only finitely many ν ∈ J such that

‖αT (ν)+λ‖ > ‖αT+λ‖e+ε. So there are only countable many ν ∈ J such that ‖αT (ν)+
λ‖ > ‖αT +λ‖e. Hence there exists a countable subset J0 ⊂ J such that ‖αT (ν)+λ‖ ≤
‖αT + λ‖e for all ν /∈ J0 and all rational α1, . . . , αn, λ. Let H0 =

⊕

ν∈J0
H(ν). Then

H0 is a separable subspace reducing for T1, . . . , Tn and ‖PH⊖H0(αT + λ)PH⊖H0‖ ≤
‖αT + λ‖e for all α ∈ R

n, λ ∈ R. So we can use Corollary 11 for the operators
PH0TjPH0 .

Corollary 13. Let T = (T1, . . . , Tn) ∈ B(H) be an n-tuple of selfadjoint operators.
Then there exists an n-tuple K = (K1, . . . , Kn) ∈ B(H) of compact selfadjoint opera-
tors such that We(T ) =W (T − K).
In particular, W (T − K) is convex.

Proof. Let K = (K1, . . . , Kn) ∈ B(H)n be an n-tuple of compact selfadjoint operators
such that ‖α(T − K) + λ‖ = ‖αT + λ‖e for all α ∈ R

n, λ ∈ R. By Lemma 4,

We(T ) = V (T − K) = convW (T − K) ⊃ W (T − K) ⊃ We(T ).

So We(T ) = W (T − K) = convW (T − K).

By Remark 3, the same statement is true for an arbitrary n-tuple of operators.

Corollary 14. Let T = (T1, . . . , Tn) ∈ B(H)n. Then there exists an n-tuple K =
(K1, . . . , Kn) ∈ B(H) of compact operators such that We(T ) =W (T − K).

We do not know whether Theorem 12 remains true for non-selfadjoint operators.

Problem 15. Let T ∈ B(H)n. Does there exist K ∈ K(H)n such that

‖αT + λ‖e = ‖α(T − K) + λ‖

for all α ∈ C
n, λ ∈ C?

Using the method of Theorem 10, it is possible to obtain a positive answer if
IntWe(T ) 6= ∅. However, there are technical problems if We(T ) is a set of a lower
dimension.

3. Olsen’s problem

The method from the previous section can be also used to improve the results of
C.L. Olsen [O].

Theorem 16. Let S ∈ B(H), n ∈ N and ‖Sn‖e 6= 0. Then there exists a compact
operator K ∈ B(H) such that ‖(S − K)j‖ = ‖Sj‖e for j = 1, . . . , n.

12



Proof. Without loss of generality we may assume that ‖S‖ = 1. Furthermore, we may
assume that the space H is separable, cf. proof of Theorem 12.
By Lemma 8, there exist finite-dimensional subspaces F1, F2, . . . such that H =

⊕∞
j=1 Fj and the operators S, S2, . . . , Sn is block 3-diagonal with respect to this de-

composition. Denote by Qk the orthogonal projection onto the space
⊕∞

j=k+1 Fj .

Let 0 < ε < ‖Sn‖e

2 . For 1 ≤ j ≤ n we have 2ε ≤ ‖Sn‖e ≤ ‖Sj‖e · ‖Sn−j‖e ≤ ‖Sj‖e.
Let c = 2nε−1. For m = 0, 1, . . . set sm =

c
c+m
. So s0 = 1, sm ց 0 and

sm − sm+1 =
c

(c+m)(c+m+ 1)
≤ sm

c
=

smε

2n
.

We construct inductively operators Sm ∈ B(H) and an increasing sequence (km)
of nonnegative integers such that:

Qkm
SmQkm

= (1− sm)Qkm
SQkm

, (6)

‖Sm+1 − Sm‖ ≤ sm − sm+1 (7)

and

‖Sj
m‖ ≤ ‖Sj‖e − εsm (j = 1, . . . , n). (8)

For m = 0 set S0 = 0 and k0 = 0. Then clearly (6) and (8) are satisfied.
Let m ≥ 0 and suppose that Sm and km have already been constructed. Choose a

positive number δ < min
{

(sm − sm+1)ε, smε2−n
}

.
By Proposition 6, there exists l > km such that

‖QlS
jQl‖ ≤ ‖Sj‖e + δ (j = 1, . . . , n).

Let km+1 > l + 2
δ2 + 2. Set

Sm+1 = Sm + (sm − sm+1)Qkm+1
SQkm+1

.

Clearly (6) and (7) are satisfied.
To show (8), fix j ∈ {1, . . . , n}. Write W = (sm − sm+1)Qkm+1

SQkm+1
and V =

Sj
m+1−Sj

m = (Sm+W )j−Sj
m. So V can be expressed as the sum of 2j−1 operators, each

of which being a product of j elements of the pair {Sm, W}, where W appears at least
once. Since ‖W‖ ≤ sm−sm+1 and ‖Sm‖ ≤ 1 by (8), we have ‖V ‖ ≤ (2j−1)(sm−sm+1).
By Lemma 9, ‖Sj

m+1‖ ≤ max{‖Sj
m‖, ‖QlS

j
m+1Ql‖}+δ, where ‖Sj

m‖ ≤ ‖Sj‖e−εsm

by the induction assumption. Further,

‖QlS
j
m+1Ql‖ ≤ ‖QlS

j
mQl‖+ ‖V ‖ = (1− sm)

j‖QlS
jQl‖+ ‖V ‖

≤(1− sm)(‖Sj‖e + δ) + (2j − 1)(sm − sm+1) ≤ (1− sm)‖Sj‖e + δ +
(2n − 1)smε

2n

≤‖Sj‖e + sm(−‖Sj‖e + ε) ≤ ‖Sj‖e − εsm.

Hence ‖Sj
m+1‖ ≤ ‖Sj‖e − εsm + δ ≤ ‖Sj‖e − εsm+1.
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Suppose that we have constructed operators Sm and the integers km satisfying
(6)–(8). Then the sequence (Sm) is norm-convergent. Denote its limit by U . For
j = 1, . . . , n we have ‖U j‖ = limm→∞ ‖Sj

m‖ ≤ ‖Sj‖e. Further,

‖S − U‖e = lim
m→∞

‖Qkm
(S − U)Qkm

‖

≤ lim
m→∞

(

‖Qkm
(S − Sm)Qkm

‖+ ‖Qkm
(Sm − U)Qkm

‖
)

≤ lim
m→∞

(sm + ‖Sm − U‖) = 0.

So the operator K := S − U is compact and we have ‖(S − K)j‖ = ‖U j‖ = ‖Sj‖e for
all j = 1, . . . , n.

Corollary 17. Let S ∈ B(H), n ∈ N. Then there exists a compact operatorK ∈ B(H)
such that ‖(S − K)n‖ = ‖Sn‖e.

Proof. If ‖Sn‖e 6= 0 then the statement was proved in the previous theorem. If
‖Sn‖e = 0 then the statement was proved in [OP].
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