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Abstract 

An X-ray multilayer mirror, consisting of two periodical reflecting structures 

separated by a quarter-wave spacer, can be designed so that to have a very sharp and 

deep resonant absorption at a definite angle of incidence. Such a mirror may be used 

as an angular dispersive element for refractive X-ray radiography. In this method that 

can be referred to as the dark-field refraction contrast imaging the image contrast is 

obtained not due to variation of absorption but due to variation of the refractive index 

of the object inner structure. Signal-to-noise ratio in the image can be significantly 

enhanced, and the dynamical range of the detector can be reduced due to suppression 

of the shot noise produced by the direct beam. Theoretical basis for this method is 

developed, providing definite rules for designing of the mirror with resonant 

absorption, and explaining the limitations on the detector spatial resolution. 

Refraction contrast images of a copper wire 75 µm in diameter and a human hair were 

experimentally observed using Ni/C multilayer mirror with resonant absorption at 

CuKα radiation (1.54Å). The multilayer structure consisting of 30 bilayers was 

designed for CuKα radiation so as to have absorbing resonance of the width of about 

several arc seconds at a grazing angle of 0.8°. A monochromatic probe X-ray beam 

with a divergence of approximately 5 arc seconds was obtained from a conventional 

X-ray tube and a double crystal monochromator set in a strongly dispersive 

configuration.  
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1. Introduction. 

In the last few decades a variety of new medical imaging techniques was introduced, using 

almost all known wave domains: from sound waves to gamma rays, and elementary particles.  

However, X-ray radiography is still a dominant technique, and X-ray devices span of approximately 

60% of all medical diagnostic devices. The contrast and spatial resolution of X-ray radiography 

became extremely important in the past decade due to the problem of medical diagnostics. Radiation 

dose is also a very important parameter, determining safety of the technique. Absorption contrast as 

the basic principle of imaging in traditional X-ray radiography remained essentially unchanged since 

Roentgen’s first experiments a hundred years ago. Therefore, the only way to recognize small-scale 

features of small objects in traditional X-ray images is to increase the dose of radiation absorbed by a 

whole sample. It is well known, however, that this way is unacceptable in medical applications for 

safety reasons. Moreover, the limited dynamical range of electronic image detectors is the additional 

barrier on this way. The first phase shift image of a non-crystalline object was obtained, probably, by 

Bonse and Hart [1]. Today, it is both experimentally and theoretically proven that the refractive 

contrast, originating from the variation of the refractive indices of different parts of a sample, 

produces far more detailed images of biological tissues, and a variety of imaging techniques for 

biological and medical investigations based on refraction contrast are being developed using both the 

laboratory X-ray sources and coherent synchrotron radiation sources [2-6].  

In all of these techniques, sometimes referred to as phase-contrast imaging, the commonly 

weak useful signal is detected against the background of a strong direct beam. Therefore, the detector 

shot noise produced by the direct beam decreases the signal-to-noise ratio, which is of a primary 

importance when an image is recorded electronically. Recently, a new scheme of X-ray refractive 

radiography was proposed, that can significantly suppress the intensity of a direct beam [7,8] and 

enhance the signal-to-noise ratio. In this scheme a specially designed multilayer mirror with resonant 

absorption plays the role of the angular analyzer. In the present paper we explain the physical idea of 

X-ray multilayer mirrors with resonant absorption and outline the technology for manufacturing it, 

discuss the influence of spatial resolution of a detector and the results of numerical simulation, and 

finally present the experimental results obtained with microobjects, including 2D images of human 

hairs. 

 

2. Idea of the method. 

The idea of the X-ray refractive radiography is schematically shown in Fig.1. A parallel X-

ray beam with a wave vector 0k penetrates the object, transparent to X rays. Because of the 

refraction of X rays on the inner structure of the object, the output beam is composed of the original 

wave with the vector 0k  and the refracted waves with vectors ( )θ∆k  slightly declined from the 

initial vector 0k . The key part of the scheme is the analyzer, which differentiates the output waves 
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by their direction θ∆ . In all the schemes used before the role of the analyzer is played by a highly 

perfect crystal with transmission characteristics in the form of a step function (Fig.2), working in a 

very narrow angular interval of about a few arc seconds. In order to be sensitive to both directions of 

the refraction, the working point is usually chosen in the position marked as number 1 in Fig.2. Of 

course, it is possible to choose any other position as the working point, for instance, 2 or 3, but that 

will lead to a loss of useful beam energy. Thus, the resultant image registered directly behind the 

analyzer is formed by the intensity variations ( )θR  proportional to the angle of refraction θ∆ . 

Therefore, the resultant intensity distribution in the image plane may be presented in the form of a 

sum 

( ) ( )[ ] 0IRI += rr θ ,     (1) 

where 0I  is the intensity of the direct beam, which may be much greater than the useful term 

( )[ ]rθR . The direct beam carries practically no information about the object, if the latter is 

transparent to X rays, and at the same time it deteriorates the image, bringing additional noise into it. 

For these reasons, the direct beam is undesirable. 

 Suppose now, that the crystal analyzer with the angular characteristic shown in Fig.2 is 

replaced by a multilayer mirror with the reflection curve shown in Fig.3 in a generalized form. 

Evidently, the intensity of a direct beam 0I  in this case may be much less, than in the previous case, 

while the sensitivity of the scheme with respect to the refracted beams is determined by the sharpness 

of the reflection curve around the resonant angle rθ . Note that unlike a crystal analyzer, the 

multilayer analyzer produces symmetrical output for the refracted beams with both positive and 

negative values of θ∆ . 

 

3. Physics of multilayer mirrors with resonant absorption.  

 Physics of a multilayer mirror with resonant absorption is the same as that of the Fabri-Perrot 

interferometer. It can be represented as two periodical multilayer mirrors separated by quarter-wave 

spacer made of weakly absorbing material (Fig.4). Consider a plane wave, coming to the multilayer 

structure at the grazing angle θ. The kinematical theory assumes that the refraction effects and the 

attenuation due to both reflection at the interfaces and photoabsorption are negligible. When the 

multilayer structure is designed for maximum peak reflectivity one can consider the two systems of 

waves, reflected from different interfaces in one bilayer, as one system of waves reflected from 

planes separated from each other by a gap equal to the bilayer thickness that is the period of the 

structure. Suppose initially that the two multilayer structures have different periods 1d  and 2d , 

corresponding to first Bragg reflections at the angles 1θ  and 2θ  respectively. Then the 

straightforward idea of how to obtain a narrow absorbing dip in such a multilayer structure can be 
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easily understood from Fig.5. It is necessary only to introduce a phase shift equal to π  between the 

waves reflected from both reflecting structures. Then amplitudes will act in counterphase, and the 

resultant intensity will be equal to zero at the angle between 1θ  and 2θ . The complex amplitude of 

the reflected wave can be written as 

( ) ( )

( ) .sin2
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Here 0E  is the complex amplitude of the coming wave, ρ  is the Fresnel complex reflection 

coefficient at the interfaces, sd  is the thickness of the spacer, and k  is the wave number. For the 

sake of conciseness of mathematical transformations we took the number of periods N  the same for 

the both reflecting structures, and 0E  can be put equal to unity. The sums in (2) can be easily 

calculated using the formula for the geometrical sequence, so that the intensity 2
rEI =  can be 

presented in the following form: 
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Strictly speaking, functions r  corresponding to different Bragg angles differ from each other 

because of different d . However, this difference is relatively small and will not affect the main 

result.  

 We shall define the resonant angle as  

2
21 θθθ +=r  .     (4) 

Then ( ) ( )21 θθθθ −=− rr rr , and the intensity at the resonant angle will be zero if 

( ) 1cos −=rθψ , i.e., when 

( ) ,...2,1,0,2 =+= mmr ππθψ  .   (5) 

Thus, the condition for resonance is as follows: 
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 .    (6) 

 The sharpness of the resonance is the most important parameter in those cases when a 

multilayer mirror is used as an angular analyzer. Therefore, it is interesting to investigate the 

intensity of the reflected wave as a function of the angular deviation from the resonance ur =−θθ . 
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Making use of small values of both the rθ  and θ  , that are of the order of 1 degree for hard X rays, 

one can obtain from (3) assuming 1>>N : 

( ) ( ) 



 −≈

22

6
11 θρθ dkNNr ,    (7) 

and assuming dds >>  , sdNd >>  : 

( ) ( ) ( ) ( ) 



 −−≈ 22

21
2

18
112 NdkuNLkuI θθρ  ,   (8) 

where sdNdL +=  is the total thickness of the structure. The first conclusion that can be drawn 

from (8) is that the resonant minimum is a quadratic function of the angular deviation. The second 

thing is that the sharpness reaches its maximum value when 21 θθ =  , i.e., when the two periodical 

multilayer structures have the same period. Behavior of ( )uI  according to (3) is illustrated in Fig.6 

for the two cases of equal and different 1θ  and 2θ  . Now we can address again our initial physical 

idea sketched in Fig.5. In terms of formulas (3) it corresponds to the situation when ( )uI  is the full 

quadrate, i.e., when 1cos −=ψ  for all grazing angles θ  . A curve representing this case is shown 

in Fig.6 as the curve (c). Evidently, the actual functions (a) and (b) are far more sharp because their 

amplitudes are produced by coherent interference of the waves reflected from the upper and lower 

periodical multilayer structures, and not by adding only the intensities of these waves, as was 

assumed in our initial idea. If an extremely thick spacer Ndds >  is introduced between reflecting 

structures then a large number of extremely sharp resonant dips is observed inside the reflecting 

peak. This situation will be discussed at the end of this section. 

 In terms of kinematical theory the peak reflection coefficient of the multilayer structure 

without the spacer is equal to ( )22
0 2NR ρ=  .Therefore, the angular dependence of the coefficient 

of reflection according to (8) may be rewritten in a more general form: 

( ) ( )[ ]2
0 rkLRR θθθ −⋅=  .     (9) 

From this formula it follows that the larger is the total thickness of the multilayer structure the 

sharper is the resonant dip. This analytical conclusion is consistent with the results of rigorous 

computations presented below in this section. Note that the dependence of the sharpness on the 

wavelength is not so straightforward, because not only the wave number k  depends on the 

wavelength, but also the Fresnel reflection coefficient ρ  . Moreover, the kinematical model takes 

into account nor the photoabsorption not the attenuation due to reflection that is crucial in practice. 

This problem will be discussed briefly below in this section on the basis of numerical computations. 

 Designing the mirror for X-ray imaging, it is important to understand how to properly choose 

the value of the resonant angle. In many cases the thickness of the spacer is not very large, so that 
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dNL ≈  . Then, taking into account the Bragg formula for d , it is possible to rewrite (9) in the 

following form: 

( )
2

0 




 −≈
r

rNRR
θ

θθπθ  .    (10) 

Here 0R  also depends on θ  through the Fresnel reflection coefficient ρ  , that rapidly falls with 

growing θ . Thus, the smaller is the resonant angle the larger is the sharpness of the resonant dip.  

 Consider now the results of rigorous numerical calculations. There is no need in describing 

the specific mathematical routine for that, because innumerous variety of routines is known to day, 

based on the Parratt recursive procedure [9]. We used the optimization procedure for designing X-

ray multilayer mirrors with resonant absorption supplied with the ProtoSoftware package. This 

software provides calculation of the optimal spacer thickness and its optimal positioning inside the 

periodical multilayer structure. According to (9) the larger the spacer thickness the sharper is the dip. 

However, in practice the thickness of the spacer is limited by technological considerations, such as, 

for example, the growth of roughness. Therefore, we limited the maximum thickness of the spacer by 

the value of 400Å. Typical calculated reflection curve is shown in Fig.7.  

 In order to compare different designs it is necessary to introduce a parameter that describes 

the sharpness of the resonant dip. According to (9) the appropriate constant is 

( )( )
r

dRdv
θθ

θ
=

= 2221  . The results of numerical calculations for various number of layers are 

summarized in the Table 1. The sharpness for MoK radiation grows more rapidly with the number of 

layers relative to the case of CuK radiation because penetrating ability of MoK radiation is higher, 

and, therefore, the larger number of layers works efficiently. The results of numerical calculations 

for various resonant angles are summarized in the Table 2. The lower values of v  for MoK radiation 

are obtained due to lower Fresnel reflection coefficients at the interfaces. However, it does not mean 

that the sharpness at MoK radiation is always worse, because due to lower absorption it is possible to 

obtain larger effective thickness of the structure with the larger number of periods and thicker spacer. 

 It is worth also to examine briefly the case of very large spacer thickness, when Ndds >  . 

Then the phase ( )θψ  in (3) varies more rapidly with θ  relatively to the argument of ( )θr  , and, 

therefore, the condition for resonance (5) occurs many times inside the main peak of ( )θr  . It means 

that not a single resonant dip will be observed inside the first Bragg maximum of ( )θr  , but a series 

of extremely sharp dips as it is shown in Fig.8. 

 

4. Refraction contrast and the spatial resolution of the detector. 

 In this section we shall both theoretically and with the help of numerical simulation examine 

how the spatial resolution of the detector diminishes the amplitude of the refraction contrast signal. 



 7 

Consider cylindrical object (a fiber) with a radius r  in its cross section (Fig.9). At the boundary the 

Snellius law gives: 

αα sinsin)1( =′− n ,      (11) 

where n  is a small quantity of the order of 10-4÷10-6, describing the refractive index of a fiber in the 

X-ray domain. According to (11), when 2πα =′  the total external reflection takes place. 

Therefore, (11) holds true when  

nn 2
2

or,1sin −≤−≤ παα .   (12) 

From (11) it follows that small deviation from the original direction of the beam inside the object is 

equal to 

αδα tann= ,      (13) 

and the total deviation of the exiting beam equals approximately twice that value.  

It follows from the previous section that the reflection curve of the mirror can be written 

approximately as a quadratical function of δα : 

( ) ( )2δαδα ⋅= vR ,     (14) 

where v  is a constant. Thus, the intensity behind the mirror is equal to 

( ) ( ) ( )2
00 tan4 αδαα nvIRII == .   (15) 

Useful power gathered from the element ds  and transferred to a detector signal is equal to 

( ) ( ) α
α
ααααα dnrvIdrnvIdsIdP
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sin4costan4
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2

0
2

0 ⋅=⋅⋅== . (16) 

Total useful power behind the mirror must be obtained by integration of (16) over αd  in the limits 

[0; n22 −π ]: 

∫
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This integral diverges at the upper limit. In Appendix it is shown that 

( )
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nrnvIP ln2 2
0≈  .     (19) 
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Thus, that total power registered in the dark-field mode is proportional to fiber's radius, and in a 

finite interval of values of the refraction index rises faster than quadratically with the refraction 

index. 

 The expression for the intensity behind the mirror as a function of the transversal coordinate 

can be obtained from (15), taking into consideration that rx=αsin  : 

( ) ( )rnx
xr

xnvIxI −≤
−

= 1;4 22

2
2

0 .    (20) 

This simple formula is graphically shown in Fig.10. It can be compared to the results of careful 

numerical simulation that takes into account the real resonant reflection curve obtained in the 

experiments as described in the next sections. The results of numerical simulation are presented in 

Fig.11. Theoretical distribution as given by (20) is qualitatively consistent with the numerical results 

with the exception, of course, for the bottoms of the curves which are below the average level due to 

absorption. The peak intensity, according to (20), is proportional to n  : 

( ){ } nvIxI 0max 2=  .     (21) 

However, in practice intensity distribution is always measured by a detector that has finite spatial 

resolution. Therefore, the experimentally measured intensity will depend not only on the optical 

constant of the object's material, but on the detector's spatial resolution as well. Consider the 

influence of a spatial resolution in more details. 

 Suppose spatial resolution of the detector is equal to x∆  as it is shown in Fig.12. Parameter 

a  is a random variable uniformly distributed in the interval [0, ∆x]. Therefore, its average value is 

equal to 

2
1

0

xdaa
x

x ∆=
∆ ∫

∆
.     (22) 

The detector maximum amplitude is then proportional to the integral over a single sensitive element: 

( )

( )
∫

−

∆−− −∆
⋅=

rn

xrn
dx

xr
x

x
nvIA
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21
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2

0
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Compare the values of the parameters in this formula. For example, for β-keratine, the main 
component of a human hair, n =7⋅10-6. For carbon n =7.3⋅10-6. The spatial resolution of the detector 
can hardly be better than 1 µm. Therefore, for the object's feature of any reasonable dimensions the 
product nr  is far less than any attainable resolution of a detector. In this case the formula (23) can 
be transformed to a simpler form (see Appendix): 

nrx
nr
x

x
nrvIA >>∆∆








∆
= ;

2
ln2

0  .   (24) 

From (24) it follows that maximum amplitude is a function of a single dimensionless parameter 
xnr ∆2  , and rises with it less fast than directly proportionally. Two main conclusions can be drawn 

from this formula. The first thing is that low spatial resolution, i.e., large x∆ , leads to low detector 
signal. And the second is that the larger the diameter of an object the larger is the signal. In order to 
estimate quantitatively the practically tolerable value of spatial resolution we shall address the results 
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of numerical simulation presented in Fig.13 for the case of a human hair of 50 µm in diameter. From 
these data it can be concluded that the spatial resolution must be better than 10 µm for this type of 
objects. 
 

5. Numerical simulation of the dark-field imaging. 

 The possible advantage of the dark-field refraction contrast imaging with respect to the 

traditional absorption radiography can be estimated by means of 3D numerical simulation according 

to the simplified model shown in Fig.14. The case when the image is recorded in the plane P1 

corresponds to traditional absorption radiography, and the case with the image registration in the 

plane P2 − to the dark-field refraction contrast imaging. Consider an object in a form of a small ball 

of 50 µm in diameter immersed in water. Angular dispersion of the mirror is determined by the 

reflection curve shown in Fig.7. The particular numerical values of the resonant dip correspond to 

the real Ni/C mirror that will be discussed below in the section 6.1. The results are presented in 

Fig.15. Left column corresponds to absorption radiography, right − to the dark-field refraction 

contrast imaging. For heavy materials with strong absorption, such as tungsten, both of these 

methods give good contrast. But the materials with low absorption, such as carbon, or beta-keratin 

(protein, the basic component of a human hair), are practically transparent at the wavelength of 

1.54Å. Therefore, small objects made of these materials, such as, for example, a ball of 50 µm in 

diameter, produce practically no absorption contrast. Nevertheless, they can be detected, and their 

shape can be easily recognized by the dark-field refraction contrast method, as it is clear from the 

right column in Fig.15. 

 

6. Experimental results. 

6.1. Multilayer mirror with resonant absorption. 

 We have successfully overcome all technological problems and created Ni/C multilayer 

mirror with resonant absorption using magnetron sputtering installation LEYBOLD Z550. The 

mirror structure was designed for the wavelength 1.54Å with the help of the optimization routine 

from the software package ProtoSoftware so as to have the resonance at the grazing angle 0.8°. 

Multilayer coating consisting of 30 bilayers was deposited on flat quartz substrate 40×40 mm2 with 

average roughness 6Å and surface shape variation not more than 3 arc seconds. Carefully balanced 

magnetron sputtering equipment produces random variations of the average layers thickness as small 

as 0.1÷0.5Å [10]. Sputtering unit Z 550 was equipped with two 150 mm cathodes of nickel and 

carbon. The cathodes were in side-by-side configuration as shown in Fig. 16. Multilayer structure 

was deposited in radio frequency mode (13.56 MHz), and the distances of the 48mm between the 

targets and the rotating substrate holder were held constant. The deposition rates were evaluated 

from the film thickness using Talystep profilometer. Argon was introduced into chamber and 
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regulated by HI-TEC mass -flow controller (F-100) with the reproducibility of 0.2%. The total 

sputtering pressure measured with MKS A270B was approximately 0.2 Pa. The computer software 

was developed to keep argon pressure constant and to vary the flow of argon. For the deposition of 

the multilayer X-ray mirrors with resonant absorption the lateral fractional variation of the thickness 

inside the working area must be very small (less than 0.2%) and thus the whole deposition system 

(i.e. gas pressure, radio-frequency power, rotation speed etc..), must be stable within a tenth of a 

percent. Practical experiments on our equipment show that such stability is, at least during the time 

of the deposition, obtainable. 

 Reflection curve of the mirror measured in the angular region around the resonance is 

presented in Fig.17. It is very similar to the theoretical curve shown in Fig.7 that proves that the 

deposition process was close to optimal. However, this figure presents laterally averaged value of the 

reflection, and does not show the lateral variation of the resonant angle. It may be that local 

resonances are even sharper and deeper than that shown in Fig.17. This question was investigated 

according to the scheme sketched in Fig.18. Linear detector array investigates the lateral variation of 

the reflection coefficient along x  axis on the mirror's surface, while rotation around ω axis enables 

to view this variation as a function of different grazing angles θ. Thus, it is possible to obtain a 2D 

map in the coordinates ω-x. We called this technique "ω-x mapping". The result obtained with the 

probe beam divergence equal to 5 arc seconds is shown in Fig.19. Vertical tilt of the picture in 

Fig.19a is due to lateral shift of the beam along the detector during angular scanning. The two "hills" 

correspond to the peaks of the reflection curve separated by the "valley", that is the resonant dip 

itself. In the case of an ideally uniform structure the picture must not depend on the x  coordinate. 

However, we see that, firstly, the "hills" are rounded at both sides of the mirror, and, secondly, the 

"valley" has the shape of an arc. A possible reason for these effects is the curvature of the mirror's 

surface. Before depositing multilayer coating we tested the substrate on flatness, and it had not more 

than 1 Newton fringe at λ=0.53mkm. Therefore, maximum deviation of the angle of incidence is of 

the order of λ/(length of mirror side) ≈ 3 arc seconds, while the width of the resonant dip itself is of 

the order of few arc seconds also. From this it follows that the flatness of the substrates must be far 

better than 1 Newton fringe. From Fig.19a it also follows that the local dip width is several times 

narrower than the average width seen in Fig.17. Therefore, we can obtain sufficiently better result 

without changing the deposition technology if only we use substrates with better flatness. Thus, 

manufacturing of multilayer mirrors with sufficiently deep and narrow resonant dips in the angular 

reflection curve is practically feasible. 

 

6.2. Parallel and monochromatic probe X-ray beam 

 Estimations made in our previous paper [7] show that the divergence of the probe beam must 

not exceed 10 arc seconds. Apart of the divergence, the spectral width of the probe beam also plays a 
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significant role because the mirror’s resonant angle depends on the wavelength. The natural relative 

spectral width of the CuKα doublet including side wings is of the order of 4⋅10-3. Calculations show 

that such spectral widening increases the angular width of the mirror's resonance by a value of 

approximately 10 arc seconds. Therefore, the probe beam must have not only extremely small 

divergence, but good spectral purity as well. We have created the necessary probe beam using a 

standard 1.5 kW X-ray tube with a copper anode and long fine focus coupled with a double crystal 

monochromator working in a strongly dispersive mode with both Si (111) reflections. The tube was 

installed in a point projection mode so as to form a point-like X-ray source with visible dimensions 

0.8×0.4 mm2. In this configuration, the horizontal divergence of the probe beam is equal to 7.4 arc 

seconds [11], while the relative spectral width is approximately 5⋅10-4, i.e., an order of magnitude 

less than the natural spectral width of the CuKα radiation. Thus, the effect of spectral widening can 

be neglected. The vertical divergence of the probe beam was of the order of several degrees. 

 

6.3. 1D dark-field images of microobjects. 

 The scheme of the experiment is shown in Fig.20. The refracted (and, therefore, deflected 

from their original direction) components of the probe beam passed through the object placed 

immediately after the monochromator were efficiently reflected by a multilayer mirror positioned at 

a resonant grazing angle of 0.8° with respect to the probe beam, while the direct component was 

strongly attenuated. The output intensity distribution was measured in the mirror's plane of incidence 

by a linear detector array composed of 2580 reverse biased silicon photodiodes with individual 

amplifiers. Each sensitive element has the dimensions of 1×0.01 mm2, and the spacing between the 

elements is equal to 2.5 µm. Thus, the geometrical spatial resolution of the detector is 12.5 µm, while 

its real resolution, taking into account the cross-talk between the neighboring sensitive elements, is 

about 20 µm. The sensitive array is assembled on a silicon substrate which is cooled and stabilized to 

a temperature of approximately 5C° with a Peltier refrigerator. The dark current and gain differences 

between single photodiodes are compensated for by taking into account the reference values 

measured and stored beforehand in the computer memory. 

 The signal-to-noise ratio was the crucial issue in the experiment. The inner noise of the 

detector has two components: variations of the average current drain from different sensitive 

elements and shot noise. The first component can be compensated for by subtracting the average 

output noise signal stored in the computer before measurements from the real-time signal. The 

second one can be reduced by averaging the output signal over both time and the number of 

realizations. The averaging time interval was limited by the charge leakage current, and in the 

experiment could not exceed 1 second. Additional averaging over 100 realizations was applied, so 

that the total duration of one measuring cycle was 100 seconds. 
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 Two types of objects were used in the experiment: a copper wire 75 µm in diameter and a 

human hair approximately 60 µm in diameter. The experimental results obtained with a copper wire 

are presented in Fig.21. The central dip emerges due to absorption, while two side peaks of the 

opposite sign marked by the arrows arise due to refraction. In order to prove that the marked regions 

really correspond to a refraction contrast we removed the multilayer mirror from the probe beam, 

thus leaving the optical path to the detector free (Fig.21b). One can distinctly see the absence of side 

reflexes in this case. This mode of operation corresponds to traditional absorption radiography. 

 A human hair is a far less absorbing object with respect to a copper wire at CuKα radiation. 

Therefore, as can be seen from Fig.22a, the central dip, originating from absorption contrast, cannot 

be recognized on the background of the detector shot noise. Thus, the detector couldn't identify the 

presence of this hair on the background of its noise if it worked in the absorption-contrast mode. 

However, in the dark-field refraction-contrast mode the two side peaks are clearly seen. A different 

type of human hair is shown in Fig.22b. Here the absorption dip is larger than in the previous case, 

though it is still far less than the refraction contrast peaks. Supposedly this situation corresponds to a 

stronger absorption of X rays in the material of the hair due to the presence of heavy elements. Thus, 

even such simple experimental arrangement as described above can give interesting analytical 

information. 

 

6.4. 2D dark-field images of a human hair. 

 Finally, we present the initial results of dark-field imaging of microobjects. Fig.23 presents 

the images of a human hair recorded with traditional photo plates. Fig.23a corresponds to the case 

when the probe beam is rigorously adjusted to the resonant dip, i.e., when the grazing angle of the 

input beam is equal to the resonant grazing angle of the mirror. In this case both the left and right 

sides of the hair image are approximately equally dark. Fig.23b corresponds to another case when the 

probe beam is slightly tilted with respect to the resonant grazing angle of the mirror. Therefore, one 

side of the hair image is darker than the other, and a white strip, corresponding to those refracted rays 

that come to the mirror at grazing angles equal to the resonant angle, emerges at one side of the 

image. This type of the image resembles conventional images in visible rays when the light is 

coming from one side. It may be referred to as a shadow effect.  

 Fig.23c presents traditional absorption contrast X-ray image of the same object. With respect 

to the results of numerical simulation shown in Fig.15 here it is still possible to recognize the object 

because it was not immersed in water. Therefore, the absorption difference is high enough to produce 

recognizable contrast in the image. However, the width of the hair can hardly be estimated from this 

image. 
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7. Conclusions. 

 To day there are known three essentially different methods for refraction-contrast X-ray 

imiaging: the method based on sharp angular response of crystal analyzers for selecting the refracted 

waves, the method that uses the coherence property of the probe X-ray beam, and the so called dark 

field method proposed in our earlier work [7], that uses resonantly absorbing multilayer mirrors for 

simulataneous selection of the refracted waves and suppression of the direct beam. While the first 

two methods already were experimentally proven to be viable, the dark filed method had not been 

experimentally validated so far, and there was no clear understanding of the physical mechanism for 

resonant absorption in X-ray multilayer mirrors. Present paper forms theoretical basis for the X-ray 

dark field method of imaging, and shows its practical feasibility for laboratory-based applications. 
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Appendix. Calculation of the integrals (18) and (23). 

 Integral  

( ) ( )
( ) α
α
αε

επ

dI ∫
−

=
2

0

2

cos
sin

     (A1) 

diverges with 0→ε  due to αcos  . The task is to evaluate analytically the function ( )εI  for small 

ε  . It can be done by presenting the integrated function as a sum of three easily integrated functions: 

( )
( ) α

αα
α

α
α
α

cos
sincos

cos
sin1

cos
sin2

+−−=  .   (A2) 

Then 

( ) ( ) ( )εεα
α

αε
επ

sinlncos
cos

sin12

0
−−−= ∫

−

dI  ,    (A3) 

while the integral in the right side converges to a constant with 0→ε , as well as the εcos  . 

Numerical calculation gives 

( ) 6931.0
cos

sin12

0
=−

∫ α
α

απ

d  .   (A4) 

Therefore, when 0→ε  

( ) εε ln3068.0 −−≈I  .    (A5) 

 Integral 

( )

( )
∫

−

∆−− −

rn

xrn
dx

xr
x1

21
22

2
    (A6) 

can be approximately evaluated taking into consideration that its limits are the values very close to 

unity, and that xnr ∆<<  . Therefore, the nominator of the underintegral function can be set 

approximately to unity, and, changing the variable of integration to rx−=1ε , (A6) can be 

transformed to the following final form: 
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Figure captions 

 

Fig.1. The scheme of the X-ray refractive radiography. 

Fig.2 Generalized angular characteristic of a crystal analyzer. 

Fig.3. Generalized scheme of a multilayer mirror analyzer. 

Fig.4. The structure of multilayer mirror with resonant absorption. 

Fig.5. Graphical representation of the concept for multilayer mirror with resonant absorption. 

Fig.6. Analytical solutions for reflected intensity in two cases: (a) θ1=0.59º, θ2=0.61º; (b) θ1=θ2=0.6º. 

The curve (c) represents the case when the intensity is the full quadrate. Values of the parameters 

are: N=10; λ=1.54Å; d=73.5Å; θr=0.6º. 

Fig.7. Calculated reflection curve for Ni/C multilayer mirror with resonant absorption at 0.8°. 

N =30; λ =1.54Å; spacer thickness 217Å; interfacial roughness 5Å. 

Fig.8. Calculated reflection curve for Ni/C multilayer mirror with resonant absorption at 0.8°. 

N =30; λ =1.54Å; spacer thickness 2765Å; interfacial roughness 5Å. 

Fig.9. System of coordinates in the cross section of a fiber. 

Fig.10. Theoretical intensity distribution behind the mirror analyzer. Absorption is not taken into 

account. 

Fig.11. Numerical simulation of the intensity distribution behind the mirror analyzer. Spatial 

resolution of the detector was chosen to be 10 mkm. CuKα radiation.  

Fig.12. Geometrical scheme of the detection. 

Fig.13. Simulated detector signals for a human hair of 50 µm in diameter with different spatial 

resolution of a detector: (a) ∆x=10 µm; (b) ∆x=20 µm; (c) ∆x=40 µm. CuKα radiation. 

Fig.14. Physical model for numerical simulation. 

Fig.15. Computer generated images for different materials of the immersed ball: (a) W; (b) Ca; (c) 

SiO2; (d) C; (e) β-keratin. Exposure: 200,000 photons. The wavelength 1.54Å. Left column presents 

images in plane P1 ,right one − images in plane P2 . 

Fig.16. Scheme of the deposition technique: 1- flow controller; 2 -pressure gauge. 

Fig.17. Reflection curve of the mirror. The angular axis is directed from right to left.  

Fig.18. Scheme of "ω-x" mapping. 

Fig.19. 2D "ω-x" map of multilayer mirror (a) and its 3D representation (b). 

Fig.20. Optical scheme of the experiment. 

Fig.21. One-dimensional images of a copper wire of 75 µm in diameter: (a) refraction-contrast mode; 

(b) absorption mode. The refraction-contrast peaks are marked with arrows. 

Fig.22. One-dimensional refraction-contrast images of different human hairs: (a) a hair with low 

absorption; (b) a hair with high absorption. Absorption dips are marked with arrows.  
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Fig.23. Dark-field refraction-contrast images of a human hair: (a) probe beam is aligned to the 

resonant dip; (b) probe beam is slightly misaligned from the resonant dip; (c) absorption contrast 

image.  
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Table caption 

 

 

Table 1. Sharpness v  of the resonant dip of Ni/C multilayer mirror for various number of layers,  

(arc second)-2 . rθ =0.6º . 

Table 2. Sharpness v  of the resonant dip of Ni/C multilayer mirror for various resonant angles,  (arc 

second)-2 . N=30. 
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number of layers 
wavelength, Å 

30 50 100 

CuK , 1.54Å 2.05⋅10-2 2.99⋅10-2 3.47⋅10-2 

MoK , 0.71Å 7.30⋅10-4 3.90⋅10-3 1.99⋅10-2 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. 
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resonant angle 
wavelength, Å 

0.3º 0.6º 0.9º 1.1º 

CuK , 1.54Å total external 

reflection 

2.05⋅10-2 1.95⋅10-3 4.92⋅10-4 

MoK , 0.71Å 2.56⋅10-2 7.30⋅10-4 2.08⋅10-5 2.18⋅10-7 

 

 

 

 

 

 

 

 

 

 

 

Table 2. 
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