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OPTIMAL SEQUENTIAL MULTIPLE HYPOTHESIS
TESTS
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This work deals with a general problem of testing multiple hypotheses about the distribu-

tion of a discrete-time stochastic process. Both the Bayesian and the conditional settings

are considered. The structure of optimal sequential tests is characterized.
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quential test

AMS Subject Classification: 621,10, 62L.15, 60G40, 62C10

1. INTRODUCTION

Let X1, Xs,...,X,,... be a discrete-time stochastic process, whose distribution
depends on an unknown “parameter” 6. We consider the classical problem of testing
multiple hypotheses Hy : § =61, Hy: 0 =60, ..., Hy: 0 =0y, k> 2.

The main goal of this article is to characterize the structure of optimal sequential
tests in this problem.

Let us suppose that for any n = 1,2,..., the vector (X7, Xs,...,X,,) has a
probability “density” function

fo(x1, e, .., xn) (1)
(Radon—Nikodym derivative of its distribution) with respect to a product-measure
= p@u® - @,
—_——
n times

for some o-finite measure u on the respective space.
We define a (randomized) sequential hypothesis test as a pair (¢, ¢) of a stopping
rule ) and a decision rule ¢, with

w:(wlana"'awna"')a
¢ =(d1,02,.. ., Pns--.).

and

The functions
’l/)n:d)n(xlyaaa"'axn)a n:172a"'7
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are supposed to be some measurable functions with values in [0, 1]. The functions

(b’ﬂ:(bn(xthv'”axn), n=12...

are supposed to be measurable vector-functions with & non-negative components
bn = Pn(T1,. .o, T . .
¢n = (d)nv sy ¢n)7

such that Z§:1 ¢, =1foranyn=1,2,....

The interpretation of all these elements is as follows.

The value of ¥, (z1,...,x,) is interpreted as the conditional probability to stop
and proceed to decision making, given that we came to stage n of the experiment
and that the observations up to stage n were (z1,x2,...,2,). If there is no stop,
the experiments continues to the next stage and an additional observation z,4; is
taken. Then the rule 1,1 is applied to x1,29,...,Zn, Tp41 in the same way as as
above, etc., until the experiment eventually stops.

It is supposed that when the experiment stops, a decision to accept some of

Hy,...,Hy is to be made. The function ¢ (x1,...,2,) is interpreted as the con-
ditional probability to accept H;, © = 1,...,k, given that the experiment stops at
stage n being (z1,...,z,) the data vector observed.

The stopping rule ¢ generates, by the above process, a random variable 7, (stop-
ping time) whose distribution is given by

Pg(Tw = n) = E9(1 - 'l;bl)(]- - ¢2) .. (1 - 1/1n71)¢n~

Here, and throughout the paper, we interchangeably use v, both for 1, (z1, z1, ..., 2,)
and for 1, (X1, X1,...,X,), and so do we for any other function of observations
F,,. This does not cause any problem if we adopt the following agreement: when
F,, is under probability or expectation sign, it is F,(X1,...,X,), otherwise it is
Fo(z1,...,2y).

For a sequential test (1, ¢) let us define

azg(¢7¢) = P@i(accept H]) = Z EHL(I - 1/)1) cee (1 - ¢n—1)¢n¢% (2)

and Bi(1, @) = Ps, (accept any Hj%if}ferent from H;) = Z a;j (Y, ), (3)
J#i
t=1,...,k,j=1,..., k. The probabilities c;; (¢, ¢) for j # i can be considered “in-
dividual” error probabilities and §;(v, ¢) “gross” error probability, under hypothesis
H;, of the sequential test (¢, ¢).
Another important characteristic of a sequential test is the average sample num-

ber: Yoo nPy(ry =n), if Py(ry < o0) =1,
oo otherwise.

N(0;¢) = Egry = { (4)
Let 6 be any fixed (and known) value of the parameter (we do not suppose,
generally, that 6 is one of 6;, i =1,...k).
In this article, we solve the two following problems:
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Problem I. Minimize N(¢) = N(6;1) over all sequential tests (¢, ¢) subject to
a;j (Y, ¢) < oy, foralli=1,...k, and for all j # i, (5)
where o;; € (0,1) (with 4,5 =1,...k, j # i) are some constants.

Problem II. Minimize N(¢) over all sequential tests (1, ¢) subject to
51(1/’,@5) Sﬂzv for aul:lak7 (6)

with some constants 3; € (0,1),i=1,...,k.

More general problems of minimizing an average cost of type

N@) = EgCn(1 = 1) ... (1= tn1)tn

n=1

with some cost function C,, = C,, (X1, X2,...X,,) can be treated in essentially the
same manner.

If k£ = 2 then Problems I and II are equivalent, because 31 (¢, ¢) = a12(¢, ¢), and
B2(t),6) = a2 (1,6), by (2) and (3).

For independent and identically distributed (i.i.d.) observations and k = 2 the
formulated problem, when 6 # 6, and 6 # 65, is known as the modified Kiefer—Weiss
problem (see [10]), being the original Kiefer—Weiss problem minimizing supy N (1))
under (5) (see [6]).

For the latter problem, taking into account the usual relations between Bayesian
and minimax procedures, it seems to be reasonable to generalize our problem of
minimizing N(6;1)) to that of minimizing

/ N(6; ) dn(6),

with some “weight” measure 7. From what follows it is easily seen that, under

natural measurability conditions, our method works as well for this latter problem.
In Section 2, we reduce Problems I and II to an unconstrained minimization

problem. The new objective function is the Lagrange-multiplier function L(v; ).

In Section 3, we find .
L(y) = lgfL(dJ, ),

where the infimum is taken over all decision rules.

In Section 4, we minimize L(v) in the class of truncated stopping rules, i.e. such
that ¥y =1 for some 0 < N < oo.

In Section 5, we characterize the structure of optimal stopping rule % in the class
of all stopping rules.

In Section 6, we apply the results obtained in Sections 2—5 to the solution of
Problems I and II.

4

2. REDUCTION TO NON-CONSTRAINED MINIMIZATION

In this section, the Problems I and II will be reduced to unconstrained optimization
problems using the idea of the Lagrange multipliers method.
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2.1. Reduction to non-constrained minimization in Problem I

To proceed with minimizing N () over the sequential tests subject to (5), let us
define the following Lagrange-multiplier function:

L, ¢) = N@W)+ D> Aijai(¥,9) (7)
1<i,j<k;i]

where \;; > 0 are some constant multipliers. Recall that N(v) = Eg7y, where 6
is the fixed value of parameter for which the average sample number (4) is to be
minimized. Generally, we do not suppose that 6 is one of 6;, i =1, ... k.

Let A be a class of tests.

The following theorem is a direct application of the Lagrange multipliers method.

Theorem 1. Let exist A;; > 0, ¢ = 1,...,k, j = 1,...,k, j # i, and a test
(*, ¢*) € A such that for all sequential tests (1, @) € A

L(y*,¢%) < L(¥, ) (8)
holds and such that
a;;(P*, ") =a;; forall i=1,... k, and for all j # 1. (9)
Then for all (v, ¢) € A such that
(P, 9) <a;; forall i=1,... k&, and for all j # 1, (10)

it holds
N(@*) < N(¥). (11)

The inequality in (11) is strict if at least one of the equalities (10) is strict.

Proof. Let (¢,¢) € A be any sequential test satisfying (10). Because of (8)
L ¢") = N@")+ > A\jay(¥,¢7)
J#i
< L, ¢) = N() + D> Nijaij(1,0) < N(W) + Y Aijay, (12)
J#i J#i
where to get the last inequality we used (5).
SO’ * * *
N+ Aijai (0%, 6") < N@) + Y Nijaij,
J#i J#i
and taking into account conditions (9) we get from this that
N(@") < N(¥).

To get the last statement of the theorem we note that if N(10*) = N(¢) then there
are equalities in (12) instead of inequalities which is only possible if a;; (¢, ¢) =
forany i,j=1,... k, j #1i. a



Optimal Sequential Multiple Hypothesis Tests 313

Remark 1. The author owes the idea of the use of the Lagrange-multiplier method
in sequential hypotheses testing to Berk [1]. Essentially, the method of Lagrange
multipliers is implicitly used in the monograph of Lehmann [7] in the proof of the
fundamental lemma of Neyman—Pearson. In a way, the Bayesian approach in hy-
potheses testing can be considered as a variant of the Lagrange-multiplier method
as well.

Remark 2. All our results below can be adapted to the Bayesian context by choos-
ing appropriate Lagrange multipliers and using

k
> N (B¢
=1

instead of N(6;%) in L(v, ¢) above. From this point of view, we extend and com-
plement the results of Cochlar [2] about the existence of Bayesian sequential tests.
More generally, all our results are applicable as well for minimization of

/ N(6; ) dn(6),

where 7 is any probability measure (see Remarks 6 and 11 below).

2.2. Reduction to non-constrained minimization in Problem II
Very much like in the preceding section, define
k
L(y,¢) = N() + Y \ifBi(, 9), (13)
i=1

where \; > 0 are the Lagrange multipliers.
In a very similar manner to Theorem 1, we have

Theorem 2. Let exist A; > 0,4 =1,...,k, and a sequential test (¢¥*, ¢*) € A such
that for all (¢, ¢) € A

L(y*,¢") < L(¢, ¢) (14)
holds and such that

Bi(v*,¢*)=p; forall i=1,...k. (15)
Then for all sequential tests (¢, ¢) € A such that
Bi(, ) < B; forall i=1,...k, (16)

it holds N(@*) < N(3). (17)

The inequality in (17) is strict if at least one of the equalities (16) is strict.
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3. OPTIMAL DECISION RULES

Due to Theorems 1 and 2, Problem I is reduced to minimizing (7) and Problem II
is reduced to minimizing (13). But (13) is a particular case of (7), namely, when
Xij =N forany j=1,...,k, j#i (see (2) and (3)). Because of that, from now on,
we will only solve the problem of minimizing L(1, ¢) defined by (7).

In particular, in this section we find

L(y) = igfL(w, ),

and the corresponding decision rule ¢, at which this infimum is attained.
Let I4 be the indicator function of the event A.

Theorem 3. For any \;; > 0,i=1,...,k, j # 4, and for any sequential test (1, ¢)

L(1,$) > N (¢ Z (1 =41) ... (1= 1) onln dp™, (18)
n=L
where = 121;21@ 2 >\2Jf0 (19)
i#j

Supposing that N (1) is finite, the right-hand side of (18) is attained if and only if

I <T 2

WSl ) (20)
for all j =1,...k, p™-almost anywhere on

SY ={(x1,...,2n) : 8p(x1,...,2,) > 0},
where s¥(x1,...,2,) =¥ = (1 — 1) ... (1 —thp_1)thy, foralln =1,2,.. ..
Proof. Inequality (18) is equivalent to
> hgay(,9) 2 Z/ (L= 1) o (1= )l di™. (21)
1<i,j<k;j#i

We prove it by finding a lower bound for the left-hand side of (21) and proving
that this lower bound is attained if ¢ satisfies (20).
To do this, we will use the following simple

Lemma 1. Let ¢q,..., ¢, and F1, ... Fj be some measurable non-negative functions
on a measurable space with a measure pu, such that

and such that
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Then

1<i<k

k
/ (Z b <x>Fz—<x>> du(x) > [ min Fi(z)dpa) (22)
=1
with an equality in (22) if and only if

< . =
QSZ_I{FZ_: min F;} forany i=1,2,...,k, (23)
1<5<k
p-almost anywhere.

Proof. To prove (22) it suffices to show that

1<i<k

k
/(2%%@&@)@@%— min F;(z)du(z) = 0, (24)

because the second integral is finite by the conditions of the Lemma.
But (24) is equivalent to

1<5<k

k
/ > 61(a) (Fi(@) — min, Fy()) dp(a) > 0, (25)

being this trivial because the function under the integral sign is non-negative.
Because of this, there is an equality in (25) if and only if

k
> o) (Fie) -~ i, Fy(2) =0
u-almost anywhere, which is only possible if (23) holds true. |

Starting with the proof of (21), let us give to the left-hand side of it the form
> Njaii(y, )
1<i,j<k; j#i X
=D 3) CETARNCERNTS 31 () SRS OT S FXVINNCD
n=1 7=1 \1<i<k;i#j

(see (2)).

Applying Lemma 1 to each summand in (26) we immediately have:
S Njai(vd) =Y / (1 =t1) ... (1= 1 )l dp” (27)
1<i,j<k; j#i n=1
with an equality if and only if
gl S I{Zz;ﬁj Aijféli :ln}

for all 1 < j < k, pu"-almost anywhere on S¥, for all n = 1,2,.... O

no
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Remark 3. It is easy to see, using (4) and (27), that
L) =it L(6.6) = 3 [(L=b0) oo (L= )i (off + L) A" (28)
n=1

if Py(7y < 00) =1 and L(3)) = co otherwise.

[1%4

Remark 4. In the Bayesian context of Remark 2, the “if’-part of Theorem 3 can
also be derived from Theorem 5.2.1 [5].

4. TRUNCATED STOPPING RULES

Our next goal is to find a stopping rule 1 minimizing the value of L(1) in (28).
In this section, we solve, as an intermediate step, the problem of minimization of
L(v) in the class of truncated stopping rules, that is, in the class AN of

Y= (1,02, ..., ¥UN-_1,1,...). (29)

For any ¢ € AN let us define

N
L) =3 [0 oo (L= b (05 + ) di” (30)

(see (28)).
The following lemma takes over a large part of work of minimizing Ly (v) over
e AN,

Lemma 2. Let r > 2 be any natural number, and let v, = v,.(x1,x2,...,z,) be any
measurable function such that [ v, du” < co. Then

i /(1 — 1) (L= Y1) Un(nf + 1n) dp™
+/<1 — 1) (L= ) (rfy +vp) du”

r—2
> 21/(1 1) e (L= G ) (nf + 1) A (31)

[ ) = ) (= D o)

where

v =min (i1 574 [ o) duten) (32)

There is an equality in (31) if and only if

T, et fontenna du(eny < Vr=1 S Lo <ty o @ e dugey (33)
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I

p"~L-almost anywhere on C¥_,, where, by definition,

C¥ ={(x1,...,xn): (1 =tp1(x1)) ... (1 = Pp_1(x1,...,2,_1)) > 0}

foranyn=1,2,...

Proof. Let us start with the following simple consequence of Lemma 1.

Lemma 3. Let y, ¢, F1, F» be some measurable functions on a measurable space
with a measure u, such that

and
/min{Fl(x),Fg(x)}du(x) < o0.

Then
/X(@(¢($)Fl($)+(1—¢($))F2($))du(fv) > /X(m)min{Fl(fﬂ)vFﬂx)}dM(ﬂﬁ) (34)
with an equality if and only if
IiFy ()< Fa(@)) < 0(2) < I{py (0)<Fa(2)) (35)
p-almost anywhere on {z : x(z) > 0}.

Proof. Defining ¢1(z) = ¢(z) and ¢o(z) = 1 — ¢(x), from Lemma 1 we immedi-
ately obtain (34), with an equality if and only if

$1(2) = 3(%) < I{x(a)(Fi (2)—min{F (z), F> (x)})=0} (36)
and

G2(2) =1 = ¢() < I{x(2)(Fa(2)—min{F, (2),F(2)})=0} (37)

p-almost anywhere. Expressing ¢(z) from (36) and (37) we have that there is an
equality in (34) if and only if

I{x(2)(Fa (@) —min{ Fy (2), Fa () ) >0} < (@) < Ly () (Fy (2)—min{ F (), Fa () })=0}

p-almost anywhere, which is equivalent to

Itp (o)< Fo(a)} < 0(2) < I (2)<Fa(2)} # — almost anywhere on {x(z) > 0}. O

To start with the proof of Lemma 2 let us note that for proving (31) it is sufficient
to show that

/(1 = 1) (L= pra)thra ((r = 1) fg 7!+ Lpmy) dp”
U= =) 0+ )
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> / (L= 1) (L= thya) ((r = D)5+ vr) dp’ (38)

By Fubini’s theorem the left-hand side of (38) is equal to
L N S A Y R AL T

+/(1 — 1) (T =1)pq) (/ (rfy +vr) d,u(:cr)> dpr !
= [ v = v (= D5 1)
HL= o) [ (0ff + ) duten)) dpr (39)
Because f§(x1,...,%,) is a joint density function of (Xq,...,X,), we have
[t o) duon) = £ @),

so that the right-hand side of (39) transforms to

/(1 — 1) (=)= 1) f5

oyl (=) (5 [ o dutan)) (40)
Applying Lemma 3 with
X:(l_wl)'~'(1_wr72)v ¢:¢T717
Fi=l_1, F=f" +/Urdﬂr,

we see that (40) is greater or equal than
/(1 —1) ... (1 =r_9) [(r—1) ;-—1 + min {lr_l, g_l + /’U,« du(ajr)}} dp1t

= [a=v0 =)l = D v, (a1

by the definition of v,_; in (32).
Moreover, by the same Lemma 3, (40) is equal to (41) if and only if (33) is satisfied
1"~ 1-almost anywhere on Cﬁ’_l. (|
Let now ¢ € AN be any truncated stopping rule.
By (30) we have

N—-1
In@) = 3 [ (= bum)unff + 1) "
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[0 (=) (VI 1) (12)

Let V& =ly. Applying Lemma 2 with r = N and vy = VI we have

N-—2
In@) = 3 [ (= bam)banfy + 1) "

+ / (L= ) (L= o) (N = DT 4 V) da Y, (43)

where V& | = min{ly_1, éN_l + [V du(zn)}. Also by Lemma 2, the inequality
in (43) is in fact an equality if
N1 = T <Y VY duen)) (49)

Applying Lemma 2 to the right-hand side of (43) again we see that

N-3
In@) = 3 [ (= bam)banfy + 1) "

+ /(1 = 1) (L= v-s) (N = 2)f3 + VALo) dp™ %, (45)

where Vi, = min{ly_o, f3' 2+ [V, du(zn-1)}. There is an equality in (45) if
(44) holds and

UN—2 = I{lezﬁféVﬂJrf VA_y du(zn 1)}’ (46)

etc.
Repeating the applications of Lemma 2, we finally get

Ln() > / 4+ V¥ ) dut =1+ / VY du(e), (47)

and a series of conditions on v, starting from (44), (46), etc., under which L(v))
is equal to the right-hand side of (47). Because Lemma 2 also gives necessary and
sufficient conditions for attaining the equality, we also have necessary conditions for
attaining the lower bound in (47).

In this way, formally, we have the following

Theorem 4. Let 1) € AN be any (truncated) stopping rule. Then for any 1 < r <
N — 1 the following inequalities hold true

Ln() 2 3 [ (=00 oo (L= bl + 1) "

+ /(1 — 1) (=) (r+ DT + V) dp ! (48)



320 A. NOVIKOV

1

> / (1= 1) (L= o) (0 + 1) dpa”

1

3
|

3
Il

+/(1—1/)1)...(1—wr_1)(rfg—l-VrN) du”, (49)

where Vy = [, and recursively form =N -1, N —2,...1
VN = min{l,,, f&* + RN}, (50)
with RY = RN(21,.. . xm) = | VN (21,22, Zos) At ) (51)

The lower bound in (49) is attained if and only if for any m =r,..., N —1
I{lm<f;”+Rm} < wm < I{lmeén+Rm} ,um—almost anywhere on C:fl (52)
In particular, conditions (52) with m = 1,2,..., N —1 are necessary and sufficient

for being ¢ = (¢1,...,%N_1,1,...) an optimal truncated rule in AY. The minimum
value of L(v)), over ¢ € AN is equal to

1+/V1Ndu(:r1):1+RéV.

Remark 5. Despite that any v = (¢1,...,%n_1,1,...) satisfying (52) for m =

1,...,N — 1 is optimal among all truncated tests in A", it only makes practical
sense if
lo>1+RY
where [y defined as
lop = mi
o=min, 2 M
1<i<k,i#j

The reason is that ly can be considered as “the L(v)” function for a trivial
sequential test (g, @) which, without taking any observations, makes a decision
according to any ¢g = (¢4, ..., dk) such that

¢ < Iy vg=toy, 1< <k

In this case, there are no observations (N (1) = 0) and it is easily seen that

L(%o, ¢o) = Z Aijaij (1o, ¢o) = lo.
1<i,j<k,i#j
Thus, the inequalit
’ aney lo<1+RY
means that the trivial test (¢, ¢g) is not worse than the best truncated test in AN,
Because of that, we consider V¥ defined by (50) for m = 0, where, by definition,
f9 =1, as the minimum value of L(3) in AY, in the case it is allowed not to take
any observations.
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Remark 6. It is not difficult to see from the proof of Lemma 2, that the problem
of the optimal testing when the cost of the experiment is defined as

/ N () dn(6), (53)

with some measure 7 (see Remark 2), under suitable measurability conditions, can
receive essentially the same treatment. The corresponding optimal stopping rule in
AN will be defined by

Vr = La,<f pran(0)+ [ VY, dpeia} (54)

for r =1,2,...,N — 1, with V.V defined recursively as
p— {zr_l, [ g5 ane)+ [ du(a:r)} 7 (55)

starting from r = N, in which case V¥ = Iy.

In the Bayesian context of Remark 2 the optimality of (54)—(55) with A\;; =
miL;j, where L;; are some non-negative losses, ¢ # j, can be derived also from
Theorem 5.2.2 [5]. Our Theorem 4 gives, additionally to that, a necessary condition
of optimality, providing the structure of all Bayesian truncated tests. Essentially,
they are randomizations of (54):

Lo« f fam(@)+f VAL dpeny = Ur S g, < 1 pran@)+f VY dpe )

forr=1,2,...,N — 1.

In purely Bayesian context, such conditions may be irrelevant, because any Bayesian
test gives the same (minimum) value of the Bayesian risk. Nevertheless, for our (con-
ditional) Problems I and II, it may be important to have a broader class of optimal
tests, for easier compliance with (9) in Theorem 1 (or with (15) in Theorem 2), just
like the randomization of decision rule is important for finding tests with a given
a-level in the Neyman—Pearson problem (see, for example, [7]).

5. GENERAL STOPPING RULES

In this section we characterize the structure of general stopping rules minimiz-

ing L(v).
Let us define for any stopping rule

N—-1
In() = X [ (=) (= ) + ) "
n=1

b [0 (= ) (V1) ™ (56)

(cf. (42)). This is the Lagrange-multiplier function for ¢ truncated at N, i.e. the
rule with the components ¥~ = (¢1,%2,...,¥N_1,1,...), Ly (¥) = L(yN).

Because 9" is truncated, the results of the preceding section apply, in particular,
the inequalities of Theorem 4.
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The idea of what follows is to make N — oo, to obtain some lower bounds for
L(v) from (48)—(49).

To be able to do this, we need some “approximation properties” for L(v), to
guarantee that Ly () — L(¢), as N — oo, at least for stopping rules ¢ for which
Py(1y < 00) = 1.

Lemma 4. Suppose that 1 is a stopping rule such that Py(7y < 00) = 1.
(i) If L(v) < o0 and

/(1—w1)...(1—¢n,1)lndu"—>0, as m — 00, (57)
then ]\}Enoo LN(¢) — L(’l/))

(if) If L(v)) = oo then Ly (1)) — oo.

Proof. Let L(¢) < co. Let us calculate the difference between L(v) and Ly (¢))
in order to show that it goes to zero as N — co. By (56)

L)~ In() = 3 [ (1= 62). oo (1= ) ff 1) di”
n=1

N-—1
=Y [ v S 1) da”
— [0 = ) (V1)
=3 [ 0 v 1)
n=N

[0 =) (V1) (58)

The first summand converges to zero, as N — oo, being the tail of a convergent
series (this is because L(y)) < 00).
We have further

/(1 — 1) ... (1 =Yy )Indu —0

as N — oo, because of (57).
It remains to show that

/(1 — 1) (1= Yn_1)NfY du™ = NPy(ry > N) — 0as N — oo. (59)

But this is again due to the fact that L(1)) < oo which implies that

e}
Eory = ZnPg(Tw =n) < 0.

n=1



Optimal Sequential Multiple Hypothesis Tests 323

Because this series is convergent, Y-\ nPy(7y = n) — 0. Thus, using the Cheby-
shev inequality we have

oo

NPy(ry > N) < Eorylir,ony = Y nPp(ry =n) — 0
n=N

as N — oo, which completes the proof of (59).
Let now L(v) = oo.
This means that

S [0 ) (= b ff 1) =

which immediately implies by (56) that

N-—-1
Ly(y) > Z /(1 = 1) (1= Yp-1)Un(nfg + ln) dp™ — oo, ]
n=1

Lemma 4 gives place to the following definition.
Let us say that our testing problem is truncatable if (57) holds for any 1 with
EQTw < 0.

From Lemma 4 it immediately follows

Corollary 1. For any truncatable problem
LN(’(/}) - L(w), as N — 0,

for any stopping rule 9 such that Py(r, < 00) = 1.

Remark 7. Tt is obvious from (57) that a testing problem is truncatable, in partic-
ular, if

/ln dp” =0, as n— oco. (60)

Let us denote by «;;(n, ) the error probability of a test corresponding to a fixed
number n of observations, when the decision rule ¢ is applied. From Theorem 3 it
follows that the left-hand side of (60) is the minimum weighted error sum:

/ln du™ = igf Z Aijaij(n, @),

1<4,5<k,i#]

where the infimum is taken over all decision rules ¢.

Thus, (60) requires a very natural behaviour of a statistical testing problem,
namely that the minimum weighted error sum, over all fixed-sample size tests, tend
to zero, as the sample size n tends to infinity.
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Remark 8. Any Bayesian problem (with N(¢) = Zle N(0;;9)m; in (7), where
m; >0,1=1,...,k)is truncatable. Indeed, if N(¢) < oo then Eg, 7y, = N(6;;¢) <o
foralli=1,...,k. Because of this,

k
/u—mynu—wnnuwns/u—wynu—wnn<ZMmﬁ>w"
k i=2
< Z)\ﬂPgi (ty >n) —0, as n— oo,
i=2

thus, (57) is fulfilled.

Our main results below will refer to truncatable testing problems.
To go on with the plan of passing to the limit, as N — oo, in the inequalities of
Theorem 4, let us turn now to the behaviour of V,V, as N — oo.

Lemma 5. For any » > 1 and for any N > r

v >yt (61)

Proof. By induction over r = N, N —1,...,1.
Let 7 = N. Then by (50)

V]f,w'l = min {ZN,feN +/V1{/V_:'11du(xN+1)} <Iy =V,
If we suppose that (61) is satisfied for some r, N > r > 1, then

VN, = min{lr_l, . —|—/VTN du(a:r)}
Z min {lT—l) g_l + / ‘/;N—"_l dILL(x7>} = VTJXTI'

Thus, (61) is satisfied for r — 1 as well, which completes the induction. ]

It follows from Lemma 5 that for any fixed »r > 1 the sequence V. is non-
increasing. So, there exists

V= lim VN, (62)

Now, everything is prepared for passing to the limit, as N — oo, in (48) and (49)
with 1 = V. If Py(ry < oo) = 1, then the left-hand side of (48) by Lemma 4 tends
to L(1), whereas passing to the limit in the other two parts under the integral sign
is justified by the Lebesgue monotone convergence theorem, in view of Lemma 5.
For the same reason, passing to the limit as N — oo is possible in (50) (see (51)).

In this way, for a truncatable testing problem we get the following

Theorem 5. Let 1 be any stopping rule. Then for any r > 1 the following inequal-
ities hold

L) >y / (L= 1) o (L o (] + L) dpt”
n=1
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+ / (L= th0) . (1= ) ((r+ D+ Vo) dper (63)

r—1
>3 [0 ) (= s+ 1)
n=1

[ @) O+ Vo (64)
where Vi = min{l,,, f¢* + Rm} (65)
with R, = Rm(xl, - ,.’L‘m) = /Vm+1((E1, ce ,$m+1) dﬂ($m+1) (66)

for any m > 1.
In particular, the following lower bound holds true:

L) >1 +/V1 du(z1) = 1+ Ry. (67)

In comparison to Theorem 4, Theorem 5 is lacking a very essential element: the
structure of the test achieving the lower bound on the right-hand side of (67). In
case this test exists, by virtue of (67) it has to be optimal.

First of all, let us show that if the optimal test exists, it reaches the lower bound
on the right-hand side of (67). More exactly, we prove

Lemma 6. For any truncatable testing problem

irﬁl}f L(y) =1+ Ry. (68)

Proof. Let us denote
U= iﬁfL(w), Uy =1+ RY,

where R} is defined in Theorem 4.
By Theorem 4, for any N =1,2,...

Uy = inf L(¥).

PEAN
Obviously, Uy > U for any N =1,2,..., so
lim Uy > U. (69)
N—oo

Let us show first that in fact there is an equality in (69).
Suppose the contrary, i.e. that limy_,o Uy = U + 4¢, with some ¢ > 0. We
immediately have from this that

Un >U + 3¢ (70)

for all sufficiently large N.
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On the other hand, by the definition of U there exists a ¢ such that U < L(¢) <
U + e. Because, by Lemma 4, Ly (v)) — L(¢), as N — oo, we have that

Ly(W) <U +2¢ (71)
for all sufficiently large N as well. Because, by definition, Ly (¢)) > Uy, we have
that Uy <U +2¢
for all sufficiently large N, which contradicts (70).

Thus,

th UN =U.
Now, to get (68) we note that, by the Lebesgue’s monotone convergence theorem,
U= A}im Uv=1+ Nlim VN (z)dp(z) =1 +/V1(x) dp(z) =14 Ro,

thus, U = 1+ Ryp. ]

Remark 9. For the Bayesian context (see Remark 2), Lemma 6 can be derived
from Theorem 5.2.3 [5] if (60) is supposed (see also Section 7.2 of [4] or Section 9.4
of [11]).

The following theorem gives the structure of the optimal stopping rule for a
truncatable testing problem.

Theorem 6.

L) = inf L), (72)
if and only if
L, <+ Ry < ¥m < Iy, <frir,) #"-almost anywhere on cv (73)
forallm=1,2....

Proof. Let % be any stopping rule. By Theorem 5 for any fixed » > 1 the following
inequalities hold:

L) 2 3 [ ) (= bam)n oy + 1) i
n=1

+/(1 =) (L=) (r+ ) fg ™+ Viga ) dp™ (74)

> Y @) = by + ) dg”

+[am e 0w 6ff Vo (75)
> / G+ b dut + / (1= ) (2f3 + V) dpi? (76)
> 1+/V1 dp(z1) =1+ Ryp. (77)
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Let us suppose that L(¢)) = 1 + Rg. Then, by Lemma 6, there are equalities in
all the inequalities (74)—(77). Applying the “only if”’-part of Lemma 2 and using
(65) and (66), successively, starting from the last inequality (77), we get that (73)
has to be satisfied for any m = 1,2,.... The first part of the Theorem is proved.

Let now 1 be any test satisfying (73).

Applying the “if’-part of Lemma 2 and using (65) and (66) again, we see that all
the inequalities in (75) —(77) are in fact equalities for

wr:(d}lad}%"'ad}mla'“)'

In particular, this means that there exists

r—00

hm[é;/a—wguxyﬂmlmmmﬁww@dw

+/(1 — 1/11) ce (1 — ’L/)T) ((T + 1)f£+1 + ‘/7«+1) dMTJrl} =1+ Ro. (78)
Tt follows from (78) that

hmsuprﬂoo f(]‘ - 7/)1) ce (]‘ - ¢r)(r + 1)fg+1 d/’LT+1
= limsup,_ . (r+ 1)Py(ry > 7+ 1) <1+ Ry,

which implies that lim, o, Pyp(7y >+ 1) = 0. Thus, Py(ry < 00) = 1.
From (78), it follows as well that

T—00

i 3 Jl0= ) 0= by + A" <14 Re. (79)

But the left-hand side of (79) is L(%) (because Py(7y < 00) = 1) and hence
L(1) < 1+ Ry. (80)
On the other hand, by virtue of Theorem 5,
L(y) > 1+ Ry,
which proves, together with (80), that L(¢) = 1 + Ry. O

Remark 10. Once again (see Remark 5), the optimal stopping rule ¢ from Theo-
rem 6 only makes practical sense if [y > 1 + Ry.

Remark 11. From the results of this section it is not difficult to see that the same
method works as well for minimizing

[V are)
(see Remark 6).
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Repeating the steps which led us to Theorem 6 we get that the corresponding
optimal stopping rule has the form

P =1 r=1,2,3,..., (81)
{l,g [0z + [V dM(%H)}

ith
W V, = lim VY,
N—oo

being V.V defined for r = N — 1, N — 2,..., 1 recursively by

VY = min {lr,/fg dn(6) +/Vrjil du($r+1)}

starting from V¥ = ly.
In a particular case of Remark 2 and

k
[N :0)an0) = S min(6:50)
=1

being \;; = L;;m;, this gives an optimal stopping rule for the Bayesian problem
considered in [2].

In particular, for £k = 2, this gives an optimal stopping rule for the Bayesian
problem considered in [3].

6. APPLICATIONS TO THE CONDITIONAL PROBLEMS

In this section, we apply the results obtained in the preceding sections to minimizing
the average sample size N(¢) = Eg7y over all sequential testing procedures with
error probabilities not exceeding some prescribed levels (see Problems I and II in
Section 1). Recall that we are supposing that our problems are truncatable (see
Section 5).

Combining Theorems 1, 3 and 6, we immediately have the following solution to
Problem 1.

Theorem 7. Let ¢ satisfy (73) forallm =1,2,..., withany \;; > 0,4,j =1,...,k,
i # j, (recall that R, and l,, in (73) are functions of \;;), and let ¢ be any decision
rule satisfying (20).

Then for all sequential testing procedure (¢, ¢’) such that

a;; (W, @) <Y, ¢) forall i,j=1,....k i#j], (82)

it holds N(@') > N(y). (83)

The inequality in (83) is strict if at least one of the inequalities in (82) is strict.
If there are equalities in all of the inequalities in (82) and (83), then v’ satisfies
(73) for all m = 1,2,... as well (with ¢’ instead of ).
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Proof. The only thing to be proved is the last assertion.
Let us suppose that

aij(w/agi{) = aij(wvd))a for all 7’7] = 17' . 'akv { #]a

and
N(@') = N(®).
Then, obviously,
L', ¢') = L(v,¢) = L(v) = L(4') (84)
(see (7) and Remark 3).

By Theorem 6, there can not be strict inequality in (84), so L(¢)) = L(¢)'). From
Theorem 6 it follows now that ¢’ satisfies (73) as well. O

Analogously, combining Theorems 2, 3 and 6, we also have the following solution
to Problem II.

Theorem 8. Let ¢ satisfy (73) forallm =1,2,..., with A\;; = A; forallj=1,... k,
where \; > 0,4 =1,...k are any numbers, and let ¢ be any decision rule such that
<
¢’I’LJ S I{EL#J )\ifg‘%:minj Zi#j szg:}
forall j=1,...,kand foralln=1,2,....
Then for any sequential test (¢, ¢') such that

ﬁi(w/a¢/) Sﬁz(%@ for any 1= 17"'7k7 (85)
it holds N@') > N(b). (36)

The inequality in (86) is strict if at least one of the inequalities in (85) is strict.
If there are equalities in all of the inequalities in (85) and (86), then v’ satisfies
(73) for all m =1,2,... as well (with ¢’ instead of ).

Remark 12. There are examples of applications of Theorem 7 (or 8), in the case
of two simple hypotheses based on independent observations, in [9].

A numerical example related to the modified Kiefer—Weiss problem for indepen-
dent and identically distributed observations can be found in [8]. Obviously, our
Theorem 7 provides, for this particular case, randomized versions of the optimal
sequential test studied in [8] (see also [9]).
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