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ABSTRACT 
The main purpose of this work is the derivation of relations for calculation of „power function for 
tests of null hypotheses on mutual relation of linear regression functions". The normality of error 
disturbances of processed data is the condition for power function validity. Presented regression 
model can be widely applied for sophisticated data processing, e.g. in genomics and proteomics. 
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1. INTRODUCTION
Thanks to the development in technologies for genome and proteome analysis, the 

accumulation of large amounts of data has taken place. So that these data can pro-

vide answers to important questions, it is necessary to find efficient biostatistics 

methods for their treatment (Benevides and Overman, 2005; Malini and Ventka-

takrishna, 2006; Schrader and Bougeard, 1995; Smith and Dent, 2004; Tibshirani et 

al., 2004; Wu et al. 2003). Advanced statistical algorithms which can give more de-

tailed structured information are inevitable in this case. 

It seems1 that the regression model “disturbance-related sets of regression equtions,  

1 Project “Theoretical basis of new methodology of mathematical-statistical and fuzzy-logical identification and 
decision making in biomarkers from mass spectra”, No. 301/06/0267, Grant Agency of the Czech Republic.
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the case with contemporaneously correlated disturbances” or alternatively “the case 

of set of equations with autocorrelations of the first-order”, see (Judge et al., 1985), 

is particularly proper for the evaluation of data in these cases. One regression func-

tion can represent e.g. the course of mass (Knizek et al., 2004a; Tibshirani et al., 

2004; Wu et al., 2003) or Raman (Benevides and Overman, 2005; Malini Ventka-

takrishna, 2006; Schrader and Bougeard, 1995; Smith and Dent, 2004) spectrum 

etc. Aim of this work is derivation of powerfunction for tests in these regression mod-

els.

The interpretive termination of this methodology results from classical statistical 

decision-making based on p-value and reached power of test 1 ( )� ��  at a chosen 

significance level of test �  in the sense of conventional rules of statistical decision-

making, see (Cohen, 1988; Daly and Bourke, 2000). 

The power of a statistical test is used in biological and experimental medical sci-

ence research applications for statistic decision making, unfortunately, only rarely. 

Scientific decision making isn't entire herewith. Often power of test serves as an indi-

cator of „saturation" of an trial by experiments, i.e. as indicator whether results of 

statistical decision making changes very little when other experiments (from the 

same data source) are subsequently added. 

2. REGRESSION MODEL

We express the common regression model according to Judge (Judge et al., 1985) 

(for example for M  spectral courses) in the form 
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or alternatively in the brief form 

	y X e� 
 ,
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where y , X , �  and e  are ( 1)MT 
 , ( )MT K
 , ( 1)K 
  a ( 1)MT 
  dimensioned vec-

tors of sub-vectors and matrices of sub-matrices, where 1( 1)M
i iK K		 � 
 . It is as-

sumed, nevertheless, that the mean values of sub-vectors [ ]iE 	 0e , 1,2, ,i M	 � ,

and ( )i j i j TE �� 	e e I , where , 1,2, ,i j M	 � . The covariance matrix of the vector of 

sub-vectors of error disturbances2 e  is given by the relation 

( ) ( ) ( )[ ] MT MT M M T TE 
 
 
� 	 	 �� �ee I .

This regression model has proved very well in the past in solution of related prob-

lems of proteomics, see (Knizek et al., 2004a; Knizek et al., 2004b). 

3. STATISTIC DECISION MAKING ON MUTUAL LINEAR RELATIONS OF LINEAR REGRESSION 
FUNCTIONS

Spectral methods are plentifully used in molecular biology and also in many other 

fields of biology and biochemistry often in different, more or less rigorous, quantita-

tive studies and analyses. Spectral dependence can be generally expressed with the 

help of linear regression function, e.g. as a superposition of orthogonal polynomials, 

see (Forsythe, 1957; Ralston, 1973; Golub and Van Loan, 1994). If we want to scien-

tifically perform some statistic decision making (i. e. use statistical test) on miscella-

neous mutual linear relations among spectral dependences, then this is enabled just 

by the below mentioned theorems. One of the many such problems is the identifica-

tion of biomarker areas in mass or Raman spectrometry. 

3.1 p-Value
Provided that the vector of sub vectors of error disturbances e  has normal distribu-

tion, it is possible to test the null hypothesis 

0 : ( ) ( )

( ) ( 1) ( 1)

H

J K K J

� � �
�
�
�
 
 
 �

� 	R r
 (3.1) 

                                                
2 As a rule, these error disturbances dominantly consist of the influence of the so-called biological 
variability, further of the influences of laboratory experimental errors, variability at biological material 
preparation and influence of random disorders of prime mass spectra in consequence of technical 
limits of measuring apparatus (Knizek et al., 2007) 
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on any J-equational determined (e. g. biophysical) mutual linear relations of M  re-

gression equations, where J M�  and 1( 1)M
i iK K		 � 
 . The null hypothesis (3.1) is 

then tested against its two-sided alternative 1H  stating that from J equations at least 

one is not valid3.

We calculate the p-value for the null hypothesis (3.1) test by means of the rela-

tion

,
ˆ1 ( )J MT Kp F ��	 � . (3.2) 

,
ˆ( )J MT KF ��  in (3.2) is the cumulative distribution function of Fisher-Snedecor distribu-

tion with J  and MT K�  degrees of freedom and the test characteristic 
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where 1 1
( ) ( ) ( ) ( )

ˆ ˆ ˆ( )K K K MT MT MT MT K
� �


 
 
 
�	 	B B X X� , where the matrix of estimation of co-

variance 1 1
( ) ( ) ( )

ˆ ˆ
MT MT M M T T
� �


 
 
	 �� � I . Mixed variances matrix ( )
ˆ

M M
�  elements are esti-

mated by means of the relations 1 ˆ ˆˆij i jT� � �	 e e , , 1,2, ,i j M	 � . At the same time the 

so-called EGLS-estimation4 of the vector of sub-vectors of the regression coefficients 

ˆ̂�  is a result of the two-stage solving of the set of normal equations 

ˆ̂ ˆ ˆ( )� �	 �� �� ��� � �X X X y , where in the first stage (the first approximation) the matrix of 

covariances �  estimation is approximated by unit matrix, i.e. ( ) ( )
ˆ

MT MT MT MT
 
�� I .

3.2 Power of test 

Test statistics (3.3) has in the case of null hypothesis validity (3.1) the Fisher-

Snedecor distribution of probability with J  and MT K�  degrees of freedom. In case 

the null hypothesis (3.1) is not valid, i.e. � 	 � 0r R� � , then the distribution of test 

statistics (3.3) is non-central Fisher-Snedecor distribution with the following non-

centrality parameter 

                                                
3 This property at the mentioned testing relations guarantees significant sensitivity of the so called 
“first catching” e.g. of otherwise a difficult-to-identify trend. In other words: only a small trace in data 
suffices for the algorithm to be able to recognize it. 
4 EGLS = estimated generalized least squares (Judge et al., 1985) 
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1( ) ( ) ( )� �� �	 � �r R RBR r R� � .

Power of test in the alternative �  (i.e. in the case of unsatisfactory null hypothesis 

(3.1)) can be expressed by the relation 

�  , ,( ) (0;1 ) powerJ M T K J MT KP F F� �� �! 	� ,

where , (0;1 )J M T KF �� �  is -critical�  value of Fisher-Snedecor central distribution and 

, ( )J M T KF ��  is a random quantity with the probability density ( k J	 , l M T K	 � )
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see fig. 1. 
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Figure 1: A typical power function course in case that all elements of the vector of 

sub-vector �  match each other, for various ranges of sampling, i. e. for different M

and/or T  , in the concrete for 5 ; 9500J MT K	 � 	 , 5 ; 6650J MT K	 � 	  and 

5 ; 5750J MT K	 � 	 .

Power of test for the test of the null hypothesis (3.1) is then calculated for a con-

crete EGLS-estimation of regression coefficients ˆ̂�  with the help of the formula 

ˆ̂= power( )power of  test �  .

Power of test is the probability of rejection of the null hypothesis (3.1) when real-

ity does not coincide with the null hypothesis, i. e. when � 	 � 0r R� � .

3.3 Practical calculation of power of test 

We calculate in the MATLAB language quantity power of  test  with the help of the 

program structure (schematically outlined) 

power_of_test = 1 ncfcdf(finv(1 , , ), , , )J MT K J MT K� �� � � �  .

4. Discussion and conclusions 

There is not any doubt nowadays that proteomics needs new approaches. This work 

deals with a key algorithmic relation of one of these new approaches: by derivation 

of the formula for calculation of „power function for tests of null hypotheses on mu-

tual linear regression functions’ relations".

With the help of variation of second number of degree of freedom MT K� , the 

statistical analysis of power of test will enable to extract these quite exclusive infor-

mation:

+ Statistical estimation of the number of subsequent regression function (e.g. 

spectrum dependences) that are to be additionally experimentally measured 

so as to fulfill the conventional requirements on power of test (Cohen, 1988; 

Daly and Bourke, 2000), 
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+ statistical estimation of the need for higher density of sampling (i. e. the inde-

pendent variable sampling); such, that it fulfills the conventional requirements 

on power of test (Cohen, 1988; Daly and Bourke, 2000). At the same time it 

generally holds that these two estimations can influence each other.

+ I. e. the increase of sampling density can reduce the need for dependences 

that are to be additionally experimentally measured. And vice-versa, the in-

crease of the number of dependences can reduce the requirement for higher 

sampling density. 
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