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Introduction

e T here are two types of quantum corrections to the
Drude formula for o

I) Weak localization (WL): a purely one-particle ef-
fect due to the interference of time-reversed trajectories

ITI) Interaction corrections (IC): due to the interplay
of interaction and disorder

e In the following we focus on how type II affect
electrical transport beyond linear regime

e T his may be relevant for various experiments

e In general non-linear behavior may probe dephasing
in type II corrections



Non-linear transport: Drude-Boltzmann theory

Simple example: a wire attached to leads

Diffusive regime: A\p < I <K L

The current is given in terms of distribution function

I= eDNoS/deaxF(:I:, t,€)

One determines F' via
i) Boltzmann eq. (B.E.) = diffusion equation

ii) Boundary conditions at the leads

F(x = 0,t,€) = Fequitibrium(€)



Effect of interfaces

The current through the interface

Qe

I de [F(x=O+,t,e)—F(xzo_,t,e)}

G interface conductance

By matching the currents at the interface = extra bound-
ary conditions to use with B.E.

= Standard result for combining resistive elements



What happens in the presence of quantum in-
teraction corrections?

One expects corrections to

i) distribution function
ii) density of states
iii) diffusion coefficient

To appreciate this use Keldysh (1964) non-equilibrium
technique

de P
1=2(-¢) [ 353 26K ea )
p

At equilibrium, the spatial and temporal dependence
drops out

GK(pa 6) - Fequilibrium(e) [GR(pa E) - GA(pa E)]

With interaction corrections G¥X — GX 4 §GE
SGE ~ 6F + G

OF — 6V, 0GF — 6No, 8D



By a diagrammatic analysis one can prove

01 = 014 + 41p

0l 4 associated with F'-corrections

0l associated with DoS- and D- corrections

Consider the structure: reservoir-interface-wire-interface-reservoir

By current conservation

51 — 5IA,L —|— 5IB,L
51A,wi7“e _|_ 5IB,wire
0Iar+ 0B R

By requiring that the voltage drop across the system is
fixed

_ Rpilg + RuyiredlBwire + Rrolp R
RL + sz’re + RR

0l




Diagrammatic analysis provides expressions for 61p

Let us consider first the wire

S wire = 611 (x) 4+ 617 ()

Il
(5D(CU) — QIm/dEdﬂﬁl—F (2)P,(x,21)Fe_(21)0, P (21, )
eD No
2
66[195\?0) :Imaw/dedxlg—wF () Po(z, x1) Few(21)Pu(z1, )

P,(x,2") describes propagation of a diffusive density fluctuation:
CDw(x, x’) is the effective potential created by a density fluctuation
b, (x,2') = fda:”Vw(zU,a:”)Pw(x”,w’)

Vo(x,x") screened Coulomb interaction



A few comments

e The two terms correspond to the diffusive (?)and
drift (1) term of the phenomenological expression
of the current

® For a wire attached to ideal leads by ideal interfaces
oI =0

® In the presence of interfaces, there is charge accu-
mulation close to the boundary and 672 has to be
taken into account

® The ingredients of the calculation: F,P.® which
have to calculated

i) F obeys B.E.

ii) P obeys diffusion equation

iii) ® depends on screening and geometry



For the current at an interface

5IB,L(33) — 2e Im/dEdiCl— F(O) —FLE)
L

P,(z,z1)Fc_,(x1)Py (1, 1)

0lp 1 is similar

Note: we have neglected quantum interaction correc-
tions in the leads



First example: long wire L > Ly, Lin
L,, e-phonon relaxation time

L;, e-e relaxation time

electrons in the wire scatter inelastically many times

= distribution function has a local equilibrium form with
spatial dependent p and T (Nagaev 1995)

T eVrt
0 = ——2/ dr/ dt (smh( Tt)) P,(r) sin( )

T the elastic scattering time

At low voltages

h
The first term is the AAL correction (PRL 1980)

2 2
SI(V) ~ 28V fL/TeV (-4.92 + 0.21D(6‘T/3/L) 4 )

e



Second example: mesoscopic wire Ly < L < L,
Lyt = +/D/T
e [ he wire is phase coherent, no inelastic scattering

e [ he distribution function linearly interpolates be-
tween the distribution functions in the leads

Qe [>® [ T g |
ol = —72/0 dr/T dt (sinh(th)) Pi(r)sin(eVt)r/L



A comment about interplay with heating

conductance

For the local-equilibrium case, non-linear behavior also due to
heating

T, estimated with energy balance arguments P, = Pout
Weak heating, for instance, T. — T =~ 2 D(eV/L)?7pn/T
Following Nagaev (PRB 1995) one calculates T.(x)

Generally, heating is important when eV L =~ T while for non-
heating non-linear eV Ly =T
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I/V is plotted in units of (e?/R)Ly/L

Full line corresponds to the non-equilibrium distribution func-
tion

Long dashed line corresponds to the local equilibrium distri-
bution function

Short dashed line (L/Ly = 5) is the non-linear conductivity
due to the heating contribution only



A comment on the diffuson

e P,(x,z') obeys a diffusion equation with boundary
conditions

e In the case of ideal interfaces (open boundary con-
ditions)

P,(z,z") |z=0. = 0O

e [ his condition may be derived by observing that
in the leads the diffusion coefficient is much larger
than in the wire

oo

2sin(kyx) sin(ky,x) nm
N J—
Pole,ah =3 7 Cwt D2 T

n=1
e For L > L

dk exp(ik(x — x)
N
Pz, z) _/27r “iw + Dk2




Third example: ultrashort wire L < Ly

One can make a lowest mode approximation for the
diffuson

0 = —EA/ dte ! | — sin(eV't)
h J. sinh(xwT't)

A~ 0.25

vo = Dk? = n?D/L? = n?E7y,, Thouless energy
The linear conductance
2e? 1 1

G~ In
h m2  tmax(T, Ery)

i.e., G depends logarithmically at T > E7; and then
saturates at T ~ Epy,



Fourth example: short wire attached to leads by
non-ideal interfaces

e In this case the voltage drop is concentrated at the
interface

e T he distribution function is spatially independent
and a linear superposition of those in the leads
R;'FL 4+ Ry'Fr

Fuire(€) =
( ) Rzl +R;{1

e [ he diffuson is evaluated in the lowest mode ap-
proximation with boundary condition

Rwire

L

8xpw($a x/)|x=O+ — Pw(xa x/)‘x=0+

o For Ry« < Ry this condition reduces to that of an
interface with the vacuum or an insulator



The current

0 = —EA/ dte 7! | — sin(eV't)
h J- sinh(wT't)

i) resistive intefaces:
2R.RR
= 5~ 5
(Rr + RRr)
for symmetric system

Yo = ErnRuyire(Rr + Rr)/RLRr < Erp,



Comparison with experiment (weber et al. PRB 63,
165426)
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Saturation below T'= 100mK

Scaling law

A

= f(eV/T)
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From saturation temperature and prefactor we conclude
that main resistive behavior at interfaces

Changing transparency would result in change of satu-
ration temperature and prefactor



The same analysis can be done for a 2D macro-
scopic film in the presence of a DC electric field
E

ST— B > dt ( 7T, )2 sinh (2" g
== _ e
(rh) )t \sinhxtT, (tT2E)3

T3 = De?E?

Low field expansion (The first term is the AAL logarith-
mic correction )

—— =—-E|In——-1.62
e2/(mh) Tt w373

0l [ 1 D€2E2]

High field limit: Tk replaces T in the log and gives rise to

a "dephasing” in the particle-hole channel be’h ~ E~2/3

L — —EIn i
e2/(mh) Tt



Non-linear effect possibly relevant for 2D SiIMOSFET
and GaAs heterostructure

Positive magnetoresistance (Simonian et al. 97, Popovic et
al. 97, Coleridge et al. 99) implies that the spin-triplet chan-
nel contribution is important (Finkelstein 83, Castellani et al.84,
Castellani et. al. 98)

Electric field scaling in 2D SIMOSFET (near MIT) (Kravchenko
et al. 96, Heemsterk and Klapwijk 98)

Non-linear effects used to probe metallic or insulating
behavior in 2D GaAs/AlGaA ( Yoon et al. 98)

Tp < T limit (v2): triplet channel scattering amplitude

2

e e ™ T3
dor = o2 [—le(%) In (ﬁ) + %fg(’YQ)T—g

The function f{(y2) controls the RG flow.

fr(pe) = 143 [1 _iltm In(1 +72)}
Y2
Blp) = l_|_§ 6+25’Y2 B (6+272)3(1+72)In(1—|—72)
2 2 V5 V3

Non-linear effects also appear in the magnetoconductance from the
M = +1 triplet contributions (2, Zeeman energy)

3¢(3)

272

e? Q2
22 T2

Aoy = —

3
1 T3 Ts
92(72) + Egz (72)ﬁ




Note
e > = 0 (dashed line) localizing
e > =5 (solid line) metallic

e At small fields, fg(w) > 0, non-linear conductivity always pos-
itive = we need a careful analysis of experimental data at low
fields (compare with Yoon et al. 98)

e At large electric fields = log-behavior with the sign of f5(72)
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In semiconductors devices GaAs and Si MOSFET Epc ~ 1V/m, T ~
100mK one estimates T ~ 10mK (YYoon et al. 98) (Kravchenko
et al. 96) smaller than what indicated by the experiment

e Need to go beyond lowest order perturbation theory and pos-
sible renormalization of the scale Ty = see next

e Relevance of dishomogeneity and nonuniform electric field in
the sample (Meir 99,)

e Complicated interplay with heating effects and one has to
measure T,; independently = see next



Possible consequences for scaling

Tk gives a mechanism for scaling

e Close to QCP (If any (cf. Belitz and Kirkpatrick 94, Sondhi
et al. 97)) T ~ £ % where £ is the correlation length and z is
the dynamical critical exponent.

e In a diffusive system T ~ Dg,(£)/€? with scale-dependent
Dgy(€) diffusion and quasi-particle DOS N, related by D,, =
D/(Ngy/No) (Finkelstein 83, Castellani and DiCastro 86). =
Dqp scales near the QCP as Dqp ~ £277,

e From T3 = Dqpe?E? — E ~ ¢(112),

In the experiments

® : =~ 1 which corresponds to growing D, and a vanishing N,

quasi-particle density of states near MIT.

® T hen one expects large non-linear effects near the QCP point.

® The small value of z < 2 implies ¢, ~ T¢* 2 ~ T2/%,



Conclusions

Formulation of non linear transport includ-
ing quantum interaction corrections in dis-
ordered systems

Analysis of 1D and 2D systems

Good agreement for 1D metallic systems

Qualitative agreement with 2D semicon-
ducting systems



