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Abstract—The paper is devoted to the moment invariants with respect to
projective transform. It has been a common belief that such invariants do not exist.
We show that projective moment invariants exist in a form of infinite series
containing moments with positive as well as negative indices.

Index Terms—Projective transform, moment invariants, object recognition.

�

1 INTRODUCTION

MOMENT invariants have become a powerful tool for recognizing
objects regardless of their particular position, orientation, viewing
angle, and gray-level variations. There is a well-elaborated theory
on rotation moment invariants [1], [2], [3], [4], [5], [6], [7], affine
moment invariants [8], [9], [10], and even on invariants to color
changes and blurring [11], [12], [13], [14], [15]. In practice, however,
we often face object deformations described by projective transform.
Projective transform is an exact model of photographing a planar
scene by a pin-hole camera whose optical axis is not perpendicular
to the scene. For small objects and large camera-to-scene distance,
the perspective effect is negligible. Projective transform then can be
approximated by affine transform and affine moment invariants are
sufficient for object description and recognition. In many computer
vision tasks, such as in mobile robot navigation and 3D scene
analysis, this assumption is not fulfilled and the necessity of having
projective invariants arises.

Major difficulties with projective moment invariants originate

from the fact that the projective transform is not linear, its Jacobian

is a function of spatial coordinates and it does not preserve the

center of gravity of the object. The theory of algebraic invariants,

which was successfully applied to derive affine moment invar-

iants, as well as the theory of complex and orthogonal moments,

which were used to find rotation invariants, cannot be exploited in

the case of projective invariants.
Moments are not the only possible theoretical tools to construct

projective invariants. Invariants based on local shape properties

have been described—differential invariants of object boundary

[16], [17], [18] and various invariants defined by means of salient

points [19], [20], [21], [22], [23]. Since they have different nature

and different usage than global moment invariants, we will not

consider them further.
This is, to our knowledge, the first paper demonstrating the

existence of projective moment invariants. We show they have a

form of infinite series which may contain also moments with

negative indices.

2 BASIC TERMS

First, let us introduce a few basic terms:

Definition 1. By image function (or image) we understand any real

function fðx; yÞ having a finite integral and a bounded support S

such that x > 0; y > 0 for all points of S.

Definition 2. Geometric moment (or just moment for short) mpq of
order ðpþ qÞ of image fðx; yÞ is defined as

mpq ¼
Z

S

Z
xpyqfðx; yÞdxdy: ð1Þ

Traditionally, only p; q � 0 are considered, but, in this paper, we

allow the indices p; q to be arbitrary integers. This is correct if fðx; yÞ
satisfies Definition 1. Thus, our moments are projections not only

onto a set of polynomials but also onto a set of rational functions.

Definition 3. Projective transform is a transformation of spatial
coordinates ðx; yÞ into new coordinate system ðx0; y0Þ defined by the
equations

x0 ¼ a0 þ a1xþ a2y

1þ c1xþ c2y
;

y0 ¼ b0 þ b1xþ b2y

1þ c1xþ c2y
:

ð2Þ

The coefficients c1; c2 cause nonlinear perspective distortion of

the image. If they both equal zero, the projective transform (2)

becomes linear.

Definition 4. By Projective moment invariant we understand any
function F of geometric moments such that F ðfðx; yÞÞ ¼ F ðfðx0; y0ÞÞ
for any image f and arbitrary projective transformation (2).

3 FINITE PROJECTIVE INVARIANTS

Only few papers on projective moment invariants have been
published so far and all of them considered only invariants
composed of a finite number of moments.

Voss and Susse [24] have proven that, if a0 ¼ a2 ¼ b0 ¼ b1 ¼ 0
(Voss called such particular case “rein transform”), then there exist
moment-like invariants of the form

Rpq ¼
Z

S

Z
xpyq

paðx; yÞ fðx; yÞdxdy; ð3Þ

where pðx; yÞ is a homogeneous polynomial of order n > 0 of the

form

pðx; yÞ ¼
X

kþj¼n

pkjx
kyj;

k and j are arbitrary integers, pkj are coefficients, and a ¼
ðpþ q þ 3Þ=n. Unfortunately, this special case of invariants cannot
be generalized to the projective transform (2).

Van Gool et al. [25] proved the nonexistence of finite projective
invariants using the Lie group theory. We present here another
proof which is done in a more readable manner without the group
theory tools.

Let us decompose the projective transform (2) into eight one-

parametric transformations.
Horizontal and vertical translations:

ðaÞ x0 ¼ xþ � ðbÞ x0 ¼ x
y0 ¼ y y0 ¼ yþ �;

scaling and stretching:

ðcÞ x0 ¼ !x ðdÞ x0 ¼ rx
y0 ¼ !y y0 ¼ 1

r y;

horizontal and vertical skewing:

ðeÞ x0 ¼ xþ t1y ðfÞ x0 ¼ x
y0 ¼ y y0 ¼ t2xþ y;
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and horizontal and vertical pure projections:

ðgÞ x0 ¼ x
1þc1x

ðhÞ x0 ¼ x
1þc2y

y0 ¼ y
1þc1x

y0 ¼ y
1þc2y

:

Any projective invariant F must be invariant to all elementary
transformations ðaÞ � ðhÞ. Each transform imposes special con-
straints on F . Particularly, from the invariance to horizontal pure
projection ðgÞ, it follows that the derivative of F with respect to
parameter c1 must be zero (assuming all derivatives exist):

dF

dc1
¼

X
p

X
q

@F

@mpq

dmpq

dc1
¼ 0: ð4Þ

The derivatives of moments can be expressed as

dmpq

dc1
¼ d

dc1

Z

S

Z
xpyq

ð1þ c1xÞpþq

1

j1þ c1xj3
fðx; yÞdxdy

¼
Z

S

Z
ð�p� q � 3Þ xpþ1yq

ð1þ c1xÞpþqþ1

1

j1þ c1xj3
fðx; yÞdxdy

¼ �ðpþ q þ 3Þmpþ1;q:

ð5Þ

Thus, (4) becomes

�
X
p

X
q

ðpþ q þ 3Þmpþ1;q
@F

@mpq
¼ 0: ð6Þ

The constraint (6) must be fulfilled for any image. Assuming that F
contains only a finite number of moments, we denote their
maximum order as r. However, (6) contains moments up to the
order rþ 1. If (6) would be satisfied for some image, we always
could construct another image with identical moments up to the
order r and different moments of the order rþ 1 such that (6)
would not be satisfied for this new image. Thus, finite projective
moment invariants cannot exist.

This result can be extended to prove the nonexistence of
invariants that would have a form of infinite series with each term
equal to a finite product of moments of nonnegative indices.

4 INFINITE PROJECTIVE INVARIANTS

The only possible form of projective moment invariants is an
infinite series of products of moments with both positive and
negative indices.

To derive the invariants, we use the triangle method. Let

V1; V2; V3; Vi ¼ ðxi; yiÞ, be three arbitrary noncollinear points in the

image. LetAð1; 2; 3Þ be the area of the trianglewith vertices V1; V2; V3;

Að1; 2; 3Þ ¼ 1

2

x1 x2 x3
y1 y2 y3
1 1 1

������

������: ð7Þ

When the horizontal pure projection ðgÞ is applied, then the area

becomes

A0ð1; 2; 3Þ ¼ Að1; 2; 3Þ
ð1þ c1x1Þð1þ c1x2Þð1þ c1x3Þ

: ð8Þ

Similarly, after the vertical pure projection ðhÞ, we get

A0ð1; 2; 3Þ ¼ Að1; 2; 3Þ
ð1þ c2y1Þð1þ c2y2Þð1þ c2y3Þ

ð9Þ

and, after the scaling ðcÞ, it becomes

A0ð1; 2; 3Þ ¼ !2Að1; 2; 3Þ: ð10Þ

Under the other elementary transformations, the triangle area is
invariant.

To obtain a projective invariant, we take a proper power of
Að1; 2; 3Þ multiplied by intensity values in the vertices and
integrate it over all possible points of the image. Such a functional
is invariant to projective transform only if the Jacobian, appearing
in the integrand due to substitution, is eliminated. Jacobian J of
horizontal pure projection is

J ¼ 1

ð1þ c1xÞ3
: ð11Þ

To eliminate it, the power of Að1; 2; 3Þ must equal minus three (as
will be demonstrated in Section 4.1). To derive more invariants, we
consider more than one triangle, take product P of appropriate
powers of their areas, and integrate it as in the previous case. The
elimination of the Jacobian is possible only if the cumulative power
of each vertex in P equals minus three. Below, we show explicitly
the derivation of simple invariants.

4.1 Case 1: Three Vertices

The simplest invariant can be constructed by considering only one

triangle and setting P ¼ A�3ð1; 2; 3Þ. The corresponding invariant

is then defined as

I1 ¼
Z

S

A�3ð1; 2; 3Þfðx1; y1Þfðx2; y2Þfðx3; y3Þ

dx1dy1dx2dy2dx3dy3:

ð12Þ

Under horizontal pure projection, I1 is transformed as

I 01 ¼
Z

S

A�3ð1; 2; 3Þð1þ c1x1Þ3ð1þ c1x2Þ3ð1þ c1x3Þ3

1

j1þ c1x1j3
1

j1þ c1x2j3
1

j1þ c1x3j3
fðx1; y1Þfðx2; y2Þfðx3; y3Þ

dx1dy1dx2dy2dx3dy3 ¼ signðJÞ � I1:

ð13Þ

Nonsingular projective transform divides the image plane into two
parts by a straight line. In one part, its Jacobian is positive, while,
in the other part, it is negative. When the whole image is in the part
with positive Jacobian (which is always true in a real-world
imaging), then I1 is an absolute invariant with respect to horizontal
pure projection. The proofs for vertical pure projection and scaling
are straightforward; the invariance to the other elementary
transformations is trivial because their Jacobians equal one and
Að1; 2; 3Þ itself is invariant to them.

To express I1 by means of moments, we expand A�3ð1; 2; 3Þ into
power series of monomials xiyj and integrate it term-wise. As a
result of this process, we obtain a series of moment products,
where each product consists of three moments of both negative
and positive indices:

I1 ¼ 23
P1

i;j;k¼0

P
i1þi2þi3þi4þi5¼i

i1 ;i2 ;i3 ;i4 ;i5�0

i!ð�1Þi2þi4

i1!i2!i3!i4!i5!

P
j1þj2þj3þj4þj5¼j

j1 ;j2 ;j3 ;j4 ;j5�0

j!ð�1Þj2þj4

j1!j2!j3!j4!j5!

P
k1þk2þk3þk4þk5¼k

k1 ;k2 ;k3 ;k4 ;k5�0

k!ð�1Þk2þk4

k1!k2!k3!k4!k5!

m�1�iþi5þk1þk2þj3þj4 ;�1�kþk3þi1þi4þj2þj5

m�1�jþj5þi1þi2þk3þk4 ;�1�iþi3þj1þj4þk2þk5

m�1�kþk5þj1þj2þi3þi4 ;�1�jþj3þi2þi5þk1þk4 :

ð14Þ

4.2 Case 2: Four Vertices

In case of four vertices, we define

P ¼ A�1ð1; 2; 3ÞA�1ð2; 1; 4ÞA�1ð3; 4; 1ÞA�1ð4; 3; 2Þ
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and, consequently, the respective projective invariant

I2 ¼
Z

S

P � fðx1; y1Þfðx2; y2Þfðx3; y3Þfðx4; y4Þ

dx1dy1dx2dy2dx3dy3dx4dy4:

ð15Þ

Similarly to the previous case, we expand A�1ð1; 2; 3ÞA�1ð2; 1; 4Þ
A�1ð3; 4; 1ÞA�1ð4; 3; 2Þ into a power series and get the moment-
related expression

I2 ¼ 24
P1

i;j;k;‘¼0

P
i1þi2þi3þi4þi5¼i

i1 ;i2 ;i3 ;i4 ;i5�0

i!ð�1Þi2þi4

i1!i2!i3!i4!i5!

P
j1þj2þj3þj4þj5¼j

j1 ;j2 ;j3 ;j4 ;j5�0

j!ð�1Þj2þj4

j1!j2!j3!j4!j5!

P
k1þk2þk3þk4þk5¼k

k1 ;k2 ;k3 ;k4 ;k5�0

k!ð�1Þk2þk4

k1!k2!k3!k4!k5!

P
‘1þ‘2þ‘3þ‘4þ‘5¼‘

‘1 ;‘2 ;‘3 ;‘4 ;‘5�0

‘!ð�1Þ‘2þ‘4

‘1!‘2!‘3!‘4!‘5!

m�1�iþi5þj1þj2þk3þk4 ;�1�jþj3þi1þi4þk2þk5

m�1�jþj5þi1þi2þ‘3þ‘4 ;�1�iþi3þj1þj4þ‘2þ‘5

m�1�kþk5þi3þi4þ‘1þ‘2 ;�1�‘þ‘3þi2þi5þk1þk4

m�1�‘þ‘5þj3þj4þk1þk2 ;�1�kþk3þj2þj5þ‘1þ‘4 :

ð16Þ

4.3 Case 3: Five and More Vertices

We can continue the above process with five and more vertices. P
is no longer unique; for instance, for five vertices, each product of
the type

Ak1 ð1; 2; 3ÞAk2 ð1; 2; 4ÞAk3 ð2; 1; 5ÞAk4 ð3; 1; 4ÞAk5ð3; 5; 1Þ
Ak6 ð4; 5; 1ÞAk7 ð2; 4; 3ÞAk8 ð5; 3; 2ÞAk9 ð5; 4; 2ÞAk10 ð4; 3; 5Þ;

where

k1 þ k2 þ k3 þ k4 þ k5 þ k6 ¼ �3
k1 þ k2 þ k3 þ k7 þ k8 þ k9 ¼ �3
k1 þ k4 þ k5 þ k7 þ k8 þ k10 ¼ �3
k2 þ k4 þ k5 þ k7 þ k9 þ k10 ¼ �3
k3 þ k5 þ k6 þ k8 þ k9 þ k10 ¼ �3

can be formally used to derive one new projective invariant.
However, such new invariants might be dependent on the previous
invariants.

5 NUMERICAL EXPERIMENT

In this section, we demonstrate the performance of the invariants
on real gray-level images that have undergone computer-simu-
lated perspective projections.

In Fig. 1, we can see Lisa image deformed by nine projective
transformations (2). The nonlinearity of these transformations,
which can be measured by the value of c ¼ jc1j þ jc2j, varied from
zero to 4 � 10�3. Evaluating several first terms only, we approxi-
mated the values of the invariants (14), (16) of all distorted images
(more precisely, only indices i; j; k less than six were used in the case
of (14) and i; j; k; ‘ less than five in the case of (16)). To measure the
invariance under distortions, we calculated relative errors of both
invariants. Relative error eðIÞ of invariant I is defined as

eðIÞ ¼
�� I �mðIÞ

mðIÞ
��;

where mðIÞ is the mean value of I over all deformations. The
results are summarized in Table 1. Contrary to theoretical
expectation, the values of both invariants slightly varied depend-
ing on the particular deformation. This was caused mainly by two
factors. First, only a finite number of terms was used to evaluate

the infinite series in the definitions of the invariants. Second,
discrete projective transforms include image resampling, which
violates our assumption of ”exact” projective distortion of the
image and, consequently, violates the invariance property.

6 CONCLUSION

In this paper, we have shown that, contrary to common belief,
projective moment invariants do exist. We have proven they have a
form of infinite series containing moments with positive as well as
negative indices and we have derived two of them explicitly.

A very important observation is that our invariants are not
affected by a fundamental limitation, which was discovered by
�Aström [26] and which many popular projective invariants suffer
from. �Aström proved that all closed curves in a plane are
projectively equivalent (with some "-tolerance) and, consequently,
any projective invariant defined on the space of closed curves must
be either constant or discontinuous. In other words, he showed
that object recognition by invariants calculated only from the
boundary is practically impossible because they either have no
discrimination power or are extremely unstable. Our moment
invariants are calculated from the whole object, including its inner
structure, colors, etc. Since the �Aström’s theorem on projective
equivalence does not hold for 2D objects (images) including their
interiors, it has no impact on the moment invariants.

However, our moment invariants suffer from another limita-
tion. Being calculated from the whole object, the moments are very
sensitive to partial occlusion. This is why moment invariants can
hardly be used in occluded object recognition. These properties
predestinate potential applications of our invariants—we envisage
their usage, for instance, in classification of projectively deformed
objects and in matching/registration of images of planar scenes
obtained from different viewing angles, which is often required in
computer vision and remote sensing.
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Fig. 1. The Lisa image deformed by projective transformations.

TABLE 1
Relative Errors of the Invariants of the Lisa Image



Although the proof of existence is a significant contribution to
moment theory, many questions still remain open. The invariants
are formally defined by infinite series but there is no guarantee that
all of them converge.

A very important issue is the independence of the invariants
because dependent invariants do not contribute to discrimination
power at all. However, a general method to identify convergent
invariants and to discard dependent invariants has not been found
yet. Detailed investigation of these issues will be the subject of our
future research.
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