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Asymptotic Behaviour of a BIPF Algorithm with an Im-
proper Target

Claudio Asci; Mauro Piccioni

Abstract: The BIPF algorithm is a Markovian algorithm with the purpose
of simulating certain probability distributions supported by contingency tables
belonging to hierarchical log-linear models. The updating steps of the algorithm
depend only on the required expected marginal tables over the maximal terms
of the hierarchical model. Usually these tables are marginals of a positive joint
table, in which case it is well known that the algorithm is a blocking Gibbs
Sampler. But the algorithm makes sense even when these marginals do not
come from a joint table. In this case the target distribution of the algorithm is
necessarily improper. In this paper we investigate the simplest non trivial case,
i. e. the 2 × 2 × 2 hierarchical interaction. Our result is that the algorithm is
asymptotically attracted by a limit cycle in law.
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