The splitting spectrum differs from the Taylor spectrum

V. Miiller*

Abstract. We construct a pair of commuting Banach space operators for which the
splitting spectrum is different from the Taylor spectrum.

Let Aq,..., A, be mutually commuting operators in a Banach space X. The Koszul
complex of the n-tuple (A1,...,A4,) is the complex

0 — A%(X,e)2LAL(X, e) 2 AR (X e) — 0

where AP(X,e) denotes the vector space of all forms of degree p in indeterminates
e1,...,en with coefficients in X and the linear mappings &, : AP(X,e) — APT(X e)
are defined by

n
6P (zes, N---Nejy,) = Zijej Ney N---Neg,.
i=1

It is well-known that d,419, = 0 for every p. The Taylor spectrum or(A;,...,Ay) is
the set of all n-tuples (A1, ... \,) of complex numbers for which the Koszul complex of
(A1 — M\,..., Ay — ) is not exact [5].

Instead of the Taylor spectrum it is sometimes useful to use the following variation
of the Taylor spectrum, see e.g. [1], [3], [4]. We say that the n-tuple (A1,...,A4,) is
splitting-regular if its Koszul complex is exact and the ranges of the operators ¢, are
complemented in APT1(Xe). Equivalently, there exists operators ¢, : AP (X, e) —
AP(X,e) (p = 0,...,n — 1) such that €,0, + d,—16p—1 is the identity operator on
AP(X,e) for p = 0,...,n (formally we set _; = 4, = 0). The splitting spec-
trum og(Ai,...,Ay,) is the set of all (A,...,)\,) € C™ such that the n-tuple (4; —
A1y, Ay — Ap) is not splitting-regular.

The splitting spectrum has similar properties as the Taylor spectrum. Clearly
or(Ay,...,A,) C os(41,...,Ay,). For Hilbert space operators these two spectra co-
incide and the same is true for n-tuples of operators in ¢; or in /o, [2]. Also for a
single operator A; in an arbitrary Banach space o7 (A;1) = 0g(A1). Consequently the
polynomially convex hulls of o7 (A1, ..., A,) and of og(A41,...,A,) are equal.

It was generally expected that these two spectra are different for n-tuple of oper-
ators on a Banach space but no example was known and it was believed that such an
example would be complicated [2]. The aim of this note is to fill this gap in the theory.
Surprisingly, the constructed example is rather simple.

We denote by R(T') and N(T') the range and the kernel of an operator T'. If X and
Y are Banach spaces then X @& Y denotes the direct sum endowed with the /;-norm,
I(z,9)|xey = |lzllx + |lylly (¢ € X,y € Y). Similar convention we use for direct
sums of more than two Banach spaces.
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Lemma 1. There exists a Banach space Z and closed subspaces Y1,Ys C Z such that
Y1 + Yy = Z and the subspace {(z,x) : © € Y1 N Y3} is not complemented in Y1 @ Ys.

Proof. Fix a Banach space Y and a closed subspace X C Y which is not complemented
inY.

Clearly M = {(z,—x) : x € X} is a closed subspace of Y @ Y. Denote Z =
(Y®Y)/M and let m: Y @Y — Z be the canonical projection. Clearly 7(z,0) = 7 (0, x)
for every x € X. Consider operators Ji, Jo : Y — Z defined by J1y = 7(y,0) and Joy =
m(0,y) (y €Y). It is easy to check that J; and J, are isometries. Denote Y7 = J1Y
and Yo = JoY. Clearly Z = Yi+Y; and Y1NY, = {n(2,0): 2z € X} = {n(0,2) : z € X }.

Suppose on the contrary that the space D = {(m(z,0),7(0,2)) : € X} is com-
plemented in Y] @ Yy = ( (1, ),W(O,yg)) :y1,y2 € Y}. Then D is complemented
also in the closed subspace

W = {(n(y,0),7(0,9)) :y € Y} = {(J1y, Jay) sy €Y} C V1 © V>

Let J : Y — W be defined by Jy = (7(%,0),7(0, §)). Clearly J is an isometry onto W
and JX = D so that X is complemented in Y, a contradiction.

Theorem 2. There exist a Banach space W and commuting operators Ay, As € L(W)
such that op(Ay, As) # os(Aq, As).

Proof. Let Z,Y; and Y, be the Banach spaces from the previous lemma. For 7,5 € Z
set

Z (i, > 1),
Wes — Yl (ZleSO),
Yiny, (]SO)

Clearly Wij C Wi-f—l,j and Wz’j C W¢7j+1. Set W = @
be the shift operators to the right and up,

M (D) =Duis (D) =D
,J ,J 1, ,J

Clearly A; and Ay are commuting isometries. Further W;; = W41 ; N Wi, 5 + 1 and
Wij = Wi—l,j +Wi,j—1foralli,j€Z. So R(Al) + R(AQ) =W.
The Koszul complex of the pair (A;, As) is of the form

ijez Wij and let Ay, Ay € L(W)

0—W2WaeW2hw —0 (1)

where Jow = (Ajw, Ayw) and 0(w,z) = —Asw + A1z (w,z € W). Clearly Jp is
bounded below and R(d1) = R(A1) + R(Ag) = W.

To show the exactness of the Koszul complex (1) it is sufficient to prove N(d1) C
R(dp). Let (@wij,@zz‘j) € N(61) for some wj;,z;; € Wi;. Then, for all 1,5 € Z,
Wi, j—1 = Zi—1,5 SO that

wij = Zi—1,541 € Wis N Wi_1 j41 = Wiy

and
zij = Wig1,j-1 € Wiy O Wig1 51 =W ;1.
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Set u = @wi_H,j = @Zi,j—i—l‘ Then 5111, = (Alu,Agu) = (@ww,@zw) Hence
N(61) = R(dp), the Koszul complex (1) is exact and (0,0) ¢ o (A1, A2).

We show that R(dp) is not complemented in W & W. Suppose on the contrary
that there exists a projection P € L(W & W) with range R(Jp). Let Q € L(W & W)
be defined by Q(@ wij,@zij) = (wl,o,zo’l) € Wl,() D W()71. Clearly Q2 = Q and
PQP = QP so that (QP)? = Q(PQP) = QP is also a projection with

R(QP) = {(wl,Osz,l) P W1,0 = 20,1 € W070} = {(l’,ﬂf) M Yi N Y2}.

Clearly R(QP) is complemented also in Wi o @ Wy 1 = Y7 @ Y5 which is a contradiction
with Lemma 1.

Hence (0,0) S Us(Al,AQ) and O'S(Al,AQ) 75 O'T(Al,AQ).
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