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Abstract. We give a Martinelli-Vasilescu type formula for the Taylor functional cal-
culus and a simple proof of its basic properties.
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Let A= (A1,...,A,) be an n-tuple of mutually commuting operators acting on a
Banach space X. The existence of the Taylor functional calculus [18], [19], for simpler
versions see [10], [8], [3], [4], [5] and [15], is one of the most important results of
spectral theory. However, the formula defining f(A) for a function f analytic on a
neighbourhood of the Taylor spectrum has some drawbacks. The operator f(A) is
defined locally, the formula gives only f(A)z for each z € X. Therefore it is not easy
to see that f(A) is bounded. Moreover, the formula is rather inexplicit and it is quite
difficult to prove even the basic properties of the calculus.

The situation is better for Hilbert space operators. In [20] and [21], Vasilescu gave
an explicit Martinelli-type formula defining f(A) which is much easier to handle.

The ideas of Vasilescu were used in [9] to prove a similar formula for Banach space
operators. The method works, however, only for functions analytic on a neighbourhood
of the split-spectrum which is in general bigger than the Taylor spectrum. The main
tool is the existence of generalized inverses for operators that appear in the Koszul
complex. For similar ideas see also [1].

In this paper we obtain a similar formula for the general Taylor functional calculus.
The main innovation is the use of non-linear (but continuous) general inverses. In this
way we obtain a formula that defines f(A) globally, and so the continuity of f(A) and
the continuity of the functional calculus become clear. The formula is more explicit, and
so it is possible to avoid some technical difficulties in the proof of the basic properties
of the calculus. The cohomogical methods are avoided and the proofs are based only
on the Stokes and the Bartle-Graves theorems.

The author wishes to thank to Professor F.-H. Vasilescu for numerous consultations
concerning details of the calculus.

All Banach spaces in this paper are complex. Denote by B(X) the algebra of all
bounded linear operators on a Banach space X.

Definition 1. Let X, Y be Banach spaces. Denote by H(X,Y") the set of all continuous
mappings f : X — Y that are homogeneous (i.e., f(azx) = af(z) for all @« € C and
zeX).

The research was supported by the grant no. 201/00/0208 of the Czech Academy of Sciences.
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If f € H(X,Y) then sup{|/f(z)| : * € X,|z|]| = 1} < oco. Clearly H(X,Y)
with this norm is a Banach space. Write for short H(X) instead of H(X, X). Clearly
B(X) C H(X).

Theorem 2. (Bartle-Graves, see [2], Proposition 5.9) Let M be a closed subspace of a
Banach space X and let € > 0. Then there exists h € H(X /M, X) such that ||h|| < 1+e¢
and h(x + M) € x + M for each class x + M € X/M.

Lemma 3. Let X,Y be Banach spaces and let ' : X — Y be a bounded linear operator
with closed range. Let f € H(Y) satisfy f(Y) C ImT. Then there exists g € H(Y, X)
such that f =Tg.

Proof. Let h : X/KerT — X be the selection given by the Bartle-Graves theorem. Let
To : X/KerT — ImT be the operator induced by T'. Set g = hTO_lf. For y € Y we
have Tgy = ThToflfy = fy, and so T'g = f. Q.E.D.

Proposition 4. Let Xy, ..., X,, be Banach spaces, let 6; : X; — X411 (j=0,...,n—
1) be bounded linear operators and suppose that the sequence

On_
0 — Xo-2x; -2 ... =lx, — 0

is exact. Let g; € H(X;) (j=0,...,n). The following statements are equivalent:

(i) 6;9; = g;+16; (1 =0,...,n—1);
ii) there exist mappings V; € H(X 11, X; j=0,...,n—1) such that
J Jj+ J

Vodo = go,
Viéj+6;-1Vi-i=g; (G=1,...,n—1),
5n—lvn—1 = Jn-

Proof. (ii)=(i): Suppose that the mappings V; satisfy (ii). We have
0595 = 0; (V95 +0j-1Vj-1) = 6;V;9;
and
954105 = (Vitadj11 + 0;V5)0; = 6;V56;

(note that the same relations are true also for j = 0 and j = n—1). Thus §,;9; = g;4+19;
for all j.

(i)=-(ii): Since d,,—; is onto, there exists V,,_; such that 6,,_1V,,—1 = gn.

We construct mappings V; inductively. Suppose that 1 < j7 < n — 1 and that
V; € H(X,+1,X,) satisfies Vj 119,41 + 0,;V; = gj+1 (for j = n — 1 set formally V,, =0
and 6, = 0). We have

6j(g5 — Vj0;) = gj+10; — 8;Vid; = gj+105 — (gj+1 — Vjir1d541)9; = 0.

Thus (g; — V;6;)(X;) C Kerd; = Imd;_; and there exists V;_; € H(X;, X;_1) such
that 5j_1‘/j_1 =9gj — ‘/}53 Thus ‘/}(53 + 5j—1‘/j—1 =9j-
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At the end, suppose that Vj € H(X1, Xo) satisfies g1 = V191 +00Vh. Then 6oVpdo =
(g1 — V161)d0 = g160 = dogo. Since Jy is one-to-one, we have Vg = go. This finishes
the proof. Q.E.D.

We recall now the basic notations of Taylor [18].
Denote by A[s] the complex exterior algebra generated by the indeterminates s =
($1,---,8n). Then

Als) = D A?ls)

where AP[s] is the set of all elements of degree p in A[s]. Thus the elements of AP[s] are
of form

g iy, ipSiy N N Si,
1<iy<--<ip<n

where «;, ... ;, are complex numbers. The multiplication operation A is anticommuta-
tive, s; A s; = —s; A s; for all 4,j. In particular s; A s; = 0. Clearly dim AP[s] = (Z)
and dim A[s] = 2™.

Let X be a Banach space. Then we write Afs, X] = X ® A[s] and AP[s, X] =
X ® AP[s]. Thus the elements of AP[s, X|] are of form

.....

Let A = (A4,...,A,) be an n—tuple of mutually commuting operators in X.
Define operator d4 : Als, X] — A[s, X] by

n
da(xsyy N---Nsi )= Z(ij)sj NSig N NS
j=1

Write 6% = 04|AP[s, X]. The Koszul complex K(A) is the sequence

0 1 67171
0 — A%s, X] A s, X]24 . AL A s, X] — 0.

Then (54)% = 0, i.e., 5?52_1 = 0 for all p. It is convenient to set formally
A~1[s, X] = A"*[s, X] = 0; similarly let §,* and 6" be the zero operators.

We say that the n—tuple A = (44, ..., A,) is Taylor-regular if the Koszul complex
K(A) is exact (i.e., Imds = Kerdy). The Taylor spectrum op(A) is the set of all
n—tuples A = (A1,...,A,) € C" such that A — X = (41 — A\q,..., A, — \,,) is not
Taylor-regular. It is well-known that or(A) is a nonempty compact subset of C".
Further, the Taylor spectrum satisfies the projection property, see [18], [16].

Let A = (Ay,...,A,) be a Taylor-regular n-tuple of operators. By Proposition 4,
there are ”generalized inverses” V; € H(AI*1[s, X], A/[s, X]) such that ¢’ 'V;_1 +
Vjéi" = Ipifs,x]- In a simpler form, we have 64V + V04 = Ij[s x] where V' € H(A[s, X))
is defined by V(@?:Owj) = @?le_le (wj e N [S,X])

Our first goal is to show that it is possible to find such generalized inverses de-
pending smoothly on z € C" \ o7 (A).



Proposition 5. Let A = (A4, ..., A,) be an n—tuple of mutually commuting operators
on a Banach space X. Let G = C" \ op(A). Then there exists a C°°- function
V G — H(A[s, X]) such that 04,V (2) + V(2)6a—. = Ip[s x], and

V(2)AP[s, X] C AP~ [s, X] (z€G,p=0,...,n).

Proof. Consider Banach spaces

M, = (A s, X, ATfs, X]).

=0

My = éH(Aj[S,X]) and
Ms = Té_BH(Aj[s,X],AjH[s,X]).

=0

For z € G define mappings ®(z) : M; — My and ¥(z) : My — M3 by

n—1 n—1
() (D V;) = Vs & D(Vidh . +64LVi1) @4 Vs
§=0 j=1
and . .
¥(2) (@ 9j> =P .9 —95116% ).
j=0 j=0

Clearly ®(z) and ¥(z) are bounded linear operators depending analytically on z € G
and, by Proposition 4, Im ®(z) = Ker ¥(z). Further I, x] = ©lpi[5 x] € Im ®(2) for
all z € G.

Let A € G. By [18], Lemma 2.2, cf. also [17], there is a neighbourhood Uy of A
and an analytic function V) : Uy — Mj such that ®(2)Vi(2) =1 (z € Uy).

Let {p;}52, be a C*°—partition of unity subordinated to the cover {Ux, A € G} of
G, i.e. p;’s are C°-functions, 0 < ¢; < 1, suppy; C Uy, for some \; € G, for each
A € (G there exists a neighbourhood U of A such that all but finitely many of ¢;’s are
Oon U and >~ ¢pi(2) =1 for each z € G.

For z € G set V(z) = Y2, 0i(2)Vy,(2). Clearly V is a C*-function satisfying
V(2)AP[s, X] C AP71[s, X] and ®(2)V(z) = I for all z € G. Q.E.D.

Remark 6. (i) Function & is regular in G (i.e., Im ®(z) changes continuously). The
existence of a C*>°-function V' satisfying ®(z)V (z) = I follows also directly from a deep
result of Mantlik [11]. The present argument, however, is more elementary.

(i) It is possible to require also that V(2)? = 0 and V(2)da_,V (z) = V(2) for all
z € G. In particular, V(2) is a generalized inverse of 4.

Indeed, let V : G — H(A[s, X]) be the function constructed in Proposition 5, i.e.,
da_-V(2)+V(2)6a_, =TI and V(2)AP[s, X] C AP71[s, X].
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Clearly 04—,V (2)da—, = da—.. Set V'(z) =V (2)04—.V(2). Then
Sa—V'(2)0a—r =04_2V(2)04_.V(2)0a_r = 04—
and
V'(2)04-.V'(2) = V(2)04-.V (2)04-:V(2)04-.V (2) = V(2)da—.V (2) = V'(2).
Further

5A_ZVI(Z) + VI(Z)(SA_Z = (5A_ZV(Z)(5A_ZV(Z) + V(Z)(sA_ZV(Z)(SA_Z
= (5A_ZV(Z) + V(Z)éA_Z =1.

Finally we have
V'(2) = (V'(2)0a—s + 04,V (2))V'(2) = V(2) + 64_.V'(2)?,

and s0 64—.V’(2)? = 0. Thus V'(2)? = (V/(2)0a—» + 64_.V'(2))V'(2)? = 0.
These additional properties of the generalized inverse V', however, are not essential
for our purpose and we are not going to use them in the sequel.

In the following we fix a commuting n-tuple A = (Ay,..., 4,,) of bounded linear
operators on a Banach space X, the set G = C" \ o7(A) and a C*°-function V : G —
H(A[s, X]) with the properties of Proposition 5.

Consider the space C*°(G, Als, X]). Clearly this space can be identified with the
set A[s, C*(G, X)].

Function V' : G — H(Als, X]) induces naturally the operator (denoted by the same
symbol) V : C(G, Als, X]|) — C>*(G, A[s, X]) by

(Vy)(z) = V(2)y(2) (z eG,ye C’OO(G,A[S,X])).

Similarly we define operator d4_, (or § for short if no ambiguity can arise) acting in
C>(G, Als, X]) by

(0y)(2) = da—2y(2) (z eG,ye€ COO(G,A[S,X])).
Clearly 62 =0, V§ + 6V = Infs,c (@, x)) and both V and § are "graded”, i.e.

VAP[s,C>®(G, X)] € AP71[s,C(G, X)] and
SAP[s, O (G, X)] € APTH[s,C>(G, X)].

Consider now another indeterminates dz = (dzy,...,dZz,) and the space
Als,dz,C*>°(G, X)]. Define the linear operator

: A[s,dz, C®(G, X)] — Als,dz, C®(G, X)]

by

n

- 0
8fsi1/\.../\sip/\dzjl/\.../\dzjqzza—z];dzk/\sil/\.../\sip/\dzjl/\.../\dzjq.
k=1



Clearly 0% = 0.
Operators V' and 0 can be lifted from Als, C*°(G, X)] to A[s,dz, C>*(G, X)] by

V(o ndzy A...dz) = (Vi) Adz AL dZ) and
S(p NdZy, A...dz) = (6¢) ANdZ, A ... dZ)

for all ¢ € Afs,C>°(G, X)]. Clearly the properties of V and § are preserved: % =0,
V§+ 8V =TI and both V and ¢ are graded. Note also that §0 = —93 and (9 + 6)% = 0.

Let W : Als,dz,C* (G, X)] — Als,dz,C*°(G, X)] be the mapping defined in the
following way: if ¢ € Als,dz, C*>(G, X)], ¥ = o + - - - + 1), where 1); is the part of ¥
of degree j in dZz, then set W) =ng + - -- 4+ n,, where

Mo = V?/)07
m = V(1 — Ino),

n = V(¢n - 5%—1)-
Note that 7; is the part of W1 of degree j in dz.

Lemma 7. Let W : A[s,dz, C>(G, X)] — A[s,dz, C*°(G, X)| be the mapping defined
above. Then:
(i) supp W) C supp ) for all 1);
(i) if G’ is an open subset of G and v € A[s,dz, C=(G, X)] satisfies (0 + &)y = 0 on
G', then (0 + §)We = on G';
(iii) (O + &)W (D +6) =0+ 6.
Proof. (i) Clear.

B (ii) Let ¢ = vpg + - - - + b, where 1); is the part of 1) of degree j in dz. Condition
(0+9)Y =0 on G’ can be rewritten as

5¢0 = 07
5"% + 5¢1 = 07

5¢n_1 + 0, =0
(condition di,, = 0 is satisfied automatically).

~ Let W¢) = 09 + --- + 1, where 7; are defined by (1). The required condition
(0 + 0)W1 = 1) then becomes

dno = o,
Ono + o1 = Y,

57771—1 + 67771 - wn
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on G’ (again, dn, = 0 automatically).

By (1) and (2), we have dng = Vg = (6V + V)hg = 1bp and Oy + 61 =
Ono + 6V (11 — o) = Ono + (I — V&) (¢1 — Ono)Ono = ¥1 — V(11 — 9no) = ¢y since
6(1 — Ono) = 91 + 0o = 6¢p1 + Ohg = 0.

We prove (3) by induction. Suppose that dn;_1 + dn; = ¢; for some j > 1. Then
§(j11 — Onj) = Stbjy1 + Oy = dj11 + O; = 0 by the induction assumption, and
Onj + 0njpr = On; + 6V (Y1 — On;) = On; + (I = V) (¥j41 — Omj) = ¥yt

(iii) Since (0 + 6)? = 0, the statement follows from (ii). Q.E.D.

Remark 8. Without any change it is possible to prove the preceding theorem in a
more general form. Let z — A(z) be an analytic function defined on an open subset
G C C" such that the values A(z) are Taylor regular n-tuples of operators on X for all
z € G. Let ¢ € A[s,dz,C>°(G, X)] satisfy (0 + da(-))1 = 0. Then there exists a form
0 € Als,dz,C>°(G, X)] with suppf C supp® and ¢ = (9 + 6.4(-))0.

We interpret the differential form
(20)7"dZ A ---AdZ, Adzy Ao~ Adzy, (4)

as the Lebesgue measure in C" = R*",

Let P be the natural projection P : A[s,dz,C>*(G, X)] — A[dz,C>(G, X)] that
annihilates all terms containing at least one of the indeterminates s1, ..., s, and leaves
invariant all the remaining terms.

The following simple lemma will be used frequently.

Proposition 9. Let n € A"[s,dz,C*°(G, X)] be a differential form with a compact
support disjoint with op(A) such that (0 + 6)n = 0. Then

/ PnAdz=0

where dz stands for dz; A --- A dz,.
Proof. We have

Pn=P(0+0)Wn=PoWn=090PWn

where PWn has a compact support. By the Stokes theorem, we have
/ PypNdz = OPWnAdz =0.
n (Cn

Q.E.D.

Let U be a neighbourhood of o7 (A). It is possible to find a compact neighbourhood
A of or(A) such that A C U and the boundary 0A is a smooth surface. Let f be a
function analytic in U. Define operator f(A) by

-1

JA)e = oo

/ PWf(z)zs Ndz (x € X), (5)
GYN
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where dz stands for dz; A--- Adz, and s = s; A--- A s,. By the Stokes formula,

f(A)x = @ri /A OpPW f(2)xs A dz

where ¢ is a C*°-function equal to 0 on a neighbourhood of o7(A) and to 1 on C" \ A
(consequently, ¢ = 1 also on JA).
On C" \ A we have

OpPW frxs = P(0+ 6)W fxs = Pfrs = 0.

Thus we can write

f(A)z = (2;2,)” /(C" dpPW f(2)xs Adz. (6)

It is clear from the Stokes theorem that the definition of f(A)x does not depend
on the choice of function ¢ and, by (6), it is independent of A.

We show that f(A) does not depend on the choice of the generalized inverse V/
which determines W.

Suppose that W7, W5 are two operators satisfying

O+ 0O W;if(2)xs = f(2)xs (1=1,2).
For those z where ¢ =1 we have
(0 +8)p(W1 — Wa) f(2)as = 0,

and so the form (9 + &) (W, — Wa) f(2)xs satisfies the conditions of Proposition 9.
Hence

0= /n PO+ 8) (W, — Wa)f(2)zs Ndz = / POo(Wy — Wo) f(2)zs Adz =

n

= OpPW, f(2)xs Adz — DpPWyf(2)xs Adz.
cn cn
It is possible to express the mapping PW that appears in the definition of the
functional calculus more explicitly. By the definition of W, we have

PWaxs = (—1)" 'V (0V)" lzs = (=1)""1Vp0V10 - - - OV, _12s.

Since Als, X] is a direct sum of 2" copies of X, we can express V(z) : Afs, X] —
Als, X] in the matrix form whose entries are elements of H(X) depending smoothly on
zed.

Clearly we can write PWxs = 2?21 M@ xdz A --dz; - - -AdZ, for certain functions

M® ¢ C>= (G, H(X)) where the hat denotes the omitted term.
Thus we can write formulas (5) and (6) also globally:
-1 —
(2mi)n (2mi)™ Jon
(=D"

= i)y /n IV (V)" f(2)Is Ndz

0pPW f(2)Is A dz

/ PWf(2)IsNdz =
0A

f(A) =
(7)

where I = Ix is the identity operator on X. The coefficients of forms in (7) are
H(X)-valued C*°-functions. Therefore f(A) € H(X).



Lemma 10. f(A) is a bounded linear operator.

Proof. Since f(A) € H(X), it is sufficient to show only the additivity. Let x,y € X.
Let ¢ be a C*°-function equal to 0 on a neighbourhood of o7 (A) such that supp (1 —¢)
is compact. Then

— (2mi)" (f(A)(z +y) — f(A)z — f(A)y)

=[| O0pPWf- (x+y)sAdz— OpPW frs Adz — 0pPW fys A dz
cn o cr

:/ PnAdz

n=(0+8)Wf-(x+y)s— (0+ )W frs— (0 + )W fys.

Clearly 1 has a compact support disjoint with o7 (A) and (0+9)n = 0. By Proposition 9,
[ PnpAdz=0and f(A)(z+y) = f(A)z+ f(A)y. Q.E.D.

where

Proposition 11. For n = 1 the functional calculus defined by (7) coincides with the
classical functional calculus given by the Cauchy formula.

Proof. Let A € B(X) and let f be a function analytic on a neighbourhood of o(A).
Then Wzs = Vas = (A — z)~tz. Thus, for a suitable contour ¥ surrounding o (A), we
have

—1
27TZ

flA)= PWfIs/\dz-—/ —2)7 f(z )Idz-—/f (z — A)7ldz,

which is the Cauchy formula. Q.E.D.
Proposition 12. Let f be a function analytic on a neighbourhood of o7(A),1 < j<mn
and g(z) = z; f(z). Then g(A) = A, f(A).

Proof. The statement is well-known for n = 1. Suppose that n > 2. Then

—(2mi)" (A; f(A) — g(A)) = A /n OpPW fIs Adz — / OpPW zjfIs ANdz

n

= Opf - (Aj — z;)PWIs Adz.
C’n

For F Cc {1,...,n}, F = {i1,...,ip} where iy <iy <--- <i, write sp = 55, A---As;,.
Express WIs € A" ![s,dz, C®(G, X)] as

Wlis = Z spNER

Fc{1,...,n}

where £ contains no variable from si,...,s,. Since (0 + ds_.)WIs = Is, for each

F #{1,...,n} we have

5£F + Z(_l)card {k’eF:k’<k}(Ak _ Zk)fF\{k} =0.
keF



In particular, for F' = {j} we have

(Aj — 2j)PWIs = (A — zj)& = —0&;.

Thus
Opf - (Aj — 2 )PWIs ANdz = — ggoféﬁ{j} Adz
C”L C'TL
= —/ O(p0fEjy — v féy) Adz =0
by the Stokes theorem. Hence g(A) = A, f(A). Q.E.D.

Proposition 13. Let A = (Ay,...,A,) € B(X)", B = (By,...,Bn,
Suppose that (A, B) = (A1,...,An, B1,...,By,) is a commuting (n —l— m)-

f and g be functions analytic on a neighbourhood of or(A) and or(B),

Define function h by h(z,w) = f(z) - g(w). Then h(A, B) = g(B)f(A).

Proof. Write 2z = (z1,...,2,) and w = (w1, ...,w,,). Denote by 9,, d,, and 9, ., the
0 operator corresponding to z,w and (z,w), respectively. We associate with B another
system ¢t = (t1,...,t,) of exterior indeterminates when defining the operator dp_,,.

Choose mappings W4, Wp and W4 p corresponding to the tuples A, B and (A4, B).
Let A’ and A” be compact neighbourhoods of o7 (A) and op(B) contained in the
domains of definition of f and g, respectively. Let ¢, and x be C'"*°-functions equal to
0 on a neighbourhood of o7(4) (or(B) and or(A, B)), and to 1 on C" \ A’ (C™\ A”
and C""" \ A’ x A", respectively).

Denote by Ps and P; the projections which annihilate all terms containing at least
one of variables si,...,, (t1,...,tm, respectively) and leave invariant the remaining
terms. Set P = P, P;.

Let z € X. We have

) € B(X)™
t

uple and let
respectively.

—1 _ -1
Az = Lo Py dz = : Pind
f(A)x i) Jon 0,pPsWafrs Ndz @i /n ENdz
where ¢ = (0, +64_.)pWafrs — fxs. On C" \ A’ we have p = 1 and so £ = 0. Thus
supp ¢ is compact. Further

1

9(B)f(A)z = (@miyntm

/ Py + 5B_w)wWBg</ PN dz)t A dw.

m C’Il

Since Wp is not linear, we cannot interchange it with the inner integral. However,
consider the form

1= Ot b 0Wag( [ P& Ad)t (0 + 5 D)0 [ WPt naznt

where W is extended to A[dz,dz,t,dw,C*°(C" x (C™ \ O'T(B)),X)] in the obvious
way. Clearly (0, +05_4)n = 0 and supp 7 is disjoint with o7 (B). On C"™\ A” we have
1 =1 and n = 0 since supp Wp(Psgé Adz At) C supp& x C™ and we can interchange

O, with the second integral. Thus fccm Pn A dw = 0 and we have

(2mi)" ™ g(B) f(A)z / PuDo +05-0)0 | Wo(Pgc ndznt) Adu. (5)

m
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On the other hand, —(2mi)™*"h(A, B)x = [ Pn A dz A dw where
M = (Oso + 042 B-w)XWa phrs Nt — hxs At.

Clearly suppn; is compact.
Set

N2 = (0zw +04—2,B—w)YWa BgE Nt — g€ N L.

Clearly suppn2 C supp& x C™. Moreover, if 1) = 1 then ny = 0, so supp 72 is compact.
On a neighbourhood of op(A, B) we have o = —gé ANt = fgxs ANt = —n;. By
Proposition 9, we have [ P(n; 4+ n2) Adz A dw = 0 and so

(27i)" " h(A, B)x = / Py Adz A dw

Cn+7n

_ (L /m (/ P+ 65 w)UPWa g€ At A dz) A du

by the Fubini theorem (the factor (—1)™" is caused by convention (4) defining the
Lebesgue measures in C"”, C™ and C™"", respectively). By the Stokes theorem we
have

(27i)" " h(A, B)x = / Pi(0w + 6p—w) (/ PWa gl ANdz A t> A dw.

m n

Consider the form

n3 = (0w +0B-w)V | PsWapgé NdzAt— (0 +p_w)b | Wp(Psgé Adz At).
Ccn Ccn

Clearly suppns Nop(B) = 0 and (04 + 6p—w)n3 = 0. If 1 = 1 then, by the Stokes
theorem,

N3 = / Ps(éz,w + 5A—Z,B—w)WA,Bg€ ANdz At — gzPsWA,Bgf ANdz At
n Cn

—/ Png/\dz/\t:/ Psgﬁ/\dz/\t—/ PsgE ANdz Nt = 0.

Thus [ Pin3 A dw = 0 and

(2mi)" T h(A, B)xr = Py(Oyp +6B8_w)V Wg(Psg€dz A t) A dw
cm cr
= (2mi)" " "g(B) f(A)z
by (8). Hence h(A, B) = g(B)f(A). Q.E.D.

We shall use the following simple lemma:
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Lemma 14. Let K be a compact subset of C" and let f be a function analytic on an
open neighbourhood of K. Then there are functions h; (j = 1,...,n) analytic on a
neighbourhood of the set D = {(z,z) : z € K} such that

n

F(2) = flw) =Y (25— wy) - hj(z,w).

Jj=1

Proof. For j =1,...,n define g; by

9i (21, ..y Zn,wi, . wy) = f(21, 0 25, Wi, - W) — f(21, 0005 25—, Wy -, W)

It is easy to see that g; is defined and analytic on a neighbourhood of D.
Let h;(z,w) = % Clearly h; is analytic at each point (z,w) with z; # w;.
By the Weierstrass division theorem (see [7], p. 70), h; can be defined and is analytic

also on a neighbourhood of each point (z,w) with z; = w;. Thus h; is analytic on a
neighbourhood of D. Clearly

n

> (2 —wj) - hyz,w) = Zgj(z,w) = [(2) = f(w).

j=1
Q.E.D.

Denote by Ak the algebra of all functions analytic on a neighbourhood of a com-
pact set K C C" (more precisely, the algebra of all germs of functions analytic on a
neighbourhood of K).

Theorem 15. Let A = (Ay,...,A,) be an n-tuple of mutually commuting operators

on X. Then:

(i) the mapping f — f(A) is linear and multiplicative, i.e., the Taylor functional
calculus is a homomorphism from A, 4y to B(X);

(ii) if p is a polynomial, p(z) = Zani Caz® then p(A) = Zani CaAY;

(iii) if f, — f uniformly on a compact neighbourhood of o (A) then f,(A) — f(A) in
the norm topology;

(iv) f(A) € (A)" for each f € Ay, (a).

Proof. (i) The linearity of the mapping f + f(A) is clear. Let f and g be functions
analytic on a neighbourhood of o7 (A). Consider the (2n)-tuple (A, A). It is easy to
see that op(A4,A4) = {(2,2) : z € or(A)}. Define functions hi(z,w) = f(z)g(w) and
ho(z,w) = f(2)g(z). By Lemma 14, we can write g(z) — g(w) = > i, (2 — w;)q;(z, w)
for some functions ¢y, . .., g, analytic on a neighbourhood of o1 (A, A). By Proposition
13, we have hi(A, A) = f(A)g(A) and ha(A, A) = (fg)(A). Thus, by Proposition 12,

n

(f9)(A) = F(A)g(A) = ha(A, A) = ha(A, A) = Y (A — A))(fa:) (A, A) = 0.

Hence (fg)(A) = f(A)g(A).
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(ii) The statement follows from Propositions 11 and 13.
(iii) follows from the definition.

(iv) Let S € B(X) be an operator commuting with A;,..., A4,. By Proposition
13, it is possible to consider f(A) to be a function of the (n + 1)-tuple (A4, ..., A,,S).
Therefore f(A) commutes with its argument S. Hence f(A) € (A)". Q.E.D.

It follows from the general theory [23] that the Taylor spectrum satisfies the spectral
mapping property for all polynomials (and consequently, for all functions that can be
approximated by polynomials uniformly on a neighbourhood of the Taylor spectrum).
In fact the spectral mapping property is true for all analytic functions. To show this,
we need the following lemma:

Lemma 16. Let A = (A;,...,A,) be a commuting n-tuple of operators on X, let
c=(c1,...,¢cn) € op(A) and let f be a function analytic on a neighbourhood of o1 (A).
Consider exterior indeterminatest = (t1,...,t,) and operator §a_.; : A[t, X] — Alt, X]
defined by 04— = Z?ZI(AJ' —cj)t; AN (¢ € Aft,X]). Let no € Kerda—.¢. Then
(f(A) - f(c))no € 5Afc,tA[t7 X]

Proof. Without loss of generality we can assume that 79 is homogeneous of degree p,
0<p<n.

To define f(A), consider exterior indeterminates s = (s1,...,S,), the mapping
da_, acting on Afs,dz, C*(C" \ or(A), X)] defined by d4_.¢ = Z;-L:l(Aj — 2j)8; N
and the mapping W, corresponding to A. We can lift §4_, and W4 to the space
Als,t,dz, C*>°(C"\or(A), X)] in the natural way. Note that j4_, and Wy are connected
with variables s; the mapping d4_.+ is related to variables ¢.

Set n = fno As and & = ZZZO(—l)kWA(cSA_C,tWA)kn. We show by induction
that (0 +da_.)(6a_ctWa)kn =0 for all k. This is clear for k = 0; for k > 1 we have

(B +04-2)(0acaWa)n=—64_ct(0+064_)Wa(Ba_ceWa) 1y
= _5A—c,t(6A—c,tWA)k_1n =0.

Hence _ _
(O+04a—2+0a—ct)é1 =(0+0a—2)&1 +a—ct&a

=Y (=D GacaWa)'n+ Y (=D (a-cWa) 'y =1
k=0 k=0
since (4_c:Wa)"™ = 0. Let ¢ be a C*°-function equal to 0 on a neighbourhood
of o (A) such that supp (1 — ¢) is compact. Let Ps be the projection annihilating all
terms that contain at least one of the variables s1, ..., s, and leaving invariant all other
terms.
Consider the integral

/(5 + 5Afc,t)Ps(;0€1 ANdz = /(5 + 6A7c,t)PsSO(WA77 — WAéA,CthAn =+ - ) A dz.

Since Wa(04_c:Wa)¥n has degree p+k in t and n — k — 1 in (s,dZ), the only relevant
term in the integral above is W 7. Thus

/(5 +0a—ct)Pspbs Ndz = /(5 +0a—ct)PspWan AN dz
= /5P890WA17 ANdz = —(27mi)" f(A)no.
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Consider now the n-tuple B = (¢11,...,¢,I) € B(X)™. Since f can be approxi-
mated by polynomials uniformly on a neighbourhood of ¢, we note that f(B) = f(c)-I.

As above, consider mappings dg_, and W connected with variables s.

Let & = Zk o (=) W5 (6a—ctWE)*n. As above, we have (0+8p_, +04—c1)é2 =
n and

/(8 +0a—ct)Pspba Ndz = /(0 +0a—ct)PspWpn Adz

= /5P590WB7] Ndz = —(27Ti)nf(B)T]0 = —(27Ti)nf(c)770~

To show that (f(A) — f(c))no € da—ctAlt, X], consider the linear mapping U acting on
Als,t,dz,C°>°(C" \ or(A), X)] defined by

U<t11/\'/\tzm/\w> :(tll _Szl)/\/\(t'an_s7/7n)/\¢

for all i1, ...,4, and ¢ € Als,dz, C>°(C" \ or(A), X)]. Clearly PsU = P; and, for each
e Als,t,dz, C*(C" \ or(A4), X)],

U@+ 6a—s+8a_ct)?p
=0UV+ Y (A —2)s; NUY+ Y (Aj —¢j)(tj — s;) AU
=(0+6p—z+6a—ct)Ut.
We have
— (2md)" f(A)no 2/(5 +0a—c,t)Psp€i Ndz :/PS(E + 04—z +0a—ci)pér Ndz
= /PSU(5 +0a—s+0a_ct)pb1 Ndz = /Ps(g + 02+ 0a—ct)pU& Ndz.
Thus
—(2mi)" (f(A) — f(c))no = /PS(5 + 00—z +0a—ct)p(U& — &) Ndz = /PSH Adz
where 0 = (0+0B_.+04—ct)p(Ué1—&). I p =1then 0 = (0+6p_,+0a_ct)UEL—1 =
U(@+6a—z+0da—ce)61 —n=Un—n=0;sosuppf is compact. Furthermore, § can be
written as 0 = (0+0dp_,+04_c,)Y for some form ¢ € A[s,t,dz, C>°(C", X)| with com-
pact support. Indeed, by Remark 8, there exists a form ¥ € A[s, ¢, dz, dw, C> (C*", X)]
with supp ¥ C supp @ x C" such that (0,4 + 05—z + 0a_c)V = 0.

Set 1(z) = Yo(z, c) where ¥y is the part of ¥ containing none of the variables dw;.
Then supp ) C suppf and (0, +dp_, +da_c)Y = 6. By the Stokes theorem,

/PSG ANdz = /Ps(éz +05_2+06a_ct)V AsAdz
= /ézpsw Adc + /PsaA_c,tzp ANdz =64_cy /P81/1 ANdz € §a_cAft, X).
Q.E.D.
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Proposition 17. Let A = (A;,...,A,) be a commuting n-tuple of operators on X,
c=(c1,...,¢y) € op(A) and let f be a function analytic on a neighbourhood of or(A).
Then the (n + 1)-tuple (A1 — c1,...,An — cn, f(A)) is Taylor regular if and only if
f(e) £0.

Proof. To the (n + 1)-tuple (A — ¢,f(A)) we relate exterior variables sq,...,Sp,41-
Write for short s = (s1,...,5n). Let 04— : A[s, X] — Als, X] be be defined by d4_.¢) =
Y (Aj—cj)s; Ny (Y € Als, X]). Clearly Als, spt1, X]| = Als, X]® sp11 AA[s, X]. The
operator §4_ ¢4y corresponding to the (n + 1)-tuple (A — ¢, f(A)) can be written in
this decomposition in the matrix form

OA—c 0
5A—c,f(A) - f(A) _5A—c .

We distinguish two cases:

(a) f(c) =0.

Since ¢ € o (A), there is a 1) € A[s, X] such that d4_.1) =0 and ¢ ¢ da_.A[s, X].
By the preceding lemma, there is an n € Als, X] such that f(A)Y = da_.n. Then
Sa—c,pA) (W + spp1 An) = 0 and (Y + 841 AN) & da—c ra)Als, snt1, X] since ¥ ¢
da—cAls, X]. Thus the (n + 1)-tuple (A — ¢, f(A)) is Taylor singular.

(b) f(c) # 0. Without loss of generality we can assume that f(c) = 1.

Let w,f S A[S,X], 5A—c,f(A)(1/} + Sn+1 A f) = 0. Then (SA,CZD = 0 and f(A)¢ -
da—c& = 0. By the preceding lemma, f(A)Y — ¢ € da_.Als, X]. Since f(A)y €
da—cAls, X], we have ¢ = d4_.n for some n € Als, X].

Further 64_.(f(A)n —&) = f(A)y — 64— = 0. Thus there is an 6 € A[s, X| with
S (A=) —(f(A)n=§) = bda—ch. Set ' =n—(f(A)n—E). Thenda—cn’ =064—cn =
v and f(A)n —0a—ct = f(A)n— f(A)(f(A)n—&) +0a—cl = f(A)n— (f(A)n—§) =&
Hence 04— f(a)(n" — snp1 A0) = (¥ + 541 A &) and the (n + 1)-tuple (A —c, f(A)) is
Taylor regular. Q.E.D.

Theorem 18. (spectral mapping property) Let A = (Ay,...,A,) be a commuting
n-tuple of operators on X and let f = (f1,..., fm) be an m-tuple of functions analytic
on a neighbourhood of or(A). Then or(f(A)) = for(A).

Proof. Consider the commutative Banach algebra A generated by Ay,...,A,,I and
fi(A),..., fm(A). Since the restriction of o to A satisfies the projection property, by
[23] there is a compact subset K of the maximal ideal space of A such that op(B) =
{¢(B) : ¢ € K} for each tuple B = (By,...,By) C A.

Fixpe Kandi,1 <i<m. Letc; =¢(4;) (j=1,....,n)andc=(c1,...,¢p) €
or(A). Then the (n+1)-tuple (A1 —c1,..., Ap—cn, fi(A)—p(fi(A))) is Taylor singular.
By Proposition 17, fi(c) — ¢(fi(A4)) =0, i.e., o(fi(A)) = fi(p(A)). Then

or(f(A)) = {(e(f1(A),...o(fm(A))) 1 ¢ € K} = {(fi(p(A)),..., fm(p(A))) : p € K}
={f(c):c€or(A)} = for(A).

Q.E.D.

Theorem 19. (superposition property [13], [6]) Let A = (A, ..., Ay) be a commuting
n-tuple of operators on X, let f = (f1,..., fm) be an m-tuple of function analytic on a
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neighbourhood of o1 (A), let B = f(A), let g be a function analytic on a neighbourhood
of op(B) and let h(z) = g(f1(2),..., fm(z)). Then h(A) = g(B).

Proof. By Lemma 14, g(v) — g(w) = 2;11(”3‘ — wj)r;j(v,w) for some functions

T1,...,Tm analytic on a neighbourhood of the set {(v,v) : v € o (B)}. Thus

9(f(2)) — g(w) = Z(fj(z) — w;)ry(z,w)

where 7/(z,w) = r;(f(z),w)) and functions 7 are analytic on a neighbourhood of
the set {(= f(2)) : = € o7(A)} = or(A, f(A)). Thus h(4) — g(B) = S (f;(A) -
Bj)rg(A,B) = 0. Hence h(A) = g(B). Q.E.D.

Concluding Remarks

1. There are many variants of formulas (5), (6) defining the Taylor functional calculus
that differ from each other in the sign in front of the integral. There are several sources
of differences:

(a) Instead of the n-tuple A — z = (A; — z1,..., A, — z,) it is possible to consider the
n-tuple z — A (which appears naturally in the Cauchy formula). In this approach
an additional factor (—1)" in front of the integral (5) would appear.

nstead o it is possible to use convention that the Lebesgue measure in C" is
b) Instead of (4) it i ible t tion that the Leb in C" i
(2¢)7"dz; Adz1 A - - AdZ, Adz,. With this convention the Fubini theorem becomes

more natural. In formula (5), however, an additional factor (—1)(;) would appear.

(¢) It is also possible to modify the definition of the mappings 6%} in the Koszul complex
as in [10]: o%ws; A+ Asi, =325 Ajasiy A--- Asi, Asj. This convention results

also in an additional factor (—1)(3) in formula (5).

2. For Hilbert space operators it is possible to choose V = (§4—, + 0% _.) !, see [20],
[21], [22]. Formula (7) is then quite explicit.

3. The split-spectrum og(A) of the n-tuple A = (44, ..., A,) € B(X)™ is defined as the
set of all A € C" such that either Imd,_) # Kerda_, or Imd4_ is not complemented
in A[s, X]. In general og(A) is bigger than o7 (A), see [12] (in Hilbert spaces these two
spectra coincide).

On the complement of og(A) it is possible to find bounded linear generalized
inverses V(z), see [9]. Thus for functions analytic on a neighbourhood of the split-
spectrum the proof of basic properties of the Taylor functional calculus becomes simpler.
The linearity of f(A) is clear and also the proofs of multiplicativity of the functional
calculus and the spectral mapping property are simpler.

4. As in Theorem 18, it is possible to prove the spectral mapping property for func-
tions analytic on a neighbourhood of the Taylor spectrum for each spectral system
which is contained in the Taylor spectrum. In particular, this applies to the spectra of
Stodkowski and the essential Taylor spectrum, see [14].

5. An interesting problem is to generalize the Taylor spectrum for Banach algebras.
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Let a = (ai,...,a,) be a commuting n-tuple of elements of a Banach algebra.
Denote by L, = (Lq,, ..., Lg, ) the n-tuple of left multiplication operators acting on .A.
A natural idea is to define the Taylor spectrum of a as op(L,). However, if A = B(X)
is the algebra of operators on a Banach space X and A € B(X)™ a commuting n-tuple,
then o7 (La) = 0s(A). Thus this simple way does not produce the Taylor spectrum in
B(X).

In fact in this situation A can be considered also as a commuting n-tuple of
elements of H(X) where H(X) satisfies all axioms of Banach algebras except one
of the distributive laws; let us call such objects semi-distributive algebras. Define
LYy = (L, ..., L ) € BCH(X))" by L'y ¢ = Aip (¢ € H(X)); clearly Ly is an
extension of L 4,. It is easy to check now that op(L/y) = or(4).

It seems that the natural setting for the Taylor spectrum in algebras is to define
it for commuting n-tuples a = (aq, ..., a,) of elements of a semi-distributive algebra A
that lie in the ”distributive center” of A (more precisely, a;(b + ¢) = a;b + a;c for all
b,c € A,1 <i <n. For such an n-tuple, L,, : A — A defined by L,,b =a;b (b€ A)
is a linear operator and we can define the Taylor spectrum of a as the Taylor spectrum
of Lo = (Lays- -, La,) € B(A)™.
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