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GEOMETRIC STRUCTURES OF STABLE
OUTPUT FEEDBACK SYSTEMS

ZHENNING ZHANG, HUAFEI SUN AND FENGWEI ZHONG

In this paper, we investigate the geometric structures of the stable time-varying and
the stable static output feedback systems. Firstly, we give a parametrization of stabilizing
time-varying output feedback gains subject to certain constraints, that is, the subset of
stabilizing time-varying output feedback gains is diffeomorphic to the Cartesian product of
the set of time-varying positive definite matrices and the set of time-varying skew symmet-
ric matrices satisfying certain algebraic conditions. Further, we show how the Cartesian
product satisfying certain algebraic conditions is imbedded into the Cartesian product of
the set of time-varying positive definite matrices and the set of time-varying skew symmet-
ric matrices. Then, we give some eigenvalue properties of the stable time-varying output
feedback systems. Notice that the stable static output feedback system, which does not
depend on the temporal parameter ¢, is just a special case of the stable time-varying out-
put feedback system. Moreover, we use the Riemannian metric, the connections and the
curvatures to describe the subset of stabilizing static output feedback gains. At last, we
use a static output feedback system to illustrate our conclusions.

Keywords: diffeomorphism, geometric structure, output feedback, immersion

AMS Subject Classification: 53B20, 58E25

1. INTRODUCTION

Some scholars have used differential geometric approaches to investigate the struc-
tures of linear (dynamical) systems(e. g. [1, 3, 5, 6, 7, 11]). In [1], S. Amari explored
a parametric family of invertible linear system, and gave the Riemannian metric, the
dual affine connections, and the divergence. In [6] and [7], the authors gave a deep
study of the geometric structures of stable static state feedback systems. Further,
the authors generalized the conclusions of the stable static state feedback systems
to the stable time-varying state feedback systems in [11]. In the present paper, we
mainly concern with the stable time-varying output feedback systems correspond-
ing to certain stabilizing time-varying output feedback gains constrained by some
conditions.

The set of stabilizing time-varying output feedback gains satisfying some condi-
tions is diffeomorphic to the Cartesian product of the set of time-varying positive
definite matrices and the set of time-varying skew symmetric matrices satisfying
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certain algebraic conditions. Note that the Lyapunov equation plays an important
role in the parametrization procedure and it gives us a criterion to verify the stable
matrices. Then, from the fact that the set of time-varying stable matrices is diffeo-
morphic to the Cartesian product of the set of time-varying positive definite matrices
and the set of time-varying skew symmetric matrices ([11]), we introduce a map to
show how the Cartesian product satisfying certain algebraic conditions we consider
here is imbedded into the Cartesian product of the set of time-varying positive defi-
nite matrices and the set of time-varying skew symmetric matrices. In addition, we
give some eigenvalue properties of the stable time-varying output feedback systems,
which are very important in classical control theory. Next, we obtain the geometric
structures of the subset of stabilizing static output feedback gains through investi-
gating its differmorphic set. Studying these structures is important, for it not only
provides fundamental information of the subset of stabilizing static output feedback
gains, but also gives bounds of performance in the sense of [4] and [10]. This paper
provides a geometric approach to analyze the stable output feedback systems and
their gains.

Notation.

i) PD(n) denotes the set of (n X n) positive definite matrices.

ii) Skew(n) denotes the set of (n x n) skew symmetric matrices.
iii) Sym(n) denotes the set of (n X n) symmetric matrices.

iv. PD(n,t) denotes the set of (n x n) time-varying positive definite matrices.
v) Skew(n,t) denotes the set of (n X n) time-varying skew symmetric matrices.

vi) Hs(A(t), B(t),C(t)) denotes the subset of stabilizing time-varying output feed-
back gains of Y (A(t), B(t),C(t)) satisfying (5).

vii) Hs(A, B,C) denotes the subset of stabilizing static output feedback gains of
> (A, B, C) satisfying (17).

viii) @(n,t) denotes the set of (n x n) time-varying stable matrices.

We adopt Einstein’s summation convention for the indices which appear twice as
: k _ ijk : k _ ijk
sub and superscripts, e. g., ¢¥ = a;;b"" automatically means c* =}, Zj a;; b7,

2. PRELIMINARIES

Lemma 2.1. (Ben-Israel and Greville [2]) Let BT € R™*" be a generalized inverse
matrix of B. Then B has the following properties:

i) Both BB' and I — BB are symmetric matrices. Furthermore,
BB'B=B, B'BB'=B' BTBBf=RB".

ii) BB is orthogonal projection matrix to ImB, and I — BB is the orthogonal
projection matrix to orthogonal complement of ImB.
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Lemma 2.2. (Ben-Israel and Greville [2]) Let 4; € R™*" Ay € RP*Y and
Az € R™*4, Then, linear matrix equation

A1 XAy = As
can be solved if and only if
A ATAs AT A, = As. (1)
Furthermore, if (1) is satisfied, then all the solutions can be given by
X = Al Az A8 + (2 — ATA,24,A)), (2)

where, Z € R"*? is an arbitrary matrix.

Lemma 2.3. (Zhong, Sun and Zhang [11]) Linear time-varying continuous system

is globally asymptotically stable at its equilibrium if and only if, for arbitrary time-
varying positive definite matrix Q(t), there exists a time-varying positive definite
matrix P(t), such that

P(t)+ AT(t)P(t) + P(t)A(t) + Q(t) = 0.

Lemma 2.4. (Ohara and Amari [7]) The component of the Riemannian metric
of PD(n) at P is given by

1 _ _
9ij(P) = itr(P 'E,P7'E)), (3)
where
E p=q,
Ei:=FEopq =14 .
Euq+ Egp p<q
n(n+1)

is the basis matrix of == -dimensional vector space Sym(n), E,, is the matrix
with one at the (p, ¢)th element and zero otherwise, and o is an appropriate rule to
assign integers to the pairs (p,q), i.e. o(p,q) =i, 1 <p<g<nand1<i< N :=
n(n+1)

o
Two parallel displacements II. and II* of TPD(n) are defined by
M.(H)X =X, T()X = P(t)Py ' X Py P(t),

for any curve ¢ with initial point Py and X = a'E; € TPD(n). Let V and V* denote
the corresponding affine connections. It is easy to prove that the pair of connections
(V,V*) derived from (II., IT}) is mutually dual.
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Lemma 2.5. (Ohara and Amari [7]) The covariant derivatives with respect to the
parallel displacements II. and IT} satisfy

Vg, E;j=0and Vi E; = —E,P"'E; — E;P'E;,
respectively.
Lemma 2.6. (Ohara and Amari [7]) The component of the fibre metric of PD(n) x
Skew(n) is given by
1 . -
fur(P) = —3 (P B, P By, (W

where ~ B
Ey = Ezpq) = Epg — Eqp, P <q

is the basis matrix of %—dimensional vector space Skew(n), E,, is the matrix
with one at the (p, ¢) th element and zero otherwise, and & is an appropriate rule to

assign integers to the pairs (p,q), i.e., 6(p,q) =p, 1 <p<g<nand 1 <pu < N:=
n(n—1)
.

Similarly a pair of parallel displacements (ﬁc,ﬁz) for any curve can be defined
on PD(n) x Skew(n) as

I.()S =5, IIt)S = P(t)PyLSPyP(1),
where S € Skew(n). The pair of connections (V,V*) derived from (IL,II?) is
mutually dual.
Lemma 2.7. (Ohara and Amari [7]) The covariant derivatives with respect to
parallel displacements II, and II} satisfy
Ve, E,=0and Vi, E, = ~EP'E, - E,P'E,

respectively.

3. PARAMETRIZATION OF STABILIZING TIME-VARYING OUTPUT
FEEDBACK GAINS

Consider the following linear time-varying output feedback system

a(t) = A@)z(t) + B(t)u(t),
y(t) = C)=(1),
ut) = H()y(),

(1) = (A(t) + B(t)H(t)C’(t))x(t),

where x(t) € R™ is the state vector, u(t) € R™ is the control input vector, y(t) € R!
is the output vector, H(t) € R™*! is the output feedback gain. It is also assumed
that, for any time ¢, > (A(t), C(t)) is observable, > (A(t), B(t)) is controllable, B(t)
is full column-rank and C(t) is full row-rank.
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Theorem 3.1. i) If the time-varying output feedback gain H (t) satisfies
P()B)(P6)B®)ICT(HT ()BT ()P()C)'C(t) = CT () HT ()BT (t)P(t), (5)

then H(t) is a stabilizing time-varying output feedback gain, i.e., H(t) satisfies the
following Lyapunov equation:

P(t)+ (A(t)+B(t)H(t)C(t))TP(t)+P(t) (a)+BOHHC®)+Q1) =0, (6)
for some Q(t) € PD(n,t), if and only if P(t) € PD(n,t) satisfies
POB()(POB®) (P + AT()P() + POA®) + QW) () C(t)

= P(t) + AT (t)P(t) + P(t)A(t) + Q(1).

ii) When P(t) € PD(n,t) satisfies (7), any H(¢) satisfying both (5) and (6) is
given by

(7)

H() =~ 5(POB®) (PO + ATOPO) + POAD) + Q)OO
— (P)B@) s,
where S(t) € R™*" is a time-varying skew symmetric matrix which satisfies
S(t) = P()B(t)(P(t)B(t))S(6)C(6)'C(1). (9)

Proof. To prove the necessity of Theorem 3.1, it is convenient to use
P(ty+AT (6 P(Ey+ PO AW+Q() = —(CT () HT (1) BT (1) P(t)+ P() B H(£)C(1)) (10)

instead of (6).

Now pre-multiply P(t)B(t)(P(t)B(t))" and post-multiply C(¢)"C(¢) on the both
sides of (10), respectively, then the necessity of (7) under the existence of H(t)
satisfying both (5) and (6) is obvious from the properties of generalized inverse of
Lemma 2.1.

Conversely, to show that when (7) holds, there exists H(t) satisfying both (5)
and (6), we will construct such H(t) using P(t) which satisfies (7). Thus, we set

—P(#)B(t)H(t)C(t) = %(P(t) + AT (#)P(t) + P(t)A(t) + Q(t)) +S(@), (11)
where S(t) € Skew(n,t).

Furthermore, from Lemma 2.2, equation (11) has a solution H(t) if and only if

P(t)B(t)(P(t)B(1))" < (P(tHAT(t)P(tHP(t)A(t) + Q(t)) +S(t)> cie)

— % (P(t) —I—AT(t)P(t)+P(t)A(t)+Q(t)> +S(t),
(12)
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and this can be guaranteed by (7) and the assumption of (9).
Then, from (2), the representation of H(t) is given by

H(t) = =3 (P(OB®) (P() + ATO)P(1) + POA®) + Q1) ) C (1)
~ (PBM)SHC(W).

Substituting (8) into the left-hand side of (5), and combining (7), (9),

cmtemw)” (P(t) + AT(t)P(t) + P(1)A(t) + Q(t)) (P(OB)HT (Pt)B(t)"
= P(t) + AT(t)P(t) + P(H) A(t) + Q(t),

and 5(6) = (W CO)SOPHBONT (P()B)",
we have
P)B(P()BH) CT(0)HT ()BT (1)P()C() (1)
= 5 (PO + ATOP@) + POAW) + Q) + 5.

Then substituting (8) into the right-hand side of (5), we have

CTOHT ()BT (1)P(1) = —3 (P() + AT()P() + POA®) +Q(1)) + (1),

From the above, we see that this H(t) satisfies (5).
This finishes the proof of the sufficiency and part (ii) of Theorem 3.1. (]

Notation. Throughout this paper we have

i) PD(n,t; A(t), B(t),C(t),Q(t)) denotes the set of (n xn) time-varying positive
definite matrices satisfying (7).

ii) Skew(n,t; B(t), P(t),C(t)) denotes the set of (n x n) time-varying skew sym-
metric matrices satisfying (9).

4. IMMERSION

Theorem 3.1 shows that, for a given time-varying positive definite matrix Q(¢), any
stabilizing time-varying output feedback gain H(t) of > (A(t), B(t), C(t)), which sat-
isfies (5), can be represented as (8) in terms of P(t) € PD(n,t; A(t), B(t),C(t), Q(t))
and S(t) € Skew(n,t; B(t), P(t),C(t)). In this section, firstly, we will show that
Hs(A(t), B(t),C(t)) is diffeomorphic to the Cartesian product PD(n,t; A(t), B(t),
C(t),Q(t) x Skew(n,t; B(t), P(t),C(t)).

Theorem 4.1. For a given time-varying positive definite matrix Q(t), there exists a
bijective mapping between H,(A(¢), B(t), C(t)) and PD(n,t; A(t), B(t), C(t), Q(t)) %
Skew(n,t; B(t), P(t),C(t)). Here the symbol x means the Cartesian product of two
sets.



Geometric Structures of Stable Output Feedback Systems 393

Proof. We show that (8) defines a bijective mapping

Yo+ PD(n,t; A(t), B(t),C(t),Q(t)) x Skew(n, t; B(t), P(t), C(t))
— H(A(1), B(), C(1)).

First of all, H(t) = vqu)(P(t),S(t)) belongs to Hs(A(t), B(t),C(t)) for any
(P(t),S(t)) € PD(n,t; A(t), B(t),C(t),Q(¢t)) x Skew(n,t; B(t), P(t),C(t)) due to
Theorem 3.1.

Thus, we should only need to assert that for any H(t) € Hs(A(t), B(t),C(t)),
there exists a unique pair (P(t), S(t)) € PD(n,t; A(t), B(t),C(t), Q(t)) x Skew(n,t;
B(t), P(t),C(t)) such that (8) holds, i.e., there exists a unique inverse of ¥q).

It is easy to see that there exists a unique solution of (6), under the assumption
of to = 0 and P(tg) = 0 without loss of generality:

P(t)= /0 exp{(AW)+BOHNCM) Q) exp {(A®)+BOHOC(1)7har, (13)

then

S(t) = —P(t) B(H(1)C(t) — %(P(t) +AT(P@) + POA®D) + Q). (14)

Therefore, (13) and (14) define the inverse mapping wé(lt). O

It can be easily seen that both g and Z/Jé(lt) are of C class since g and
1/15(1” are both polynomial functions. So we get the following

Corollary 4.2. Theset H(A(t), B(t),
B(t), C(t), Q(t)) x Skew(n,t; B(t), P(t),
tive and differentiable mapping).

C(t)) is diffeomorphic to the set PD(n, t; A(¢),
C(t)), i.e., Yg) is a diffeomorphism (bijec-
Diffeomorphism preserves topological properties. Hence, this corollary means

that the differential geometric structures of Hs(A(t), B(t), C(t)) can be studied by
analyzing those of PD(n,t; A(t), B(t),C(t), Q(t)) xSkew(n,t; B(t), P(t),C(t)).

It is obvious that PD(n,t; A(t), B(t),C(t),Q(t)) is a subset of PD(n,t), and
Skew(n,t; B(t), P(t),C(t)) is a subset of Skew(n,t). From [11], we know that for
a given time-varying positive definite matrix Q(¢), any time-varying stable matrix
Ag(t) € o(n,t) has the form of

As(t) = —5 P (P) + Q) + P(1)5(1),

where P(t) € PD(n,t) and S(t) € Skew(n,t). Such a representation defines a
diffeomorphism @) from PD(n,t) x Skew(n,t) to ¢(n,t), i.e.,

Qg1 : PD(n,t) x Skew(n,t) — ¢(n,t).

Next we will show how PD(n,t; A(t), B(t), C(t), Q(¢t)) x Skew(n,t; B(t), P(t), C(t))
is imbedded into PD(n,t) x Skew(n,t).
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In fact, for any (P(t), S(t)) € PD(n,t; A(t), B(t),C(t), Q(t)) x Skew(n, t; B(t), P(t),
C(t)), H(t) can be written as the form of (8), so we have
A(t)+B)H(t)C(t)=A(t)— %B(t)(P(t)B(t))T (P(t)+AT(t)P(t)+P(t)A(t)

(15)
+ Q(t)) c)fe)-BE)(POBM)SHCH O

We can prove that the first term combining the second term in the right-hand
side of (15) becomes a time-varying stable matrix, so it can be written as:
1 .
p(n.1) 3 A1) = ZBOPOBM) (P(1) + AT(P() + POAR) + Q1)) C(1)C(1)

_ _%p(t)—l(P(t) + Q1)) + P(t)"1So(P(t)),

where
So(P(1) =5 P (P(0) + Q1) + P()A() — 3 POBOPHBO) (1) »
+ AT (£)P(t) + P(HA() + Q1)) C(H)C(t)
satisfying So(P(t)) + ST(P(t)) = 0, that is So(P(t)) € Skew(n, t). Then
A(t) + BOHOC() =~ 5 PO (P() + Q(1) + P(1)Sol(P(1)
~ BOP()BW) SO0 C()
=~ PO (P + Q) + PO (So(P(1) - 5(1)).

We denote @y (n,t; A(t), B(t), C(t))={AGCHB)H()C(t) | H(t) e Hs(A(t), B(t),
C(t))}, which is called as the set of stable time-varying output feedback system
matrices corresponding to Hs(A(t), B(t), C(t)).

Obviously, the linear mapping X defined by

X Hs(A(t),B(t),C(t))2H(t) — A(t)+B(t)H(t)C(t) € pn(n, t; A(t), B(t), C(t))
induces an immersion
(rb(_g%t) oXo wQ(t) : PD(’IL, i A(t)a B(t)7 C(t)v Q(t)) X Skew(na t; B(t)v P(t)a C(t))
— PD(n,t) x Skew(n,t),

i.e.,

batn © X o o) (P(1),5(1) = (P(1), So(P(1) = S(1)),
for arbitrary (P(t), S(t)) € PD(n,t; A(t), B(t), C(t), Q(t))xSkew(n, t; B(t), P(t), C(t)).

Next, we give some eigenvalue properties of the stable time-varying output feed-
back systems. In classical control theory, we investigate the system stability by
analyzing the eigenvalue distribution of the system matrix. The following theorem
provides us a method to get the expected stability by adjusting the parameters P(t)
and S(t).
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Theorem 4.3. The region in the complex plane where eigenvalues of the time-
varying output feedback matrices A(t)+B(t)H (t)C(t) exist is restricted by (P(t), S(¢))
€ PD(n,t; A(t), B(1), C(t), Q(1)) x Skew(n, t; B(t), P(t), C(1)) as

1

Sl (B(1) + Q)P (1)} < ReMAW) + BOH(A)C(1)})

<~ uind (2(0) + Q)P (1)}
T A®) + BOHOCOD] < Amacli(So(P(0) ~ S0) P (1),

where 7 is the imaginary unit.

The proof of this theorem is similar with that of Theorem 5 in [11], we omit
it here.

So far, we have investigated the geometric structures of the stable time-varying
output feedback systems. Notice that the stable static output feedback system is
just a special case of the stable time-varying output feedback system. Therefore,
for the stable static output feedback systems, Theorem 3.1 can be rewritten as the
following theorem for the late use.

Theorem 4.4. i) If the static output feedback gain H satisfies
PB(PB)'CTHTBTPC'C = CTHTBTP, (17)
then H is a stabilizing static output feedback gain, i.e., H satisfies the following

Lyapunov equation:
(A+ BHC)'P+ P(A+ BHC)+Q =0, (18)

for some Q € PD(n), if and only if P € PD(n) satisfies
PB(PB)(ATP+ PA+Q)CIC = ATP + PA+Q. (19)

ii) When P € PD(n) satisfies (19), any H satisfying both (17) and (18) is given
by 1 . .
H=—5(PB)' (A P+ PAY Q) ot — (pB)tsct, (20)
where S € R™"*" is a skew symmetric matrix which satisfies

S = PB(PB)'scicC. (21)

Then, we use PD(n; A, B,C,Q) to denote the set of (n x n) positive definite
matrices satisfying (19), and Skew(n; B, P,C) to denote the set of (n x n) skew
symmetric matrices satisfying (21). We see that H4(A, B, C) is diffeomorphic to the
Cartesian product PD(n; A, B,C, Q) x Skew(n; B, P,C), and PD(n; A, B,C,Q) %
Skew(n; B, P,C) is imbedded into PD(n) x Skew(n) in the similar way obtained
above. In the next section, we give the Riemannian metric, the connections and the
curvatures of the parameter space for Hs(A, B, C).
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5. GEOMETRIC STRUCTURES OF THE PARAMETER SPACE
FOR Hg(A, B, C)

In [7], A. Ohara and S. Amari defined the Riemannian metric, the connections, and
other fundamental quantities for the differential geometric structures of PD(n) x
Skew(n). Induced from these geometric quantities, we will exploit the geometric
structures of vector bundle PD(n; A, B, C, Q) x Skew(n; B, P, C') which is diffeomor-
phic to Hs(A4, B,C) and can be regarded as the parameter space for H(A4, B, C).

In this section, {i,7, -}, {a,b,---}, {\, pu,---}, {a, B, } describe the indices
of the components of PD(n), PD(n; A, B,C,Q), Skew(n) and Skew(n; B, P,C),
respectively.

Let F;,e = 1,2,...,N = 2D he the linearly independent basis matrices of

2
Sym(n), then any P € PD(n) can be represented as

P = P(n) :=n'E;.

Hence, we can regard n = (n°) as a global coordinate system for PD(n) and
0; = 8%1‘ as a tangent vector field on PD(n).

PD(n; A, B,C,Q) is a submanifold of PD(n). Denote the tangent vector space
of PD(n; A, B,C,Q) at apoint P € PD(n; A, B,C,Q) as TpPD(n; A, B,C, @), and
T#PD(n; A, B,C, Q) the orthogonal complement of TpPD(n; A, B,C, Q).

The Euler—Schouten(imbedding) curvature tensors of the submanifold PD(n; A, B,
C,Q) in PD(n) with respect to V and V* are defined by

Hap = (Vo,0p,01), Hpyy = (V5 0,0),
where 9, 0, denote the tangent vector fields on Tp PD(n; A, B, C, @), and 9, denotes
the tangent vector field on TI%PD(n; A, B,C,Q). These quantities show how curve
the submanifold PD(n; A, B,C,Q) in PD(n) in the sense of the connections V and
V*. When H,(HY,) is zero, the submanifold PD(n; A, B,C, Q) is said to be V-
autoparallel(V*-autoparallel).

Using (19) which specifies the submanifold PD(n; A, B,C, Q) in PD(n), we first
construct the coordinate system (z%) for PD(n; A, B,C,Q), and then define the
induced Riemannian metric and the induced connections.

Proposition 5.1. Any P € PD(n; A, B,C, Q) can be represented as
P(z) = Ey + 2°E,, (22)

where Ej is the certain part of P, and Ey = nyE;, E, = BiE;, 1 <i < N =
@. Here, x = (%) can be regarded as a coordinate system of the submanifold

PD(n; A, B,C,Q).

Proof. (19) can be considered as the non-linear equations with respect to the
components of P € PD(n; A, B,C,Q). And these equations can determine some
parts of P, so any P € PD(n; A, B,C, Q) has the representation of (22). |
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The global coordinate n of P(xz) € PD(n; A, B,C,Q), and the tangent vector
field O on PD(n; A, B,C, Q) are represented as

a 8 a
n (1') = 770 + lezxa’ 0o = lezai»

T J—
where B! = 3:6&,8 8n

So the components of the Riemannian metric and the dual connections on PD(n; A,
B, C, Q) are induced from those of PD(n) as

ab(z) = Bingij (n()), |
Pape(w) = ByB]BeTiji(n(x)) + (9 B)) B gju(n(x)) = 0, (23)
abc('r) = Bl Bch z]k(n(x)) + (81131]7)359_7147(77(‘]:)) Bl Bch z]k( (.13)),

where the component of the connection I';;, on PD(n) is equal to 0, and BZ is
constant.

Theorem 5.2. The submanifold PD(n; A, B, C, Q) is V-autoparallel in PD(n).

Proof. The Euler-Schouten curvature Huy = (Vg,0b,0;), where 9,,0, €
TpPD(n; A, B,C,Q), 9, € T#PD(n; A, B,C,Q), is
Hap = (Va,0,0)
= B.B{(Vo,B]0;,01)
= 9u(B])Bf gji + B.B{ BT
= 0’
for (Bg) is constant, and I';;,=0 with respect to V in PD(n). O

It is easy to see

Corollary 5.3. The submanifold PD(n; A, B, C, Q) is itself V-flat and V*-flat.
Using (21), here, we only consider the case that S can be represented as
S = Ey + y*E,, (24)

where Ej is the certain part of S, and Ey = (}Ex, Eq = B)E\, E) is the basis
of Skew(n), 1 <i < N = @ Here, y = (y®) can be regarded as a coordinate
system of the submanifold Skew(n; B, P,C).

The global coordinate ¢ of S € Skew(n; B, P,C), and the tangent vector field
Oq = % on Skew(n; B, P,C) are represented as

My) = ¢ + Bhy®, 9a = B0,
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So in this fibre case, we can induce the fibre metric and the dual connections of
PD(n; A, B,C,Q) x Skew(n; B, P,C) from PD(n) x Skew(n) as

fap(z) = BEB}fu(n(z)),
Tuap(x) = BiBEBAT,a(n(x)) + (0.B2)B3 fur(n(z)) = 0, (25)
Tias(r) = BIBEBATA(n(2)) + (3.B2)B) fur(n(z)) = BLBEBAT L, (n()),

where the component of the connection fmA on PD(n) x Skew(n) is equal to 0, and
Bt is constant.

Theorem 5.4. The vector bundle PD(n; A, B,C,Q) x Skew(n; B, P,C) is V-
autoparallel in PD(n) x Skew(n).

Proof. The component of the Euler—Schouten curvature is given by

Hooi = P(Vi, Ea, E) = BLB)BFTixg + 04(B)) BE fai,

aak

where E, € TpPD(n; A, B, C,Q), E, € TSkew(n; B, P,C), and E,; € T+ Skew(n; B,
P,C).

Since the component of the connection of PD(n) x Skew(n) is equal to zero([7]),
that is, I';ax = 0, and Bg‘ is constant, we get

Haal:: =0.

This finishes the proof of Theorem 5.4. O

It is easy to see that

Corollary 5.5. The vector bundle PD(n; A, B,C, Q) x Skew(n; B, P,C) is V-flat
and V*-flat vector bundle, i.e., its curvature vanishes.

6. EXAMPLE

Consider the following linear static output feedback system:

z(t) = Ax(t)+ Bu(t),
y(t) = Cz(1),
u(t) = Hy(t),
where
01 0 1 0 1 00
A=l 001}, B=|l01], C={(020
1 0 0 0 0 0 0 3
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Tt is easily verified that (A, C') is observable, B is full column-rank and C is inverse.
Define Q = I € R®*3 and consider the Lyapunov equation (18). Represent P €
PD(3) and S € Skew(3) as

oo 0 —¢' ¢
P=|n ot |, S=|¢ 0 =¢
o0 ¢ ¢ 0

Using (19), (21), the pseudo-inverse matrices of B and the inverse of C:

1 0 0
B’f:((l) (1) 8) ci=(o0 L o],
1
0 0 3
we get n° = —nl,nd = —%,776 = —n% and ¢? = ¢ = 0. Thus, any P €
PD(3;A,B,C,I) and S € Skew(3; B,C, P) are of the forms:
ntoo =3 0 ¢ 0
P={ 7 9t =], S=(-a 0 0|, (26)
_% - 0 0 0
2,4 4

where requires ' > 0, n'n* — (*)> > 0, —p'n’n* +n'n® —n* = (')’ + (n°)* > 0.
Furthermore, the stabilizing output feedback gains matrix of Y (A, B,C) is

_ 1 —a1by + azbsy %agbl + asbs asb1 + asby
2[P| \| —a1bs + asbs —jasbs +aszbs  —asbs +asby )’

where a1 = n*n* + (n')?, a2 = 30" + (*)° S0 — 5, as = —50'n® + g0,

=i )=t =2+ 1, by =0t — 5420 by =t — 5 —2C*, by =121
(15—3(77) 677’1—77+72—77 2""{Ca3— b) <74— n,
and |P| = —npln2nt + nln? — p* — (n1)3 + (n2)3.

I
w
|
[N

3
|
o]

1 2 1 LB B
So(P)=| —3n" — 1 02 -1’
n' n 0

-3 it + % — ¢ -
A+ BHC = 2| ~int _li+<1 -1 i
n n -3

—n?nt = (m")? It +(n*)? —n'n?+ int

<| s+ -t —1 () gn?

' 5t ()2 =07 nint—(n?)?

The set of PD(3; A, B,C,I) x Skew(3; B, P,C) is imbedded in PD(3) x Skew(3) in
this way.
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Before we give the Riemannian metric of PD(3; A, B, C, I), we consider the metric
of PD(3) and PD(3) x Skew(3). Since basis vectors of TPD(3) can be represented
as

100 010 00 1
Ei=(0o00), Eo=(1001]|, Es=(00 0],
00 0 00 0 100
0 0 00 0 00 0
Ex=0 10|, Es=(00 1], EBs=| 00 0],
00 0 010 00 1

using (3), we get the components of the Riemannian metric of PD(3),

_ 1 4 2 1 5\2 3.5 2,6
91172|P|2(n77 (15)%)%, g12 = |P|2(77n M) °n° —n™n°),

913 = ﬁ(n“nﬁ — ") =), g1a = 2‘7}13‘2(773775 —°n°)?,
915 = #(n?ﬁf =" )P’ —n’*n"), g6 = 2|—113|2(n2775 —n’n*)?,

g2z = ﬁ ((773775 —*1°)? + (n'n° = (n*)*) (n*n° — (775)2)),

gas = # ((773?75 — 0?02 P’ = n’n*) + (n'n® = () (Pn® — 771775)),
goa = #(nln6 — )0 = n*n®),

925 = [P ((77 n° = ) 0*n° = n’n*) + (Pn® — n*n°)(nPn® — 771775)),
1
926 = W(n n* —=n'n®)(n*n°® — n’nh), (27)
_ 1 _ 1,4 232\ 4 6 [ 5\2
g33 = m*n° =0 + (n'n* = ) (n*n® — (0°)?) ),
|P|?
gsa = == (’° — ') (*n° — n*n°),
|P|?
1
955 = [pp2 ((n n* = ') (*n° — p*n*) + (Pn® — n?n®)(n'n® — (775)2)),
1
936 = W(n n® —n'n®)(m’*n® —n*n°),

_ 1 1,6 3\2\2 _ 1 1,6 3\2 2,3 1,5
—72|P|2(nn (n)>,g45——|P|2(nn )™ n” —n'n°),
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1 1
956 = =5 ' — ) 0*n* = 0'1°), ges = =55 ("0t — (PP (28)
P 2|P|
Since the basis vectors of Skew(3) can be represented as
B 0 1 0 B 0 01 B 0 0 0
Ei=1 -1 0 0|, Ey= 0 00|, Es=|0 0 1],

0 0 0 -1 0 0 0 -1 0
using (4), the components of the fibre metric of PD(3) x Skew(3) are given by

i = = (08 =0+ (0 = (0202 = ')

frz —# (20 =) Pn* = %) + (n'n® = °)))n'n® = n*n)),

fiz = *ﬁ (((773)2 ') 0’0t =" n®) + (0 = *n®)(n'n® —n’n?)), o)
fa2 = —# ((773’774 =1’ 0°) + (n'n® — (1°))((n*)* — nln“)),

fa3 = —# ((n1n5 —* )0t =P n’) + (0 = Pn®)(n*)? — nln“)),

2t a2 -1
Pz)y=| 22 23 -—a2! |,
1 1,2
5 — x

where z = (2!, 22, 2%) can be considered as a coordinate system of PD(3; A

)

I
Thus, we get the relations between the coordinate system n = (1,72, 1%, 7%, 7%,

*‘:UU
b Q)

3
of PD(3) and the coordinate system x = (x!, 2%, 23) of PD(3; A, B,C, I), :
P odt =Bl BL=1,
Poi o Bt Bio1
1
773 = Ty
n* = 2® = Bi2®, Bj =1,
n’ =—2' = B!, B} =-1,
n® = —2? = BS2?, BS=-1.

Combining (23), (27) and (28), we get the components of the Riemannian metric
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G' = (gi;) of PD(3; A, B,C, I) which induces from PD(3),
d41 =BiBigu + 2B} Bigis + B Bigss

:ﬁ((:ﬁﬁ +2%2%)? — %(@2)2 + %xl)(%mB e
+ (@ = 5o + (' 4 D) - 'a),

Gio =BiB3g12 + Bi BSgi6 + B} B3 gas + B BSgse

=- #((xly + 2%2%) ((2*)? + %x ) — 2|]13|2 (%x?’ —z'z?)?
- (10 + e = 3a%) + (@ + 5o (@) - 57)
+ s’ - () - o)
913 =BiB3gia + BY B3 gus
:2”13'2 ((#2)? + %x1)2 _ #(x%z 4 i)(%xz — (1)),

4o =B2B3gos + 2B3BS go6 + BS BS oo

=z (@4 3o+ @+ D+ 0%0)

2 12 1 2 1 3 1,2 1 2\2 1,.3\2
P = 3G = ote?) + s (@) = e,
9b3 =B3B3g24 + B3 B3ga
_ 1 1,.2 1 232 1 1 1 1\2 1 2\2

933 =B3B3gaa

1
_ 12 Lo
_2|P|2(x x +4) ,

where |P| = —(z!)? + (22)® — 2'2%23 + 2122 — 123
Let y = (y!) be a coordinate system of Skew(3, B, P,C), we get the relations
between y and the coordinate system ¢ = (¢1,¢?,¢?) of Skew(3) in the following

{41: LBl Blet,

Combining (25) with (29), we get the the fibre metric ' = (f1;) of PD(3; A, B,C,I)x
Skew(3, B, P,C) which induces from PD(3) x Skew(3),
fir =BiBifu
1

= - (@ + 32 = (@) +a%h@'a D).

where [P| = —(z')? + (2?)® — a'2?2® + 2'a? — 1a®.
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7. CONCLUSIONS

This paper gives a geometric method to investigate the stable time-varying output
feedback systems corresponding to certain stabilizing time-varying output feedback
gains constrained by some conditions. The present paper shows that, for the sta-
ble time-varying output feedback systems, Hs(A(t), B(t), C(t)) is diffeomorphic to
PD(n,t; A(t), B(t),C(t),Q(t)) x Skew(n,t; B(t), P(t),C(t)) which also can be con-
sidered as a parametrization of H,(A(t), B(t),C(t)). For the stable static output
feedback systems, by imbedding the set PD(n; A, B,C, Q) x Skew(n; B, P,C) into
PD(n) x Skew(n), we induce the geometric structures of the subset of stabilizing
static output feedback gains. In addition, we obtain some properties of eigenvalues
of the stable time-varying output feedback systems, which provide us a method to
get the expected stability of the stable time-varying output feedback systems by
adjusting the parameters P(t) and S(t). However, it is a pity that we can not find
the equal conditions for the set of all stabilizing time-varying output feedback gains
so far. This remains as a future research.
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