HYPERREFLEXIVITY OF FINITE-DIMENSIONAL
SUBSPACES

VLADIMIR MULLER AND MAREK PTAK

ABSTRACT. We show that each reflexive finite-dimensional sub-
space of operators is hyperreflexive. This gives a positive answer
to a problem of Kraus and Larson. We also show that each n—
dimensional subspace of Hilbert space operators is [\/%]fhyper—
reflexive.

1. INTRODUCTION

Let X be a complex Banach space and let B(.X') be the algebra of all
bounded linear operators on X. For an algebra W C B(X) with iden-
tity, let Alg Lat)V denote the set of all operators which leave invariant
all (closed) subspaces of X, which are invariant for all operators from
W. The algebra W is called reflexive if W = Alg LatWV.

The definition was introduced for the first time in [16] and further
studied by a number of authors. The concept of reflexivity is interesting
even if the underlying space is finite dimensional. For example, the

algebra { [8 Z] ®la] : a,b € C} is reflexive, but the algebra { [8 2} :

a,b € C 4 is not reflexive (the former example will be used later).

The definition of reflexivity was extended to subspaces of operators in
[13]. Let X, Y be Banach spaces and let M be a norm-closed subspace
of B(X,Y) — the space of all bounded linear operators from X into
Y. Write

ref M = {T € B(X,Y): Tz € Mz for allz € X},

where Mz = {Sx : S € M}. The subspace M is called reflezive if
M = ref M. For algebras with identity both definition coincide.
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A stronger concept of hyperreflexivity was introduced for algebras in
[1] and extended for subspaces of operators in [10]. Denote by dist(-, -)
the usual distance in Y'; we use also the same notation for the distance
in B(X,Y). Let M C B(X,Y) be a norm-closed subspace and 1" €
B(X,Y). Write

(1) a(T, M) = sup{dist(Tz, Mz): z € X, ||z| = 1}.

We always have (T, M) < dist(7, M). The subspace M is called
hyperreflexive if there is a constant C' > 0 such that for all T" €
B(X,Y), we have

2) dist(T, M) < C a(T, M).

The smallest constant C' fulfilling (1) is called the hyperreflexive con-
stant and denoted by k4.

Let us observe that if M is reflexive and T € ref M, then a(T, M) =
0. Hence dist(7', M) = 0 and, since M is norm closed, we have T' € M.
Thus each hyperreflexive subspace is also reflexive. On the other hand
there are reflexive non-hyperreflexive subspaces (see [9]). However, if
both spaces X and Y are finite dimensional then each reflexive sub-
space is also hyperreflexive. Namely, as we have observed above the
reflexivity of a norm-closed subspace M is equivalent to the condition:

a(T,M)=0 <= dist(T, M) =0.

Thus, for the whole conclusion, it is enough to note that all norms on
the finite dimensional space B(X,Y")/M are equivalent.

In [10, Problem 3.9], Kraus and Larson posed the question whether
the concepts of reflexivity and hyperreflexivity are equivalent for finite-
dimensional subspaces of operators on infinite dimensional spaces. The
problem was considered also in [6].

In [10] it was shown that each one-dimensional subspace is hyper-
reflexive. By [14], the hyperreflexive constant is equal to 1.

The aim of this paper is to give a positive answer to the problem of
Kraus and Larson. The main result of the paper is

Main Theorem. Let M C B(X,Y) with dimM < oo. If M is
reflezive, then M is hyperreflexive.

In [12] it was shown that each n-dimensional subspace of Hilbert
space operators is [v/2n]-reflexive, where [v/2n] is the integer part of
v/2n. Using our main result we show in Section 3 that each n-dimensio-
nal subspace is even [v/2n]-hyperreflexive (for definitions see Section 3).

Remark. Many authors (including [10]) considered the reflexivity and
hyperreflexivity only for subspaces of operators on a Hilbert space.
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They use a different definition of the distance o (T, M):
(T, M) = sup{||QTP|| : P,Q are projections and QMP = 0}.

To see the equivalence of both definitions of the distance «f(,-), note
that (see [3, Proposition 58.1]) both distances are equal to

(3)

a(T, M) = sup{[(Tz,y)|: ||zl = lyll = 1, (Sz,y) = 0 forall S € M}.

It is easy to see that the definitions of reflexivity and hyperreflexivity
used in this paper also agree with the more general definitions intro-
duced in [5].

2. MAIN THEOREM

Let X,Y be Banach spaces. Denote by F(X,Y') the set of all finite-
rank operators from X to Y and by Fj(X,Y) the set of all operators
in B(X,Y) of rank smaller or equal to k. Denote by Sx = {z € X :
|z|| = 1} the unit sphere in X.

Let n > 1 and let Ay,..., A, € B(X,Y). Denote by span{A; : i =
1,...,n} the closed linear space generated by Ay, ..., A,. Write

so(Ar,.. . A = inf{HZn: AA;
=1

ZAl,...,)\nE(C,maX|)\Z" :1}

More generally, for & € N set
sk(Ag, ..., Ap) = inf{so(AllM, L Aply) M C X codim M < k}
The following lemma summarizes the properties of the quantities sy.

Lemma 2.1. Let Ay,..., A, € B(X,Y). Then:

(1) so(A1,..., Ay) = mf{ S NA;
=1

(2) so(Ar) = Al

(3) S(](Al, e ,An) < HllIl{HAzH S 1, . ,n};

(4) so(A1,...,A,) > 0 if and only if the operators Ay, ..., A, are
linearly independent;

(5) sk(A1, ..., Ay) = si(Ar, ..., Ay) for k <

(6) se(Ar, ..., Aj .. Ay = sp(Ar, ..., Ay) forj =1,....n, where
the hat denotes the omitted term;

(7) if M is a subspace of X and codim M < k then for any | we
have SZ(A1|M, N 7fln|]\4) 2 Sl+k(A1,. . ,An);

(8) dist(Aj,span{A; : i # j}) = so(A1, ..., An) forj=1,...,n;

(9) if k € N and no non-trivial linear combination of Ay,..., A,
belongs to Fi,(X,Y), then sg(Ai,..., A,) > 0.

tmax |\ > 1};
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Proof. The statements (1)—(7) are trivial. To see (8), fix j and observe

that
| = 1}

s max |\ = 1} = so(A1,..., A,).

dist(A;,span{A; : i # j}) = {

{5

To see (9), let us fix k > 0. Let Z = {Z)\A max |\;] = 1}. Since

Z is compact and Fi(X,Y") closed, we have dist(Z, Fi,(X,Y)) > 0.

Let M C X, codimM < k. Let P € B(X) be a projection onto
M such that HPH < k+ 2, see [4, Exercise 5.24]. Let A,..., A, € C,
max |\;| = 1. Then

dlst<ZAAZ,FkXY> HZAA Z)\A[ P
HZ)\APH HZA/HMH 1P < k:+2)HZ:/\Z-A,~|MH.

Thus
=1 k 2 =1 7 ’ 7
and so
A A) > ist(Z, Fu(X.Y)) > 0.
Sk( 15 ; n) k+2d18t( ; k( ))>0

O

The following lemma is a quantitative version of [15, Lemma 1]. Note
that for Hilbert spaces it is possible to take M = F*.

Lemma 2.2. Let ' C X, dimF = n < oo, let € > 0. Then there
exists a subspace M C X such that codim M < (4ne~' + 3)*" and

1 +mll = (1= ) max{][| £, [|ml]| /2}

forallme M, f e F.
In particular, there is a subspace My C X with codim My < (12n +
3)*" such that

1 +mll > g max{|[f[l, [lm]}
for all f € F and m € M,.
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Proof. By the Auerbach lemma there are vectors zi,...,z, € F and
x3,...,x; € F* of norm one such that (x;,z}) = 0,5 (the Kronecker
symbol) for all j, k. Thus for all 7,...,v, € C we have

HZ%J;] max’<2%x],xk>‘ —maxhk\

In particular, the vectors zy, ..., x, are linearly independent and there-
fore form a basis of F'. Let

ZZ{jZ(Z;vL 12—€>x] kj,l; integers , |k;|, |I;| < 2ne” _|_1}_

Then card Z < (4ne™! + 3)".
Let u € F, ||u|| = 1. Write u = > (t; +is;)x; for real ¢;,s;. Clearly

J=1
t;], s <1 and we can find integers k;, [; such that |]; —1;] < & and
lie
5 — 55| < 4. Thus
ke L kje lie
H“‘E(%* i50)%) <Z( o~ 0l 5 ) <5

So dist(u, Z) < 5. For z € Z choose z* € X* such that ||z*| = 1
and (z,z*) = ||z||. Let M = [ ker z*. Clearly codim M < card Z <

2€Z
(4ne~t + 3)%".
Let f € F, ||f]| =1 and m € M. Then there exists z € Z such
that ||z — f]] < §. Thus |z]| > 1 — 5. Let 2* € X* be the functional
considered above. Then we have

1 +mll > [(F +m, =) = [(£.27)]
> e ) = 1 =22 2 el — 5> 1.

Hence || f +m| = (1 —¢)||f]|| for all f € F, me M.
Furthermore,

If +mll > 5(1— )=

»—A|l\')

Nl +mll =30 =) (If +mll + = f +mll)
> (=) (Imll = I+ 1) = 31 = &)lImll.

In particular, for € = 3 we get that there exists a subspace My C X
with codim My < (12n + 3)2" such that

1 +mll = g max{||f[]. [|ml|}
for all f € F and m € M,. O
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For simplicity we write r(n) = (12n + 3)*" for the codimension of
the space Mj in the previous lemma.

Theorem 2.3. There are increasing sequences of nonnegative integers
h(n), g(n) and sequences of positive numbers c,, ¢, with the following
properties:

(a) if A1,..., A, € B(X)Y) satisfy ||A;]] < 1 forj=1,...,n
and no non-trivial linear combination of A, ..., A, belongs to
F(X,Y), then there ezists a unit vector u € X such that

=1

for all \y,..., N\, € C;
(b) if T, Ay,..., A, € B(X,Y) satisfy | A1) <1 forj=1,....n
and no non-trivial linear combination of A, ..., A, belongs to

F(X,Y), then

’ 2 Cn Sy (A -y Ap) -max{|N| i =1,...,n}

a(T,span{Ay, ..., An})
> ¢ Sy (AL, -, Ay) - dist(T, span{ Ay, ..., A, }).

Proof. We prove both statements by induction on n.

Let n = 1 and let 4; € B(X,Y) satisfy [|Ai]] < 1. Set ¢ = 3
and h(1) = 0. There is a vector u € X such that ||u|| = 1 and
[Avul| = 3| Adll. Thus [MAvul| = 5IM]- Al = 50 s0(Ay) for all
A1 € C. This proves statement (a) for n = 1.

(a)n = (b)n : Let g(n) = h(n) +2n+2+ (n+ 1)r((2n+2)(n + 1))

-1
and ¢, = (13_: +6
Let T € B(X,Y). Write for short ¢ = o(T,span{A4,...,A,}) and
= 7o Ay Yor ¥ € X with |z]| =1 and § > 0 set

‘ga}.

Clearly D, s is a closed convex set. By the definition of the distance «,
D,.#0forallz € X, |z]]| = 1.
To show property (b),, we must prove that

(4) () Due #0.

TESx

/

Dx,é = {()\1, .. ,)\n) e C": HT.% — Z)‘J'ij
j=1
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Indeed, for (v1,...,7) € [\ Dso we have HT&: -

TESX

n
’yjAjZE‘ < e
=1

J

for all x € X, |jz|| = 1, and so HT — > Al < €. Therefore
j=1

dist(T, span{ A;,..., A,}) < €', and so statement (b) for n is fulfilled.
By (a), and Lemma 2.1(9), there exists a vector zg € X with ||zo|| =

1 and a constant ¢ > 0 such that HZLI )\iAi:cg‘ > ¢ max |\;| for all
(A1,...,A) € C". Therefore the set D,, . is bounded. Thus (4) is
equivalent to

(5) m (Dac,e’ N Dam,s’) 7£ (Z),

rE€ESx

where the sets D, . N D,, . are convex compact subsets of C" ~ R?",
By the classical Helly theorem (see [7]), it is sufficient to show that

2n+1
ﬂ Dxi,E’ 7£ 0
i=0
for all (2n + 1)-tuples of unit vectors xy,...,To,+1 € X.
Fix z1,...,29,11 € X of norm one. Let F; = span{z; : i =

0,...,2n+ 1} and let M; C X be a subspace such that X = F; & M;.
Then codim M; < 2n + 2 and Fy N M; = (. Let

Fy =span{Tz;, Ajz; :i=0,....,2n+1,7=1,...,n}.

Then dim Fy < (2n + 2)(n + 2). By Lemma 2.2, there is a subspace
M, C Y with codim M> < 7((2n 4+ 2)(n + 1)) such that ||f + m| >
s max{|| f||,||m[} for all f € F5, m € M.

Let M = My NT~'My N () A;'M,. Then codim M < codim M; +
j=1

(n + 1) codim My, and so h(n) + codim M < g(n). By the induction
assumption (a),, and by Lemma 2.1(7), (5), there exists a vector u € M,
|u|| = 1 such that

(6) HZ AjAju
i=

‘ > o 8 (Al -, Aulay) - max [

> Cn Sy (A1, .o Ay) - max | A
j

for all Aq,..., A, € C.
Claim 1. D,, 6. N Dyg. # 0 for i =0,1,...,2n+ 1.
Proof. Fix i € {0,1,...,2n + 1}. Note that x; € F}, u € M C My,

and so x; + u # 0. Set v = H?EII' Suppose on the contrary that
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D, 6c N Dyge = 0. For A\y,..., A\, € C we have

HTU — Z /\jAjU
j=1

n
2 %maX{HTZL‘Z — Z )\jAjiEi
j=1

|

1 n n
! j=1 j=1

a3
j=1

since Tx; — Z/\A.rzEFgandTu—Z/\AueMg
Jj=

Since either ()\1, ooy An) & Dy, 6 OF ()\1, .oy An) & Dy e, at least one
of the two terms is greater than 6¢. Thus

HTU — Z )\jAj’U
j=1

for all Ay,...,\, € C. Hence D, . = 0, a contradiction.

Claim 2. Let (A1,..., An), (41, ftn) € Dyge. Then

12¢
g(n(Al,...,A)'

max [A; — p;] <

Proof. Let (A1,...,\n), (1, .., ptn) € Dyge. Then
HTU - Z AjAju ‘ < 6e and HTU - Z,ujAju
j=1 j=1

Hence

\ <

[0

and so, by (6) we have

’ < 12¢,

3 , A-u‘
;( MJ) J 192
Sg(n)

< .
(Al,...,A ) CnSZ(n)<A1,...,An>

max [\, - 1| <
J Cn

Claim 3. Let i € {0,1,...,2n+ 1}. Then D,, o D Dy-.
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Proof. Let (A1,...,A\y) € Dyge N Dy, - Let (pa,..., p1n) € Dyge be
arbitrary. Then max |\; — pj| < ——5
‘7 n

g(n )(
j=1

Hsz Z)\ Az

5

12en < € (
Spimy (A1, An) A Spimy (A1, An) cn

Thus (p1, ..., fn) € Dy, s
2n+1
Hence () D, e D Duge # 0, and (4) is fulfilled. This proves state-
i=0
ment (b) for n.

< 6e +

(D)n—1 = (a),: Let n > 2 and suppose that property (b) holds for
n—1. Set ¢, = = (n) =g(n—1)+n? -r(n(n—1)).

We construct inductively vectors uq,...,u, € X of norm one in
the following way. Let k& € {1,...,n} and suppose that the vectors
uj, 7 =1,...,k — 1 have already been constructed. Let

Fp=span{Aju;:i=1,....n, j=1,...,k—1}.

Then dim Fj, < n(k — 1) < n(n — 1). By Lemma 2.2, there is a sub-
space M} C Y such that codim M) < r(n(n — 1)) and ||f + m| >
k n
smax{|| f||,||m[/} for all f € Fr, m € M. Let M = ﬂl 'ﬂlAl-_le.
j=1i=
Then codim M} < n? - codim My, and so g(n — 1) + codim M, < h(n).
By property (b),—1, there is a vector u, € Mj of norm one such that

dist (Akuk, span{ Ajuy, i # k})
2 5C;L 18 (n— 1(A1’M/ . ’Ak’MI/c”An’MI/c)
~dist(Ak\M}/c, span{A;|yy 11 # k})
C;_lsz(_l(Al,...,An)'So(A1|MI/C,... A |M’)
>1d 18hny (A1s -+, An),

where the hat denotes the omitted term; in the estimates we used
Lemma 2.1(6),(8) and (5).

Let uq,...,u, € Sx be constructed in the above described way. Set
v=>y u;. For \j,....\, € Cand k € {1,...,n}, s1nceZZ)\Au]
7j=1 ] 1i=

n n k=1 n
Fiiq, Z Z)\ZAZU] € My, Z Z/\AU] € I, andZ/\AukEMk,

j=k+11i=1 j=1l1i=1 i=1
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we have
n n n k; n
IS x| = [ vdi|| = 5303 vdw,
i=1 j=1 i=1 =1 i=1

> % HZ )\iAiukH > % | Ak ] -dist(Akuk,span{Aiuk 1 k:})
i=1
> 15 1 Sy (Ar, o An) - [N,

Z 18 “n—1°g

(if & = n then the first inequality is trivial). In particular, v # 0, by
Lemma 2.1(9). Hence the vector u = oy Satisfies |lu|| = 1 and

3" ra
i=1

‘ Z 18|1|v|| C'/n,—l Sg(n)(Alv s aAn) : m]?X |)\k|

Z Cp Sg(n)<A17 s 7An) ’ ml?X ’)‘k|

This finishes the proof. U

Corollary 2.4. Let M C B(X,Y) be a finite-dimensional subspace
which contains no non-zero finite rank operators. Then M is hyper-
reflexive.

Proof. Choose a basis Ay,..., A, of M. The proof follows from the
previous theorem, property (b). O

Now we are ready to prove the main theorem.

Theorem 2.5. Let M C B(X,Y), dimM < oco. Then M is hyper-
reflexive if and only if M is reflexive.

Proof. If M is hyperreflexive then M is clearly reflexive. Conversely,
let M be reflexive. Let My = M N F(X,Y) and let My be any
subspace of M such that M = M; & M,. Choose a basis Ay,..., A
of M and a basis By, ..., B; of M.

k
Let M = () ker A;. Then codim M < oo. By the previous result for
i=1
the operators B;|, there is a constant d; > 0 such that
(7)
diSt(T|M, span{Bl|M, ce BZ|M}) < dl'Oé(T|M, span{Bl|M, e Bl|M})

Let P € B(X) be a projection onto M and F' = ker P. Let F' =
span{Sf : S € M, f € F}. Clearly dim F’ < co. By Lemma 2.2,
there is a subspace M’ C Y such that codim M’ < oo and ||f'+m/|| >
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1
smax{|[f'|,[[m|[} for all f* € F" and m" € M'. Set M" = M N
!
N B;'M'. Clearly codim M" < oo.
i=1
Let u € M"” be a "separating vector” for the operators B;|y, i.e.,

!
> viBiu
i=1
dy max |y;| for all v1,...,7 € C. Such a vector exists by Theorem
2.3 and Lemma 2.1(9).

It follows from [11, Corollary 2.8] that since M is reflexive, M; is
also reflexive. For the sake of completeness we include the proof of this
here. Since M; C M, we have ref M| C ref M. By reflexivity of M,
we have ref M; C M. To show the reflexivity of M; = MNF(X,Y), it
is enough to show that ref M; C F(X,Y). Let B € ref M;. Then, for
all u € X, Bu € span{A;x :i=1,...,k,x € X}. Hence rank B < o0
and B € F(X,Y).

Now, for ¢+ = 1,..., k consider the operators A F — span{A;z,...,
Agxr © x € F} induced by A;. Since the operators Aj,..., Ay are
equal to zero on M, it is easy to see that M, = span{fll, e ,[lk} is
reflexive. As it was observed in the introduction, M; is hyperreflex-
ive. Thus there exists a constant d3 > 0 with the following prop-
erty: if ¢ > 0 and T: FF — span{Ajz,..., Ayx : © € F} satisfies
dist(Tz,span{ Az, ..., Ayx}) < e for all x € F, ||z|| = 1 then there

We show now that M is hyperreflexive. Let ¢ > 0, T' € B(X,Y)
and let

|lul| = 1 and there is a constant dy > 0 such that >

exist numbers 71, ...,7 € C such that

dist(Tx, Mz) < ¢

for all x € X, ||z|]| = 1. By (7) there exist numbers /i, ... € C such
that

!
j=1
!
Set S =T->" 3;B,. Thus ||S|pm|| < di€ and S satisfies dist(Sz, Mz) <
j=1

eforallz € X, ||z]| = 1.
Let z € F, ||z|| = 1. Then there are numbers Ay, ..., A\, i1, .., 14 €

C such that
k l
i=1 Jj=1

‘ée.
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Similarly, there are numbers A}, ..., A}, uy, ..., u; € C such that

k l
| St +u) =S XAiw+w) = 3 B +w)| < ello+ul < 22
i=1 j=1

By subtracting we have

l

I
HSU—FZ -\ Ax—Z(uj —,u;)Bjx—Z,u;Bju
j=1

7j=1

‘<36,

since A;u = 0 for all i. By the definitions of M” and F’ and by (8),

we have

I k I
HZM;BJU’ <3HZ( -\ A:E+Z jx—Zu;Bju
=1 i=1 =1

< 3(3e + [|Sull) < 32(3 + dv).

Since . Bju ‘ > dy max ||, we have max || < 3€d1d—;r3. Thus we

have

HSg; — Z)\'A x
+ |56+ - ZA;A;E - Xi)uéf%‘(x +u)|+ Hi”ﬁ“ wo

| <5z = S(a+u)

l
< lSull + 25+ S 1B, -2 < dae,

Jj=1

I
where dy = d; + 2 + Sdé—jg’ -2> ||Bjll- Thus there exist numbers
j=1

k
Y1, -+, € C such that HS|F — Z’ViAi|FH <dsdse.
i=1
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Let f € F,me M and ||f +m| = 1. Then |m| = ||P(f +m)| <
[1P[ and [|f[} < [Lf +m] + [lm]l < 1+ [|P[]. Since Afy =0, we have

7+ m) = St ) = S8, + )|

| < lismll+||ss - i%&f‘
1=1

<die|m|l +dsdye || f].

H5<f +m) — i%Az‘f

k l
Thus |[T— 32 %A; = X2 4B5|| < e(d 1Pl + ds da (IP]] + 1)), and so
i=1 j=1

M is hyperreflexive. O

3. EXAMPLES AND COROLLARIES

The example from [9], mentioned in the introduction shows also that
there is no constant in the condition (2) for the hyperreflexivity of a
finite-dimensional subspace depending only on the dimension of the
subspace. Bellow we give another example of this kind.

Example 3.1. Let H = C? with the Hilbert norm. For € > 0 consider

10 0 1
0 1] @ [e] and Ay, = [0 0] @ [0]. Let M, =

span{A4; ., Ay }. Clearly dim M. = 2. It is easy to verify that M, is

reflexive for all €.

Let T [1 0] @ [0]. For 3,7 € C we have

the operators A, . =

0 0

s+ vtae == 75 1] @ el 3 maxtls - 1,101y > &
Thus dist(7, M.) >

Let v = m &l € H, |z| = 1. If b+ 0 then dist(Tz, M.z) <
lab=* Ay .z — T'z|| = 0. If b = 0 then dist(Tz, M.z) < ||Ay .z — Tx|| =
H {8} ® [5C]H < e. Thus a(T, M.) < € and there is no constant C' > 0
such that

% for all € > 0.

dist(T, M.) < C - (T, M.)
for all € > 0.

Now we consider finite dimensional subspaces of B(H), where H is
a Hilbert space. It is well known that B(H) is the dual of the trace
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class operators. If M is a w*-closed subspace of B(H), in particular if
dim M < oo, then M is reflexive if and only if M N Fi(H) is total in
M (see for example [2]). According to [2], a subspace M is called k-
reflexive if M| N Fy(H) is total in M. In [12] it was shown that each
n dimensional subspace is [v/2n]-reflexive ([-] denotes the integer part).
For any subspace M C B(H) and T' € B(H), as it was suggested in
8], we can consider

(T, M) = sup{[(T,t)| : t € M, ||t|| <1, rankt < k}

(compare with (3)). As in [8] we can call the subspace M C B(H)
k-hyperreflexive if there is a constant C' such that

dist(7, M) < Cay (T, M)
for each operator T' € B(H). We will show the following

Corollary 3.2. Let M C B(H) and dim M = n. Then M is [v/2n]-
hyperreflexive.

Proof. Let k = [v/2n]. By M® we denote the k-th amplification of M

M(k):{S@...@S: SEM}CB(H(k))>
k

where H® is the direct sum of k-copies of H, H®¥ = H& .- & H.
—_——

k
Since dim M = n, M is k-reflexive by [12, Theorem 12]. By [2], M¥)
is reflexive. Since dim M®*) = n_ it is also hyperreflexive. Hence [8,
Theorem 3.5] implies that M is k-hyperreflexive. O
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