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Abstract. We show that each reflexive finite-dimensional sub-
space of operators is hyperreflexive. This gives a positive answer
to a problem of Kraus and Larson. We also show that each n–
dimensional subspace of Hilbert space operators is [

√
2n]–hyper-

reflexive.

1. Introduction

Let X be a complex Banach space and let B(X) be the algebra of all
bounded linear operators on X. For an algebra W ⊂ B(X) with iden-
tity, let Alg LatW denote the set of all operators which leave invariant
all (closed) subspaces of X, which are invariant for all operators from
W . The algebra W is called reflexive if W = Alg LatW .

The definition was introduced for the first time in [16] and further
studied by a number of authors. The concept of reflexivity is interesting
even if the underlying space is finite dimensional. For example, the

algebra

{[
a b
0 a

]
⊕[a] : a, b ∈ C

}
is reflexive, but the algebra

{[
a b
0 a

]
:

a, b ∈ C
}

is not reflexive (the former example will be used later).

The definition of reflexivity was extended to subspaces of operators in
[13]. Let X, Y be Banach spaces and let M be a norm-closed subspace
of B(X,Y ) — the space of all bounded linear operators from X into
Y . Write

refM =
{
T ∈ B(X,Y ) : Tx ∈Mx for all x ∈ X

}
,

where Mx = {Sx : S ∈ M}. The subspace M is called reflexive if
M = refM. For algebras with identity both definition coincide.

2000 Mathematics Subject Classification. Primary: 47D15; Secondary: 47D30.
Key words and phrases. Reflexive subspaces, hyperreflexive subspace, hyper-

reflexive constant, k–hyperreflexive subspaces.
The research of the first author was supported by grant No. 201/03/0041 of GA

ČR.
1



2 VLADIMÍR MÜLLER AND MAREK PTAK

A stronger concept of hyperreflexivity was introduced for algebras in
[1] and extended for subspaces of operators in [10]. Denote by dist(·, ·)
the usual distance in Y ; we use also the same notation for the distance
in B(X,Y ). Let M ⊂ B(X, Y ) be a norm-closed subspace and T ∈
B(X, Y ). Write

(1) α(T,M) = sup
{

dist(Tx,Mx) : x ∈ X, ‖x‖ = 1
}
.

We always have α(T,M) 6 dist(T,M). The subspace M is called
hyperreflexive if there is a constant C > 0 such that for all T ∈
B(X, Y ), we have

(2) dist(T,M) 6 C α(T,M).

The smallest constant C fulfilling (1) is called the hyperreflexive con-
stant and denoted by κM.

Let us observe that if M is reflexive and T ∈ refM, then α(T,M) =
0. Hence dist(T,M) = 0 and, since M is norm closed, we have T ∈M.
Thus each hyperreflexive subspace is also reflexive. On the other hand
there are reflexive non-hyperreflexive subspaces (see [9]). However, if
both spaces X and Y are finite dimensional then each reflexive sub-
space is also hyperreflexive. Namely, as we have observed above the
reflexivity of a norm-closed subspace M is equivalent to the condition:

α(T,M) = 0 ⇐⇒ dist(T,M) = 0.

Thus, for the whole conclusion, it is enough to note that all norms on
the finite dimensional space B(X, Y )/M are equivalent.

In [10, Problem 3.9], Kraus and Larson posed the question whether
the concepts of reflexivity and hyperreflexivity are equivalent for finite-
dimensional subspaces of operators on infinite dimensional spaces. The
problem was considered also in [6].

In [10] it was shown that each one-dimensional subspace is hyper-
reflexive. By [14], the hyperreflexive constant is equal to 1.

The aim of this paper is to give a positive answer to the problem of
Kraus and Larson. The main result of the paper is

Main Theorem. Let M ⊂ B(X,Y ) with dimM < ∞. If M is
reflexive, then M is hyperreflexive.

In [12] it was shown that each n-dimensional subspace of Hilbert
space operators is [

√
2n]-reflexive, where [

√
2n] is the integer part of√

2n. Using our main result we show in Section 3 that each n-dimensio-
nal subspace is even [

√
2n]-hyperreflexive (for definitions see Section 3).

Remark. Many authors (including [10]) considered the reflexivity and
hyperreflexivity only for subspaces of operators on a Hilbert space.
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They use a different definition of the distance α(T,M):

α(T,M) = sup
{‖QTP‖ : P,Q are projections and QMP = 0

}
.

To see the equivalence of both definitions of the distance α(·, ·), note
that (see [3, Proposition 58.1]) both distances are equal to
(3)
α(T,M) = sup

{|(Tx, y)| : ‖x‖ = ‖y‖ = 1, (Sx, y) = 0 for all S ∈M}
.

It is easy to see that the definitions of reflexivity and hyperreflexivity
used in this paper also agree with the more general definitions intro-
duced in [5].

2. Main theorem

Let X, Y be Banach spaces. Denote by F (X,Y ) the set of all finite-
rank operators from X to Y and by Fk(X, Y ) the set of all operators
in B(X, Y ) of rank smaller or equal to k. Denote by SX = {x ∈ X :
‖x‖ = 1} the unit sphere in X.

Let n ≥ 1 and let A1, . . . , An ∈ B(X, Y ). Denote by span{Ai : i =
1, . . . , n} the closed linear space generated by A1, . . . , An. Write

s0(A1, . . . , An) = inf
{∥∥∥

n∑
i=1

λiAi

∥∥∥ : λ1, . . . , λn ∈ C, max |λi| = 1
}

.

More generally, for k ∈ N set

sk(A1, . . . , An) = inf
{
s0(A1|M , . . . An|M) : M ⊂ X, codim M 6 k

}
.

The following lemma summarizes the properties of the quantities sk.

Lemma 2.1. Let A1, . . . , An ∈ B(X, Y ). Then:

(1) s0(A1, . . . , An) = inf
{∥∥∥

n∑
i=1

λiAi

∥∥∥ : max |λi| > 1
}

;

(2) s0(A1) = ‖A1‖;
(3) s0(A1, . . . , An) 6 min{‖Ai‖ : i = 1, . . . , n};
(4) s0(A1, . . . , An) > 0 if and only if the operators A1, . . . , An are

linearly independent;
(5) sk(A1, . . . , An) > sl(A1, . . . , An) for k 6 l;
(6) sk(A1, . . . , Âj, . . . , An) > sk(A1, . . . , An) for j = 1, . . . , n, where

the hat denotes the omitted term;
(7) if M is a subspace of X and codim M 6 k then for any l we

have sl(A1|M , . . . , An|M) > sl+k(A1,. . . ,An);
(8) dist(Aj, span{Ai : i 6= j}) > s0(A1, . . . , An) for j = 1, . . . , n;
(9) if k ∈ N and no non-trivial linear combination of A1, . . . , An

belongs to Fk(X,Y ), then sk(A1, . . . , An) > 0.
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Proof. The statements (1)–(7) are trivial. To see (8), fix j and observe
that

dist(Aj, span{Ai : i 6= j}) = inf
{∥∥∥

n∑
i=1

λiAi

∥∥∥ : |λj| = 1
}

> inf
{∥∥∥

n∑
i=1

λiAi

∥∥∥ : max |λi| > 1
}

= s0(A1, . . . , An).

To see (9), let us fix k > 0. Let Z =
{ n∑

i=1

λiAi : max |λi| = 1
}

. Since

Z is compact and Fk(X, Y ) closed, we have dist(Z, Fk(X, Y )) > 0.
Let M ⊂ X, codim M 6 k. Let P ∈ B(X) be a projection onto

M such that ‖P‖ 6 k + 2, see [4, Exercise 5.24]. Let λ1, . . . , λn ∈ C,
max |λi| = 1. Then

dist
( n∑

i=1

λiAi, Fk(X,Y )
)

6
∥∥∥

n∑
i=1

λiAi −
n∑

i=1

λiAi(I − P )
∥∥∥

∥∥∥
n∑

i=1

λiAiP
∥∥∥ 6

∥∥∥
n∑

i=1

λiAi|M
∥∥∥ · ‖P‖ 6 (k + 2)

∥∥∥
n∑

i=1

λiAi|M
∥∥∥.

Thus ∥∥∥
n∑

i=1

λiAi|M
∥∥∥ > 1

k + 2
dist

( n∑
i=1

λiAi, Fk(X,Y )
)
,

and so

sk(A1, . . . , An) > 1

k + 2
dist(Z, Fk(X, Y )) > 0.

¤

The following lemma is a quantitative version of [15, Lemma 1]. Note
that for Hilbert spaces it is possible to take M = F⊥.

Lemma 2.2. Let F ⊂ X, dim F = n < ∞, let ε > 0. Then there
exists a subspace M ⊂ X such that codim M 6 (4nε−1 + 3)2n and

‖f + m‖ > (1− ε) max{‖f‖, ‖m‖/2}
for all m ∈ M , f ∈ F .

In particular, there is a subspace M0 ⊂ X with codim M0 6 (12n +
3)2n such that

‖f + m‖ > 1
3
max{‖f‖, ‖m‖}

for all f ∈ F and m ∈ M0.
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Proof. By the Auerbach lemma there are vectors x1, . . . , xn ∈ F and
x∗1, . . . , x

∗
n ∈ F ∗ of norm one such that 〈xj, x

∗
k〉 = δj,k (the Kronecker

symbol) for all j, k. Thus for all γ1, . . . , γn ∈ C we have
∥∥∥

n∑
j=1

γjxj

∥∥∥ > max
k

∣∣∣
〈 n∑

j=1

γjxj, x
∗
k

〉∣∣∣ = max
k
|γk|.

In particular, the vectors x1, . . . , xn are linearly independent and there-
fore form a basis of F . Let

Z =
{ n∑

j=1

(kjε

2n
+ i

ljε

2n

)
xj : kj, lj integers , |kj|, |lj| 6 2nε−1 + 1

}
.

Then card Z 6 (4nε−1 + 3)2n.

Let u ∈ F , ‖u‖ = 1. Write u =
n∑

j=1

(tj + isj)xj for real tj, sj. Clearly

|tj|, |sj| 6 1 and we can find integers kj, lj such that |kjε

2n
− tj| 6 ε

4n
and

| ljε

2n
− sj| 6 ε

4n
. Thus

∥∥∥u−
n∑

j=1

(kjε

2n
+ i

ljε

2n

)
xj

∥∥∥ 6
n∑

j=1

(∣∣∣kjε

2n
− tj

∣∣∣ +
∣∣∣ ljε
2n

− sj

∣∣∣
)

6 ε
2
.

So dist(u, Z) 6 ε
2
. For z ∈ Z choose z∗ ∈ X∗ such that ‖z∗‖ = 1

and 〈z, z∗〉 = ‖z‖. Let M =
⋂

z∈Z

ker z∗. Clearly codim M 6 card Z 6

(4nε−1 + 3)2n.
Let f ∈ F , ‖f‖ = 1 and m ∈ M . Then there exists z ∈ Z such

that ‖z − f‖ 6 ε
2
. Thus ‖z‖ > 1 − ε

2
. Let z∗ ∈ X∗ be the functional

considered above. Then we have

‖f + m‖ > |〈f + m, z∗〉| = |〈f, z∗〉|
> |〈z, z∗〉| − |〈f − z, z∗〉| > ‖z‖ − ε

2
> 1− ε.

Hence ‖f + m‖ > (1− ε)‖f‖ for all f ∈ F , m ∈ M .
Furthermore,

‖f + m‖ > 1
2
(1− ε)2−ε

1−ε
‖f + m‖ = 1

2
(1− ε)

(‖f + m‖+ 1
1−ε
‖f + m‖)

> 1
2
(1− ε)

(‖m‖ − ‖f‖+ ‖f‖) = 1
2
(1− ε)‖m‖.

In particular, for ε = 1
3

we get that there exists a subspace M0 ⊂ X
with codim M0 6 (12n + 3)2n such that

‖f + m‖ > 1
3
max{‖f‖, ‖m‖}

for all f ∈ F and m ∈ M0. ¤
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For simplicity we write r(n) = (12n + 3)2n for the codimension of
the space M0 in the previous lemma.

Theorem 2.3. There are increasing sequences of nonnegative integers
h(n), g(n) and sequences of positive numbers cn, c′n with the following
properties:

(a) if A1, . . . , An ∈ B(X, Y ) satisfy ‖Aj‖ 6 1 for j = 1, . . . , n
and no non-trivial linear combination of A1, . . . , An belongs to
F (X, Y ), then there exists a unit vector u ∈ X such that

∥∥∥
n∑

i=1

λiAiu
∥∥∥ > cn sn

h(n)(A1, . . . , An) ·max{|λi| : i = 1, . . . , n}

for all λ1, . . . , λn ∈ C;
(b) if T, A1, . . . , An ∈ B(X,Y ) satisfy ‖A1‖ 6 1 for j = 1, . . . , n

and no non-trivial linear combination of A1, . . . , An belongs to
F (X, Y ), then

α(T, span{A1, . . . , An})
> c′n sn

g(n)(A1, . . . , An) · dist(T, span{A1, . . . , An}).
Proof. We prove both statements by induction on n.

Let n = 1 and let A1 ∈ B(X,Y ) satisfy ‖A1‖ 6 1. Set c1 = 1
2

and h(1) = 0. There is a vector u ∈ X such that ‖u‖ = 1 and
‖A1u‖ > 1

2
‖A1‖. Thus ‖λ1A1u‖ > 1

2
|λ1| · ‖A1‖ = 1

2
|λ1| s0(A1) for all

λ1 ∈ C. This proves statement (a) for n = 1.

(a)n ⇒ (b)n : Let g(n) = h(n) + 2n + 2 + (n + 1) r
(
(2n + 2)(n + 1))

and c′n =
(

12n
cn

+ 6
)−1

.

Let T ∈ B(X,Y ). Write for short ε = α(T, span{A1, . . . , An}) and
ε′ = ε

c′nsn
g(n)

(A1,...,An)
. For x ∈ X with ‖x‖ = 1 and δ > 0 set

Dx,δ =
{

(λ1, . . . , λn) ∈ Cn :
∥∥∥Tx−

n∑
j=1

λjAjx
∥∥∥ 6 δ

}
.

Clearly Dx,δ is a closed convex set. By the definition of the distance α,
Dx,ε 6= ∅ for all x ∈ X, ‖x‖ = 1.

To show property (b)n, we must prove that

(4)
⋂

x∈SX

Dx,ε′ 6= ∅.
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Indeed, for (γ1, . . . , γn) ∈ ⋂
x∈SX

Dx,ε′ we have
∥∥∥Tx −

n∑
j=1

γjAjx
∥∥∥ 6 ε′

for all x ∈ X, ‖x‖ = 1, and so
∥∥∥T −

n∑
j=1

γjAj

∥∥∥ 6 ε′. Therefore

dist(T, span{A1,. . . , An}) 6 ε′, and so statement (b) for n is fulfilled.
By (a)n and Lemma 2.1(9), there exists a vector x0 ∈ X with ‖x0‖ =

1 and a constant c > 0 such that
∥∥∥∑n

i=1 λiAix0

∥∥∥ ≥ c max |λi| for all

(λ1, . . . , λn) ∈ Cn. Therefore the set Dx0,ε′ is bounded. Thus (4) is
equivalent to

(5)
⋂

x∈SX

(Dx,ε′ ∩Dx0,ε′) 6= ∅,

where the sets Dx,ε′ ∩Dx0,ε′ are convex compact subsets of Cn ∼ R2n.
By the classical Helly theorem (see [7]), it is sufficient to show that

2n+1⋂
i=0

Dxi,ε′ 6= ∅

for all (2n + 1)-tuples of unit vectors x1, . . . , x2n+1 ∈ X.
Fix x1, . . . , x2n+1 ∈ X of norm one. Let F1 = span{xi : i =

0, . . . , 2n + 1} and let M1 ⊂ X be a subspace such that X = F1 ⊕M1.
Then codim M1 ≤ 2n + 2 and F1 ∩M1 = ∅. Let

F2 = span{Txi, Ajxi : i = 0, . . . , 2n + 1, j = 1, . . . , n}.
Then dim F2 6 (2n + 2)(n + 2). By Lemma 2.2, there is a subspace
M2 ⊂ Y with codim M2 6 r((2n + 2)(n + 1)) such that ‖f + m‖ >
1
3
max{‖f‖, ‖m‖} for all f ∈ F2, m ∈ M2.

Let M = M1 ∩ T−1M2 ∩
n⋂

j=1

A−1
j M2. Then codim M 6 codim M1 +

(n + 1) codim M2, and so h(n) + codim M 6 g(n). By the induction
assumption (a)n and by Lemma 2.1(7), (5), there exists a vector u ∈ M ,
‖u‖ = 1 such that

(6)
∥∥∥

n∑
i=j

λjAju
∥∥∥ > cn sn

h(n)(A1|M , . . . , An|M) ·max
j
|λj|

> cn sn
g(n)(A1, . . . , An) ·max

j
|λj|

for all λ1, . . . , λn ∈ C.

Claim 1. Dxi,6ε ∩Du,6ε 6= ∅ for i = 0, 1, . . . , 2n + 1.

Proof. Fix i ∈ {0, 1, . . . , 2n + 1}. Note that xi ∈ F1, u ∈ M ⊂ M1,
and so xi + u 6= 0. Set v = xi+u

‖xi+u‖ . Suppose on the contrary that
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Dxi,6ε ∩Du,6ε = ∅. For λ1, . . . , λn ∈ C we have

∥∥∥Tv −
n∑

j=1

λjAjv
∥∥∥ =

1

‖xi + u‖
∥∥∥Txi −

n∑
j=1

λjAjxi + Tu−
n∑

j=1

λjAju
∥∥∥

> 1
6
max

{∥∥∥Txi −
n∑

j=1

λjAjxi

∥∥∥,
∥∥∥Tu−

n∑
j=1

λjAju
∥∥∥
}

,

since Txi −
n∑

j=1

λjAjxi ∈ F2 and Tu−
n∑

j=1

λjAju ∈ M2.

Since either (λ1, . . . , λn) /∈ Dxi,6ε or (λ1, . . . , λn) /∈ Du,6ε, at least one
of the two terms is greater than 6ε. Thus

∥∥∥Tv −
n∑

j=1

λjAjv
∥∥∥ > ε

for all λ1, . . . , λn ∈ C. Hence Dv,ε = ∅, a contradiction.

Claim 2. Let (λ1, . . . , λn), (µ1, . . . , µn) ∈ Du,6ε. Then

max
j
|λj − µj| 6 12ε

cnsn
g(n)(A1, . . . , An)

.

Proof. Let (λ1, . . . , λn), (µ1, . . . , µn) ∈ Du,6ε. Then

∥∥∥Tu−
n∑

j=1

λjAju
∥∥∥ 6 6ε and

∥∥∥Tu−
n∑

j=1

µjAju
∥∥∥ 6 6ε.

Hence
∥∥∥

n∑
j=1

(λj − µj)Aju
∥∥∥ 6 12ε,

and so, by (6) we have

max
j
|λj − µj| 6

∥∥∥
n∑

j=1

(λj − µj)Aju
∥∥∥

cn sn
g(n)(A1, . . . , An)

6 12ε

cn sn
g(n)(A1, . . . , An)

.

Claim 3. Let i ∈ {0, 1, . . . , 2n + 1}. Then Dxi,ε′ ⊃ Du,6ε.
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Proof. Let (λ1, . . . , λn) ∈ Du,6ε ∩ Dxi,6ε. Let (µ1, . . . , µn) ∈ Du,6ε be
arbitrary. Then max

j
|λj − µj| 6 12ε

cn sn
g(n)

(A1,...,An)
and

∥∥∥Txi −
n∑

j=1

µjAjxi

∥∥∥ 6
∥∥∥Txi −

n∑
j=1

λjAjxi

∥∥∥ +
∥∥∥

n∑
j=1

(λj − µj)Ajxi

∥∥∥

6 6ε +
12εn

cnsn
g(n)(A1, . . . , An)

6 ε

sn
g(n)(A1, . . . , An)

(
6 + 12n

cn

)
ε′.

Thus (µ1, . . . , µn) ∈ Dxi,ε′ .

Hence
2n+1⋂
i=0

Dxi,ε′ ⊃ Du,6ε 6= ∅, and (4) is fulfilled. This proves state-

ment (b) for n.

(b)n−1 ⇒ (a)n: Let n > 2 and suppose that property (b) holds for

n− 1. Set cn =
c′n−1

18n
and h(n) = g(n− 1) + n2 · r(n(n− 1)).

We construct inductively vectors u1, . . . , un ∈ X of norm one in
the following way. Let k ∈ {1, . . . , n} and suppose that the vectors
uj, j = 1, . . . , k − 1 have already been constructed. Let

Fk = span{Aiuj : i = 1, . . . , n, j = 1, . . . , k − 1}.
Then dim Fk 6 n(k − 1) 6 n(n − 1). By Lemma 2.2, there is a sub-
space Mk ⊂ Y such that codim Mk 6 r(n(n − 1)) and ‖f + m‖ >
1
3
max{‖f‖, ‖m‖} for all f ∈ Fk, m ∈ Mk. Let M ′

k =
k⋂

j=1

n⋂
i=1

A−1
i Mj.

Then codim M ′
k 6 n2 · codim Mk, and so g(n− 1) + codim M ′

k 6 h(n).
By property (b)n−1, there is a vector uk ∈ M ′

k of norm one such that

dist
(
Akuk, span{Aiuk : i 6= k})

> 1
2
c′n−1s

n−1
g(n−1)(A1|M ′

k
, . . . , Âk|M ′

k
, . . . , An|M ′

k
)

· dist
(
Ak|M ′

k
, span{Ai|M ′

k
: i 6= k})

> 1
2
c′n−1s

n−1
h(n)(A1, . . . , An) · s0(A1|M ′

k
, . . . , An|M ′

k
)

> 1
2
c′n−1s

n
h(n)(A1, . . . , An),

where the hat denotes the omitted term; in the estimates we used
Lemma 2.1(6),(8) and (5).

Let u1, . . . , un ∈ SX be constructed in the above described way. Set

v =
n∑

j=1

uj. For λ1, . . . , λn ∈ C and k ∈ {1, . . . , n}, since
k∑

j=1

n∑
i=1

λiAiuj ∈

Fk+1,
n∑

j=k+1

n∑
i=1

λiAiuj ∈ Mk+1,
k−1∑
j=1

n∑
i=1

λiAiuj ∈ Fk and
n∑

i=1

λiAiuk ∈ Mk,
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we have

∥∥∥
n∑

i=1

λiAiv
∥∥∥ =

∥∥∥
n∑

j=1

n∑
i=1

λiAiuj

∥∥∥ > 1
3

∥∥∥
k∑

j=1

n∑
i=1

λiAiuj

∥∥∥

> 1
9

∥∥∥
n∑

i=1

λiAiuk

∥∥∥ > 1
9
|λk| · dist

(
Akuk, span{Aiuk : i 6= k})

> 1
18

c′n−1 sn
g(n)(A1, . . . , An) · |λk|,

(if k = n then the first inequality is trivial). In particular, v 6= 0, by
Lemma 2.1(9). Hence the vector u = v

‖v‖ satisfies ‖u‖ = 1 and

∥∥∥
n∑

i=1

λiAiu
∥∥∥ > 1

18 ‖v‖ c′n−1 sn
g(n)(A1, . . . , An) ·max

k
|λk|

> cn sn
g(n)(A1, . . . , An) ·max

k
|λk|.

This finishes the proof. ¤

Corollary 2.4. Let M ⊂ B(X,Y ) be a finite-dimensional subspace
which contains no non-zero finite rank operators. Then M is hyper-
reflexive.

Proof. Choose a basis A1, . . . , An of M. The proof follows from the
previous theorem, property (b). ¤

Now we are ready to prove the main theorem.

Theorem 2.5. Let M ⊂ B(X, Y ), dimM < ∞. Then M is hyper-
reflexive if and only if M is reflexive.

Proof. If M is hyperreflexive then M is clearly reflexive. Conversely,
let M be reflexive. Let M1 = M ∩ F (X,Y ) and let M2 be any
subspace of M such that M = M1 ⊕M2. Choose a basis A1, . . . , Ak

of M1 and a basis B1, . . . , Bl of M2.

Let M =
k⋂

i=1

ker Ai. Then codim M < ∞. By the previous result for

the operators Bi|M , there is a constant d1 > 0 such that
(7)
dist

(
T |M , span{B1|M , . . . , Bl|M}

)
6 d1·α(T |M , span{B1|M , . . . , Bl|M}

)
.

Let P ∈ B(X) be a projection onto M and F = ker P . Let F ′ =
span{Sf : S ∈ M, f ∈ F}. Clearly dim F ′ < ∞. By Lemma 2.2,
there is a subspace M ′ ⊂ Y such that codim M ′ < ∞ and ‖f ′ + m′‖ >
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1
3
max{‖f ′‖, ‖m′‖} for all f ′ ∈ F ′ and m′ ∈ M ′. Set M ′′ = M ∩

l⋂
i=1

B−1
i M ′. Clearly codim M ′′ < ∞.

Let u ∈ M ′′ be a ”separating vector” for the operators Bi|M ′′ , i.e.,

‖u‖ = 1 and there is a constant d2 > 0 such that
∥∥∥

l∑
i=1

γiBiu
∥∥∥ >

d2 max |γi| for all γ1, . . . , γl ∈ C. Such a vector exists by Theorem
2.3 and Lemma 2.1(9).

It follows from [11, Corollary 2.8] that since M is reflexive, M1 is
also reflexive. For the sake of completeness we include the proof of this
here. Since M1 ⊂ M, we have refM1 ⊂ refM. By reflexivity of M,
we have refM1 ⊂M. To show the reflexivity ofM1 = M∩F (X, Y ), it
is enough to show that refM1 ⊂ F (X, Y ). Let B ∈ refM1. Then, for
all u ∈ X, Bu ∈ span{Ai x : i = 1, . . . , k, x ∈ X}. Hence rank B < ∞
and B ∈ F (X, Y ).

Now, for i = 1, . . . , k consider the operators Ãi : F → span{A1x, . . . ,
Akx : x ∈ F} induced by Ai. Since the operators A1, . . . , Ak are
equal to zero on M , it is easy to see that M̃1 = span{Ã1, . . . , Ãk} is
reflexive. As it was observed in the introduction, M̃1 is hyperreflex-
ive. Thus there exists a constant d3 > 0 with the following prop-
erty: if ε > 0 and T : F → span{A1x, . . . , Akx : x ∈ F} satisfies
dist(Tx, span{A1x, . . . , Akx}) 6 ε for all x ∈ F , ‖x‖ = 1 then there

exist numbers γ1, . . . , γk ∈ C such that
∥∥∥T −

n∑
i=1

γiAi|F
∥∥∥ 6 d3ε.

We show now that M is hyperreflexive. Let ε > 0, T ∈ B(X, Y )
and let

dist(Tx,Mx) 6 ε

for all x ∈ X, ‖x‖ = 1. By (7) there exist numbers β1, . . . βl ∈ C such
that

(8)
∥∥∥T |M −

l∑
j=1

βjBj|M
∥∥∥ 6 d1 ε.

Set S = T−
l∑

j=1

βjBj. Thus ‖S|M‖ 6 d1ε and S satisfies dist(Sx,Mx) 6

ε for all x ∈ X, ‖x‖ = 1.
Let x ∈ F , ‖x‖ = 1. Then there are numbers λ1, . . . , λk, µ1, . . . , µl ∈

C such that
∥∥∥Sx−

k∑
i=1

λiAix−
l∑

j=1

µjBjx
∥∥∥ 6 ε.
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Similarly, there are numbers λ′1, . . . , λ
′
k, µ

′
1, . . . , µ

′
l ∈ C such that

∥∥∥S(x + u)−
k∑

i=1

λ′iAi(x + u)−
l∑

j=1

µ′jBj(x + u)
∥∥∥ 6 ε‖x + u‖ 6 2ε.

By subtracting we have

∥∥∥Su +
k∑

i=1

(λi − λ′i)Aix−
l∑

j=1

(µj − µ′j)Bjx−
l∑

j=1

µ′jBju
∥∥∥ 6 3ε,

since Ai u = 0 for all i. By the definitions of M ′′ and F ′ and by (8),
we have

∥∥∥
l∑

j=1

µ′jBju
∥∥∥ 6 3

∥∥∥
k∑

i=1

(λi − λ′i)Aix +
l∑

j=1

(µj − µ′j)Bjx−
l∑

j=1

µ′jBju
∥∥∥

6 3(3ε + ‖Su‖) 6 3ε(3 + d1).

Since
∥∥∥

l∑
j=1

µ′jBju
∥∥∥ > d2 max |µ′j|, we have max |µ′j| 6 3εd1+3

d2
. Thus we

have

∥∥∥Sx−
n∑

i=1

λ′iAix
∥∥∥ 6 ‖Sx− S(x + u)‖

+
∥∥∥S(x + u)−

n∑
i=1

λ′iAix−
l∑

j=1

µ′jBj(x + u)
∥∥∥ +

∥∥∥
l∑

j=1

µ′jBj(x + u)
∥∥∥

6 ‖Su‖+ 2ε +
l∑

j=1

|µ′j| · ‖Bj‖ · 2 6 d4 ε,

where d4 = d1 + 2 + 3d1+9
d2

· 2
l∑

j=1

‖Bj‖. Thus there exist numbers

γ1, . . . , γk ∈ C such that
∥∥S|F −

k∑
i=1

γiAi|F
∥∥ 6 d3 d4 ε.
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Let f ∈ F , m ∈ M and ‖f + m‖ = 1. Then ‖m‖ = ‖P (f + m)‖ 6
‖P‖ and ‖f‖ 6 ‖f + m‖+ ‖m‖ 6 1 + ‖P‖. Since A|M = 0, we have

∥∥∥T (f + m)−
k∑

i=1

γiAi(f + m)−
l∑

j=1

βjBj(f + m)
∥∥∥

∥∥∥S(f + m)−
k∑

i=1

γiAif
∥∥∥ 6 ‖Sm‖+

∥∥∥Sf −
k∑

i=1

γiAif
∥∥∥

6 d1 ε ‖m‖+ d3 d4 ε ‖f‖.

Thus
∥∥∥T −

k∑
i=1

γiAi −
l∑

j=1

βjBj

∥∥∥ 6 ε
(
d1 ‖P‖ + d3 d4 (‖P‖ + 1)

)
, and so

M is hyperreflexive. ¤

3. Examples and Corollaries

The example from [9], mentioned in the introduction shows also that
there is no constant in the condition (2) for the hyperreflexivity of a
finite-dimensional subspace depending only on the dimension of the
subspace. Bellow we give another example of this kind.

Example 3.1. Let H = C3 with the Hilbert norm. For ε > 0 consider

the operators A1,ε =

[
1 0
0 1

]
⊕ [ε] and A2,ε =

[
0 1
0 0

]
⊕ [0]. Let Mε =

span{A1,ε, A2,ε}. Clearly dimMε = 2. It is easy to verify that Mε is
reflexive for all ε.

Let T

[
1 0
0 0

]
⊕ [0]. For β, γ ∈ C we have

‖βA1,ε + γA2,ε − T‖ =
∥∥∥
[
β − 1 γ

0 β

]
⊕ [εβ]

∥∥∥ > max{|β − 1|, |β|} > 1
2
.

Thus dist(T,Mε) > 1
2

for all ε > 0.

Let x =

[
a
b

]
⊕ [c] ∈ H, ‖x‖ = 1. If b 6= 0 then dist(Tx,Mεx) ≤

‖ab−1A2,εx− Tx‖ = 0. If b = 0 then dist(Tx,Mεx) ≤ ‖A1,εx− Tx‖ =∥∥∥
[
0
0

]
⊕ [εc]

∥∥∥ ≤ ε. Thus α(T,Mε) 6 ε and there is no constant C > 0

such that
dist(T,Mε) 6 C · α(T,Mε)

for all ε > 0.

Now we consider finite dimensional subspaces of B(H), where H is
a Hilbert space. It is well known that B(H) is the dual of the trace



14 VLADIMÍR MÜLLER AND MAREK PTAK

class operators. If M is a w∗-closed subspace of B(H), in particular if
dimM < ∞, then M is reflexive if and only if M⊥ ∩F1(H) is total in
M⊥ (see for example [2]). According to [2], a subspace M is called k-
reflexive if M⊥∩Fk(H) is total in M⊥. In [12] it was shown that each
n dimensional subspace is [

√
2n]–reflexive ([·] denotes the integer part).

For any subspace M ⊂ B(H) and T ∈ B(H), as it was suggested in
[8], we can consider

αk(T,M) = sup
{|〈T, t〉| : t ∈M⊥, ‖t‖ 6 1, rank t 6 k

}

(compare with (3)). As in [8] we can call the subspace M ⊂ B(H)
k-hyperreflexive if there is a constant C such that

dist(T,M) 6 Cαk(T,M)

for each operator T ∈ B(H). We will show the following

Corollary 3.2. Let M ⊂ B(H) and dimM = n. Then M is [
√

2n]-
hyperreflexive.

Proof. Let k = [
√

2n]. By M(k) we denote the k-th amplification of M
M(k) =

{
S ⊕ · · · ⊕ S︸ ︷︷ ︸

k

: S ∈M} ⊂ B
(
H(k)

)
,

where H(k) is the direct sum of k-copies of H, H(k) = H ⊕ · · · ⊕H︸ ︷︷ ︸
k

.

Since dimM = n, M is k-reflexive by [12, Theorem 12]. By [2], M(k)

is reflexive. Since dimM(k) = n, it is also hyperreflexive. Hence [8,
Theorem 3.5] implies that M is k-hyperreflexive. ¤
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