
 
 

 

  

Abstract—Time parameterization of user demands (demands 
on course of path, position etc.) is one of inherent preparative 
operations before starting real control of any of mechatronic 
systems. The main objective is to generate the reference inputs 
i.e. desired, required values with appropriate timing of used 
control system. In general, the time parameterization itself 
represents generating a time sequence of the reference values 
according to some deterministic way defined beforehand, 
where this time-reference sequence interpolates the initial pa-
rameters arising from user demands. This paper addresses 
optimally-smooth time parameterizations intended for mecha-
tronic systems particularly for machining robotic applications. 

I. INTRODUCTION 
IME parameterization of user demands is one of inhe-
rent preparative operations of control design of any me-

chatronic systems [7, 8]. Its main purpose is to generate 
the reference inputs i.e. desired, required values with appro-
priate timing of used control system corresponding to user 
demands. In mechatronic field, these demands are usually 
given by a set of positions with kinematic parameters 
as desired velocities or constraints specifying maximal per-
missible acceleration and jerk [8]. The user demands can 
follow from:  
  • technology of production procedures  
    (machining velocities, motion orientation),  
but even from:  
  • system construction (minimum radiuses,  
    shapes, kinematic and dynamic limits).  

From control point of view, the time parameterization 
itself represents generating a time sequence of the reference 
values according to some deterministic way defined before-
hand, where this time-reference sequence interpolates 
the initial parameters representing user demands. 

This paper focuses on optimally-smooth time parame-
terizations, i.e. parameterization protecting systems e.g. 
from undue mechanical wear. For simplicity, the explanation 
will be arranged for mechatronics particularly for robotic 
systems. These systems combine different elements:   
  • mechanical (beams, joints, gears, grippers etc.),  
  • electromechanical (drives, sensors),  
and  
  • electrical (control units). 
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In majority cases, the mechatronic systems are highly 
dynamic systems, therefore the right forming of feasible 
reference inputs is important. Due to high dynamics, ordered 
set or pairs of time and reference values (timetable) is con-
sidered. The parameterization can be performed either for:  
  • operational space,  
or for:  
  • joint (drive) space.  

Operational space represents the space from view of end-
effector, workpiece/tool gripper, i.e. space of resultant mo-
vement. In comparison, joint space is mainly a space 
of actuated joints – i.e. drive space (see Fig. 1). From user 
point of view, the parameterization in operational space is 
more natural, therefore it is preferred. 

As was mentioned, the result is predominantly repre-
sented by timetable, but it can be represented even by some 
continuous smooth time-parameter functions [3]. The choice 
of character of representation depends on computation time 
of on-line generation of the trajectory from the parameter 
function or on memory space for off-line timetable. 
In the both cases, a topical time index is determining 
parameter. It represents a pointer both to predefined para-
meter functions and to time tables. 

The paper is organized as follows. The second section 
deals with the time parameterization via geometric para-
meter. This parameterization is based on analytic geometry 
and basic kinematical laws. The third section outlines 
the parameterization as specific control tasks using multistep 
model-based predictive control [2]. It takes into account 
the kinematics and dynamics of the whole controlled mecha-
tronic system. Finally, the concluding sections demonstrate 
described approaches to time parameterization by several 
examples and conclude the paper by practical remarks. 
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Fig. 1. Operational (x, y, ψ) and joint (φ1, φ2, φ3) oriented 
coordinates (coordinate spaces) 
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II. PARAMETERIZATION VIA GEOMETRIC PARAMETER 
During the time parameterization, it is necessary to pro-

vide smooth and continuous segments or curves, including 
their smooth transitions among them. In robotics, such seg-
ments are defined by sets of positions, velocities 
and accelerations. The analytical geometry [1] concerns 
with this task. This section focuses on time parameterization 
of several main types of curves (trajectory segments) [3]. 
Let us distinguish the following segment types both for two-
dimensional (2D) and three-dimensional (3D) space [4]:  

  • abscissa segments  
  • arc (circle) segments  
  • general curves  
   – densely sampled general curves  
    (dense grid – set of geometrical points)  
   – densely sampled curves described  
    by parametrical equations  
  • dwell on place for defined time.  

Let us suppose that separation of abscissa and arc 
segments is due to simple computation of length of these 
segments. Note, that path (curve) can be defined as cross-
section of a general surface or solid. This eventuality leads 
to segments of type ‘general curves’. 

From technological user demands, let us consider initial, 
final, (optimal or maximal) values of the positions 
and velocities, respectively, which corresponding to key 
points of geometric path of the robot motion. Then the para-
meterization of described features is expedient to base 
on elementary laws of kinematics. It is realized in two 
phases. The first phase is a computation of geometrical 
parameter condensed in one-dimensional (1D) space. Then, 
the parameter serves as a pointer to the real parameterization 
in 2D or 3D space, which follows just this parameter 
(second phase). Note, individual parameters of segments are 
determined by geometry of time parameterized curves. 

A. Computation of geometric parameter 
To determine geometrical time-dependent parameter, it is 

necessary at first to compute the distance-length of segment 
and rotation angle, which are performed together. Generally, 
it is given by expressions 

∫=
s

dsl  (1) 

where  ds  is an element of the segment. 
Then, it is necessary to determine orientation time 

for given segment considering the knowledge of initial 
and final velocities and accelerations. Let initial and final 
values of accelerations are equaled zeros, in order to provide 
smooth transitions among different types of segments. 
If the initial and final values of the path position and appro-
priate first and second time derivatives (velocities 
and accelerations) are known, then for the geometrical 
parameter determination, the expression for accelerations 

in basic form can be used: 

dt
dva =  (2) 

By double integration of the expressions (2) in a frame 
of one segment and its defined initial and final conditions, 
the expression for orientation working time is given: 

finalinital vv
t

+
=

l 2  (3) 

It is labeled as f=finalt . Thus, the sufficient time 
for execution of the movement is provided. Furthermore, 
the value of finalt  is rounded up to the nearest multiple 
of sampling Ts to provide uniform trajectory sampling 
needed for digital control. 

Now, the essential time parameterization of 1D parameter 
can be made. To connect smoothly and to accomplish 
the movement of a robotic system, the trajectory should 
have the first derivative continuous and also smooth, 
and at the same time, the second derivative • continuous 
and smooth or • at least continuous and segmentally smooth 
curves. 

In order to fulfill • continuous and segmentally smooth 
type, i.e. for adequate number of initial and final conditions 
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it is viable to prescribe the equation of acceleration: 
3
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consecutively velocity and position in the form: 

4
3

3
2

2
100 4

1
3
1

2
1)( tatatatavtvdta ++++==∫   (6) 

5
3

4
2

3
1

2
000 20

1
12
1

6
1

2
1

)(

tatatatatvs

tsdtvdta

+++++=

== ∫∫∫
 (7) 

together, after insertion of initial and final conditions 
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Thus, by solution of (8) and (9), the parameters ,, 10 aa  

32 ,aa  can be determined. 
 



 
 

 

In order to fulfill • continuous and really smooth type 
even for acceleration, the corresponding initial and final 
conditions have to be arranges as follows 
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For given conditions, the new equation of acceleration is de-
fined as: 
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Such selection leads to systems of algebraic equations 
considering insertion of initial and final conditions 
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Thus, by the solution of (12) and (13), the parameters 
543210 ,,,,, aaaaaa  are determined. 

Finally, the systems of equations (8) and (9) or (12) and 
(13) define time dependency of geometric parameter. 
In essence, the parameter and its derivatives – let us mark 
them ppp &&& ,,  – are represented as follows 
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Finally, as already mentioned, the time (parameter t) 
occurring in equations above belongs to interval 

>< = )(,0 f
finalt , i.e. the time vector can be generated 

according to equation (15) 
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For this selection of the time vector, the computation of 
appropriate vector of values of geometric parameter )(tp  is 
finished. Now, it is possible to continue with real planning 
of individual trajectory segments, defined at the beginning 
of the section. 

B. Parameterization of Abscissa Segment 
The first, the simplest one, is an abscissa segment (Fig. 2). 

It can be characterized by coordinates of initial point, direc-
tion vector with distance-length or final point in case of zero 
initial velocity or distance-length of the abscissa in case 
of nonzero initial velocity. The distance-length is given 
by Pythagorean Theorem 

222 )()()( 000 zzyyxx fff −+−+−=l  (16) 

Then the determining parameters are the following 
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where 0  and     0 vXYZ  are taken as values of the first segment 
of new trajectory or as final values from previous 
segment fprevtopicalfprevtopical vv == 0  and    0 XYZXYZ . 

Finally, the parametric equations of abscissa segment 
in condensed matrix form is given for position [1] 
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where equation (20) is in a form of uniform parameterization 
defined as 
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Consecutively, as well as equations of positions, the equa-
tions for velocity and acceleration are given by equations 
(22) and (23), respectively 
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The equations (19), (22) and (23) define the abscissa 
segment. 
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Fig. 2. Abscissa segment 
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Fig. 3. Arc (circle) segment  

C. Parameterization of Arc (Circle) Segment 
The next of the simplest segments is arc – circle segment 

(Fig. 3). In general, the time parameterization of arc segment 
can be utilized also for elliptical segments. Only one 
difference of parameters is represented by two radiuses ra 
and rb and different determination of segment length. 
The length of the ellipse can be possibly determined 
by approximation of the ellipse curve by its splitting to small 
abscissa elements. Then their length can be determined by 
Pythagorean Theorem – equation (16). 

The circle segment is characterized by coordinates of ini-
tial point; tangential vector a

r
 of circle in this point 

(it represents, at the same time, normal vector of circle-
center plane na

rr
= ); radiuses of major ar  and secondary br  

semi-axis ( | |H|||,|H|| 21

rr
); outspreading angle of circle rozf ; 

angle of center position in circle-center plane krf . 
Thus the parameters are given as follows 
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where 0  and     0 vXYZ  are taken as values of the first segment 
of new trajectory or as final values from previous segment 

fprevtopicalfprevtopical vv == 0  and     0 XYZXYZ . The same is valid 
also for tangential vector, when the initial velocity is not 
zero. After assignment by user, the following values are 
known: 

fvkrrozcba
T va,prrzyx ,,,,,,,,],,[ 0000 fff r

l=XYZ  (26) 

Now, the parametric equations of the arc (circle)/elliptical 
segment can be written [1] 
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where )(tXYZ  is a vector of coordinates of circle points; 
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Fig. 4. Arc/elliptical segment – plane of the segment  
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Fig. 5. Arc/elliptical segment – plane of arc centers  

SXYZ  is a vector of arc center; 21 HandH
rr

 are vectors 
of major and secondary semi-axis and cp  is geometrical 
parameter defined as follows 

for circle seg. rozc
a

c ptp
r

tptp f;0,;0)(,)()( ∈∈= l  (28) 

for ellipse segment l;0)()),(( ∈= tptpfpc  (29) 

function ))(( tpf  is defined as a table computed from known 
ellipse points – linearly distributed parametric angle cp  and 
appropriate time-parameterized geometrical parameter )(tp  
representing motion along ellipse curve projected to 1D. 
Illustrative schemes are shown in Fig. 4 and Fig. 5. 

D. Parameterization of General Curve Segment 
In engineering practice, there are a lot of general curves 

either parametric curves as previous cases (abscissa or arc-
circle/elliptical segments) or purely general curves, at which 
it is difficult to compute their length. However, the know-
ledge of the length is necessary condition, without which 
the time parameterization is not feasible, in spite of the pos-
sibility to compute geometrical points of considered curves. 
This problem can be solved on engineering level by the fol-
lowing way. At first, let us define possibilities of obtaining 
of key curve points. 



 
 

 

In principle, there are two cases as already mentioned 
at the beginning of the Section II.:  
  • densely sampled general curves  
    (dense grid – set of geometrical points)  
  • densely sampled curves described  
    by parametrical equations. 

The first group can represent general curves as contours 
of the shape of some required product. Such type of curves 
arises from design procedure of designer, who designs 
the shape of the final product. Nowadays, in a branch of te-
chnical documentation, the very powerful software envi-
ronment AutoCAD in different forms is used. It enables 
to export the key coordinates of required curves to other 
software or directly to provide computations of time 
parameterization in its environment by some user scripts 
and functions. (In this work, the former way – handling 
with exported data – is considered.) 

The second group represents curves, which can be para-
metrically described. However the determination of their 
length is not simple as well. To this group, a lot of geo-
metrical curves and surfaces belong: ellipse, parabola, 
hyperbola, Ferguson cubic, Bezier cubic, Coons cubic 
B-splines, screw line, spiral, cycloids, epicycloids, hypo-
cycloids and cross-sections of the surfaces - plates. 

By the way of dense sampling, as already mentioned, it is 
possible to approximate curves by their splitting to small 
abscissa elements with possible computation of the element 
length (see eq. 16). 
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Total length is l  = number of small abscissa elements  l∆ , 
Computation of geometrical parameter ;;0),( l∈= ptpp  

TsTst Ts
t ⋅= max::0: , Then, the time parameterization can be 

provided by the following algorithm:  
XT=[]; 
for i=1:NumOfElements ...% position 
 idx = find([l(:)- p(i)]<eps 
 XT(i,:)=[X(idx),Y(idx),Z(idx)]; 
End 
 
dXT=[]; 
dXT = [vx0,vy0,vz0;  ...% velocity 
      (XT(2:end,1)- XT(1:end-1,1))/Ts,  

     (•y)/Ts, (•z)/Ts]; 
 
ddXT=[]; 
ddXT = [0,0,0;     ...% acceleration 
      (dXT(2:end-1,1)- dXT(1:end-2,1))/Ts,  

     (•dy)/Ts, (•dz)/Ts]; 
 
CS=[XT,dXT,ddXT];   ...% Cartesian c. 

 
where (•(d)·)=((d)XT(·,i·)- (d)XT(·,i·)). 

The vector CS contains positions, velocities and acce-

lerations sampled in Tsk ⋅ . The computation is only appro-
ximation. Therefore, the parameterization accuracy depends 
on the selection of initial length of the abscissa element. 

III. PARAMETERIZATION VIA SPECIFIC CONTROL TASK 
In industrial applications, there exist a lot of control 

operations, which provide different changes of working 
points, movements or interval stabilization, where accurate 
achievement of some predetermined trajectory is not im-
portant, however a fulfillment of some permitted output 
range or reaching of some point is required. The points, 
which should be reached, can represent e.g. end-positions 
of manipulative operations or new working points of con-
trolled system. 

This section outlines two specific control tasks, which can 
realize time parameterization online during real control 
process. The first is characterized by known permitted 
ranges (limits) of reference signal and the second task is 
determined only by defined end point. In general, these tasks 
represent control task with specific constraints on system 
output. 

The both tasks can be realized by specific modifications 
of generalized predictive control, which represents multistep 
model-based control strategy [2]. The multistep attribute is 
important; its presence provides suitable distribution of user 
demands within time as presented time parameterization 
in Section II. The result (output record) of described control 
tasks can be used as full valuable time parameterization 
for another control realization. 

At first, let us start from introduction of predictive 
control. It is a multi-step control based on equations of pre-
dictions  

uGfy +=ˆ  (31) 

and the local minimization of quadratic criterion 
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where N  is a horizon of predictions; yQ  and uQ  are pena-
lizations – tuning parameters; y  outputs; w  user demands 
and u  are searched inputs, which are determined by mini-
mization of the criterion in every time step. 

A. Parameterization for path given by permitted ranges 
To parameterize path given by permitted ranges and end-

point only, it is necessary to make the following steps:  
  • define ranges of the workspace or topical domain;  
  • select penalizations balancing of ranges’ importance. 

Then, it is possible to minimize modified quadratic 
criterion, which provides mentioned assignment [5] 

{

}2
1

1

22

||(||

||)ˆ(||||)ˆ(||

ujk

N

j
rbjbkjkrajakjkk

Qu

QryQryJ

−+

=

++++

+

−+−= ∑  (33) 



 
 

 

In the criterion, there occur new terms )(⋅ar  and )(⋅br , 
which correspond to the ranges. Furthermore, there are also 
new output penalizations raQ  and rbQ , in usual standard 
criterion, there is only one penalization yQ . The minimi-
zation of described criterion generates the control actions 
as usual, only matrices in it have different types. 

B. Parameterization for free path and fixed end-point 
The task of the reference path given only by end-point can 

be formulated in that way: “Let two points (start and end 
point) and presumptive time be given. In this time, the sys-
tem should move between those points. A path is free 
of hard constraints; only end-point should be achieved”. 

Predictive design can be used again, only quadratic 
criterion has to be reshaped again, but in different way: 
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The criterion includes more adjustable parameters: 
horizon of prediction N , horizon of initial insensitivity No  
and control horizon Nu , penalizations yQ  and uQ , and also 
the desired values w , which determine the transition from 
start to end point in the criterion. In case of end-point 
modification, the value vector w  corresponds to end-point 
i.e. NNojwww,w fjkNkjk ,,1,|][ LL +=== +++w , further-
more with setting: nminNNNN >= min,max ,,: L , where 

TsTN /=max , nNNo −= , NNu = , and n  is a system 
order. The criterion is minimized repeatedly as usual, but 
with changeable horizons. 

IV. EXAMPLES 
This section demonstrates time parameterized trajectories 

according to explanation in section II. and III. Table 1 and 
Fig. 6 show time parameterization via geometric parameter. 
Fig. 7 and Fig. 8 show parameterization as control tasks: 
path given by permitted range and free path with fixed end-
point. 

TABLE 1  
DATA FOR CURVE GENERATED IN AUTOCAD 

   AutoCAD:  Command: _list 
   Select objects: selected: 1 
   SPLINE: Layout: axes, Length: 126.01 Order: 4 
   Properties: Planar, No rational, No periodic 
   Parametric range: First 0.00, Final 120.79 
     Key points (Number 12): 
     X = -50.00   , Y =   0.00   , Z = 0.00 
     X = -50.19   , Y =  -4.26   , Z = 0.00 
     X = -50.55   , Y = -12.39   , Z = 0.00 
     X = -35.31   , Y = -15.24   , Z = 0.00 
     X = -26.57   , Y =  -1.61   , Z = 0.00 
     X = -11.70   , Y = -14.70   , Z = 0.00 
     X = - 0.09   , Y =   1.27   , Z = 0.00 
     X =  12.07   , Y =  10.62   , Z = 0.00 
     X =  26.88   , Y =   7.59   , Z = 0.00 
     X =  32.45   , Y =  -9.67   , Z = 0.00 
     X =  40.60   , Y =  -0.14   , Z = 0.00 
     X =  50.00   , Y =   0.00   , Z = 0.00 

 

  
Fig. 6. Analytical curve, general curve from AutoCAD  

 
 

 
Fig. 7. Parameterized trajectory given by permitted range 
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Fig. 8. Parameterized free trajectory (continuous line)  

V. CONCLUSION 
The paper investigates several approaches to time parame-

terization of user demands intended for mechatronic sys-
tems. Presented techniques ensure continuous and smooth 
curves including their derivatives. It is important especially 
at highly dynamic systems, where sharp and discontinuous 
curve profiles can cause failure of the controlled system. 
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