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A Moment-Based Approach to Registration of Images
with Affine Geometric Distortion

Jan Flusser and TomdS Suk

Abstract—This paper deals with the registration of images
with affine geometric distortion. It describes a new method for
automatic control point selection and matching. First, refer-
ence and sensed images are segmented and closed-boundary re-
gions are extracted. Each region is represented by a set of af-
fine-invariant moment-based features. Correspondence between
the regions is then established by a two-stage matching algo-
rithm that works both in the feature space and in the image
space. Centers of gravity of corresponding regions are used as
control points. A practical use of the proposed method is dem-
onstrated by registration of SPOT and Landsat TM images. It
is shown that our method can produce subpixel registration ac-
curacy.

Keywords—image registration, affine geometric distortion,
control points, affine moment invariants, region matching.

[. INTRODUCTION

HE analysis of two or more digital images of the same
scene taken from different places or at a different time
often requires registration of the images.

Image registration is the process of overlaying two im-
ages of the same scene, one of which represents a refer-
ence image, while the other (called sensed image) is geo-
metrically transformed. In remote sensing applications,
this process is required in numerous tasks, for instance,
in multitemporal classification, environmental monitor-
ing, automatic change detection, and in map updating.

Image registration consists traditionally of three main
steps:

e selection of control points (CP’s) in the reference and
sensed images and determination of the correspon-
dence between them;

e determination of the type and parameters of the map-
ping functions using known coordinates of control
points;

® geometric transformation of the sensed image by
means of the mapping functions.

In this paper, a new method of control point selection
is presented. This method is invariant under affine geo-
metric distortion between reference and sensed images. In
Section II, a brief review of the recent works is given.
New affine-invariant region features are introduced in
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Section III. In Section IV, an algorithm for region match-
ing is presented and the registration of two digital images
of the Czech territory recorded by the SPOT HRV and
Landsat TM sensors is shown.

II. CoNTROL POINT SELECTION

Automatic selection of control points is, in most cases,
a two-stage process. The first step consists of the identi-
fication of significant points or structures in the images.
In the second step, the mutual correspondence between
the extracted structures is found (this step is called image
matching).

Automatic control point selection has been the goal of
ongoing research. There are two main approaches to solv-
ing this problem: correlation-like and symbolic.

A. Correlation-Like Methods

In this approach, the window centers are used as con-
trol points. The location of the window can be established
by classical correlation [1], binary edge correlation [2],
or vector correlation [3]. The correlation algorithm can
be sped up by computing in Fourier domain [4], by the
use of hierarchical image representation [5], or by se-
quential computing of window dissimilarity [6].

A common criticism of methods involving correlation
techniques concerns their high computational complexity
and sensitivity to rotation, scaling, and gray-level varia-
tions of the original images.

B. Symbolic Methods

Symbolic methods do not work directly with gray-level
images. Instead, they use scene features such as line in-
tersections, edges, and regions.

Stockman et al. [7] use line intersections as control
points and determine the correspondence between them
by means of cluster analysis. Zahn [8] and Stockman and
Goshtasby [9] use graph matching for point correspon-
dence determination.

Recently, several authors have proposed using the cen-
ters of gravity of closed-boundary regions as control
points. This technique is very effective, namely, for fol-
lowing reasons:

¢ some closed-boundary regions can be found in al-
most every image (such regions can represent lakes,
ponds, fields, forests, or urban areas),
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* the property to be the center of gravity is invariant
under rotation, scaling, and skewing;

* the coordinates of the center of gravity are very sta-
ble under random noise and gray-level variations in
the original image (random noise affecting the region
will average out and will have very little effect on
the center of gravity).

There are several ways to establish the mutual corre-
spondence between the regions: iterative probabilistic re-
laxation [10], logical tree classification [11], or feature-
based classification.

In the feature-based classification, each region is de-

scribed by its features, and region matching is performed .

in the feature space. Features of region description can
include boundary descriptors [12], shape vector [13],
shape matrix [14], Fourier descriptors [15], [16], or mo-
ment invariants [17]-[20].

C. Affine Geometric Distortion

All the above-mentioned methods can be used for the
registration of images which differ only by a translation,
rotation and scaling. The task we have to solve is to reg-
ister images with general affine distortion. Affine distor-
tion appears in remote sensing very often; it describes for
example the image skew caused by Earth’s rotation.
Moreover, perspective projection is usually approximated
by affine function (in the case of small nonlinear effects).

Formally, an affine relation between two images is de-
scribed by the equations

u=aq +ax+ay
v=by+bx+by, 0))

where (x, y) and (u, v) are the coordinates in the reference
and sensed images, respectively.

In this paper, we will use centers of gravity of closed-
boundary regions as affine-insensitive control points. In
order to establish the correspondence between the control
points (i.e., between the regions), we have to find affine-
invariant descriptors of the region shapes.

III. AFFINE MOMENT INVARIANTS

The affine moment invariants (AMI’s) are moment-
based descriptors of planar shapes, which are invariant
under general affine transformation (1). The AMI’s were
derived by means of classical theory of algebraic in-
variants (see [26], for instance). Full derivation and com-
prehensive discussion on the properties of invariants can
be found in the recent paper by Flusser and Suk [21]. In
this paper, we present only the most essential facts.

The central moment p,, of order (p + g) of binary 2-D
object G is defined as

Ppg = S Sc(x—xx)p()’ —y,)"dxdy

where (x,, y,) are the coordinates of the center of gravity
of object G.

The affine transformation (1) can be decomposed into
six one-parameter transformations:

u=x+ a, u=2~4"-x,
v=y v=y
u=x, u=x+t-y,

v=y+§g v=y

u

w "X, u=2Xx,

v=w-'Yy v=t'x+y.

Any function & of moments which is invariant under
these six transformations will be invariant under the gen-
eral affine transformation (1).

From the requirement of invariantness under these
transformations, the type and parameters of the function
F can be found.

Four simplest AMI’s that we have used in this paper
for image registration are listed below in the explicit form:

1
L = — (poper — 131
Hoo

1
L = —5 (ponds — 6paopar iopos + dpsopty
Koo
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The number of the invariants is dealt with in Cayley-
Sylvester theorem [26]. It is proved in [21] that there is
one invariant of weight 2(/;), one invariant of weight 4
(I3), and two invariants of weight 6 (f,"and I,).

The invariants I)-1, are composed only from central
moments up to the third order. Zero-order moment pgy is
the area of object G. Second-order moments express the
distribution of ‘‘matter’’ around the center of gravity. In
the case of objects with mass, they are called moments of
inertia. Third-order moments express the basic properties
of symmetry of object G. They are equal to zero for ob-
jects with central symmetry.

Moments of higher order describe more slight varia-
tions in shape, but they are more sensitive to noise. For
this reason, only moments up to the fourth order are suit-
able in practice. As we pointed out in [21], 27 indepen-
dent invariants can be set up from fourth-order moments.
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In our experience, the four AMI’s /-1, are reliable
enough for most practical tasks on remote sensing data
matching. I, can be omitted in simple tasks. In some par-
ticularly complex tasks, when a lot of “‘similar’’ shapes
are to be recognized, some of the simplest fourth-order
invariants can be used, such as

1
Is = —5 (paopos — 4z + 3ud)
Koo

and
1 2
Iy = —5 (paotos by + 203102213 — HaoB 13
Koo
3
— Pk — B

IV. NUMERICAL EXPERIMENT

To measure the performance of the proposed image
registration method, the registration of multitemporal sat-
ellite images from SPOT HRV and Landsat TM sensors
was carried out.

A. Data

In this experiment, two images of the district of Zlin
(Czech Republic) were used.

The reference image was taken by SPOT in September
1987 (see Fig. 1). The sensed image was taken by Land-
sat TM in August 1988 (see Fig. 2). Subscenes of the size
512 x 512 pixels from the original images were used.
Since both sensors produce multispectral images, only one
spectral band was selected for the registration experiment
(band 3 from SPOT and band 5 from Landsat TM im-
ages).

The geometric distortion between the reference and
sensed images is approximately affine.

B. Region Extraction

In order to extract several closed-boundary regions, the
following technique was used in the both images. (Note
that our aim was not the full image segmentation, but only
detection and extraction of regions with high contrast.)

First, each image was filtered by eight 3 X 3 Sobel
masks to detect edges in various directions. The edge im-
age was created as the maximum of those eight oriented-
edge images. The edge image was binarized by low
threshold (¢ = 40). After that, most of pixels were signed
as ‘‘edge.”’ In the binary image, closed-boundary regions
were found. Only the regions having perimeters between
10 and 100 pixels were taken into account.

Finally, the region boundaries were refined by the con-
tour-tracing technique in original images (not in the
thresholded ones).

In this way, twelve regions from the SPOT image and
fourteen regions from the Landsat TM image were ex-
tracted (see Figs. 3 and 4). The extracted regions repre-
sent mostly fields and ponds. However, there were some
regions that appeared in only one of the images.

Fig. 1. The reference image—SPOT subscene, 512 X 512 pixels, band 3.

Fig. 2. The sensed image—Landsat TM subscene, 512-512 pixels, band

5.
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Fig. 3. Closed-boundary regions of the SPOT image.

C. Region Matching

The algorithm for region matching consists of two
stages. The first stage is performed in the 4-D Euclidean
feature space, the second one is performed in the image
space.
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Fig. 4. Closed-boundary regions of the Landsat TM image.

In the first stage, the local information about the re-
gions represented by the AMI's is used to find three pairs
of the most likely corresponding regions.

Letus denote S; (i = 1, ,12)and T; (j = <.,
14) the regions in the SPOT and Landsat TM 1mages re-
;pectlvely Let us denote 5T, - - and 1Y, -+ -,

the values of the AMI’s for the I'CglOl’lS S and s
respectlvely

For all i and j, we compute the feature distance d;; be-
tween S; and T

4 n -
df] — kz‘ (SII(:) _ TI;(]))2. (2)

Now the minimum distance classification can be per-

formed: we find indexes iy, jo, i1, ji, i2, and j, such that
d.

iojo = Min dy;
L]

diljl = mll'l dt_/
i#ig
Jj#Jjo
min dj. 3)
i#io, i
J#jo.

d

j2 =

In this way, three corresponding pairs of the regions are
determined: S = T, S, = T, and §;, = T},.

In the second stage, having three palrs of CP’s (the cen-
ters of gravity of the regions §;,, Ty, S;;, T}, S, and T},),
the parameters of the affine dxstortlon (1) can be 51mply
calculated. Knowing them, we can map the other region
of the sensed image into the reference image. Region-to-

"region correspondence is then established by nearest
neighbor rule. However, some rejection threshold must
be applied to avoid false match.

More formally, the whole algorithm can be described
as follows.

Algorithm MATCH:

1. Denote S;, - -+, Sy the regions in the first im-
age, and Ty, * + - , T, the regions in the second
one.

2. Construct two point sets

8 = {(x;, y;)|x;, y; are coordinates of the center
of gravity of region S;},

3 = {(u;, v))|u;, v; are coordinates of the center
of gravity of region T;}.

3. Compute the N X M matrix D with elements dj;
given by (2).

4. Find indexes iy, jo, i, j1, iz, and j, defined by
relations (3).

5. Solve the following system of linear equations
with variables ay, a;, a,, by, b, and b,:

Uu bio

v, = by + byx; + by Yy

=ay + a1x;, + &y,

ujl =q + a X, + a yi

vj, = by + bix;, + by,

w, =ay + ax, + ay,

U;

= by + bixi, + by Y,

6. Define the distance threshold » > 0. Fori = 1,
, N compute

u=ay+ ax +ay
v =>by + byx; + byy;.
Let (4;, v;) € 3 be the closest point to (u, v). If
u - u-)2 + (v — v-)2 < r?

then S; and T; correspond with each other. If not,
region §; is markcd to have no corresponding re-
gion in the second image.

In our experiment, the following pairs of regions were
found after the first stage of the matching algorithm: 7 =
K,2 = E, and 6 = J. The complete matching results
determined after the second stage are summarized in Ta-
ble I.

What is the robustness of the presented matching al-
gorithm? The first stage of algorithm MATCH (i.e., steps
1-4) may generate a false match in some particular cases.
If all regions have very similar shapes, their AMI values
are close to each other and the regions are not well sepa-
rated in the feature space. The matching results may be
then significantly affected by small noise. Similar prob-
lems appear if the region boundaries are corrupted by
noise or by inaccurate segmentation. However, in such
situations, almost every feature-based region matching
procedure will fail.

In order to avoid mismatch in the first stage, a more
robust but more computationally expensive method which
uses so-called matching likelihood coefficients [27] can be
applied. Matching likelihood coefficients are calculated
from matrix D and express the reliability of matching for
each possible pair of regions.
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TABLE 1
CORRESPONDENCE BETWEEN THE REGIONS OF THE SPOT AND LANDSAT TM
IMAGES
SPOT 1 2 5 6 7 8 9 11
™ D E I J K L M N
TABLE II
COORDINATES OF CORRESPONDING CONTROL POINTS
SPOT ™
Control Produced
Point x [pix] y[pix] u [pix] v[pix] by Regions
1 28.7 60.8 98.6 246.8 1 D
2 206.9 66.0 218.9 245.7 2 E
3 365.6 170.4 325.6 309.9 51
4 119.6 201.8 164.5 338.6 6 J
5 170.0 322.3 201.1 416.9 7 K
6 254.3 299.5 255.5 399.5 8 L
7 164.7 439.9 200.7 495.9 9 M
8 489.2 416.8 416.3 470.9 11 N

The second stage (i.e., steps 5 and 6) is very robust and
it cannot fail, if the first part has produced a correct match.

However, if less than three closed-boundary regions
have been detected in one of the images or if less than
three corresponding pairs have been found in the first
stage, algorithm Match is inapplicable.

D. Control Point Selection

Centers of gravity of corresponding regions were used
as control points. In this way, eight pairs of control points
were obtained. Since the determination of parameters of
the affine transformation (1) requires knowledge of at least
three control points, this number is sufficient.

In the case of inaccurate initial segmentation of the
original images, the region refinement technique by
Goshtasby et al. [22] can be modified for affine distortion
and for the use of the AMI’s, and can be applied to each
pair of corresponding regions in order to refine the control
point coordinates. In our experiment, the use of the re-
finement technique was not necessary.

Coordinates of all control points are shown in Table II.

E. Mapping Function Determination

Given a number of corresponding control points in two
images, in this section we estimate the parameters of the
mapping functions.

According to the presumption on the affine character of
distortion, the mapping functions ¥ = u(x, y) and v =
v(x, y) must have the form (1).

Having more than three control points, we use the least
squares technique to compute parameters aq, a,, a,, by,
by, and b,.

If the presumption on the affine character of distortion
does not hold exactly, we have to use more complex map-
ping functions instead of (1). Thin-plate splines [23], [25]
or adaptive mapping functions [24] are appropriate in that
case.

Fig. 5. The Landsat TM image after geometric transformation.

TABLE III
SQUARE RoOT ERRORS AT THE CONTROL POINTS
CP 1 2 3 4 S 6 7 8
err 1 0.7 1.1 0.9 0.7 0.4 0.8 0.2 0.4
err 2 1.6 0 1.9 0.2 0.5 1.0 0 0

F. Transformation of the Sensed Image

Knowing coefficients of the mapping functions (1), we
can transform the Landsat TM image pixel by pixel. The
result of transformation is shown in Fig. 5. Bilinear re-
sampling of the sensed image was used for gray-level in-
terpolation.

G. Registration Accuracy

To determine the accuracy of the registration, the square
root errors were computed for each of the 8 pairs of CP’s.
Most errors are less than 1 pixel, and the mean is only
0.7 pixels. However, error computing at the CP’s which
were used for transformation parameters estimation might
lead to too optimistic claims, because the least square
technique optimizes the error at CP’s.

To avoid such false claims, a more rigorous accuracy
test was performed. Only three CP’s were used to deter-
mine the registration parameters (CP’s 2, 7, and 8; see
Table II). The other CP’s were used for error calculation
only. The square root errors are a little bit larger than in
the previous case, but only two of them are greater than
1 pixel.

The square root errors are summarized in Table III—
err, denotes the errors in the first test, err, denotes the
errors in the second one.

V. CONCLUSION
This paper has dealt with the registration of two images
of the same scene with an affine geometric distortion. This
requirement appears very often in the processing of mul-
titemporal satellite images.
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Attention has been paid to the automatic control point
selection. First, the images are segmented by standard
techniques, and closed-boundary regions are extracted.
This paper describes a new method for the determination
of corresponding regions. Each region is represented by
affine moment invariants that are affine-invariant features
describing the shape of the region. Region matching is
then implemented as a two-stage process. The first stage
consists of classification in Euclidean feature space; in the
second stage, the region-to-region correspondence is es-
tablished by the nearest neighbor rule in the image space.

After the correspondence between the regions has been
established, centers of gravity of the corresponding re-
gions are used as control points. The parameters of affine
mapping functions are computed by the least square rule,
and the sensed image is resampled and overlayed over the
reference one.

The performance of the proposed algorithm has been
demonstrated by registration of SPOT and Landsat TM
images taken in different years. Subpixel registration ac-
curacy has been reached in this experiment.

The presented method has been shown to be suitable
for automatic registration of images with affine geometric
distortion. However, our method is inapplicable or could
lead to misregistration in some particular situations:

* initial segmentation of the images is very poor, and
regions with false boundaries are extracted;;

¢ less than three closed-boundary regions are found in
one of the images;

® there are not at least three pairs of corresponding re-
gions among the extracted regions;

¢ extracted regions are not distinguishable by the
AMT’s (they have approximately the same shape).

The proposed approach to image registration may have
numerous applications in aerial and satellite remote
sensing for automatic environmental change detection,
monitoring, and multitemporal classification.
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