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1. INTRODUCTION

In scene analysis, we often obtain the input information in a form of an image

captured by a nonideal imaging system. Most real cameras and other sensors can

be modeled as a linear space-invariant system, where the relationship between the

input f(x, y) and the acquired image g(x, y) is described as

g(τ(x, y)) = a(f ∗ h)(x, y) + n(x, y) . (1)

In the above model, h(x, y) is the point-spread function (PSF) of the system, n(x, y)

is an additive random noise, a is a constant describing the overall change of contrast,

τ stands for a transform of spatial coordinates due to projective imaging geometry

and ∗ denotes 2D convolution.

In many application areas, it is desirable to find a description of the original

scene that does not depend on the imaging system without any prior knowledge of

its parameters. Basically, there are two different approaches to this problem: image

normalization or direct description by invariants.

Image normalization consists of two major steps: geometric registration, that

eliminates the impact of imaging geometry and transforms the image into some

“standard” form, and blind deconvolution, that removes or suppresses the blurring.

Both these steps have been extensively studied in the literature, we refer to the

recent surveys on registration4,7 and on deconvolution/restoration techniques.10,16

Generally, image normalization is an ill-posed problem whose computing complexity

can be extremely high.

In the invariant approach we look for image descriptors (features) that do not

depend on h(x, y), τ(x, y) and a. In this way we avoid a difficult inversion of

Eq. (1). In many applications, the invariant approach is much more effective than

the normalization. Typical examples are the recognition of objects in the scene

against a database, template matching, etc.
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Much effort has been spent to find invariants to imaging geometry, parti-

cularly to linear and projective transformations. Moment invariants,1,3,5,8,9,18,19

Fourier-domain invariants,2,12 differential invariants15,20,21 and point sets in-

variants,11,13,14,17 are the most popular groups of them. On the other hand, only few

invariants to convolution have been described in the literature. A consistent theory

has been published recently in Ref. 6 where two sets of convolution invariants were

constructed in spatial as well as Fourier domains. Unfortunately, those features are

not invariant to rotation and therefore their practical utilization is limited.

This paper performs the first attempt to find combined invariants that are in-

variant simultaneously to convolution and linear transform of spatial coordinates.

The rest of the paper is organized as follows. In Sec. 2, some basic definitions

and propositions are given to build up the necessary mathematical background.

Sections 3 and 4 perform the major contribution of the paper. In Sec. 3, the

invariants to convolution composed from the complex moments are introduced. In

Sec. 4 we present a derivation of the combined invariants. We also show how to

select a complete and independent system of them. In Sec. 5, the previous results

are extended to get additional invariance to image scaling and/or contrast changes.

Finally, Sec. 6 describes numerical experiments performed on simulated data.

2. MATHEMATICAL BACKGROUND

In this section, we introduce some basic terms and propositions that will be used

later in the paper.

Definition 1. By image function (or image) we understand any real function

f(x, y) ∈ L1 which is nonzero on a bounded support and whose integral is positive.

Definition 2. Complex moment c
(f)
pq of order (p + q) of the image f(x, y) is

defined as

c(f)
pq =

∫ ∞
−∞

∫ ∞
−∞

(x+ iy)p(x− iy)qf(x, y)dxdy (2)

where i denotes the imaginary unit.

In polar coordinates, (2) becomes the form

cpq =

∫ ∞
0

∫ 2π

0

rp+q+1ei(p−q)θf(r, θ)drdθ . (3)

It follows immediately from (3) that cpq = c∗qp (the asterix denotes a complex

conjugate).

The following lemma describes an important rotation property of the complex

moments.

Lemma 1. Let f ′ be a rotated version (around the origin) of f , i.e. f ′(r, θ) =

f(r, θ+ α) where α is the angle of rotation. Let us denote the complex moments of

f ′ as c′pq. Then

c′pq = e−i(p−q)α · cpq . (4)
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Using Eq. (3), the proof of Lemma 1 is straightforward. The next lemma shows

how the complex moments are affected by convolution.

Lemma 2. Let f(x, y) and h(x, y) be two image functions and let g(x, y) =

(f ∗ h)(x, y). Then g(x, y) is also an image function and we have, for its moments,

c(g)pq =

p∑
k=0

q∑
j=0

(
p

k

)(
q

j

)
c
(h)
kj c

(f)
p−k,q−j

for any p and q.

The assertion of Lemma 2 can be easily proven just using the definition of

complex moments and convolution, respectively.

In the following text, we assume that the PSF h(x, y) is centrally symmetric

(i.e. h(x, y) = h(−x,−y)) and that the imaging system is energy preserving, i.e.∫ ∞
−∞

∫ ∞
−∞

h(x, y)dxdy = 1.

The centrosymmetry implies that c
(h)
pq = 0 if p + q is odd. The assumption of

centrosymmetry is not a significant limitation of practical utilization of the method.

Most real sensors and imaging systems, both optical and nonoptical ones, have

the PSF with certain degree of symmetry. In many cases they have even higher

symmetry than the central one, such as axial or radial symmetry. Thus, the central

symmetry is general enough to describe almost all practical situations.

3. INVARIANTS TO CONVOLUTION FROM THE COMPLEX MOMENTS

In this section, invariants to convolution based on complex moments are introduced.

Theorem 1. Let f(x, y) be an image function. Let us define the following function

K(f): Z× Z→ C.

If (p+ q) is even then

K(p, q)(f) = 0 .

If (p+ q) is odd then

K(p, q)(f) = c(f)
pq −

1

c
(f)
00

p∑
n=0

q∑
m=0

0<n+m<p+q

(
p

n

)(
q

m

)
K(p− n, q −m)(f) · c(f)

nm. (5)

Then K(p, q)(f∗h) = K(p, q)(f) for any p and q and for any centrosymmetric h(x, y).

The number r = p+ q is called the order of the invariant.

Proof. The statement of the theorem is trivial for any even r. Let us prove the

statement for odd r by induction.

• r = 1

K(0, 1)(g) = c
(g)
01 = c

(f)
01 c

(h)
00 + c

(f)
00 c

(h)
01 = c

(f)
01 = K(0, 1)(f)

and similarly for K(1, 0)(g).
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• We assume the theorem valid for all invariants of orders 1, 3, · · · , r − 2. Using

Lemma 2 we get

K(p, q)(g) = c(g)pq −
1

c
(g)
00

p∑
n=0

q∑
m=0

0<n+m<p+q

(
p

n

)(
q

m

)
K(p− n, q −m)(g) · c(g)nm

=

p∑
k=0

q∑
j=0

(
p

k

)(
q

j

)
c
(h)
kj c

(f)
p−k,q−j

− 1

c
(f)
00

p∑
n=0

q∑
m=0

0<n+m<p+q

(
p

n

)(
q

m

)
K(p− n, q −m)(f)

×
n∑
k=0

m∑
j=0

(
n

k

)(
m

j

)
c
(h)
kj c

(f)
n−k,m−j .

Using the identity (
a

b

)(
b

c

)
=

(
a

c

)(
a− c
b− c

)
,

we get by changing the order of the summation and by shifting the indices

K(p, q)(g) = K(p, q)(f) +

p∑
k=0

q∑
j=0

0<k+j

(
p

k

)(
q

j

)
c
(h)
kj c

(f)
p−k,q−j

− 1

c
(f)
00

p∑
n=0

q∑
m=0

0<n+m<p+q

n∑
k=0

m∑
j=0

0<k+j

(
p

n

)(
q

m

)(
n

k

)(
m

j

)

× K(p− n, q −m)(f)c
(h)
kj c

(f)
n−k,m−j

= K(p, q)(f) +

p∑
k=0

q∑
j=0

0<k+j

(
p

k

)(
q

j

)
c
(h)
kj c

(f)
p−k,q−j

− 1

c
(f)
00

p∑
n=0

q∑
m=0

0<n+m<p+q

n∑
k=0

m∑
j=0

0<k+j

(
p

k

)(
q

j

)(
p− k
n− k

)(
q − j
m− j

)

× K(p− n, q −m)(f)c
(h)
kj c

(f)
n−k,m−j

= K(p, q)(f) +

p∑
k=0

q∑
j=0

0<k+j

(
p

k

)(
q

j

)
c
(h)
kj c

(f)
p−k,q−j

− 1

c
(f)
00

p∑
k=0

q∑
j=0

0<k+j

p∑
n=k

q∑
m=j

n+m<p+q

(
p

k

)(
q

j

)(
p− k
n− k

)(
q − j
m− j

)

× K(p− n, q −m)(f)c
(h)
kj c

(f)
n−k,m−j
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= K(p, q)(f) +

p∑
k=0

q∑
j=0

0<k+j

(
p

k

)(
q

j

)
c
(h)
kj

(c
(f)
p−k,q−j −

1

c
(f)
00

p∑
n=k

q∑
m=j

n+m<p+q

(
p− k
n− k

)(
q − j
m− j

)
K(p− n, q −m)(f)c

(f)
n−k,m−j)

= K(p, q)(f) +

p∑
k=0

q∑
j=0

0<k+j

(
p

k

)(
q

j

)
c
(h)
kj

(c
(f)
p−k,q−j −

1

c
(f)
00

p−k∑
n=0

q−j∑
m=0

n+m<p+q−k−j

(
p− k
n

)(
q − j
m

)

× K(p− n− k, q −m− j)(f)c(f)
nm) ,

which we can rewrite as

K(p, q)(g) = K(p, q)(f) +

p∑
k=0

q∑
j=0

0<k+j

(
p

k

)(
q

j

)
c
(h)
kj ·Dkj (6)

where

Dkj = c
(f)
p−k,q−j−

1

c
(f)
00

p−k∑
n=0

q−j∑
m=0

n+m<p+q−k−j

(
p− k
n

)(
q − j
m

)
K(p−n−k, q−m−j)(f)c(f)

nm.

If k + j is odd then c
(h)
kj = 0. If k + j is even then

K(p− k, q − j) = cp−k,q−j −
1

c00

p−k∑
n=0

q−j∑
m=0

0<n+m<p+q−k−j

(
p− k
n

)(
q − j
m

)
× K(p− k − n, q − j −m) · cnm .

Consequently,

Dkj = K(p− k, q − j)(f) − 1

c
(f)
00

K(p− k, q − j)(f)c
(f)
00 = 0 .

Thus, Eq. (6) implies K(p, q)(g) = K(p, q)(f) for every p and q. 2

A similar theorem can be found in our recent work.6 The essential difference is

that here we employ the complex moments instead of the standard ones as we did

in Ref. 6. This makes possible to construct combined invariants, as will be shown

in Sec. 4.

The two following lemmas show that the invariants K(p, q) have the same rota-

tion property and the property of antisymmetry as the complex moments

themselves.
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Lemma 3. Let f ′ be a rotated version (around the origin) of f , i.e. f ′(r, θ) =

f(r, θ + α) where α is the angle of rotation. Let us denote the invariants of f ′ as

K ′(p, q). Then

K ′(p, q) = e−i(p−q)α ·K(p, q). (7)

Proof. The statement is trivial for any even r. Let us prove it in the case of odd

orders by induction.

• r = 1

K ′(0, 1) = c′01 = eiα · c01 = eiα ·K(0, 1)

and similarly for K ′(1, 0).

• We assume the statement valid for all invariants of orders 1, 3, · · · , r − 2. Then

K ′(p, q) = c′pq −
1

c′00

p∑
n=0

q∑
m=0

0<n+m<p+q

(
p

n

)(
q

m

)
K ′(p− n, q −m) · c′nm

= e−i(p−q)α · cpq −
1

c00

p∑
n=0

q∑
m=0

0<n+m<p+q

(
p

n

)(
q

m

)
e−i(p−n−q+m)α

× K(p− n, q −m) · e−i(n−m)α · cnm

= e−i(p−q)α · cpq − e−i(p−q)α
1

c00

p∑
n=0

q∑
m=0

0<n+m<p+q

(
p

n

)(
q

m

)

× K(p− n, q −m) · cnm = e−i(p−q)α ·K(p, q) . �

It follows from Lemma 3 that |K(p, q)| is a rotation invariant for any p and

q. However, the magnitudes themselves do not yield a complete system of the

invariants. Thus, we propose a better approach in the next section.

Lemma 4. It holds for any p and q that

K(p, q)∗ = K(q, p) .

Proof. The proof of this lemma goes again through induction. Clearly, K(1, 0)∗ =

c∗10 = c01 = K(0, 1). Provided the lemma has been proven for all K(p, q) where

p+ q < r, we get for p+ q = r the following:

K(p, q)∗ = c∗pq −
1

c∗00

p∑
n=0

q∑
m=0

0<n+m<p+q

(
p

n

)(
q

m

)
K(p− n, q −m)∗ · c∗nm

= cqp −
1

c00

q∑
m=0

p∑
n=0

0<n+m<p+q

(
q

m

)(
p

n

)
K(q −m, p− n) · cmn = K(q, p) .

�
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4. COMBINED INVARIANTS

In this section, we introduce a new class of features invariant simultaneously to

convolution and rotation.

Theorem 2. Let n ≥ 1 and let kj , pj and qj ; j = 1, · · · , n, be non-negative integers

such that (pj + qj) is odd for each j and that

n∑
j=1

kj(pj − qj) = 0 .

Then

I =
n∏
j=1

K(pj , qj)
kj (8)

is invariant to rotation around the origin and to convolution with a centrosymmetric

PSF.

Proof. The invariance to convolution follows immediately from Theorem 1. Lemma 3

implies the invariance to rotation:

I ′ =
n∏
j=1

K ′(pj , qj)
kj =

n∏
j=1

e−i(pj−qj)αkj ·K(pj, qj)
kj

= e
−iα
∑n

j=1
kj(pj−qj) ·

n∏
j=1

K(pj , qj)
kj = I . �

According to Theorem 2, simple examples of combined invariants are

K(1, 0)K(0, 1), K(1, 0)K(1, 2), K(2, 1)K(1, 2), K(2, 1)3K(0, 3), etc. As a rule, most

invariants (8) are complex. If one prefers to have real-valued features, one can con-

sider their real and imaginary parts separately.

Theorem 2 allows us to construct, for any order of the convolution invariants,

an infinite number of the combined invariants, but only few of them are mutually

independent. For the rest of this section, the attention is paid to the construction

of a basis of combined invariants. By the term basis we understand the smallest

set of combined invariants, by means of which all other ones can be expressed

using multiplications, divisions, integer powers and complex conjugations only. The

knowledge of the basis is a crucial point in all object recognition tasks, because it

provides the same discrimination power as the set of all invariants at minimum

computational cost.

Theorem 3. Let S be a set of the convolution invariants (5) of any odd orders

(not necessarily of all invariants), let S∗ be a set of their complex conjugates and

let K(p0, q0) ∈ S ∪ S∗ such that p0 − q0 = 1 and K(p0, q0) 6= 0. Let I be a set of

all combined invariants created from the elements of S ∪ S∗ according to (8). Let

B ⊂ I be constructed as follows:

(∀p, q|p > q ∧K(p, q) ∈ S ∪ S∗)(Φ(p, q) ≡ K(p, q)K(q0, p0)p−q ∈ B) .

Then B is a basis of I.
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Proof. The independence of B follows from the mutual independence of the con-

volution invariants. Let us prove its completeness.

Let I be an arbitrary element of I − B. Thus

I =
n∏
i=1

K(pi, qi)
ki

whereK(pi, qi) ∈ S∪S∗. The product can be decomposed into two factors according

to the relation between pi and qi:

I =
n1∏
i=1

K(pi, qi)
ki ·

n∏
i=n1+1

K(pi, qi)
ki

where pi > qi if i ≤ n1 and pi < qi if i > n1.

Let us construct another invariant J from the elements of B only as follows:

J =
n1∏
i=1

Φ(pi, qi)
ki ·

n∏
i=n1+1

Φ(qi, pi)
∗ki .

Grouping the factors K(q0, p0) and K(p0, q0) together we get

J = K(q0, p0)
∑n1

i=1
ki(pi−qi) ·K(p0, q0)

∑
n

i=n1+1
ki(qi−pi)

·
n1∏
i=1

K(pi, qi)
ki ·

n∏
i=n1+1

K(pi, qi)
ki

= K(q0, p0)
∑

n1

i=1
ki(pi−qi) ·K(p0, q0)

∑n

i=n1+1
ki(qi−pi) · I .

Since I is assumed to be an element of I, it must hold

n1∑
i=1

ki(pi − qi) +
n∑

i=n1+1

ki(pi − qi) = 0

and, consequently,

n1∑
i=1

ki(pi − qi) =
n∑

i=n1+1

ki(qi − pi) = L.

Now I can be expressed as a function of the elements of B:

I = Φ(p0, q0)−L · J.

Thus, I has been proven to be dependent on B. 2

Using Theorem 3, we can set up for instance a basis of all combined invariants

up to the fifth order:

B5 = {K(1, 0)K(1, 2),K(2, 1)K(1, 2),K(3, 0)K(1, 2)3,K(5, 0)K(1, 2)5,

K(4, 1)K(1, 2)3,K(3, 2)K(1, 2)} .
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Note that Theorem 3 does not guarantee the uniqueness of the basis. Different

choices of p0 and q0 lead to different bases. For practical reasons it is recommended

to choose p0 and q0 as small as possible because low-order moments are more robust

to noise than the higher-order ones.

5. ADDITIONAL INVARIANCE

In this section, we propose how to make the combined invariants (8) invariant also

to translation, scaling and contrast changes.

Translation invariance can be easily reached when using central coordinates in

the definition of complex moments. However, K(1, 0) = K(0, 1) = 0 in that case

and, consequently, all invariants containing K(1, 0) and/or K(0, 1) are also zero for

any image function f(x, y).

Scaling invariance can be reached by using normalized complex moments

νpq =
cpq

c
(p+q+2)/2
00

when constructing the convolution invariants or, equivalently, by normalizing the

basic invariants Φ(p, q) by cw00, where

w = ((p0 + q0 + 2)(p− q) + p+ q + 2)/2.

Invariance to the contrast changes can be achieved by normalizing each K(p, q)

by c00. Equivalently, Φ(p, q) should be normalized by cp−q+1
00 .

It is impossible to achieve simultaneous invariance to scaling and contrast changes

in the way of normalization of the invariants by a power of c00. Thus, we propose

to employ appropriate ratios of the combined invariants. It can be proven that any

normalized ratio Ω of two basic invariants

Ω =
Φ(p, q)

Φ(s, t)
cz00

where

z = ((p0 + q0 + 2)(s− t− p+ q) + (s+ t− p− q))/2
and where

(p0 + q0 + 1)(p− s) = (p0 + q0 − 1)(q − t)
is invariant also to scaling and contrast changes. One of the simplest invariants

fulfilling the above constraints is, for instance,

Ω =
K(5, 4) · c200

K(3, 0)K(1, 2)2
.

6. NUMERICAL EXPERIMENTS

The aim of the accomplished experiments was to verify the invariance to both

convolution and rotation of the combined invariants (8) and also to evaluate their

robustness to additive random noise.
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Fig. 1. Examples of the test images: (a) original image, (b) rotated image with no blur, (c) rotated
and blurred image, (d) rotated image with an additive noise.

In the first experiment, we took a part of Lena image sized 101×101 pixels with

zero border 30 pixels wide [see Fig. 1(a)]. From this image other 19 images were

generated by rotating various angles from 0◦ to 90◦. Normalized uniform square

masks of different sizes (3× 3, 5× 5, 7× 7, 9× 9, 11× 11, 13× 13 and 15× 15) were

employed as the blurring filters and every image was convolved with all of them.

Figures 1(b) and 1(c) show two examples of the degraded images.

Nine basic combined invariants (Φ(2, 1), Φ(3, 0), Φ(5, 0), Φ(4, 1), Φ(3, 2), Φ(7, 0),

Φ(6, 1), Φ(5, 2) and Φ(4, 3), where p0 = 2 and q0 = 1) as well as their relative errors

were computed on all 152 test images. Figure 2 shows how the relative errors of the

invariants depend on the image blur and rotation. The influence of the image blur is

negligible as can be expected from theoretical considerations. The effect of rotation

is much more significant which, however, is mainly due to resampling during the

rotation. It can be also seen that the higher the order of the combined invariant the

more vulnerable the invariant. In all cases under investigation, the relative errors

of the invariants were less than 1.5%, that illustrates perfect stability.

The second experiment tested the robustness of the combined invariants when an

additive noise is present. Each image from the previous experiment was corrupted

by a zero-mean Gaussian noise to get various signal to noise ratios (SNR) from

2 dB to 62 dB [Fig. 1(d)]. On each level of SNR, twenty realizations of noise were

generated and the mean value of the particular invariants was used for robustness

evaluation. Unlike in the previous experiment, the invariants were computed from

the central circular part of the image only. Figure 3 shows the effect of the present

noise and image rotation on the relative error of the invariants. The noise influence
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(c)

Fig. 2. The relative errors of the invariants for blurred and rotated images. The angle of the image
rotation is from 0◦ to 90◦, the size of the blurring filters is from 1 × 1 (no blur) to 15 × 15.
(a) Φ(2, 1), (b) Φ(4, 1), (c) Φ(7, 0).
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Fig. 3. The relative error of the invariants for blurred and noisy images. The angle of the image
rotation is from 0◦ to 90◦, the SNR is from 2 dB to 62 dB. (a) Φ(2, 1), (b) Φ(4, 1), (c) Φ(7, 0).
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is more significant in the case of the invariants of higher orders. Comparing the

relative errors with those from the first experiment, one can see they are about ten

times higher, particularly at low SNR. However, relative errors below 15% are still

acceptable. In most practical applications we do not deal with images corrupted so

heavily, we usually assume SNR higher than 10 dB. Under such circumstances, the

combined invariants show sufficient robustness.

7. CONCLUSION

In this paper, a consistent and well-developed theory of the invariants to image

blurring, rotation, scaling and contrast changes is presented. Arbitrarily large sys-

tems of the combined invariants of any orders can be constructed such that they

are mutually independent and complete. These invariants can be used for object

recognition when an unknown rotation and blur are present. In that way, we avoid

image deblurring and geometric normalization.
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