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Chapter 1
Introduction
One of the ways to treat diseases of thyroid gland is use of nuclear medicine. During the treat-ment, a lot of various biophysical data can be measured. Potential improvement of the treatmentresults can be reached, among others, by application of such a data processing methodology thatcorresponds to nature and properties of these data. Valid information extracted from the data cansupport medical decisions.Bayesian methodology was found as a suitable tool for this purpose.Application of the Bayesian theory to data processing includes both theoretical analysis andpractical implementation. Work described in this thesis focuses mostly on practical (numericaland algorithmical) realization of Bayesian estimates derived before.Meaningful results can be analyzed statistically. The conclusions could contribute to furtherimprovement of the treatment.This chapter guides through the speci�c problems addressed in this thesis. In section 1.1,general problem of information and decision in medicine is introduced. Section 1.2 speci�es thesegeneral ideas to a frame of the Clinics of Nuclear Medicine, Motol Hospital, Prague ( KNM ), andto the treatment of thyroid gland diseases. In section 1.3, the situation of information processingat the KNM is outlined using some terms that are de�ned later in this thesis in detail. It is shownon several examples that the methods of computations on the data, that are used so far at theKNM , yield results that are not suitable for subsequent responsible medical decision. In section1.4, Bayesian methodology is proposed as a tool for the solutions and both its advantages anddisadvantages are mentioned. In the last section 1.5, the thesis layout is described by chapters.
1.1 Decision Support in Medicine
Every rational decision requires su�cient amount of relevant information.In medical treatment, there are two main steps of information processing and decision making:diagnosis and therapy.In the diagnostic step, information as complex as necessary about health state and its causes isgathered and medical conclusions formulated. In the therapeutic step, decision about some actionsaccording to the previous conclusion is made and the appropriate actions are carried out.
Biophysical Examination as a Source of DataTo collect the facts of interest, various examination methods are used including biophysical ones.Biophysical methods rely on interaction of physical �elds with biological matter. Quantitativeresults of direct measurements yield some data that directly or indirectly serve as informationsource and support for further medical decisions.
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Data Processing Is a Part of Medical DecisionMostly, the biophysical data cannot be used directly and some processing is necessary to transformthe data to a desired form. This processing then becomes a part of examination and it can inuencethe medical decisions, consequently the therapeutic action and its result (success).This inuence, of course, depends on the importance of the given examination or measurementfor the medical decision.
Reality | Data Quality Is GivenThe term \data" (see part 1.3) denotes outputs of some biophysical examinations (see Chapter 3,page 27). As biophysical examination is a measurement of some physical quantity, it is loaded byuncertainty given e.g. by measurement error or other reasons.The e�ort should be made to eliminate or decrease the data uncertainty as much as possible. Ifit is not possible, either principially or practically, such methods of data processing must be usedthat can treat the data uncertainty so that� the uncertainty is not increased, preferably it is decreased,� the uncertainty is quanti�ed so that reliability of the result is known.

This thesis deals with processing of limited amount of noise-polluted data that serve as one ofinformation sources for medical decisions in the treatment procedure.
1.2 Treatment of Thyroid Gland Diseases Using 131IHere, the adopted practice of the KNM is reviewed that should be supported by the work describedin this thesis.
1.2.1 Clinics of Nuclear Medicine (KNM )Clinics of Nuclear Medicine, Faculty Hospital Motol, Prague ( KNM ), is the world famous centerfor treatment of thyroid gland diseases using 131I. For more than 30 years it treats successfullythyroid gland carcinoma, thyreo-toxicoses and other illnesses.Few years ago, a team of engineers and researchers from the KNM and Institute of InformationTheory and Automation, Academy of Sciences of the Czech Republic ( �UTIA), started to focuson data, obtained by measurement of various quantities during patients' examinations, and onthe results given by traditional way of these data processing. They concentrated on quanti�ca-tion of uncertainty of the data and the results. They addressed relevance of using appropriatemathematical tools for data processing [13] and their inuence on validity of the results [14].Several projects dedicated to application of suitable mathematical methods in data process-ing were successfully defended, supported by Grant Agency of the Czech Republic (GA �CR312/94/0679) and European Union (EU COST OL B2.20) in years 1994{96. Currently, a projectfor inuence of biophysical factors on thyroid gland cancer treatment, supported by Internal GrantAgency of Ministry of Health, Czech Republic (IGA MZ �CR 4581-3), is running.
1.2.2 Procedure of the TreatmentThyroid gland tumor belongs to diseases treated at the KNM .One of the ways to diagnose and cure thyroid gland tumor is an internal administration ofunsealed radioactive iodine [27], [36], mostly 131I [11]. This element is selectively accumulated inthyroid gland where, if radioactive, it produces ionizing radiation. This radiation can be used fordiagnosis of the organ state (e.g. using scintigraphy) or for therapy | destruction of the a�ectedtissue.If a tumor of thyroid gland is diagnosed, it is usually removed invasively by surgery. The roleof radiation treatment is to destroy any tumor remnants that were not possible to be removed bysurgery.
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The procedure of radiation treatment consists of two steps.

Diagnosis. In this step, the patient is supplied orally 131I as sodium iodide or potassium iodide ofcertain low activity, usually about 70{100MBq. Then several biophysical measurements andmedical examinations follow, yielding information about accumulation of 131I in the area ofthyroid gland, 131I distribution in the organism etc.
Therapy. The diagnosis can indicate tumor tissue or its remnants that must be destroyed byradiation. This destruction is called therapy. If therapy is necessary, the therapeutic activityis individually determined for the patient. 131I of this activity is supplied to the patient.In the thyroid gland, where this activity is accumulated, the tumor tissue is destroyed bythe radiation. During therapy, biophysical measurements are also performed. Data collectedduring this step are processed for checking and hygienic purposes.Therapeutic activity is usually approximately by two orders higher than diagnostic one, inthe range 2{7GBq.

The therapeutic activity of iodine must be high enough so that radiation is able to destroy thetarget tissue. Because of radiation inuence to other tissues, the therapeutic activity must be, onthe other hand, su�ciently low to decrease the radiation risk, i.e. damage of other tissues (e.g.bone marrow). In other words, the supplied therapeutic activity must be as low as possible withthe e�ect of therapy guaranteed at the same time.The determination of the therapeutic activity is given by two points of view: objective (dosi-metric and other values estimation) and subjective (subsequent medical decision). In the �rst step,the values of some dosimetric quantities based on the measurements during the diagnostic phaseare estimated. These values then signi�cantly support the ultimate physician's decision, takinginto account also the patient's state, disease stage etc.The values of quantities inuencing the physician's decision must be therefore calculated in theway so that imprecisions and errors do not increase or decrease them arti�cially, or, in other words,as precise as possible.In clinics of nuclear medicine all over the world that deal with thyroid gland diseases, nostandardized approach to therapeutic activity estimation is adopted. There are discussions iftherapeutic activity should be individualized or not. One way is to individualize the therapeuticactivity using various criteria (mass of thyroid gland, mass of the patient, kinetics of iodine inthe organism etc.) [8], [34], [9], another way is to apply constant activity to each patient [41] orconstant activity to mass unit of thyroid gland [4]. Generally, therapeutical activities applied inthe world vary from 0,85GBq to 11GBq.At the KNM , therapeutic activity is individualized just roughly. Practically, there are fewvalues used as possible therapeutic activity (80mCi, 100mCi, 120mCi etc.) and one of them ischosen to be supplied to a patient, according to medical decision. Finer variation of individualtherapeutic activities has not been taken into account so far.Use of relevant mathematical methods yields meaningful results in computation of estimates ofimportant quantities on clinical and biophysical data. These estimates can be statistically analyzedbecause a large set of patients' data, collected for many years, is available. Output of this analysiscan indicate ways of �ner individualization of therapeutic activity and further improvement of thetreatment.
1.3 Motivation | How to Process the Data
To illustrate the relationships between biophysical data and results of interest together with com-plexity of the data processing and its pitfalls, this section shows simpli�ed schemes of quantitiesand computations de�ned in detail in Chapter 3, page 27.
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1.3.1 What Is Dealt with?The following �gures show connections and relationships between measured data and biophysicalor dosimetric results.The graphical notation keeps these conventions:

� biophysical data (results of direct measurements of biophysical quantities) are framed by thinsolid-dashed lines,
� intermediate biophysical quantities playing a role of inputs to other computations and car-rying information that can be used for medical decisions are framed by half-thick solid lines,
� radio-hygienic quantities playing important role in medical decisions are framed by thicksolid lines,
� other quantities are framed by thin solid lines.The Figure 1.1 shows computational scheme for e�ective half-life and relative activities of theorgan measured. The magnitude of relative activities can indicate necessity of further examination,the e�ective half-life is an important input quantity for doses estimations.The Figure 1.2 shows computational scheme for so called excretions that are used as inputquantity for blood dose estimation.The Figure 1.3 shows computational scheme for radio-hygienic quantities that are results ofinterest carrying information about the patient's body reaction to application of radioactive iodine.This information serves as a direct criterion for further medical decisions.A brief summary of meaning of the quantities mentioned above is given here:

Data are quantities directly measured, namely, impulse counts of background and signal on back-ground, thyroid gland mass and patient's mass.
Radio-hygienic quantities are called the following quantities:

� Speci�c irradiation of thyroid gland that is a dose absorbed in thyroid gland tissue. Therequired destructive dose is 1 200Gy.� Speci�c irradiation of blood that is a dose absorbed in blood. It must be less than 4Gyand its anorganic fraction must be less than 1Gy to avoid damage of blood and bonemarrow (see part 3.11, page 30).� Prediction of reaching requested activity by the a patient's body is important for plan-ning the patient's treatment in the KNM .
Other quantities like relative activities, e�ective half-life, excretions etc. that are also used formedical decision.
1.3.2 How the Problem Is Solved So Far | ExamplesSimple algebraic formulae to estimate biophysical, radio-hygienic and other quantities [21], [22],[36] are used so far at the KNM . The data measured on patients are substituted into these formulae.There are two main speci�c features of these data:
Limited amount. Due to high number of patients, capacity of measurement devices, establishedmeasurement methodology and also economical limits of the KNM , only few measurementsof each patient can be performed. These conditions lead to lack of data in majority of cases.
Uncertainty. Available data are corrupted with uncertainty due to (a) measurement techniquesof low precision (thyroid gland mass), (b) variation of measurement conditions (calibrationcoe�cient changes along sequence of excretions measurements) or | most frequently |(c) by the physical nature of the process (counting particles of ionizing radiation in some�xed time interval).
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Figure 1.1: Computation scheme for e�ective half-life Tef and relative activities
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Figure 1.2: Computation scheme for excretions ERi
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Figure 1.3: Computation scheme for radio-hygienic quantities
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The algebraic formulae mentioned above do not respect randomness and uncertainty of thedata and take them as deterministic values. Therefore this algebraic processing is sometimescalled deterministic.Using the traditional simple deterministic formulae, the data uncertainties are cumulated inthe uncertainty of the result by the mechanism of errors propagation. The uncertainty of the resultobtained in this way is unknown and such values have sometimes even no physical meaning [11].We will show few examples when traditional deterministic way of data processing can fail andyield meaningless values. For detailed de�nitions of the terms, see Chapter 3.

Example 1: Source on the BackgroundWhen signal Z of a radioactive source is measured (see parts 3.4 and 3.5, page 29), due to presenceof a background B, what is obtained is the composition of the background and the signal B + Z.Both B and Z are random quantities. If B + Z � B (case of higher activities), then Z can beestimated trivially in the deterministic way by subtraction Z = (B+Z)�B. In case of B+Z � B(case of lower activities), the subtraction is loaded by a great error and, because of uctuations,its result can be even negative, which is a physical nonsense [15]. This situation can be often metduring sta� contamination measurement [11]. Therefore some more reliable way of Z estimationis necessary.
Example 2: ExcretionsExcretions are relative activities diluted by urine (see part 3.7, page 29). Activity is determinedaccording to (3.9), page 29. For calibration coe�cient c estimation (see part 3.6, page 29), twosignal estimates are necessary: signal of the measured source and of the standard source of ra-diation. Furthermore, calibration coe�cient for excretions changes in an unknown way (see part6.8.4, page 68).The computation scheme of excretions is shown on the Figure 1.2.Fluctuation of signals together with the unknown change of calibration factor can cause thedeterministic relative activity estimate so uncertain, that these cases can occur:

� excretions are greater than 100%,
� excretions are negative,

i.e. the patient seems to drink 131I \secretly" or he seems to be 131I-generator. It is obvious thatthese cases are physically meaningless.
Example 3: E�ective Half-lifeE�ective half-life, according to the Figure 1.1, is obtained by �tting the model (6.19), page 65, toa sequence of activities fAig in times ftig. Problems with activities estimation were mentionedin excretions description in the previous example. During the deterministic e�ective half-life es-timation, a linear regression is used for points given by ( ti; lnAi). Position of the regression linedetermines the e�ective half-life.Due to uctuations in the data and absence of any constraints (see (3.7), page 28), these casescan occur:

� e�ective half-life is greater than physical half-life,
� e�ective half-life is negative,

These cases have no physical meaning.
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Example 4: Unknown UncertaintyEven if the results of the estimation tasks mentioned above in the deterministic way seem to bephysically meaningful (Z > 0, excretions and e�ective half-life values are within their physicalbounds), it is not known how precise they are, i.e. what is the magnitude of their uncertainty.Considering that excretions and e�ective half-life enter the estimations of the important radio-hygienic quantities (see Fig. 1.3), we can �nd out that the �nal deterministic estimates can be evenmeaningless or at least their precision is unknown. Such estimates can hardly serve as a reliablesource of a responsible medical decision.
1.4 Idea to Use Bayesian Tools for the SolutionsThe quantities to be estimated can be understood as results of some processes, both physical andbiophysical. Majority of these processes can be successfully modelled. For some quantities, expertknowledge (e.g. physical bounds of the values) is available. This situation is suitable for using theBayesian methodology.As for systematic use of Bayesian methodology in this �eld, no such attempt was so far regis-tered. This work is a part of e�ort to use Bayesian approach in nuclear medicine which is a newapplication area.
1.4.1 Advantages of Bayesian MethodologyBayesian methodology has been used in �UTIA for various purposes for many years. It is describedthoroughly in [29]. It is a principially simple way to combine multiple information sources:

� model of the system we observe, i.e. how would the system behave if the parameters of themodel were known,
� data, i.e. measured quantities, what is known,
� expert knowledge (so called prior information), i.e. what is known in advance about themodel parameters, by analysis or by experience.Formally, quantities to be estimated are unknown parameters of the model.These sources of information are combined together in a consistent way. If a nature of themodelled system is probabilistic, it is described by a probabilistic model. Estimate of the unknownquantity (parameter) has then a form of a probability density function ( pdf ). Therefore it carriesimplicitly an information about the estimate uncertainty and any interval estimate can be con-structed using the pdf . The pdf can be used as an input information for another estimate withoutinformation loss.The Bayesian methodology is suitable to be used in cases of small uncertain data sets andexistence of expert knowledge. Then more information can be included into the estimation processand uncertainty of the estimate can be reduced.At the KNM , amounts of data related to individual patient are usually strongly limited anddata themselves are uncertain, as mentioned above. At the same time a team of experiencedphysicians and physicists, whose knowledge can be used as a prior information, is accessible ([17],[3], [18]).Some results (e.g. [11], [12], [16], [14]) indicate, that the Bayesian metodology is a suitable toolto solve the class of tasks formulated in this thesis.More about the Bayesian tools used in this work can be found in Chapter 4.

1.4.2 Disadvantages of Bayesian MethodologyThere are two main groups of disadvantages that occur with using the Bayesian methodology:analytical and numerical.Among analytical disadvantages, the most annoying that one can encounter are:
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� Impossibility to �nd a conjugated system of pdf s (see part 4.1.6, page 35). If such a systemis not found, one cannot take advantage of small-dimensional su�cient statistics which sig-ni�cantly technically simplify the estimation. As an example of such a di�culty, see (6.24),page 66.
� Impossibility to integrate a posterior pdf analytically. This problem causes di�culties tonormalize the posterior pdf (see (4.3), page 33) and also prevents to integrate-out redundantparameters analytically.
� \Curse of dimensionality" | problem of growing of dimension of the task with increasingamount of data [32], which fortunately does not occur in this thesis.The most signi�cant numerical disadvantages are:
� computational obstacles to evaluate non-normalized function (see part (5.1.3), page 48),connected with analytical integrability,
� great di�erences in variance with di�erent amount of data included into estimation andsubsequent evaluation problems,
� evaluation problems in some cases even if an explicit formula is given and the posterior pdfis normalized [6], [10], [24], [5].
Successful estimation using the Bayesian methodology represents a complex task with many kindsof technical drawbacks and problems that must be solved. The work in this thesis focuses especiallyon numerical part of the Bayesian estimation and production of reliable algorithms giving resultswith a requested numerical precision.

1.5 Thesis LayoutThis thesis is divided into 8 chapters.Chapter 1, you are just reading, gives a general introduction to problems treated in this thesisand speci�es them to the particular �elds | nuclear medicine and Bayesian methodology.In Chapter 2, the speci�c tasks are enumerated and the tools used to reach the aim are men-tioned.The data and the results of their processing are de�ned and described in Chapter 3. Thequantities that will be estimated are speci�ed.The particular tools, both theoretical and mathematical, are described in Chapter 4 with generalnumerical algorithms and programming ideas used for the solutions.For the speci�c tasks, the general numerical methods and algorithms should have been tailoredto �t the requested purpose. In Chapter 5, the procedures are speci�ed and rules are derived withemphasis on numerical precision and keeping requested uncertainty limits. Programming approachis described.Chapter 6 collects complete description of estimation tasks of the speci�c quantities, includingtheoretical derivation and algorithmical implementation.In Chapter 7, the results derived in Chapter 5 are tested, together with benchmarks of somealgorithms. Then experiments with selected estimation tasks derived in Chapter 6 and theirresults are performed both with single cases and batch data processing. For these experiments,real patients' data are used.In Chapter 8, conclusions are made and ways of further research are outlined.
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Chapter 2
The Work | Aims and Means
In this chapter, general aims and tasks are speci�ed and tools used for the solution are outlined.
2.1 Aims of the Work
The main aim of this work is to contribute to quality improvement of the treatment of thyroidgland diseases at the KNM .Estimation of radiohygienic and other quantities mentioned in Chapter 1 should be improved.This improvement should yield more reliable values of the estimated quantities, together with theirprecisions, as one of the sources of responsible medical decisions.The consequences of the estimation improvement should result in a contribution to improvetherapy of thyroid gland diseases.The requested output of this work is a set of numerically stable tested real-time programs forestimation of the quantities mentioned above.The speci�c tasks of the work are:

� to formulate estimation tasks from theoretical point of view,
� to elaborate the algorithms for estimation of various physical, medical and dosimetric quan-tities used in the �eld of radio-diagnosis/therapy of thyroid gland diseases,
� to test their numerical precision,
� to test their numerical stability on a large set of real clinical data,
� to implement these algorithms on the level applicable under routine conditions at the KNMand to substitute them for the methods of data processing used there so far,
� to explore and test the improvement of quality of the estimates,
� according to the estimation results, to propose hints where improvements of data measure-ment methodology is necessary.

2.2 Means and Tools Used for the Work
The main theoretical tool to be used is the Bayesian methodology.By using the Bayesian methodology, estimation of radiohygienic and other quantities should beimproved in the sense of physical meaning (physically meaningless estimates avoided) and precisionof the results (more information involved in the estimation process), compared to the deterministicestimation (see part 1.3.2, page 18) used so far.

25



26 CHAPTER 2. THE WORK | AIMS AND MEANS
Furthermore, the \improved" values of the estimated quantities can be processed statistically.Results of this processing could indicate ways of �ner individualization of therapeutic activitysupplied to patients.Speci�cally, a complex and interdisciplinary area is encountered where the blend of tools andsubtasks is dealt with. Particularly, it is:� modelling and identi�cation,� numerical algorithms,� software and programming,� dosimetry and radiation protection,� databases and data management,� data analysis.
General numerical methods and principles are adopted and tailored to the speci�c problems.



Chapter 3
Dosimetry and Biophysics
In this chapter, de�nitions of selected dosimetrical and biophysical quantities (e.g. [27]) are for-mulated and collected.
3.1 Activity
Activity is a physical unit describing quantitatively a physical phenomenon radioactivity.
Radioactive decay. If we have a sample of atoms with unstable (radioactive) nuclei, thenradioactive change (decay) takes e�ect. Each decay results in change of the nucleus structureand consequent emission of one or more ionizing particles.Consider a sample of atoms with N (t) radioactive nuclei in time t. Due to the radioactivity,the number N (t) of radioactive (undecayed) nuclei decreases in time. Therefore the number ofundecayed nuclei in time t +�t is

N (t +�t) = N (t)��N (t;�t); (3.1)where �N (t;�t) � 0 is number of nuclei that decayed within the time interval ht; t +�ti. Valueof �t is chosen small.As the radioactive decay is a random process, �N (t;�t) is a discrete random quantity. HenceN (t + �t) is also a random quantity. Denoting a mean value EN (�) � N (�), the equation (3.1)can be written for these mean values as N (t + �t) = N (t) � �N (t;�t). These mean values arefunctions continuous in time.If we assume mutual independence of nuclear decays, we can state that the decrease of theundecayed atoms is proportional to their number, i.e. dN (t) = ��N (t)dt. Hence N (t) evolves like
N (t) = N0 � e��t; (3.2)where N0 = N (t0) is the initial number of the nuclei in time t0.The coe�cient � > 0 is called decay constant and it is speci�c for each nuclide (element withthe particular nucleus structure).

Activity. The activity A(t) of a radioactive sample is de�ned as
A(t) = � dN (t)dt ; (3.3)

which is a mean number of radioactive changes in a time unit. Then the equation (3.2) can bewritten as A(t) = A0 � e��t; (3.4)where A0 is an initial activity in time t0.
27
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Another possible expression for activity is A(t) = �N (t).The physical unit of the activity is Bq ( becquerel ), which is a mean number of nuclear changesper one second.

(Physical) half-life Tp of the given nuclide is a time interval in which one half of the radioactivenuclei in the sample takes a change. The half-life is related to the decay constant � by
Tp = ln 2� : (3.5)The physical half-life is always positive.

Decay law. Introducing the physical half-life (3.5) into the equation (3.4) we get
A(t) = A0 � exp�� tTp ln 2

� ; (3.6)
which is called decay law.
3.2 E�ective Half-lifeIf some portion of a radioactive element is incorporated into a human body, the element is elimi-nated by natural mechanisms and its amount decreases in time. In this way the activity containedin the body decreases. Furthermore, the element decays according to the decay law (3.6). Thenthere are two mechanisms of the activity decrease: biological and physical.The e�ective half-life Tef of the given element in the body is a time interval, in which theactivity in the body decreases to one half due to the both biological and physical mechanisms. Forthe e�ective half-life, the inequality is valid0 < Tef � Tp; (3.7)where Tp is a physical half-life (3.5).Time dependence of activity in this case is modelled by various ways. The most common andsimple way, used also in this thesis, is the exponential decrease

A(t) = A0 � exp�� tTef ln 2
� : (3.8)

The e�ective half-life is of the key importance for estimation of some radio-hygienic quantities (seesections 3.10, page 30, etc.).
3.3 Relative ActivityRelative activity Ar(t) is the instantaneous activity A(t) inside the patient's body or eliminatedfrom his body, divided by the applied activity A0 corrected to a physical decay and multiplied by100%, i.e. Ar(t) = AR(t) � 100%;where AR(t) = A(t)A0 exp �� tTp ln 2� :
3.4 SignalThe signal is a count of particles of ionizing radiation emitted by a radioactive source of interestand detected by the detector. Signal is measured within some �xed time interval. It reects activityof the radioactive source. Signal will be usually denoted by s.
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3.5 Background
During the signal measurement, there are usually more radiation sources than the one of ourinterest. These sources are mostly cosmic radiation, natural radioactivity and eventually somerandom local radioactive pollution. These \additional" sources produce disturbing signal thatusually cannot be removed. Signal from such sources is called radiation background and it isusually denoted by b.
3.6 Calibration Coe�cient
Direct measurement of activity is usually impossible, therefore two signals must be compared: onefrom a source of a known (standard) activity and another of the unknown (measured) activity.The coe�cient relating the signal magnitude to the activity is called calibration coe�cient anddenoted by c. It is de�ned as s = cA; (3.9)where s is the signal corresponding to the activity A. The calibration coe�cient reects thegeometrical arrangement of the measurement, e�ciency of the detection, time interval duringwhich the measurement was performed etc.The standard source should be of the same (or at least similar) kind as the measured oneaccording to kind of radiation, the number of particles emitted after one radioactive change, energyof the emitted particles etc.
3.7 Excretions
\Excretions" are called relative activities Er1 and Er2 eliminated by urine in time intervalshtapl; tapl + 24hi and htapl + 24h; tapl + 48hi, respectively, and related to the applied activitydecreased by radioactive decay in time instants tapl+24h or tapl+48h, respectively. tapl meanstime when the radioactive element was applied to the patient (application time). Mathematicalde�nition can be written as

Eri = Ai�1;iAapl exp�� ti�taplTp ln 2� � 100%; i = 1; 2; (3.10)
where Ai�1;i means activity outside the body that was eliminated between ti�1 and ti, measured(hypothetically) in time ti, Aapl is applied activity, Tp is physical half-life. If the calibrationmeasurement is denoted by the subscript 0, then usually t0 � tapl, t1 � tapl + 24 hours andt2 � tapl + 48 hours.These values are important for an estimation of a speci�c irradiation of blood (see the section3.11, page 30).
3.8 Dose
Dose is an energy of ionizing radiation absorbed by a unit mass of a body tissue. It is a measureof radiation e�ects on tissue. Its unit is Jkg �1 = Gy (gray).
3.9 Radio-hygienic Limits
There are two kinds of radio-hygienic limits that must be respected: dose limits to protect thepatient and activity limits to protect the patient's neighbourhood.The dose limits are addressed in the parts 3.10 and 3.10 below together with the quantitiesde�nitions.
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To formulate activity limits, a patient with some activity inside his body is viewed as a source ofionizing radiation. To keep radio-hygienic safety rules and protect other people from this radiation,there are several activity limits that determine the patient's daily life at the KNM .If the activity is (see [11])

higher than 74MBq, the patient's urine is stored in a special safety container, the patient hasa special distinguished pyjamas and he is separated in a single-bed shielded room withoutpermission to leave it even within the territory of the KNM ,
between 74MBq and 37MBq, the patient gets ordinary pyjamas, he is permitted to leave theshielded room and to move within the territory of the KNM ,
between 37MBq and 7,4MBq, the patient's urine need not be separated,
less than 7,4MBq, the patient can be released from the KNM .
Due to the treatment organization, it is important to predict when the given limits will be reachedby the patient.
3.10 Speci�c Irradiation of Thyroid Gland
Speci�c irradiation of thyroid gland SI th is a dose absorbed in the thyroid gland. According toMarinelli's method ([21], [36]), the formula related to 100mCi (i.e. 3,7GBq) of applied 131I is

SI th = 139 ArmaxH Tef ; (3.11)
where Armax is maximum relative activity of the thyroid gland [%], H is thyroid gland mass [g]and Tef is e�ective half-life [days]. Unit of SI th is Gy (=J/kg).To obtain its absolute value, the formula must be multipled by the fraction 3 700MBq/ Aapl [MBq].Required dose to destroy thyroid gland tumor is 1 200Gy [28].
3.11 Speci�c Irradiation of Blood
The maximum speci�c irradiation of blood SIKmax is an upper estimate of a dose absorbed byblood. There is distinguished anorganic fraction SIKan;max caused by iodine in anorganic chemicalform and organic fraction SIKorg;max caused by iodine in form of thyroxine

SIKmax = SIKan;max + SIKorg;max ;
where SIKan;max = 160 [Er1 + Er2] = M;SIKorg;max = 13,9 [100�Er1�Ar1] Tef : (3.12)
Er1, Er2 are excretions [%] (see 3.7), M is the patient's mass [kg], Ar1 is relative activity in thyroidgland 24 hours after application [%] and Tef is e�ective half-life [days] (see part 3.2). The unit ofSIKmax is mGy (=mJ/kg).Anorganic fraction of irradiation is more dangerous for blood.The formula (3.12) (according to [36]) is related again to 100mCi (i.e. 3,7GBq) of ap-plied activity. To obtain its absolute value, the formula must be multipled by the fraction3 700MBq/Aapl [MBq].The anorganic fraction must not exceed 1Gy and the total irradiation of blood must be lessthan 4Gy to avoid damage of blood and bone marrow [11].
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3.12 Dose Estimation | the MIRD MethodThe MIRD method (Medical Internal Radiation Dose) has been developed for about 25 years [37],[38]. Aim of this method is to �nd out a dose to an organ if the activity of this and/or other organsis known.If we denote target items by subscript t and source items by s, then a mean dose �Dt in a targetorgan from one or several source organs is ( Aapl means applied activity)�Dt = Aapl Xs �s Ss!t:

Quantity �s is called residence time of activity in source organ and it is de�ned as
�s =

R�t As(t)dtAapl ;
where �t is a time interval within which the dose is evaluated and As(t) is the instantaneousactivity of the source organ in time t.Quantity Ss!t is called S-factor and reects the radiation inuence of the target organ by thegiven source organ and the radionuclide of use. Sets of S-factors are published for various radionu-clides, combinations of source/target organs and body geometries (male/female, age etc.). Theimprovement of S-factors measurement methodologies and techniques still proceeds [35]. However,only point estimates of S-factors are available.For example, value of S for thyroid gland as both source and target organ for an adult male is5,64mGy/(MBq hour), value of S for thyroid gland as source organ and bone marrow as a targetfor an adult male is 8,5 �10�3mGy/(MBq hour). These S-factors are designed for the standardthyroid gland mass 20,7 g. To express a dose for a thyroid gland of mass H, the equation (3.12)must be multiplied by the fraction 20,7 g/H[g].



32 CHAPTER 3. DOSIMETRY AND BIOPHYSICS



Chapter 4
Tools Used for the Solutions
4.1 Particular Bayesian Tools
Choice of Bayesian methodics is determined especially by the following reasons:

� it combines in a consistent way all accessible information sources, speci�cally theoreticaldescription of the given system, measured data and expert knowledge and experience,
� it does not rely on an asymptotic behaviour of estimates,
� it yields the information about uncertainty of the estimate.The following part is only introductory and describes the basic terms, statements and relationsused as a tool. Further information can be found e.g. in [29].Consider a system characterized by a parameter #. Let D be a symbol for measurable quantitiesof the system. Let f be either probability density function ( pdf | in continuous case) or probability(in discrete case), according to the given situation. Argument of this function will indicate therandom quantity in question. The variable, random quantity and its value will have the samenotation, as usual.

4.1.1 Bayes RuleLet f(D;#) be a joint pdf of the data D and the parameter #. Let f(Dj#) be the pdf of the dataD conditioned by the parameter #. Then
f(D;#) = f(Dj#)f(#); (4.1)

where f(#) is a marginal pdf of the parameter #. The marginal pdf f(D) of the joint pdf f(D;#)can be obtained by
f(D) = Z f(D;#) d#: (4.2)

Combining these two relations, we obtain the Bayes rule
f(#jD) = f(Dj#)f(#)R f(Dj#)f(#) d# / f(Dj#)f(#); (4.3)

where the symbol / denotes a proportionality by a term independent of #.The function f(Dj#) is called the parametrized model of the system, f(#) is the prior pdf ofthe parameter # and the function f(#jD) is the posterior pdf of the parameter #. The posteriorpdf is the generalized Bayesian estimate of the parameter # conditioned on the data and using allthe accessible information, including the expert knowledge | prior information.
33
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4.1.2 Chain RuleIf we deal with a sequence of n (� 1) data D � D(::n) � (D1; : : : ; Dn), the equation (4.1), page 33,can be extended as the chain rule

f(D(::n); #) = nY
i=1 f(DijD(::i� 1); #)f(#); (4.4)

where f( � jD(::0); #) � f( � j#) represents conditioning by the parameter and prior informationonly.
4.1.3 Likelihood FunctionThe chain rule (4.4) can be written as

f(D(::n); #) = L(D;#)f(#);where the function L(D;#) = nY
i=1 f(DijD(::i� 1); #)

is called likelihood function . In contrast to the product of pdfs, where D means a random variableand # is given, the likelihood function is considered as a function of the parameter # while thedata D have the given (e.g. measured) speci�c values and they are �xed. The Bayes rule then hasa form f(#jD) = L(D;#)f(#)R L(D;#)f(#) d# / L(D;#)f(#): (4.5)
The likelihood function can be multiplied by any non-zero coe�cient independent of # withoutinuencing the posterior pdf .
4.1.4 Conjugated Systems of Prior pdfsLet P be a set of prior pdfs f(#) and let f(Dj#) be a parametrized model. Assume that

0 < Z nY
i=1 f(Dij#)f(#) d# < +1:

If the posterior pdf f(#jD(::n)), obtained from the Bayes rule (4.3), belongs to the set P (i.e. itis of the same kind as the prior pdf), then the elements in P are called conjugated pdfs with respectto the parametrized model f(Dj#).In this case, the prior pdf is also called self-reproducing pdf . For practical purposes the systemP is chosen narrow to simplify the estimation.Examples of some conjugated prior pdfs:prior parametrized modelgamma Poissonnormal normal, known variancelog-normal log-normal, known varianceMore can be found in [2].
4.1.5 Fictitious DataIn a conjugated system of prior pdfs, the posterior pdf has the same form as the prior one. Thedi�erence is that the posterior pdf depends on the data which \adjust" its parameters, in contrastto the prior pdf that contains no data (yet). We would like to adjust the parameters of prior pdfof the conjugated system so that it contains the prior information on #.
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One of the ways is to introduce so called �ctitious data Df . These \data" are not reallymeasured, but potentially observable. The prior pdf f(#) is then conditioned by those �ctitiousdata, i.e. f(#) � f(#jDf ), as the posterior pdf is conditioned by the real data.The Bayes rule can be applied for estimation of the prior pdf using the �ctitious data. Formallyin the same way as (4.5) we can get

f(#) � f(#jDf ) / L(Df ;#)fu(#) / L(Df ;#);where fu(#) is a at (often uniform) pdf. Hence we can say that in conjugated systems, the priorpdf is proportional to the likelihood of the �ctitious data.As �ctitious, some data of an imaginative, similar or previously performed experiment can beused.Of course, if we are able to determine the prior pdf parameters more or less directly withoutderiving them from �ctitious data, the mentioned procedure can be skipped. But the term �ctitiousdata can be still used.
4.1.6 Su�cient Statistics and Conjugated pdfsStatistics S(D) is called a measurable vector function S � (S1; :::; Sm) of data D � (D1; :::; Dn).Finite statistics is such a function S, dimension m of which is �nite and does not increase withincreasing n. For example, arithmetic mean S = 1nPni=1Di is the �nite statistics, whereas themapping S = D is not.Su�cient statistics: Let g(s; #) and h(D) be non-negative functions. If a joint pdf f(D;#) canbe written as f(D;#) = h(D) g(S(D); #); (4.6)the statistics S is called su�cient. Substituting (4.6) into (4.3), we get formally

f(#jD) / f(Dj#) f(#) = f(D;#)f(#) f(#) = h(D) g(S(D); #) / g(S(D); #):
All the information necessary for estimation of #, contained in the data, is carried by the su�cientstatistics.It can be shown that if �nite su�cient statistics exists, then adequately narrow system ofconjugated pdfs exists, too [2]. The prior pdf then has a form f(#) / g(S(Df ); #), where Df arethe �ctitious data (see part 4.1.5). The posterior pdf is obtained by the change of the statisticsf(#jD(::n)) / g(S(Df ; D(::n)); #).
4.1.7 Symmetric Con�dence IntervalsCon�dence interval hxl; xui is a form of interval estimate of an uncertain quantity. Let f(x) bepdf of a real scalar quantity x. In case of symmetric con�dence interval , its bounds xl and xu arede�ned as follows: xlZ

�1 f(x) dx = +1Z
xu f(x) dx = �2 : (4.7)

Hence xuZ
xl f(x) dx = 1 � �:

The interval hxl; xui then determines a range of the unknown value with the probability 1 � �. Ifwe introduce
x̂ = xu + xl2 ; �x = xu � xl2 ;
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the interval estimate of x can be written as

x = x̂� �x; (4.8)that is appealing even for non-statisticians.The value of � is usually chosen as 0,1 or 0,05 etc.
4.2 Properties of the Used Probability Density FunctionsIn several tasks, the logarithmic-normal pdf and Poisson probability distribution are used. Thissection describes some general properties of these functions from a point of view of the Bayesianestimation.
4.2.1 Logarithmic-normal pdfThis pdf represents a random quantity, logarithm of which has normal pdf Nz(�z ; r). If newvariable x and parameter � are introduced, where z = ln x and �z = ln�, then x has logarithmic-normal pdf f(xj#) = Lx(�; r) � 1xp2�r � e� (ln x� )2=(2r) (4.9)
with parameter # = (�; r).Moments of this pdf are de�ned as follows:

Ex � +1Z
0 x Lx(�; r)dx = �er=2

var x � E[(x� Ex)2] = �2er(er � 1):The ratio of standard deviation and mean value is independent of �
! = pvar xE x = per � 1: (4.10)

Let us assume:1. the data xi, i = 1; :::; n are positive and independent,2. the pdf of xi, i = 1; :::; n is Lx(�; r),3. r is known,4. � is to be estimated.Likelihood as a function of parameter � with known r and data xi is
L(D;�) = exp�� 12r ��(n)(ln�)2 � 2 ln� ln ~�(n)��

(term Qni=1 1=xi is omitted as it is independent of �). The su�cient statistics is~�(n) = ~�(n � 1) xn; ~�(0) = 1;�(n) = �(n � 1) + 1; �(0) = 0:As the likelihood is proportional to the logarithmic-normal pdf, if the term 1=� is omitted, theself-reproducing prior pdf is chosen as
f(�) / 1� exp�� 12r ��0(ln�)2 � 2 ln� ln ~�0�� / L� � �0p~�0; r�0

� ;
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where initial values ~�0, �0 corresponding to �ctitious data are positive.Posterior pdf is L�(�̂(n); r=�(n)), where

�̂(n) = �(n)p~�(n)
is a geometric mean of the data.Moments of the posterior pdf are

E[�jx(::n); r] = ~�(n) er=(2�(n)); var [�jx(::n); r] = ~�(n)2 er=�(n) (er=�(n) � 1): (4.11)
Initial conditions for the statistics ~�(0) = ~�0 > 0 and �(0) = �0 > 0 guarantee properness of thechosen prior pdf.
4.2.2 Poisson Probability Function and Gamma-pdfPoisson probability function is a parametrized model with which the gamma- pdf is conjugated.
Poisson probability function. Poisson probability function is a distribution of a nonnegativeinteger random variable x with a univariate parameter # > 0. The form of the Poisson function is

f(xj#) = P#(x) � #xx! e�# = #x�(x+ 1) e�#; x 2 f0; 1; 2; :::g:
The used Euler gamma-function is

�(x) = +1Z
0 tx�1 e�t dt; �(x+ 1) = x�(x); x > 0: (4.12)

Moments: Ex = var x = #:The data fxigni=1 are integer, positive and independent.
Likelihood has the form L(D;#) = #~xn e�#�(n);where the su�cient statistics are~x(n) = ~x(n � 1) + xn; ~x(0) = 0;�(n) = �(n � 1) + 1; �(0) = 0:
Self-reproducing prior pdf:

f(#) = �~x0+10�(~x0 + 1) #~x0 e�#�0 � G#(~x0; �0);
where ~x0 � 0; �0 > 0;is called gamma-pdf G#(~x0; �0).
Posterior pdf is then G#(~x(n); �(n)) and its moments are

E[#jx(::n)] = ~x(n) + 1�(n) ; var [#jx(::n)] = ~x(n) + 1�(n)2 = E[#jx(::n)]�(n) : (4.13)
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4.3 General Numerical Algorithms
One of the drawbacks of the Bayesian computations is numerical di�culty in practical applications.Therefore various numerical techniques were used, focused on relevance, numerical stability andreliability. Majority of the methods mentioned here concern univariate real functions.Some general or special methods are mentioned here. These methods are usually simple. Inthe �nal applications, they are mostly combined together or modi�ed as required.
4.3.1 Extreme and Root SearchingThe procedures discussed here are used often for searching both the root and extreme, dependingon accessibility of the pdf 's derivatives (see part 5.2.1, page 50). In case of univariate pdf s equippedwith �rst derivative, the extreme searching is in some conditions equivalent to searching the rootof �rst derivative.
Bracketting.Before starting to search for the extreme (or root respectively) x0 of univariate function, we shouldknow the approximate position of this point. The reason is that the methods used here need an\initial guess" xinit where the searching is started. For some methods, xinit must be \close enough"to x0, for other there must be known some interval in which x0 can be surely found, otherwise themethod need not converge.Bracketting is a procedure that yields some xlow and xhigh for which is valid xlow < x0 < xhigh.Values of xlow and xhigh can but need not ful�ll some criterion. Usually xinit 2 hxlow ; xhighi.The bracketting is used in these cases:

� Root searching when no derivatives are available. Two \guess" points close to the supposedroot are supplied. These points are adjusted so that the function values in these points havethe opposite signs.
� Root searching when �rst derivative is available. Two points are found as described in theprevious item. Then these points are trimmed so that the opposite signs of the functionvalues remain and relative di�erence of the �rst derivatives in these points is below requestedlimit.
� Extreme searching of univariate function when no derivative is available. Two \guess" pointsclose to the supposed minimum (resp. maximum) are supplied. These points are adjusted sothat the third one between them gives the minimum (resp. maximum) value. The parabolicextrapolation and the Golden section method are used ([30]).

Simplex method.This method [26] is a general local extreme searching method, suitable for n-variate cases. It doesnot require derivatives and it is mostly less sensitive to the initial guess xinit than other methodsmentioned below. The disadvantage is that for each step it requires at least two function evaluations(in the \worst" case, typically in the end of searching, up to n evaluations) and searching is lesse�ective with increasing n.For the searching a simplex is used, that is an n-dimensional object with n + 1 vertices (e.g.for two-variate function it is a triangle, for three-variate a tetraeder etc.). The simplex is placedaround the point xinit. Following some strategy, the simplex \crawls" towards the nearest localextreme, i.e. changes its geometry and position. Its vertices are projected, expanded or contractedaccording to their function values. The search is terminated when di�erences between the verticesdo not exceed some chosen small value.It was shown that this algorithm in some situation performs convergence to a non-stationarypoint by repeated contraction [23]. However, there exist modi�cations of the simplex method [33],[40].



4.3. GENERAL NUMERICAL ALGORITHMS 39
Convergence order of iteration methods.Let fxig+1i=1 be a sequence of i-th result of an iteration method where limi!+i1xi = �. Denote�i = xi � �. Then convergence order of the iteration method in point � is called such minimumreal p � 1 for which holds

limi!+1 jxi+1 � �jjxi � �jp = limi!+1 j�i+1jj�ijp = C 6� 0:
C is called asymptotic constant of error [31].The higher p is, the faster the method converges.
Newton-Raphson method.This is a method for root searching in case of univariate functions. If xi is the i-th iteration of thesearch, f(xi) the function value, f 0(xi) its derivative and r is multiplicity of the root, then

xi+1 = xi � r f(xi)f 0(xi) :Convergence order of this method is 2. Nevertheless, the initial guess xinit must be bracket-ted closely enough, otherwise the method can even diverge. Furthermore, the �rst derivarive isrequired.For each step, one function and one derivative evaluation is necessary.
Bisection method.This \classical" method is also used for cases if the univariate function changes its sign in theneighbourhood of the root. The initial guess is interval with limits of opposite signs. In eachiteration, this interval is halved and that half with opposite limits is chosen as a new interval.Convergence order of this method is 1.This method converges slowlier than the Newton-Raphson method, but it does not requirederivatives and close bracketting. For each step, one function evaluation is necessary.
4.3.2 1D-integrationThe univariate integration methods used here are based on the closed Newton-Cotes formulae ofn-th order. The integration interval of function f(x) is divided to n subintervals of the same lengthseparated by n + 1 equidistant points xi, i = 0; : : : ; n. On these points a Lagrange interpolationpolynome Ln(x) of degree n Ln(x) = nPi=0 f(xi) li(x);

li(x) =
nQj=0j 6=i (x�xj)nQj=0j 6=i (xi�xj)

(4.14)

is constructed and analytically integrated. Simple formulae combining the function values f(xi)are derived, including error term. The integrated function must be continuous up to k-th derivativeand the formulae are exact for polynomes up to order k, where k = �2bn2 c + 1� [31].If �ner division of the integration interval is necessary, the integration interval is divided toseveral subintervals (in the sense mentioned above) of the same length and the formula is used foreach such subinterval. The overall formula is called composed Newton-Cotes formula .
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Simpson rule.This method is the Newton-Cotes method of second order. In this work it is used generally whenthe size of the integration step is known or given. The formula and its error term estimation ismentioned here.Let f be a function continuous up to its 3 rd derivative, h > 0 be integration step. Denote

f0 = f(x0);f1 = f(x0 + h);f2 = f(x0 + 2h):
Then x0+2hZ

x0 f(x)dx = h3 (f0 + 4f1 + f2) + �; (4.15)
where the error term

� = � h590 f (4)(�); x0 � � � x0 + 2h:
Composed Simpson rule for integration interval ha; bi with m subintervals, m even, fk = f(a+kh) and h = b�am is

bZ
a f(x)dx � h3 (f0 + 4f1 + 2f2 + 4f3 + : : :+ 2fm�2 + 4fm�1 + fm) (4.16)

and the error term
� = � (b� a)h4180 f (4)(�); a � � � b: (4.17)

QUANC8.This algorithm, originally written in FORTRAN, uses Newton-Cotes formula of 8-th order and givesthe integral value with required maximum error, supplied either in absolute or relative value, whichmakes it very desirable. Size of the integration step is adaptively changed according to the functioncurvature. Furthermore, the result reliability and eventual problem area is reported [7].As a disadvantage, it requires a function with continuity up to 9 th derivative. Eventual pointsof discontinuity create the mentioned \problem areas", they decrease the result precision anddramatically (by 1{3 orders) delay the program run. But despite that, the algorithm always givessome result with estimation of its precision.Except of \problem" situation mentioned above, the actual precision of the result is usually farabove the required one. It takes more function evaluations than for the required precision.
4.4 Programming and Computing Tools
The algorithms and the programs elaborated as results of this work are part of software calledJodNew for use at the KNM . The software JodNew was originally developed by MS FoxPro 2.x forMS-DOS. Later a version of JodNew for MS-Windows9x/NT was produced using MS Visual Fox-Pro 6.Therefore a question of data communication between JodNew and numerical programs musthave been solved since the beginning. First version of JodNew requested standalone EXE-programsfor MS-DOS that directly performed read/write operations on database �les. Later, because ofdata safety and other reasons, data were transferred between JodNew and numerical programs



4.4. PROGRAMMING AND COMPUTING TOOLS 41
through text �les with one value on the line, ordered in a de�ned way (as FoxPro cannot createand read general binary �les).Recent version of JodNew works under 32-bit MS-Windows. The numerical programs are stillwritten for MS-DOS. As error reporting and exception handling mechanisms are not compatiblewith MS-Windows programming style, it will require a portion of programming work to put it inthe right way.The desired state of the numerical programs is a DLL-library with exported estimation functions.The following software tools were used:
Programming language: C/C++
Development software: Watcom C++ 10.5
Communication with database (obsolete): Sequiter CodeBase 4.5 library translated by Wat-com C++.
Some data analyses: Statistical package SPSS 8.01 for Windows9x/NT.
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Chapter 5
Solutions of the Numerical Tasks
In this chapter, some speci�c tailoring or combinations of some numerical methods are mentionedand then some programming approaches noticed.
5.1 Some Numerical Tasks
Some speci�c modi�cations and combinations of several methods for particular cases and functionsare outlined here.
5.1.1 Con�dence IntervalIn the applications, 95%-con�dence intervals ( �=0,05, see part 4.1.7, page 35) are computed.If the integral of the pdf (i.e. distribution function), on which the interval is computed, isknown, the task to �nd the interval is not di�cult. But if the integral is not implemented orknown, numerical integration must be used. The general algorithm described in this part (5.1.1)deals with pdfs where the analytical expression of the integral is unknown on it is not usefulpractically.The idea of the algorithm has several parts.
Gaussian approximationAll the univariate pdfs treated in this work are unimodal. To formulate some general rules andcriteria for numerical precision, let us assume that their approximation by a Gaussian pdf is valid.Actually, this assumption of \Gaussian approximation" does not mean that another pdf isreplaced by a normal pdf . It means that some rules for numerical integration (lengths of integrationsteps, points where to stop the integration etc.), designed for the normal pdf , are applied to anotherpdf which is then integrated according to these rules.Obviously, approximation by a normal pdf is invalid for logarithmic-normal pdf in the estima-tion task of thyroid gland mass (see below). This case will be treated in a di�erent way.Let us denote � � Ex and �2 � var x. The Gaussian pdf with these parameters will be denotedNx(�; �2).
Integration algorithmIf a closed form of pdf integral does not exist or if its computation is practically di�cult and timeconsuming, the integration to determine the con�cence interval must be done numerically. Here,the algorithm used for this purpose is described.The main idea of the algorithm is: divide the Gaussian pdf 's domain to segments od length �and apply composed Newton-Cotes formula to each segment. The number of integration steps oneach segment is chosen according to the pdf course and required maximum integration error.

43
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Integration step design. For the numerical integration, the composed Simpson rule (4.16),page 40, was chosen. The error term has the form (4.17).Let the Gaussian pdf domain be divided into segments skl = h� + k�; � + l�i where k and lare integers. Let the variable be transformed to N (0; 1) so that � = 0 and � = 1, then a segmentskl = hk; li.Absolute value of the error term (4.17) for integration of f(x) on a segment sk;l with integrationstep hkl is then

� = (l � k) h4kl180 f (4)(�); k � � � l: (5.1)
If Mkl = maxx2hk;li jf (4)(x)j and number of integration steps mkl = (l � k)=hkl

� � Mkl (l � k) h4kl180 = Mkl (l � k)5180m4kl � �max; (5.2)
where �max is some requested maximum allowed error of integration. Hence, taking into accountthat mkl must be an even number,

mkl � 2 & l � k2 �Mkl l � k180 �max
�1=4' (5.3)

is a relation for minimum number of integration steps mkl of Gaussian pdf on the interval hk; li.Let us now calculate the coe�cients Mkl.For the expression of Nx(0; 1) as f(x) =q 12� exp ��x22 �, the 4th derivative is
f (4)(x) = f(x) �x4 � 6x2 + 3�and the 5th derivative is f (5)(x) = �f(x) x �x4 � 10x2 + 15� :Roots of the 5th derivative are x1 = 0, x2 = p5�p10 and x3 = p5 +p10 (and other twowith the opposite sign). In these points the 4 th derivative reaches some extreme as it is an evenpolynome. Then Mkl for any k and l can be found.If we introduce gkl = (l � k)�Mkl l � k180 �1=4 ; (5.4)

we can write (5.3) as
mkl � 2 &gkl2 � 1�max

�1=4' : (5.5)
The values for several gkl are mentioned in the Table 5.1.

k l gkl0 1 0,285551 2 0,253212 3 0,166743 4 0,164864 5 0,104925 10 0,33331
Table 5.1: Coe�cients gkl (see (5.5))

Several comments:
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1. �max is both absolute and relative error for normalized functions. For non-normalized func-tions g(x), where f(x) = K � g(x) and f(x) is normalized, it is a relative error. In this case,the relation (5.3) must be multiplied by the normalizing constant K (mostly unknown), asf (i)(x) = K � g(i)(x).2. The integration error estimate �max and hence the number of steps mkl is pessimistic. Onereason is inequality in (5.2), another one is adjusting mkl up to an even value. This ensuresthat the result will be of better precision than requested.3. Usual value for �max here is 10�5, so that the total integral over all the segments, number ofwhich is usually about 10, was computed with error less than 10 �4. mkl on one unit-lengthsegment takes value from 2 to 6 (mostly often 4).4. The value g5;10 is rather overestimated, as on a relatively long interval h5; 10i the maximumvalue of the 4th derivative is used. This maximum is reached in point x = 5. For x > 5its value sinks exponentially. Therefore the divisions on the interval h5; 10i will be ratherpessimistic.5. This procedure is cheap as for runtime requirements.

Relation between con�dence interval shift and domain limitation. If pdf has unboundeddomain (like Nx has), the numerical step-by step integration cannot proceed till in�nity. Hencethere is a question where to stop the integration process to �nd the area below the pdf , i.e. howto limit the domain of the pdf to meet some requirements. Error of the area determining due topremature integration stopping will be denoted as �a.Assume that instead of (�1; +1), the interval of integration will be limited to some hx�al ; x�aui.Let us assume that f(x) is normalized. Let R x�al�1 f(x)dx = �al and R +1x�au f(x)dx = �au. Then�a = �al + �au and R x�aux�al f(x)dx = 1 � �a. Denote F (x) = R x�1 f(t)dt. Finally, if \true" �-con�dence interval, obtained by considering the whole domain, is hxl; xui, denote \distorted"con�dence interval, obtained by limiting the domain, as h~xl; ~xui. It is obvious that xl � ~xl and~xu � xu.The task is (i) what �al and �au to choose so that jxl � ~xlj and jxu � ~xuj are kept in somerequested boundaries and (ii) how to correct such shifted points.We start with lower bound. From the de�nitions mentioned above resultsxlZ
�1 f(x)dx � F (xl) = �2 (5.6)

and ~xlRx�al f(x)dx1� �a = F (~xl)� �al1� �a = �2 : (5.7)
As xl is not known, let us expand F (xl) � F (~xl) + f(~xl)(xl � ~xl) assuming that the points xl and~xl are close.Substituting the expansion into (5.6), using (5.7) and considering �a = �al+ �au, we can expressxl as xl � ~xl + 1f(~xl) h�au �2 � �al �1� �2 �i : (5.8)
This is the expression for the lower ( �=2) bound shift.We can repeat these steps for the upper bound. Then similar relation will be found:

xu � ~xu + 1f(~xu) h�au �1� �2 � � �al �2 i : (5.9)
These equations can be used for partial correction of the shift if �al and �au are known.
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If only non-normalized g(x) is available where f(x) = K � g(x) and K is normalizing constant,the formulae (5.8) and (5.9) must be modi�ed. Assume again the Gaussian approximation f(x) =Nx(�; �). If � = xmax is mode of g(x) and � its standard deviation, then K = g(xmax) �p2�.The formulae are then

xl � ~xl + Kg(~xl) h�au �2 � �al �1� �2 �i ; (5.10)
xu � ~xu + Kg(~xu) h�au �1� �2 � � �al �2 i :If we want to estimate �al and �au to keep some maximum allowed shift, the procedure will bethe same except the expansion that will be F (~xl) � F (xl)+f(xl)(~xl�xl). Then we will substitutefor F (~xl) to get rid of ~xl which is now unknown.As Nx(0; 1) is symmetric, we will consider only one tail. Denote � x = jxl � ~xlj = j~xu � xuj,assume f(~xl) = f(~xu) and �al = �au = �a=2.The formula (5.8) modi�ed for xl gives the condition

�a � 2�x f(xl)1� � (5.11)
and the same relation is valid also for the upper bound.If we choose �=0,05, then 1 � �=2 = F (xu), where xu=1,9599 and f(xu)=0,058439. Relation(5.11) then has a form �a � 0; 123�x � �x10 : (5.12)

The shift can be decreased by using the correction formulae (5.10). If the correction is used,the shift limit �x can be chosen higher (e.g. 10�3). If the correction is not used, �x must bechosen lower (e.g. 10�4). According to chosen �x, appropriate �a is found by (5.12). The valueof �a will be needed later.
Half-width searching. The integration algorithm described above requires mean value andvariance of the integrated pdf . If these characteristics are not available, they are substituted bymaximum value (mode) and \half-width".If xmax = argmax f(x) for pdf f(x), then the half-width denoted as l 12 is here de�ned as

l 12 = max�jxmax � xj; f(x) = 12f(xmax)� : (5.13)
The speci�c algorithm for the half-width searching is chosen according to availability of the pdf'sderivatives.
The integration procedure. Following the idea of Gaussian approximation, the normal pdfhas an unbounded domain. Symbol F (x) means integral of f(x) (i.e. distribution function). Theintegration proceeds in these steps:1. Find u = Ex and v = �. If they are not available, �nd u = xmax and v = l 12 .2. Design numbers of integration steps on the pdf 's segments according to the maximum re-quested relative error �max.3. Find K1 by integrating from u up, save the pairs (x; F (x)) in some array.4. Find K2 by integrating from u down, save the pairs (x; F (x)) in another array.5. Add K = K1 + K2, link both the arrays together and �nd the bounds of the interval byinterpolation.
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The question is where to stop the integration from the point u. This question was treatedabove and approximate relation for appropriate �a was derived (see (5.11)).The error of the area determining due to omitting the domain above some chosen upper boundshould not be greater than a required �a=2 on each side. The Table 5.2 shows some points for theGaussian pdf Nx(0; 1). For Nx(0; 1), if the pdf is integrated within the interval h0; x�ai, the error�a x�a F (x�a) F 0(x�a) = f(x�a)10�1 1,282 0,900079 1,754�10�110�2 2,327 0,990017 2,661�10�210�3 3,091 0,999003 3,359�10�310�4 3,719 0,999900 3,959�10�410�5 4,264 0,999990 4,496�10�510�6 4,744 0,999999 5,175�10�6

Table 5.2: Values of Nx(0; 1) with corresponding �aof determining the area is �a=2. Another form of this condition is approximately (see the Table5.2) f(x) � 4 �a2for �a 2 h10�3; 10�5i, as f(x�a) � 4 �a.For general non-normalized K � Nx(�; �2), where K is the integral over all its domain, thecondition for integration from � to some x with �a 2 h10�3; 10�5i takes the form
� 2f(x)K � 4 �a2 i.e. � f(x)K � �a:During the integration, this condition is tested, where K=2 is the result of the numerical integration.If the condition is full�lled, the integration can be stopped at the point x and the relative error ofthe area due to the bounded domain is less than �a2 .This formulation of the condition has an advantage that it does not explicitly contain x�a but�a.

Implementation note. Value �x is passed to the constructor of class SymConfInterv (see part5.2.1, page 50) as the parameter deltaIntervRel . Value of �a is computed in the body of theconstructor using (5.12) and it is stored in a variable epsTolRel. Value of �max (see (5.5)) iscomputed in the body of the constructor using as �a=100 (see 7.1.3, page 74) and it is stored ina variable epsIntRel.
5.1.2 Simplex Termination Test and ConvergenceIn the simplex method [26], roughly described in section 4.3.1, page 38, the extremizing simplexis shifted towards the local extreme and shrunk around it. The important moment is decision oftermination of the search. The original termination test looks like this:Let us consider n-variate function f(x). The simplex has n+1 vertices with n coordinates. Letus denote k-th coordinate of i-th vertex as xik. Let � be a given small number. Then the search isterminated if �2 � 1n n+1X

i=1i 6=j
�f(xi)� f(xj)�2 :

To adapt the test to a scale of an optimization task, the modi�cation was done. If f(xj) = 0, keepthe same test. If f(xj) 6= 0, this test is used:
�2 � 1n (f(xj))2 n+1X

i=1i 6=j
�f(xi)� f(xj)�2 :
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The number � then represents some relative bound of the values di�erence. Value of � is di�erentaccording to the speci�c task, gradient of a function etc., here usually from 10 �4 to 10�10.It is known that this method need not always converge to a local extreme in some family offunctions [23]. It was shown that in case of bi-variate function, the subsets of domain, where thefunction has only up to three derivatives, can be the area of convergence even though the pointsare not stationary. The convergence occurs by repeated contraction of other vertices of the simplextowards the best vertex (in sense of the extreme searching) which is kept �xed in non-stationarypoint. The su�cient condition for elimination of this e�ect is existence of 4 th derivative or higherthat is not identically zero.The bi-variate functions used here in estimation task of e�ective half-life and radio-hygienic lim-its prediction have su�cient number of derivatives, therefore convergence in non-stationary pointshould not occur. Anyway, a change in the algorithm was made to prevent repeated contraction.In the algorithm, if count of subsequent contractions reaches some number (e.g. 10) withthe best (lowest or highest, according to the searching task) vertex unchanged, a new simplex isgenerated on the place of the old one and the search continues.Another hint given in [23] is to replace contraction of one vertex by shrinking all the simplextowards the best vertex after several repeated contractions. This approach was not tried here.
5.1.3 Pseudo-normalizationThe majority of functions that should here play a role of pdf of an estimated parameter is notanalytically integrable, thus they are not normalized. Only a function that is proportional to thepdf is available.Furthermore, these functions usually contain exponents within orders from �1 to �106 andtheir evaluation would easily exceed the range of numbers that a computer is able to operate with,even using a double precision. To evaluate these functions without numerical problems and to keeptheir values in a numerically reasonable range, the pseudo-normalization process is applied.Consider a pdf f(x) = Kg(x), where K > 0 is an unknown normalizing constant and g(x) > 0is not normalized. Assume the form g(x) = exp('(x)), where '(x) is some continuous function.As d ln g(x)dx � d'(x)dx = 1g(x) dg(x)dx ;
then d'(x)dx = 0 () dg(x)dx = 0:Hence both g(x) and '(x) have their local extremes in the same points, as ln x is monotonous.Let us �nd mode xmax where '(x) reaches its maximum (the function g(x) is unimodal). Asg(x) can be multiplied by any term independent of x, we will multiply it by exp(�'(xmax)). Inthis way we obtain the function ~g(x) = e'(x)�'(xmax):The values of the exponent are in interval (�1; 0i. If we choose some minimum exponent qminthat does not cause underow in the operation exp( qmin), we can compare '(x) � '(xmax) withqmin. If the subtraction is less than qmin, the exponential is not evaluated and zero is returned.Otherwise, the exponent is in the range hqmin; 0i and the operation exp( �) can be easily done.The function ~g(x) is then called pseudo-normalized .This procedure can be used also for functions that do not have the explicit form g(x) =exp('(x)) but contain products or exponents and cause problems with their range or evaluation.The form g(x) = exp(ln g(x)) can be adopted and ln( �) can simplify the function evaluation. Thenthe same algorithm can be used.
5.1.4 Domain RestrictionThe pdfs of parameters estimated here have one peak. The width of this peak (variance of thepdf ) is greater or smaller, depending on the estimation task and uncertainty in the data. In some
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cases, this peak can be narrow and pdf values on the majority of its domain are close to zero. Thissituation complicates numerical integration, rough investigation of the pdf 's shape or searchingmaximum. In some situations, the execution time was increased of even numerical failure wasobserved.In the cases discussed here, data of low uncertainty provide narrow peaks. These data also pro-vide a good deterministic estimate that is very close to the pdf 's maximum and can be successfullyused as a starting point for the maximum search to �nd xmax.Then the domain is narrowed to contain only values greater than some number. This numbercan be chosen following the ideas about area error in the section about con�dence interval (5.1.1).In practice, the boundary value was chosen as f(xmax) � 10�7.
5.1.5 Design of the Integration TableThe procedure of con�dence interval determining (see part 5.1.1) cannot be used for logarithmic-normal pdf , i.e. Gaussian approximation cannot be applied for logarithmic-normal pdf . Duringsome numerical experiments that tested validity of integration step design mentioned above, itwas found out that Gauss-based procedure failed on logarithmic-normal pdf unexpected in theneighbourhood of the pdf's maximum. The precision of the integration in this area was by twoorders worse than requested. Therefore it was decided that logarithmic-normal pdf will be treatedin a di�erent way.The pdf has two parameters � and r (see (4.9), page 36) and transformation between randomquantity x with parameters �x, rx and quantity y with parameters �y, ry can be easily done bythe formula � x�x

�p1=rx = � y�y
�p1=ry : (5.14)

The table of integrals of f(x) from 0 to xi (table of distribution function F (x)) was designed for� = r = 1.The idea was: construct the table with non-constant distance of adjacent points so that errorof quadratic interpolation is less than some chosen value.Interpolation of function f(x) by Lagrange polynome of 2nd order L2(x) (see (4.14), page 39)given by points x0 < x1 < x2 is
L2(x) = (x� x1)(x� x2)(x0 � x1)(x0 � x2)f(x0) + (x� x0)(x� x2)(x1 � x0)(x1 � x2)f(x1) + (x� x0)(x� x1)(x2 � x0)(x2 � x1)f(x2): (5.15)

Error term for this interpolation is
�(x) = (x� x0)(x� x1)(x� x2) f 000(�(x))6 ; (5.16)

where � is some number in hx0; x2i dependent on x. Introducing usual \pessimistic" �max, we canwrite (5.16) as
�(x) � maxx2hx0;x2i j(x� x0)(x� x1)(x� x2)j � 16 maxx2hx0;x2i jf 000(�(x))j � �max: (5.17)

Let us denote p(x) = j(x� x0)(x� x1)(x� x2)j and assume equidistant points x0 = 0, x1 = hand x2 = 2h. Then points xmax, where p(x) reaches its maximum, and p(xmax) are
xmax1;2 = h 1� p33

! ;
p(xmax) = h3 2p39 :

The 3rd derivative of logarithmic-normal pdf f(x) ((4.9), page 36) is
f 000(x) = f(x)x3

�3r �2 + 1r ln x��� �1 + 1r ln x���2 + 1r ln x���3 + 1r ln x��� : (5.18)
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Let us denote �(x) = maxx2hx0;x2i jf 000(�(x))j and � = max(jf 000(x0)j; jf 000(x1)j; jf 000(x2)j). Let usassume that h is small, so �(x) � �. Considering this and rearranging (5.17), we will get formulafor table step h h � �9p3 �max� �1=3 : (5.19)The algorithm of the table construction is outlined below:1. x0 = x1 = x2 = 02. repeat while 0 � x � 703. x0 = x2, � = f 000(x0), compute h using (5.19)4. x1 = x0 + h, x2 = x0 + 2h5. � = max(jf 000(x0)j; jf 000(x1)j; jf 000(x2)j) using (5.18), compute � using (5.17)6. if � > �max, decrease h (e.g. multiply by 23 ) and go to 47. compute integrals from 0 to x1 (F (x1)) and from 0 to x2 (F (x1)), save the pairs (x1; F (x1))and (x2; F (x2)) and go to 2.If we want to �nd F (x0) with general parameters �, r using this table, we must �rst transformthe variable x0 to the variable x with the parameters � = r = 1 according to (5.14). Then we �ndin the table some adjacent points x0 < x1 < x2, where x 2 hx0; x2i. Then we use formula (5.15)for interpolation.The table for quadratic interpolation for x from 0 to 70 has about 80 pairs of (x; F (x)) forrequested �max = 10�4. If the table is constructed for linear interpolation with L1(x), it has abouttwice as many pairs.

5.2 Programming Approach
5.2.1 Numerical ObjectsTheoretical analysis of the problems and derivation of Bayesian estimates of the desired quantitiesprovides relatively complicated formulae. Theory gives origin to various functions with di�erentproperties: some are analytically integrable or di�erentiable, some not (at least practically), someare easily computable, some not, some can easily yield mean value, variance, maximum value etc.,some not. Some estimates are expressed by pdf s (the integral over their variable(s) is equal one),in some cases only functions proportional to the pdf are easily computable.
Development of numerical programsTesting numerical properties of the formulae and methods to use can be done in several ways:� Using some numerically oriented software, e.g. Matlab. Such a software provides a lot ofuseful tools and enables a comfortable work with them. One can focus on numerical tasksand algorithms without paying much attention to questions of programming. Unfortunately,without special accessories the results obtained by this software are not portable to otherplatform. In the beginning of this project, the target platform of the application JodNew was16-bit DOS. The tools that are available now (Matlab Compiler, Matlab run-time libraries orABET [25]) do not support this platform and were not available when this project started.� Using some standard programming and application building tools like C or C++. Using thislanguage, standard mathematical functions (or some basic mathematical classes) are avail-able. Target application can be easily built practically for any platform, but the developmentprocess and numerical experiments can be very time and energy consuming. Programmingalso requires some \culture" to avoid mistakes that can be easily overlooked, especially incase of complex task. Both programming and numerics are tightly bound together.
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� Using speci�c class support for object-oriented language to represent speci�c objects (func-tion, algorithms. . . ) appearing in the work. Such a class library was not available when theproject started.In the beginning, C++ development environment was available. A class library was developed thatyielded some comfort with numerical work and made possible to create the application on the givenplatform. Object-oriented methodology enables to separate numerical tasks and programming, itsolves technical questions of compatibility, speci�c behaviour of functions or algorithms etc.

The main ideaThe main idea follows one of the object property: uniformity due to the inheritance. Each classis designed so that its object has uniform interface in communication with other objects despiteits internal structure and means it uses. All the variables and/or data structures necessary forthe object are encapsulated inside and their construction and destruction is done in the right way.Any name or memory conicts between two objects are avoided. Important object's variables areprotected by denied access from outside. The validity of parmeters used for the object constructionis tested.Object-oriented design separates the work into two steps: (i) implement the function or algo-rithm (design the class), (ii) create the object and use it.Although object-oriented program performs lower speed and higher memory requirements com-pared to \classical structure-oriented" program, the computational power available now makes thedi�erence negligible for the class of tasks solved here. The advantages it brings override the lossof milliseconds and kilobytes due to using this technique.
ClassesThe most important classes are shown on the scheme on Fig. 5.1. The arrow means the inherited
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class, the inheritance ow is oriented from upper classes to lower classes.The class NBase is the base class for all classes dealing with numerics. It collects mechanismof exception handling, in practice mechanism of error handling (e.g. invalid value of parameter,unsatisfactory result of the solution etc.).The class Object implements properties of ownership (object is \owned" by another object),locking/unlocking (object is \locked" by an object and cannot be modi�ed by other objects) andevent handling mechanism, that was not used here.
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The class Group is Object that can contain (own) other Objects.The class Point represents n-dimensional point with some vector operations (addition, multi-plication by a scalar), equality and assignment operators etc.The class SNode is a node (vertex) owned by Simplex. It has some extended properties com-pared to Point, e.g. it contains also function value etc.The class Simplex can �nd local extreme of n-dimensional Function using the simplex method.It is a container of vertices ( SNode).The class Operation is just the successor of NBase and Object.The classes Bracket, SymConfInterv etc. represent implementation of various numerical tasks(bracket the root/extreme, �nd a symmetric con�dence interval for 1-dimensional Pdf etc). Theychoose the procedure according to the \equipment" (available derivatives etc.) of the Functionthey are operating on.The class Function covers the basic properties of n-dimensional functions. In carries informa-tion about its domain, contains the list of singular points and supplies its value if possible (e.g.singular point of the function (sin x)=x is x = 0, in this case the value 1 is returned), contains ad-ditional \equipment" (derivatives or integral if available, despite they are evaluated using formula,table, communication with other Functions or other ways) and gives information about it. It hasa uniform interface.The class Pdf represents pdf . The features added to Function are normalizing constant, meanvalue, variance and mode, if available.The classes Pdf thm, Pdf sig etc. implement the Bayesian estimates described in the Chapter 6,page 55. Their properties will be described there.

5.2.2 Communication with DatabaseThe estimates computed by the numerical programs developed here are stored in database �lesfor further use. The data (often up to 40{50 numbers, their number is not �xed) are also storedin database �les. The communication between the database system and numerical programs isnecessary.In the previous version of JodNew designed completely for MS-DOS, the numerical programsperformed a direct read/write access to database �les. As a command line parameter, a database�le was sent that contained information from which �le and from which record the given valueshould be read and to which �le and record the results should be written. For this access, thelibrary Sequiter CodeBase 4.5 was used.This way of communication had some disadvantages. Firstly, before calling the numericalprograms, all the �les in the database had to be closed and the FoxPro environment suspended.Then the numerical program opened the �les of need, found the data, computed the result, storedit in the �le and closed all the �les. After that, FoxPro environment had to be resumed and allthe necessary �les opened. This occured delaying in practice. Also direct acces to the databasebrought a risk of corruption its integrity.The next version of JodNew was written for 32-bit MS-Windows, although the numerical pro-grams were still in MS-DOS. The new version of MS-FoxPro \upgraded" the format of database�les, so they were not legible anymore by the \old" library CodeBase. The intended form of thenumerical programs was a DLL-library of functions which would take parameters and return values.As some serious programming modi�cations of the numerical programs should have been done, theintermediate stage of data communication through �les was chosen.Unfortunately, MS-Visual FoxPro cannot create or read a general binary �le, only data �le ortext �le. Thus the input data are read from data �les, converted into strings and written to thetext �le. This �le is read by a numerical program, strings converted to binaries and passed to thealgorithms. Results are converted to strings, written to the �le. This �le is read by FoxPro, stringsconverted to binaries and stored in data �les.This procedure is faster, because only one �le is opened and closed and no environment issuspended and resumed. Also database cannot be a�ected from outside. The greatest advantage is
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that data can be easily checked by simple viewing the text �le. The �les can be also easily createdwhich is important in the debugging phase.The work on DLL-library is in progress, but it is not well accepted by the rest of the develop-ment team, as any change creates only errors and problems. In this situation, it seems that thecommunication through text �les will be kept. One reason was already mentioned. Another reasonis that MS-FoxPro does not yield programming tools to control data types of memory variablesand therefore binary format of a number in memory is unde�ned for the user. Decision of variabletype is made by FoxPro during the run time and type compatibility between data �les and memoryvariables makes communication through binary representation risky and dangerous. Furthermore,structured data types created by FoxPro appear to be incompatible with those in C++.Strings seem to be the only really safe way of transfer, but not absolutely. MS-Windows enableto de�ne the decimal separator. If it is not a dot ('.') but comma (','), standard conversionC-functions omit anything behind it. Therefore the decimal separator must be set in FoxPro asdot.
5.2.3 Software ImplementationThe numerical programs are copied in a separate directory. They are called from FoxPro by a batch�le that passes them the name of the text �le containing input data. After �nishing the run, thebatch �le chcecks the status of ERRORLEVEL variable. In case of error, the data are saved. Thetext �le with the data is appended to a speci�c �le according to the ERRORLEVEL value. In thisway, data causing problems are stored for further analysis and improvements of both the numericalalgorithms and the system JodNew.The work on the DLL-library is in progress.
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Chapter 6
Solutions of the Estimation Tasks
In this chapter, solutions of the estimation tasks are described from theoretical point of view.There are two kinds of tasks: those that are solved in the Bayesian way and those that are not.In the former case, the procedure of the Bayesian estimate [11] is described in details andremarks about practical realization are attached. The sections concerning this part of tasks havethe following structure:Measurement. In this part� in general the method of the data measurement� the quantity to be estimatedare briey described.Model. Here, the model of the investigated process is formulated. The quantity to be estimatedis a part of the unknown parameter of this model. The form includes� model describing dependence of data, the quantities to be estimated and usually otherparameters,� the parameter(s) of the model.Likelihood. If possible, likelihood function and statistics created by the measured data are de-scribed.Prior information. In this part, everything that is known before the measurement is mentioned.The form includes� expert knowledge, assumptions etc.,� the corresponding prior pdf ,� if su�cient statistics exist, their initial conditions.Estimation. Here, the posterior pdf is derived and, if possible, the mean value and the varianceare evaluated.Implementation remarks. In this part potential pitfalls of the posterior pdf evaluation arenoted and the methods and/or tricks used in the computations are mentioned.In the latter case when Bayesian methodology is not applied for the solution, the structure ofthe sections is simpler and implementation notes are omitted.
6.1 Thyroid Gland MassThyroid gland mass is the key quantity for estimation of the absorbed radiation dose (see sections3.10, 3.11 and 3.12, page 31). Unfortunately, its measurement is loaded by the largest error of allthe measurements mentioned in this thesis.

55
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6.1.1 MeasurementThyroid gland mass measurement at the KNM is performed by two methods:
Palpation (estimation by a touch). This method is very subjective and the assumed relativeprecision of this method is about 50% (!palp = 0,5).
(Ultra-)Sonography. This method is more objective and the assumed relative precision is about20% (!sono = 0,2).
Furthermore both these methods strongly depend on an experience of the physician performingthe examination. Due to the stable sta� we can assume personal independence of the mentionedprecisions.
6.1.2 ModelAs the absolute measurement error of this quantity depends on the measured magnitude, thelogarithmic-Gaussian model is chosen.Model: chosen pdf is

f(hijH; ri) = 1hip2�ri � e� �ln hiH �2=(2ri) � Lhi(H; ri);
where hi is the result of the i-th measurement and ri depends on its assumed relative precision, asmentioned in (4.10), page 36. H is the constant estimated mass. The measured values are assumedconditionally independent.The relative precision !i is interpreted as a ratio of standard deviation and mean value of thelogarithmic-Gaussian pdf Lhi(H; ri). It is connected with ri by the relation (according to (4.10),page 36) !i = peri � 1 () ri = ln(1 + !2i ) (6.1)and hence

rpalp;i � 0,2rsono;i � 0,04:
Parameter is the estimated mass H.

6.1.3 Likelihoodin case of n(� 1) measurements (see part 4.2.1, page 36)
L(h(::n);H; r) / exp�� lnH2r ��(n) � lnH � 2 ln ~h(n)�� /

/ LH �ĥ(n); r�(n)� ;
where ĥ(n) = ~h(n)1=�(n) and r is an arbitrary value chosen for a suitable scaling (it is cancelled inthe pdf ).Su�cient statistics are expressed as follows:

~h(n) = ~h(n � 1) � hr=rnn ; ~h(0) = 1�(n) = �(n � 1) + rrn ; �(0) = 0: (6.2)
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6.1.4 Prior InformationExpert knowledge is given by this experience:

� the value of H can vary in a broad range, approximately from 0,1g to 500g,
� relative error for the

{ palpation method !palp;i = 0,5 (rpalp;i = 0,2),{ sonographic method !sono;i = 0,2 (rsono;i = 0,04).
Prior pdf is chosen as self-reproducing, that is in the same form as (6.1.2) with non-trivialinitial conditions for the statistics ĥ0 and �0 (6.2).Having analyzed the available data �les, we found 1 022 records with palpation measurementsand 1 657 records with sonographic measurements. As there are more records with sonographicmeasurements which have furthermore better accuracy than palpation ones, it was decided to usesonographic data to �nd �ctitious data for prior the pdf .The results of sonographic measurements varied from 0,1 g to 470 g. The arithmetic mean ofthe sonographic values was �h = 5,4 and sample standard deviation �s = 29,05. Considering (4.11),page 37, we �nd that

ĥ0 = �h exp�� r2�0
� ; �0 = rln h� �s�h�2 + 1i :

The resulting �ctitious data are
�0 = r3,395 ; ĥ0 = 0,998; ~h0 = 0,998�0 : (6.3)

where r is an arbitrary value chosen for a suitable scaling (it will be reduced in the pdf ). The priorpdf of an unknown mass H is then
f(H) = LH �ĥ0 = 0,998; r�0 = 3,395� : (6.4)

These �ctitious data correspond to a �ctitious measurement where hi = 5,4 and !i = 5,38. Simi-larity of these two numbers is accidental. The value of r is chosen as geometric mean rn = Qni=1 riof values ri corresponding to the data hi.
6.1.5 EstimationSubstituting the data to the statistics (6.2) with the initial conditions (6.3) and denoting ĥ(n) =�(n)q~h(n), the posterior pdf of the mass H is

f(Hjh(::n)) = LH �ĥ(n); r�(n)� : (6.5)
with the moments

E[Hjh(::n)] = ĥ(n) � exp r2�(n)
var [Hjh(::n)] = (E[Hjh(::n)])2 � �exp r�(n) � 1� ;

where r is the chosen \scaling" value. The expression for mode is x̂ = ĥ(n) exp �� r�(n)�.
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6.1.6 Implementation RemarksThe posterior pdf is represented by the class Pdf thm. The data pairs hi and !i are passed to theconstructor in an array containing information how many measurements (data pairs) are available.The value r is chosen as a geometric mean of all ri (see (6.1)) corresponding to hi.If the exponent of (6.5) is less than logarithm of minimum value representable in double preci-sion, zero is returned.The posterior pdf formula (6.5) is numerically stable and reliable in a range far exceedingcommon values of thyroid gland mass. The function is normalized. The function value, meanvalue, dispersion, mode and integral are implemented. Because of term 1 =H , value in point 0 isde�ned as 0.Because logarithmic-normal pdf can be hardly approximated by normal pdf , the con�denceinterval was computed in a di�erent way than in case of other estimates. A table of integral valueswas generated with oating distance between the discretization points so that error of quadraticinterpolation between these points does not exceed 10 �4. For details, see part 5.1.5, page 49.In the KNM applications, estimates are requested separately using only the palpation or sono-graphic data and using all the data together. This request is indicated by a bit �eld carryinginformation about the data processing (see Fig. 6.1). However, this mechanism is not a part of
msb lsb

6 (1) process the palpation data6
(2) process the sonographic data

6
(4) process the -camera data

6

(8) process the data obtained by another method
6

(64) process the indicated data separately

6

(128) process the indicated data together
Example:dec bin what to process returned3 00000011 nothing nothing67 01000011 palp. and sono. data separately 2 estimates131 10000011 palp. and sono. data together 1 estimate195 11000011 palp. and sono. data both separately and together 3 estimatesFigure 6.1: Bit �eld to control the estimation of thyroid gland mass
the class but of a function that manages the class construction.
6.2 Activity Kinetics
In thyroid gland diseases radiotherapy, one of the important tasks is to quantify activity kineticsin the patient's organism. This kinetics means particularly to estimate

� the e�ective half-life, in which one half of the activity is eliminated from the organ of interest(see part 3.2, page 28),
� the prediction of time, when some radiohygienic limit will be reached (see part 3.9, page 29).
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The activity measurement is represented by a detection and counting the impulses (particles)caused by a radioactive decay. The amount of these impulses is the only directly measurable quan-tity. To determine the unknown activity, the corresponding impulses amount must be comparedwith the one obtained by a measurement performed on a source of known activity. Such a sourceis usually called standard source.The following subsections (Nos. 6.3 { 6.7) are closely related together from the methodologicaland measurement point of view [11]. The �rst three tasks,
� estimation of the amount of particles coming from the source of interest (to exclude theinuence of the background),
� calibration of the measurement device with a source of known activity (to convert particlesamount to activity in given geometric conditions),
� estimation of the unknown activity in the given time.can be understood as subtasks of one complex task to �nd out the activity kinetics. Using previousand so far usual \deterministic" methods of computation and estimation, these subtasks of activitykinetics estimation were necessary to be performed step by step. Using the Bayesian tools, theactivity kinetics estimation problem is solved as whole at one time, not part by part, as outlinedabove. Nevertheless, the problems mentioned as \subtasks" can play an independent role, especiallyin these cases:1. to examine, if simple subtraction of background impulses from impulses of source on back-ground can yield suitable estimate of the source signal,2. to check (test), if the geometrical and other conditions of measurement are constant in timeby examining the calibration factor value,3. to evaluate single-time activity measurement for other purposes (e.g. contamination of thesta�),4. to yield \step-by-step quantities" to the KNM sta� which is used to check their values duringthe procedure of the measurement.Therefore solutions of these steps have not only historical purpose but also direct application inauxiliary tasks.

6.3 Source on the BackgroundThe only data directly measurable in the activity/kinetics estimation task are counts of ionizingparticles detected above the places of interest in the body. These counts are random quantities\polluted" by a backround radiation, also random. The measurement time must not be too long(tens of seconds), supplied activity during the diagnosis stage must be low enough to minimize theradiation risk and the measurements cannot be repeated because of the KNM work schedule andlarge amount of patients. All these reasons increase the uncertainty of the data.Therefore the elimination of the background is a very important problem. If the source signalof interest is much higher than background, the task is very simple. If the background and thesource signal are of the same level, the probabilistic approach must be used [16].
6.3.1 MeasurementCounts of particles (impulses in the measurement device) in some �xed time interval are detected.Assume that

� B is a mean value of the background particles count (without a source),
� Z is a mean value of the source particles count (without a background | so called signal ),
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� both B and Z are constant during the measurement.Let us perform n measurements of backround impulses, result of each is bi, i = 1; 2; : : : ; n. Denoteb(::n) = fbigni=1. Assume that mean value of bi is B.Let us perform m measurements of signal plus backround impulses, result of each is zj , j =1; 2; : : : ;m. Denote z(::m) = fzjgmj=1. Assume that mean value of zj is B + Z.The mean value of source signal impulses Z is the quantity to be estimated.

6.3.2 ModelLet us assume the data are independent, Poisson-like distributed. Model of the background im-pulses measurement bi with mean value B is f(bijB) = PB(bi) (see part 4.2.2, page 37). Modelof the source on background impulses measurement zj with mean value B + Z is f(zj jB;Z) =PB+Z(zj). Due to the independence, the joint probability function of data measurement is
f(b(::n); z(::m)jB;Z) = nY

i=1PB(bi) �
mY
j=1PB+Z(zj):

Z is the parameter to be estimated.
6.3.3 LikelihoodThe form of likelihood is (see part 4.2.2, page 37)

L(b(::n); z(::m);B;Z) / B~b(n)e�[�(n)+�(m)]B � (B + Z)~z(m)e��(m)Z ;~b(n) = ~b(n � 1) + bn; ~b(0) = 0~z(m) = ~z(m � 1) + zm; ~z(0) = 0�(n) = �(n � 1) + 1; �(0) = 0:Terms ~b(n), ~z(m) and �(n) are �nite su�cient statistics.
6.3.4 Prior InformationThe expert knowledge is expressed by choice of a suitable measurement range b.As the independence of background and source impulses is assumed, i.e.

f(B;Z) = f(B) � f(Z);prior information on background and source can be investigated independently.As described in part 4.2.2, page 37, the prior pdf can be expressed by gamma-pdf f(B) =GB(~b0; �0). Our requirements are (i) mean value of prior pdf EB is in the middle of the measurementrange h0; bi and (ii) standard deviation pvarB of the prior pdf is one half of the measurement rangelength h0; bi. Knowing that EB = ~b0+1�0 and varB = ~b0+1�20 , we obtain
~b0 = 0; �0 = 2b � �: (6.6)

As for the source prior pdf , the procedure and the values for ~z0 and �0 will be the same providedthat the same range b is assumed.As the result, the prior pdf for the source and background is
f(B;Z) / B~b0(B + Z)~z0 � e��0(2B+Z);~b0 = 0;~z0 = 0;�0 = 2b = �:
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6.3.5 EstimationAccording to the previous conclusions, the joint probability of both backround and source impulsesis

f(B;Z jb(::n); z(::m)) / B~b(n)(B + Z)~z(m) � e�f[�(n)+�(m)]B+�(m)Zg;~b(n) = ~b(n � 1) + bn; ~b(0) = 0~z(m) = ~z(m � 1) + zm; ~z(0) = 0�(n) = �(n � 1) + 1; �(0) = � = 2b :The marginal pdf of Z is obtained as
f(Zjb(::n); z(::m)) = +1Z

0 f(B;Z jb(::n); z(::m)) dB:
The explicit form of this formula is [6]

f(Zjb(::n); z(::m)) = e��(m)Z ~z(m)Pj=0 ~z(m)! (~b(n)+j)!(~z(m)�j)! j! Z~z(m)�j(�(n)+�(m))~b(n)+j+1
1�(m)~z(m)+1 ~z(m)Pj=0 ~z(m)! (~b(n)+j)!j! �(m)j(�(n)+�(m))~b(n)+j+1

: (6.7)
The formula for k-th moment R +10 Zk p(Zjb(::n); z(::m)) dZ has the form [6]

E �Zkjb(::n); z(::m)� = �(m)~b(n)+1 ~z(m)Pj=0 (~b(n)+j)! (~z(m)�j+k)!(~z(m)�j)! j! � �(m)�(n)+�(m)�j~z(m)Pj=0 (~b(n)+j)!j! � �(m)�(n)+�(m)�j : (6.8)
Both these formulae are numerically extremely untractable.

6.3.6 Implementation RemarksThe posterior pdf is represented by the class Pdf sig.Very smart and stable algorithms for the pdf and k-th moment evaluation were derived by [6].Unfortunately, both the algorithms contain ~z(m)-times repeated cycle. This feature becomesdisadvantageous for count numbers ~z(m) of order 105 { 106 that are frequently used. Therefore anapproximation of pdf (6.7) should be designed. Some attempts were done in this question [16] butnot too successfully. Therefore a temporary solution was optionally accepted. The mean value EZis taken as a center of the con�dence interval. Distance of upper bound Zu and lower bound Zlwas chosen as Zu � Zl = 4 pvarZ. This interval in Gaussian approximation represents cca. 97%probability.The pdf is normalized. Function value, mean value, variance, 1 st and 2nd derivatives areavailable in the class. Computation procedure of the derivatives uses the original algorithm forpdf value modi�ed in a particular way and peforms complicated calls of methods inside the object,which is invisible from outside. This shows the advantage of using object-oriented tools here.
6.4 Calibration Coe�cient
Calibration coe�cient c, de�ned by (3.9), page 29, converts count of particles emitted by a sourceto the activity. For its estimation, a source of a known activity must be used.
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The estimate of signal on background cannot be included as a part of further estimation tasksbecause of its computational di�culty (6.7). Therefore the impulses counts treated later in thischapter are point estimates of signal on background taken as means of con�dence intervals yieldedby (6.7). This simpli�cation will cause an arti�cial decrease of uncertainty of the estimates men-tioned below. But if z � b (see part 6.3.1), point estimate of Z appears to be a good approximation[15].

6.4.1 MeasurementLet us have a \standard" source of the known activity S. Detecting emitted particles, let usperform n measurements with the geometrical measurement conditions unchanged. Result of j-th measurement is count sj , where j=1,...,n. Counts sj are independent. Let us assume thatcalibration coe�cient c is constant.
6.4.2 ModelData model has the form f(s(::n)jc(::n); S) = nY

j=1Psj (c S);where Pb(a) means Poisson distribution with mean value a and discrete variable b.Parameter to be estimated is c.
6.4.3 LikelihoodThe form of likelihood is (see part 4.2.2, page 37)

L(s(::n);S) / c~s(n)e�c ~S(n)~s(n) = ~s(n � 1) + sn; ~s(0) = 0~S(n) = ~S(n � 1) + Sn; ~S(0) = 0:
6.4.4 Prior InformationThe expert knowledge is expressed by choice of a suitable value cu that is upper limit for thegeometrical conditions usually used for measurement. Lower limit is zero, as c must be non-negative. Using conjugated gamma- pdf

f(c) = Gc(~s0; ~S0);requesting that its mean value is cu2 and standard deviation is cu4 and using similar procedure asin (6.6), page 60, we will get
~s0 = 1; ~S0 = 8cu � �: (6.9)

For details see [19].
6.4.5 EstimationAccording to the previous conclusions, the posterior pdf of the calibration coe�cient is

f(cjs(::n); S) = Gc(~s(n); ~S(n));~s(n) = ~s(n � 1) + sn; ~s(0) = 1 (6.10)~S(n) = ~S(n � 1) + Sn; ~S(0) = � � 8cu
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and corresponding moments are

E[cjs(::n); S] = ~s(n) + 1~S(n) var [cjs(::n); S] = E[cjs(::n); S]~S(n) :
6.4.6 Implementation RemarksThe posterior pdf is represented by the class Pdf cal.As gamma-pdf contains exponents and �-function arguments of high orders, enumeration prob-lems were encountered. Therefore the posterior pdf is pseudo-normalized (see part 5.1.3, page 48).Because of using logarithm in pseudo-normalization, value in point 0 is de�ned as 0.Function value, mean value, variance, mode, 1 st and 2nd derivative are available.
6.5 Instantaneous Activity
6.5.1 MeasurementCount a of particles corresponding to the source of an unknown activity A is detected. Using thecalibration information (see part 6.4, page 61), unknown activity A can be estimated.
6.5.2 ModelModel of detected particles counts a can be written as

f(ajc; A) � f(ajc; A; s(::n); S(::n)) = Pa(cA); (6.11)where c is calibration factor, S is the standard source activity (known) and s is count of thecoresponding standard source particles.A is the parameter to be estimated.
6.5.3 LikelihoodLikelihood is L(a; s(::n); S(::n); c; A) / (cA)ae�cA.
6.5.4 Prior InformationThere is an upper bound of activity in the patient's body given by the decay law ((3.6), page 28),where the applied activity is substituted for A0. Let us denote this upper bound as Au. Lowerbound of the activity in the patient's body is 0. Estimated activity A must appear in the rangeh0;Aui.A speci�c form of prior pdf f(A) will be derived later.
6.5.5 EstimationAs unknown activity A and calibration factor c are independent, the joint pdf can be expressed as

f(A; cjs(::n); S(::n); a) = f(Aja; c; s(::n); S(::n)) � f(cjs(::n); S(::n)); (6.12)where f(cjs(::n); S(::n)) corresponds to (6.10) and
f(Aja; s(::n); S(::n)) / f(ajc; A; S(::n)) � f(A): (6.13)

As f(Ajs(::n); S(::n); a) = +1R0 f(A; cjs(::n); S(::n); a)dc, considering (6.10) and (6.13) we get
f(Ajs(::n); S(::n); a) = ~K f (A) Aa(A+ ~S(n))a+~s(n)+1 ; (6.14)
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where ~K is a normalizing constant and ~S(n), ~s(n) are described in (6.10).The explicit form of prior pdf f(A) is chosen as

f(A) � f(Ajs(::n); S(::n); �; �) = Kp A�(A+ ~S(n))� ;where Kp is a normalizing constant of prior pdf , � and � are �ctitious data (see part 4.1.5, page 34).If Au is some upper limit that cannot be exceeded (see part 6.5.4), let us choose � and � so thatf(A) has mean value in Au2 and standard deviation is Au4 .Then the posterior pdf is
f(Ajs(::n); S(::n); a) = K A�+a(A+ ~S(n))�+a+~s(n)+1 ; (6.15)

where (see (6.10), page 62)
K � �+1R0 A�+a(A+~S(n))�+a+~s(n)+1 dA��1 = ~S(n)���+~s(n) � �(�+a+~s(n)+1)�(a+�+1) �(���+~s(n))� = �A2( �A+~S(n))2+D �A(2+ �A� ~S(n))� ~S(n)2D�A+~S(n)� = �A( �A+~S(n))2+D(2+ �A+~S(n))~S(n)D�A = Au2D = Au4 :

(6.16)

For details see [19].If we denote [K(p; r; s)]�1 = R +10 Ap(A+s)r dA, then it is obvious that E(Aj) = K(p;r;s)K(p+j;r;s)) . Hence
E(Aj�; �; a; ~S(n); ~s(n)) = ~S(n) �+ a + 1� + ~s(n)� �� 1 ; (6.17)

var (Aj�; �; a; ~S(n); ~s(n)) = [ ~S(n)]2 (�+ a + 1)(� + a + ~s(n))(� + ~s(n)� �� 1)2 (� + ~s(n)� �� 2) : (6.18)
Expression for mode is x̂ = ~S(n)��a+~s(n)+1 .
6.5.6 Implementation RemarksThe posterior pdf is represented by the class Pdf act.As the expression of the constant K contains exponents and �-function arguments of highorders, it is not evaluated and the posterior pdf is pseudo-normalized (see part 5.1.3, page 48).Because of using logarithm in pseudo-normalization, value in point 0 is de�ned as 0.Function value, mean value, variance, mode, 1 st and 2nd derivative are available.
6.6 E�ective Half-life
E�ective half-life in an important parameter characterizing activity kinetics. Time course of activ-ity, obtained by compartment model, is a combination of polynomes, exponentials and goniometricfunctions with many parameters [11] estimation of which would be complicated and would su�erof lack of data. Therefore the time course of activity is modelled by 1 st order exponential functionthat dominates over others and has only two estimated parameters.
6.6.1 MeasurementSequence of measurements that are described in part 6.5.1, page 63, is performed. Time di�erenceof subsequent measurements is usually about 24 hours.
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6.6.2 ModelThe time depencence of activity in some accumulating organ is a process of higher order. Itsqualitative description is: (1) an increase from zero, (2) reaching the maximum, (3) a decrease tozero. Stages (1) and (2) take place within �rst few hours, so stage (3) covers majority of time anddata measurements. This stage is usually modelled by mono-exponential function. Let t1 be thetime instant when activity of the organ reached its maximum (stage (2)).Then unknown activities in tj , j = 1; 2; : : : ;m; follow the relation

Aj � A(tj) = A1 � exp �� (tj � t1) � ln 2Tef
� � A1 �  (Tef ; j) (6.19)

 (Tef ; j) � exp �� (tj � t1) � ln 2Tef
�

Counts aj = a(tj); j = 1; 2; : : : ;m are considered Poisson-distributed and conditionally indepen-dent. Then f(a(::m)jc; A1; Tef ; s(::n); S(::n)) / mY
j=1Paj (cA1  (Tef ; j)) (6.20)

Parameters are c, A1 and Tef , where A1 means unknown activity in time t1 and Tef is one to beestimated.
6.6.3 LikelihoodLikelihood has a formL(a(::m); s(::n); S(::n); c; A1; Tef ) / c~a(m)+~s(n) A~a(m)1 ~	(Tef ;m) � e�c (A1 ~ (Tef ;m)+ ~S(n)); (6.21)where ~s(n) and ~S(n) are described in (6.10), page 62, and~a(m) = ~a(m � 1) + am; ~a(0) = 0;~ (Tef ;m) = ~ (Tef ;m � 1) +  (Tef ;m); ~ (Tef ; 0) = 0;~	(Tef ;m) = ~	(Tef ;m � 1)  (Tef ;m)am ; ~	(Tef ; 0) = 1: (6.22)
Note that functions ~ (Tef ;m) and ~	(Tef ;m) are not su�cient statistics as they depend on theunknown parameter Tef .
6.6.4 Prior InformationThere are three parameters in the model (6.20): calibration factor c, maximum activity A1 ande�ective half-life Tef . Let us discuss their dependence.Calibration factor c expresses geometrical and technical conditions of the measurement, there-fore it is independent of A1 and Tef . As A1 results from complicated dynamics (as mentionedabove) that is not investigated here, its dependence on Tef is unknown. Hence both the parame-ters A1 and Tef should be considered �a priori independent. It allows to discuss all three parametersseparately.Prior information on c is given by (6.10), page 62.Lower bound of activity is 0. If we denote applied activity (that was administered into patient'sbody) as Aapl and application time as tapl, it is obvious that activity in time t1 anywhere in thebody, according to the decay law (see (3.6), page 28), cannot exceed value

�A1 = Aapl � exp�� t1 � taplTp ln 2� ; (6.23)
where Tp is physical half-life (see 3.5, page 28). As no other references are known, prior pdf of theparameter A1 is taken as uniform density f(A1) = UA1(0; �A1).Considering the de�nition of e�ective half-life (3.7), page 28, prior pdf of Tef can be expressedalso uniform on (0; Tpi, i.e. f(Tef ) = UTef (0; Tp).
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6.6.5 EstimationPosterior pdf of Tef can be found in two integration steps. At �rst, joint pdf of A1 and Tef isobtained by integration over c :
f(A1; Tef ja(::m); s(::n); S(::n)) = +1Z

0 f(c; A1; Tef ja(::m); s(::n); S(::n)) dc (6.24)
/ UA1(0; �A1) UTef (0; Tp) ~	(Tef ;m) A~a(m)1hA1 ~ (Tef ;m) + ~S(n)i~a(m)+~s(n)+1 :

At second, the posterior pdf of Tef is then obtained by intergration of (6.24) over A1 in limitsh0; �A1i. For �A1 ! +1, the explicit formula can be found. In this case, the calibration informationis eliminated, thus unnecessary:
f(Tef ja(::m); s(::n); S(::n)) � f(Tef ja(::m)) / UTef (0; Tp) ~	(Tef ;m)~ (Tef ;m)~a(m)+1 : (6.25)

For �nite �A1, the integral of (6.24) must be found numerically.
6.6.6 Implementation RemarksThe posterior pdf is represented by the class Pdf tef. The version for �nite �A1 is implemented.This class uses several other classes. Class LPdfTef2 represents logarithm of joint pdf (6.24).Class LPdfTef2 is used by class Pdf Tef2A1 that �xes Tef and represents (6.24) as a function ofA1. Class Pdf Tef then integrates Pdf Tef2A1 over domain of A1. Class LPdfTef2 is used also inprediction of radio-hygienic limits.

LPdfTef2 is pseudo-normalized and o�ers function value and mode, classes Pdf Tef2A1 and
Pdf Tef give only function values.
6.7 Prediction of Reaching Radiohygienic LimitsAfter application, the patient is a source of radiation for his neighbourhood and therefore he hasto be under radio-hygienic supervision. Meaning and importance of radiohygienic limits and theirprediction were discussed in part 3.9, page 29.This task is a modi�cation of e�ective half-life estimation (part 6.6), therefore many steps willbe the same.
6.7.1 MeasurementThis part is the same like in part 6.6.1.
6.7.2 ModelIdeas of this part are the same like in 6.6.2, page 65. Furthermore, let us consider value of patient'sactivity Ah that determines change in his handling regulations during his hospitalization in theKNM . For the given A1 and Tef (see part 6.6.2, page 65), prediction of time th, when the patient'sactivity will sink to a given value Ah, can be done using the decay law

Ah = A1 exp�� th � t1Tef ln 2� : (6.26)
If we re-arrange this expression as

A1 = Ah exp�+ th � t1Tef ln 2� (6.27)
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and substitute it to (6.24) for A1, we will get model of data of limit reaching prediction.Parameters of this models are c, Ah and th, where the last one is to be estimated.
6.7.3 LikelihoodThis part is the same like 6.6.3, considering the formula (6.27).
6.7.4 Prior InformationIdeas of this part are the same like in 6.6.4, page 65. As for th, it must be greater than t1 and itcannot exceed value �th obtained by physical (the slowest possible) activity decrease

�th = tapl + Tp ln AaplAhln 2 :Prior pdf for th is taken as uniform f(th) = Uth(t1; �th).
6.7.5 EstimationSubstituting (6.27) into (6.24) for A1, we will get joint pdf f(th; Tef jAh; a(::m); s(::n); S(::n)). Ifwe denote conditions of this pdf as P , the marginal posterior pdf of th is then

f(thjP) / Uth(t1; �th) TpZ
0

~	(Tef ;m) exph(~a(m)+1) th�t1Tef ln 2inAh exph th�t1Tef ln 2i ~ (Tef ;m) + ~S(n)o~a(m)+~s(n)+1 d TefTef : (6.28)
This integral must be computed numerically.
6.7.6 Implementation RemarksThe posterior pdf is represented by the class Pdf apr. This class uses several other classes. Class
LPdfTef2 represents logarithm of joint pdf (6.24). Class LPdfTef2 is used by class Pdf AprT thatsubstitutes (6.27) for A1, �xes it and represents (6.28) as a function of Tef . Class Pdf Apr thenintegrates Pdf AprT over domain of Tef . Class LPdfTef2 is used also for estimation of e�ectivehalf-life Tef .

LPdfTef2 is pseudo-normalized and o�ers function value and mode, classes Pdf AprT and
Pdf Apr give only function values.
6.8 Excretion of Activity\Excretions" Eri are important to determine some radio-hygienic quantities. They are de�nedby (3.10), page 29. Only three measurements are performed | one calibration immediately afterapplication, when activity inside the patient is known, and two measurements with unknownpatient's activity (i = 1; 2).Exretions can be de�ned also implicitly as

Ai = Aapl  (Tp; i)0@1� iX
j=1ERj

1A ; i = 1; 2; (6.29)
where Aapl is applied activity, tapl is application time, Tp is physical half-life, A(i) means whole-body activity in time ti and usual notation  (Tp; i) = exp�� ti�taplTp ln 2� is used. If the calibrationmeasurement is denoted by subscript 0, then usually t0 � tapl, t1 � tapl + 24 hours and t2 �tapl + 48 hours. Note that Er = ER � 100%.Values Er1 and Er2 are to be estimated.Estimation will be derived for quantities ERi, change for Eri can be then done by simplevariable transformation (see part 3.3, page 28).
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6.8.1 MeasurementTo avoid direct measurements of patients' excrements activity, which is technically and methodolog-ically complicated, unpleasant and non-hygienic, excretions are measured indirectly. Whole-bodyactivity measurement is performed and then value of eliminated activity is estimated.Impulses ei in time ti, i = 0; 1; 2 over the whole body are counted. The measurement in t0provides a calibration.
6.8.2 ModelImpulses counts are conditionally independent and Poisson-like distributed. If c is an unknowncalibration factor assumed to be constant, Ai is the whole-body activity in time ti and m=2, then

f(e0; e(::m)jc; A(::m)) = mY
i=0 (cAi)

eiei! exp(�cAi) ; m = 2: (6.30)
Parameters of this model are c and Ai, i = 1; : : : ;m. Quantities to be estimated are Er(::m)that are \hidden" in A(::m) through (6.29).

6.8.3 LikelihoodSubstituting (6.29) into (6.30) and considering that A0 = Aapl  (Tp; 0), we get the expression forlikelihood
L(e0; e(::m); c; E(::m)) / c~e(m) exph� cAapl � ~ (Tp;m)� ~ER(m)�i mY

i=1
h1� ~ER(i)iei ; (6.31)

where ~e(m) = ~e(m � 1) + em; ~e(0) = e0;~ (Tp;m) = ~ (Tp;m � 1) +  (Tp;m); ~ (Tp; 0) =  (Tp; 0);~ER(m) = mPi=1ERi;~ER(m) = mPi=1 (Tp; i) ~ER(i):
6.8.4 Prior InformationParameter c can change �rstly during 48 hours as 131I is being distributed over the organism, andsecondly because of the possibility that geometrical conditions during measurements in time t1and t2 can slightly di�er from those in t0. As these changes are unknown, c must be consideredconstant and independent of ER1 and ER2. Anyway, the calibration measurement is independentof the following ones.The measurement in t0 is simple calibration as described in section 6.4, page 61. Thereforeits prior pdf is Gamma-pdf Gc(0; 1�c ), where �c is some usual suitable value of c that is both meanvalue and standard deviation of the prior pdf . Because 1�c is added to standard activity as priorinformation, it must be added to Aapl for the calibration measurement ( i = 0). Looking at (6.31),we see that  (Tp; 0) occurs only in sum. Then we can add 1�cAapl as initial condition for ~ (Tp; 0):

~ (Tp; 0) =  (Tp; 0) + 1�cAapl : (6.32)
As amount of radioactive solution diluted from the body cannot decrease, the sequence n ~ER(i)omi=1is non-sinking. Furthermore 0 � ~ER(i) � 1 for any i, as the patient cannot dilute more than hehas drunk. Putting this together, we get the condition0 � ER1 � ER1 + ER2 � 1: (6.33)
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Then the prior pdf for ERi, i = 1; 2, is

f(ER(::m)) = mY
i=1UERi

�0; 1� ~ER(i�1)� = �ER1(0; 1)1 � �ER2(0; 1�ER1)1�ER1 (6.34)
for m = 2. Then domain of the joint posterior pdf is triangle, in which both ERis are non-negativeand their sum does not exceed 1.
6.8.5 EstimationPutting together (6.31), (6.32) and (6.34), we get a joint posterior pdf of c, ER1 and ER2. Inte-grating over c on h0;+1i we get a joint pdf of ER1 and ER2:

f(ER(::m)je(0); e(::m)) /
mQi=1UERi

�0; 1� ~ER(i�1)� h1� ~ER(i)ieih ~ (Tp;m)� ~ER(m)i~e(m)+1 ; (6.35)
where ~e(m) = ~e(m � 1) + em; ~e(0) = e0;~ (Tp;m) = ~ (Tp;m � 1) +  (Tp;m); ~ (Tp; 0) =  (Tp; 0) + 1�cAapl ;~ER(m) = mPi=1ERi; ~ER(0) = 0;~ER(m) = mPi=1 (Tp; i) ~ER(i)and m = 2.Marginal pdf s will be obtained by numerical integration over another variable on its domaingiven by prior information.
6.8.6 Implementation RemarksThis estimation task is not solved in the object-oriented way. The function values of (6.35) arestored in a grid and numerically integrated. As the function values are calculated using theirlogarithms, the condition (6.33) must be changed to 0 � ER1 � ER1 + ER2 < 1.
6.9 Radio-hygienic Quantities
Radionuclide present in the patient's body produces ionizing radiation. Necessary information tobe known is which dose is absorbed in which organ, namely, if dose in the target organ (in thiscase thyroid gland) will be su�ciently high and if dose in other organs (e.g. blood, bone marrow,liver etc.) will not exceed some \safe" value.In the KNM , two radio-hygenic quantities are being estimated: speci�c irradiation of thyroidgland and speci�c irradiation of blood.
6.9.1 Speci�c Irradiation of Thyroid GlandAs mentioned in part 3.10, page 30, the formula for speci�c irradiation of thyroid gland for 3,7GBqof applied 131I is SI th = 139 ArmaxH Tef ;where Armax is maximum relative activity of the thyroid gland [%], H is thyroid gland mass [g]and Tef is e�ective half-life [days]. Unit of SI th is Gy (=J/kg).
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Bayesian estimate requires integration of complicated formula over two variables [11]. Further-more, shape of the domain is irregular due to prior information, therefore some variable trans-formation and use of approximation integration formulae [39] is not well justi�ed. As estimatesof all input variables for the de�nition formula are available in their interval form, a more simplemethod of SI th estimation was chosen. The main reasonss for this decision were limited time forcomputation and perspective of using the MIRD method.If x is some quantity, x̂ its point estimate and �x its absolute error, the notation x = x̂��xrepresents some interval hx̂��x; x̂+�xi, in our case the 95% symmetric con�dence interval (seepart 4.1.7, page 35). Let us denote lower bound of this interval xl = x̂ � �x and upper boundxu = x̂+�x.Following the introduced notation, we can estimate SI th;l and SI th;u in the following \pes-simistic" way:

SI th;l = 139 Armax;lHu Tef;l ;
SI th;u = 139 Armax;uHl Tef;u:

Then
ŜI th = SI th;u + SI th;l2 ;

�SI th = SI th;u � SI th;l2
and SI th = ŜI th��SI th. This interval represents generally more than 95% probability [20]. Themain source of uncertainty here is the estimate of thyroid gland mass.
6.9.2 Speci�c Irradiation of BloodAs mentioned in part 3.11, page 30, the formula for organic and anorganic fraction of maximumspeci�c irradiation of blood for 3,7GBq of applied 131I is

SIKan;max = 160 (Er1+Er2)M ;SIKorg;max = 13,9 (100�Er1�Ar1) Tef : (6.36)
This formula contains four dependent variables that shoud be integrated o�. Therefore similarapproach like in the previous part was adopted for the same reason. Furthermore, data for esti-mation of Eri; i = 1; 2, and Ar1 are dependent. Integration domain is then non-trivially boundedby prior information which makes the integration task even more complicated.Following the ideas from the previous part, we will �nd

SIKan;max;l = 160 (Er1;l + Er2;l)M ;
SIKan;max;u = 160 (Er2;u + Er2;u)Mand

SIKorg;max;l = 13,9 (100�Er1;u�Ar1;u) Tef;l ;SIKorg;max;u = 13,9 (100�Er1;l�Ar1;l) Tef;u:
Then quantities ŜIKan;max, ŜIKorg;max , �SIKan;max and �SIKorg;max can be easily computed.The con�dence intervals generally represent again the probability greater than 95%.
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6.9.3 Medical Internal Radiation Dose | the MIRD MethodAs mentioned in part 3.12, page 31, the formula for the mean absorbed dose in target organ is�Dt = Aapl Xs �s Ss!t: (6.37)
If we consider thyroid gland as the only source organ of destructive �-radiation [11], we can denote�s explicitly as �th. To determine the residence time �th, we must compute integral below thecurve Ath(t) in the thyroid gland. In the part 6.6.2, page 65, we adopted the simpli�ed model ofsingle-exponential activity sinking for t � t1;th (phase (3) of the time course). To estimate thewhole integral from tapl to +1, we must determine the phase (1) of the time course, i.e. Ath(t)for tapl � t � t1;th. As we know only that this phase is relatively fast, we can approximate it byline segment described by linear fuction Ath(t) = A1;tht1;th (t � tapl).To summarize, we have for Ath(t):phase (1): fast increase to the maximum tapl � t � t1;th Ath(t) = A1;tht1;th (t � tapl)phase (3): exponential decrease t � t1;th Ath(t) = A1;th exp�� t�t1;thTef;th ln 2� ;where Tef;th is e�ective half-life in thyroid gland. Then the residence time �th can be computed as

�th = A1;thAapl
264 t1;th2 + +1Z

t1;th exp�� t � t1;thTef;th ln 2� dt
375 :

The solution is �th = A1;thAapl
� t1;th2 + Tef;thln 2 � :Furthermore, the mean absorbed dose for thyroid gland as a target is related to some standardthyroid gland mass, which is for adult male 20,7 g [35]. If we know \true" thyroid gland mass,which is given by the Bayesian estimate H, and considering thyroid gland as the only source organof �-radiation, we can modify the formula (6.37) for thyroid gland as

�Dth!th = Aapl 20,7 gH �th Sth!th;
where �Dth!th explicitly means the mean absorbed dose for thyroid gland.The S-factor Sth!th is known as number.What we must keep in mind is that quantities A1;th, Tef;th and H are Bayesian estimatesrepresented by their con�dence intervals. Following the same ideas like in previous two parts, wecan write for the residence time �th!th:

�th;l = A1;th;lAapl
� t1;th2 + Tef;th;lln 2 � ;

�th;u = A1;th;uAapl
� t1;th2 + Tef;th;uln 2 �

and for the mean absorbed dose for thyroid gland �Dth!th:�Dth!th;l = Aapl 20,7 gHu �th;l Sth!th;�Dth!th;u = Aapl 20,7 gHl �th;u Sth!th:
For adult male, Sth!th = 5,64mGy/(MBq hour) which corresponds to 135,36mGy/(MBq day).For application to thyroid gland as a source and bone marrow as a target, the formula (6.37)will have a form �Dth!marrow = Aapl �th Sth!marrow ;
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where for adult male Sth!marrow = 8,5�10�3mGy/(MBq hour), i.e. 0,204mGy/(MBq day).Determining �Ds!t for other organs, we can use the same ideas. Note that the estimate does notinclude the model errors (both MIRD and approximation of time course of Ath(t)) and uncertaintyof Sth!th.



Chapter 7
Experiments with Data and the
Algorithms
In this chapter, some tests of the algorithms are described. Furthermore for some tasks, outputs ofthe Bayes-based algorithms are compared to \deterministic" results to judge the quality increase.
7.1 General Testing of the Algorithms
First, the numerical algorithms were tested for their behaviour and reliability. The focus was takenon the numerical precision.
7.1.1 Batch Processing | Test of StabilityTesting of algorithms on data is important to consider their stability and reliability. However,testing on \arti�cial" simulated data can hide some pitfalls, because numbers prepared arti�ciallyare \pretty" and need not reect situations that can be met with real data, or other reasons (e.g.human mistakes etc.).In the last �ve years, data of the patients treated at the KNM were collected. Till now,more than 5 000 data records are available, where one record means one activity application andfollowing sequence of measurements.The algorithms were run on all the available records of real data and no failure was detected.
7.1.2 Precision of QUANC8Chapter 5, page 43, was dedicated to solution of numerical tasks with stress on the precisionand reliability. In sections concerning integration step design, integration table design and anal-ysis of integration interval restriction, values of distribution functions (integrals) of normal andlogarithmic-normal pdf s were used. It is well known that these functions are not analyticallyintegrable.For that purpose, numerical integrals were computed using the algorithm QUANC8 (see page40). The main advantage of this algorithm is that it can compute the integral with the requirederror, relative or absolute, provided that the function is continuous up to its 9 th derivative.The precision was tested in the following way. Normal pdf was integrated within limits 0 andx for x changing from 0 to 5 with step 0,5. The integrals were �rst computed by QUANC8 withrequired relative error 10�15. Then these results were compared with ones in the tables [1]. Inthese tables, integrals of normal pdf for 0 < x � 3 are calculated with 15 decimal places, integralsfor 3 < x � 5 with 10 decimal places.The results for x 2 h0,5; 3i were in agreement for all the 15 decimal places. Values of estimatederror, which is a part of the QUANC8's output, were from 2,1 �10�17 to 5,3�10�16.
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As for x 2 h3; 5i the tables yield only 10 decimal places, the decision about the algorithmprecision could not be done.The conclusion is that for su�ciently smooth functions, the QUANC8 can be used to computenumerical integrals with a precision as required. For the variable type in use, a speci�c lower limitmust be respected. For the C-type double (8 bytes, 53 bits for mantissa, 9 bits for exponent, 2 signbits), the lower bound is �m = 2�52, which is approximately 2 � 10�16. For the C-type float(4 bytes, 24 bits for mantissa, 6 bits for exponent, 2 sign bits), the lower bound is �m = 2�23, whichis approximately 1 � 10�7. Requirements for a lower integration error has no meaning as �m is sucha minimum �, for which is valid 1 + � > 1 in the given variable type. In other words, lower error,i.e. higher precision, is not possible to be reached as no more signi�cant digits are available.The integrals computed in this work by this algorithm can be considered reliable within therequested accuracy.

7.1.3 Con�dence IntervalHere, some tests are made with algorithms building the task of con�dence interval determining.Speci�cally, questions of integration step design, allowed restriction of pdf 's integration intervaland the integration procedure itself are focused. The tests and experiments are performed withnormal pdf for which the algorithms and criteria were designed.
Integration step designHere, the validity of the formula (5.5), page 44, is tested.The normal pdf Nx(0; 1) on the speci�c segment skl is integrated in m = 2, 4, 6 etc. integrationsteps and absolute error �real of each integration is computed. Then m�max is found, which is suchhighest m, so that j�realj � �max. Then m�max and �real are compared with mkl and �max givenby (5.5).The results are shown in the Table 7.1.

�max = 10�4 �max = 10�5 �max = 10�6k l mkl �real m�max mkl �real m�max mkl �real m�max0 1 4 1,1�10�5 4 6 2,1�10�6 6 10 2,7�10�7 81 2 4 �1,3�10�5 4 6 2,6�10�6 6 8 �8,1�10�7 82 3 2 �2,2�10�5 2 4 7,9�10�7 4 6 1,4�10�7 43 4 2 2,5�10�5 2 4 1,6�10�6 4 6 3,1�10�7 44 5 2 1,8�10�6 2 2 1,8�10�6 2 4 1,4�10�7 45 10 4 3,4�10�7 2 6 1,5�10�7 2 12 1,9�10�8 2
Table 7.1: Numbers of integration steps found theoretically ( mkl, see (5.5), page 44) and experi-mentally (m�max )

Values �real are less than �max, because those �real were selected that are below �max. It isvisible that theoretical mkl and experimental m�max match for l � 5 and �max 2 h10�4; 10�5i. For�max = 10�6, theoretical mkl are in majority of cases higher than m�max , but never more than by2 for l � 5. This di�erence can be caused both by inequality (5.2), page 44, and limited set ofvalues of m.For k = 5 and l = 10, the higher precision is required, the higher is the di�erence between mkland m�max . This is caused by a relatively large interval h5; 10i on which the maximum of the 4thderivative in the design of mkl is taken. The actual values throughout the interval are obviouslymuch lower. If we decrease value of g5;10 in the Table 5.1, page 44, from 0,33331 to 0,05 (i.e.approximately by 1/6), the values of mkl correspond with m�max for the interval h5; 10i.Anyway, numbers of integration steps found theoretically and experimentally are in a goodagreement. The integration error is never underestimated and increase of mkl due to overestimationis signi�cantly higher only in interval h5; 10i if higher accuracy is required. It was observed that
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because of the integration domain restriction (see page 45), this interval is rarely involved in theintegration.
Con�dence interval shift due to domain limitationHere, the validity of the formulae (5.10) and (5.11), page 46, is tested.The pdf Nx(0; 1) was used to �nd con�dence interval with � = 0,049 995 70 which representsprobability 95,000 420 97%. As for the interval, x̂ = 0 and �xl;exact = xu;exact = 1,96 [1].Various values of �max (see (5.2), page 44), and �a (see (5.11), page 46), were combined. Onlyupper bound of the con�dence interval (due to symmetry) was computed in two ways: with thecorrection to domain limitation (xu, see (5.10), page 46) and without it (~xu). Value x̂ is the meanof the con�dence interval. The upper value of the domain x�au for the given �x is also mentioned.�~xu = ~xu � xu;exact , �xu = xu � xu;exact . The signi�cant results are shown in the Table 7.2.

no correction corrected�x �max x�au x̂ ~xu �~xu xu �xu10�2 10�5 3,5 2,2�10�16 1,9535 �6,5�10�3 1,9616 1,6�10�310�3 10�6 4,5 1,1�10�16 1,959105 �9,9�10�4 1,959917 �8,3�10�510�4 10�8 4,7 �1,0�10�15 1,959907 �8,3�10�5 1,959989 �2,1�10�510�5 10�9 5,2 �4,4�10�16 1,95999086 �8,1�10�6 1,95999989 �2,1�10�7
Table 7.2: Mean value and upper limit of con�dence interval � = 0,049 995 70 with various �maxand �a. Exact values: x̂exact = 0, xu;exact = 1,96.

The rows represent the best result for the pair � x and �max in the sense of minimum �~xuand �xu. We can see that corrected values xu have lower errors than ~xu without the correction.Anyway, the errors are below the limit � x in all the cases.For the practice, �x = 10�3 was chosen. Value of �a is then approximately �x=10 = 10�4(see (5.12), page 46). Value of �max is then chosen �a=100 = 10�6. This scheme can be used forranges approximately 10�2 � �x � 10�4. But according to our point of view, relative precision�x � 10�2{10�3 is su�cient.Similar results for di�erent precisions were obtained also for some other levels of �, particularlyapproximately 0,34 and 0,02.If we compare the Table 7.2 with the Table 5.2, page 47, we can notice that x�a < x�au for thegiven �a = �x=10. This di�erence is caused by the fact that x�a is the point where the integrationcan be stopped to reach \exactly" �a, whereas x�au is the node of the numerical integration closest tox�a , so that real error of area determination �au, that is reached during the step-by-step integration,is less than �a.
7.1.4 Simplex MethodIt was already mentioned here that the simplex method in some conditions converges to a non-stationary point. Some modi�cations of the algorithm were done to prevent this case, as mentionedabove. Anyway, the two-variate functions used here are smooth enough to avoid the case ofunwanted convergence.Several thousands of computations on various two-dimensional pdf s were done with di�erentstarting conditions. All the experiments gave correct results and no problems with convergencewere detected.This experience made us accept the simplex method for this work as an optimizing methodthat does not require derivatives and is not computationally demanding.
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7.1.5 Integration TableFor integrating the logarithmic-normal pdf , the integration table was designed, so that error ofquadratic interpolation is less than 10�4 (see part 5.1.5, page 49). Here, the error of interpolationis tested.Integrals I(x) = R x0 Lt(1; 1) dt were computed. Values x were generated as pseudo-randomnumbers on the interval h0; Ai, where A was some chosen �xed number. The integrals werecomputed in two ways: using algorithm QUANC8 with requested relative precision 10 �10 (quantityIQ(x)) and using the interpolation table (quantity It(x)). Then values �I(x) = It(x)� IQ(x) wereinvestigated.For each A, 10 000 values of x were generated and some descriptive statistics of � I(x) andj�I(x)j were calculated. The Table 7.3 shows results for A = 2 which represents the area with thegreatest curvature of the function.

quantity mean std. dev. min. max.�I(x) �9,56�10�6 1,29�10�5 �4,77�10�5 5,04�10�5j�I(x)j 1,11�10�5 1,58�10�5 3,21�10�9 5,04�10�5
�I(x) > 0 7 207 cases�I(x) < 0 2 739 cases

Table 7.3: Testing of the integration table for the maximum required error of interpolation 10 �4
It is visible that maximum di�erence of IQ(x) and It(x) is about half of the requested one. Sim-ilar results were obtained for di�erent values of A. The actual error never exceeded the maximumallowed one.

7.1.6 Integration Table vs. Gaussian Approximation for Log-normal pdfPosterior pdf of thyroid gland mass estimation is logarithmic-normal pdf .It is obvious that using the integration table designed for the logarithmic-normal pdf in thisestimation task is more correct than application of rules designed for normal pdf to logarithmic-normal pdf . In this section, thyroid gland mass con�dence interval is computed using both theintegration table and the rules for Gaussian approximation. Both the results are compared.Actually, \Gaussian approximation" does not mean that logarithmic-normal pdf is replaced bynormal pdf . It means (see the section 5.1.1, page 43) that some rules for lengths of integrationsteps, points where to stop the integration etc., designed for normal pdf , are applied to anotherpdf which is then integrated according to these rules.Focusing on one task, design of the integration step, we can make similar experiment like in thepart 7.1.3, page 74, with the Table 7.1 but the computations are done with the logarithmic-normalpdf . If we keep the same notation, the results are shown in the Table 7.4.
�max = 10�5k l mkl �real m�max0 1 6 �7,9�10�6 161 2 6 3,4�10�6 62 3 4 2,9�10�6 43 4 4 8,5�10�6 24 5 2 2,1�10�6 45 10 6 6,3�10�6 6

Table 7.4: Numbers of integration steps found theoretically ( mkl, see (5.5), page 44) and experi-mentally (m�max ) for logarithmic-normal pdf
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We can see that between 0 and 1 the predicted number of integration steps ( m01=6) is muchless than actual one (m�max=16) to get under the required integration error �max=10�5. We expectthat error limits for con�dence interval shift and its correction would disagree as well.We performed another experiment concerning thyroid gland mass estimation more closely. Wegenerated 1 000 pairs of (h; !) (see 6.1, page 55), estimated posterior pdf of H and constructedcon�dence interval with each pair twice on the same posterior pdf | once using the integrationtable, once using the Gausian approximation. Values of h were generated from range h0; 10i andvalues of ! from h0; 0;6i. We compared lower bound Hlt and upper bound Hut of the con�denceinterval obtained using the table with lower Hlg and upper Hug bounds obtained by the Gaussianapproximation. Quantities

�lr = Hlg �HltHlt ; �ur = Hug �HutHutwere evaluated for each pair of (h; !) and processed. Arithmetic mean �r, sample standarddeviation sr, maximum and minimum deviations were found, see Table 7.5.Lower bound Upper boundarithmetic mean �lr = �0,104 �ur = 2,25�10�2standard deviation slr = 0,169 sur = 1,03�10�2minimum value �lr;min = �0,593 �ur;min = �0,0017maximum value �lr;max = 9,3�10�4 �ur;max = 0,0320
Table 7.5: Con�dence intervals limits for thyroid gland mass estimate. Di�erence of results deter-mined using integration table and Gaussian approximation

It is visible that because of using the Gaussian approximation instead of the integration table,the lower bound of the con�dence interval of H is decreased by cca 10% in average with a relativelyhigh dispersion and the upper bound is increased by approximately 2,3% in average.According to this result, the integration table is used rather than the Gaussian approximationto determine con�dence interval in the task of thyroid gland mass estimation.
7.1.7 Run TimesFor illustration, run times of some computation programs are shown in the Table 7.6. The tasksof signal, e�ective half-life, prediction of RH limits, excretions and thyroid gland mass are tested.The programs are run 100-times on some usual data set, where run time does not depend much ondata. If run time is strongly dependent on data, several cases are mentioned with di�erent values.The programs were run on Pentium 100MHz with MS-Windows 95. The run times includereading and writing data �les.Notes:� Symbol \(1)" by the items of signal means \honest" computing of symmetric con�denceinterval on the pdf� Symbol \(2)" by the items of signal means simpli�ed con�dence interval computing as men-tioned in the part 6.3.6, page 61.� Numbers \5", \50" and \500" by the items of signal mean number of impulses (ionizingparticles) detected in 1s. It is visible how computation time grows with increasing numberof impulses.� In case of thyroid gland mass estimation, only one computation is done (see part 6.1.6,page 58).Even on as ancient machine as Pentium 100MHz today (1999), the run times are short enoughso that the programs can be used during daily work at the KNM with the equipment that KNMhas.
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task run time [s]signal (1) 5 0,15signal (1) 50 2,0signal (1) 500 18,0signal (2) 5 0,04signal (2) 50 0,065signal (2) 500 0,30Tef 0,35RH prediction 2,2excretions 1,2thyroid gland mass 0,0045

Table 7.6: Runtimes of numerical programs
7.2 Experiments with Batch Processing of Data
In this section, results of some batch data processing is presented. Namely, Bayesian and de-terministic estimates are compared for e�ective half-life, predictions or radio-hygienic limits andexcretions. Further, inuence of data amount and quality on e�ective half-life and thyroid glandmass estimate and other experiments is shown.For the computations, real patients data collected for about �ve years were used. The data�le contains about 5 000 records, where one record means data of one application of 131I and thesequence of various following measurements.All the data presented here are anonymous and concern patients who are suspicious of su�eringfrom thyroid gland carcinome.Several times, quantities

�r(a; b) = b� aa (7.1)
�r(a; b) = bawill be used to consider relative di�erence of quantities a and b.

7.2.1 Comparison of Bayesian and Least-square Tef -estimateFrom the data �le, 2 978 records were selected for which an estimate of Tef could be computedby least squares method. Denote the least-square estimate by TLSef and the Bayesian estimateT̂ef � �Tef .According to (3.7), page 28, 0 < Tef � Tp, where Tp is physical half-life. After screening ofTLSef , it was found that
� for 96 records (3,2%), TLSef � 0, where minimum value was �97,4 days,
� for 153 records (5,2%), TLSef > Tp = 8,04 days, where maximum value exceeded range of the�eld (greater than 999,99 days), second maximum was 662,31 days,
� together, for 249 records (8,4%), estimate of TLSef was out of the range (3.7), i.e. had nophysical meaning.
Then variable �r(T̂ef ; TLSef ) was introduced (see (7.1)). Histogram of � r(T̂ef ; TLSef ) is shownon the Figure 7.1.
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Figure 7.1: Comparison of Bayesian and least-squares estimate of Tef , histogram of �r(T̂ef ; TLSef ),�ltered for �1 � �r(T̂ef ; TLSef ) � 1, used 2 787 records
7.2.2 Di�erence Between Diagnostic and Therapeutic TefIt was observed that Tef in diagnostic phase usually di�ers signi�cantly from Tef in therapeuticphase immediately following, although it is assumed that they are the same. This assumption isa key step to estimate/predict dose absorbed in an organ (see parts 3.10, page 30, 3.11 etc.).A quantity � = diagnostic Teftherapeutic Tef (7.2)
is introduced. 702 pairs of diagnostic and immediately following therapeutic applications in case ofthyroid gland carcinoma were analyzed. It was found that arithmetic mean � = 2,94 and standarddeviation �� = 1,72. This result is repeated in the Table 7.7. It means that diagnostic Tef is in

aritmetic mean � = 2,94standard deviation �� = 1,72
Table 7.7: Arithmeric mean and standard deviation of � | ratio of diagnostic and subsequenttherapeutic Tef , see (7.2)
average almost three-times greater than therapeutic Tef .If we compare histograms of Tef s obtained in diagnostics (Figure 7.2) and therapy (Figure 7.3),we can see that therapeutic Tef tends to be shorter.Scanning the data, we can notice that number of diagnostic measurements is usually 2{3 whereasnumber of therapeutic measurements often exceeds 5, even reaches up to 12 or more. The questionis if the di�erence in �gures 7.2 and 7.3 is not caused by the number m of measurements and there-fore by properties of model of Tef (6.19). The Table 7.8 shows relations of diagnostic/therapeuticapplication and number of measurement m. 4 939 records were used.Let us plot histograms of Tef with number of measurements m � 3 (Figure 7.4) and m > 3(Figure 7.5). Although the value m = 3 separates diagnostic and therapeutic applications betterthan other values, it is not a reliable criterion. For this reason the �gures 7.3 and 7.5 di�er mostsigni�cantly by a small peak in values of Tef > 4 which is completely absent in therapeutic cases.
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Figure 7.2: Histogram of Tef [days], estimates in diagnostic phase, 3 412 records

Figure 7.3: Histogram of Tef [days], estimates in therapeutic phase, 1 522 recordsdiagnosis 3 412 recordstherapy 1 522 recordsdiagnosis m � 3 3 057 recordstherapy m > 3 1 236 recordsdiagnosis m > 3 355 recordstherapy m � 3 291 recordsm � 3 3 348 recordsm > 3 1 591 records
Table 7.8: Frequencies of di�erent numbers of measurements m in diagnostics and therapy
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Figure 7.4: Histogram of Tef [days], estimates for number of measurements m � 3, 3 348 records

Figure 7.5: Histogram of Tef [days], estimates for number of measurements m > 3, 1 591 records
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Further, we can ask about origin of the smaller peak on the �gures 7.2 and 7.4.It can indicate:� medical reasons (organism behaves di�erently with low and high activity application, groupingof diagnostic results | mixtures, etc.),� artefacts caused by insu�cient properties of the model of Tef (6.19), page 65.
This problem de�nitely requires further analysis that falls beyond scope of this thesis.

7.2.3 Prediction of Activity in a Measurement SequenceOne of the quality tests of e�ective half-life estimate is this one: estimate Tef with k measurementsand predict time when activity of l-th measurement, where l > k, will be reached. In other words,we know activity Al in time tl and we want to \predict" tl using data up to tk.For this experiment, 989 therapeutic records with number of measurements m � 5 were selected,so that data processed by least quares do not give meaningless estimate of Tef . l was chosen asindex of the last measurement in the sequence, k was chosen as index of at least third measurementafter t1, at most second before k, depending on m.Then time tl = t(Al) was predicted both in the Bayesian way ( t̂l��tl) and least-squares method(tLSl ). Quantities �r(tl; t̂l) and �r(tl; tLSl ) were taken to compute arithmetic means and standarddeviations (see Table 7.9) and plotted to the histograms (see Figure 7.6 and Figure 7.7).
Bayesian prediction LS predictionarithmetic mean �r(tl; t̂l) = 4,81�10�2 �r(tl; tLSl ) = 2,55�10�3standard deviation sB = 0,215 sLS = 0,132�10�2

Table 7.9: Bayesian and least-squares relative di�erences of t(Al) prediction

Figure 7.6: Histogram of �r(tl; t̂l) (see (7.1)), Bayesian prediction of t(Al), 989 records
It is visible that the mean of Bayesian � r(tl; t̂l) is more biased and dispersion is greater thanin case of least-squares � r(tl; tLSl ). On the other hand, distribution of � r(tl; t̂l) seems to be closerto normal one than �r(tl; tLSl ). This result can again indicate insu�cient model (6.19), page 65.
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Figure 7.7: Histogram of �r(tl; tLSl ) (see (7.1)), least-squares prediction of t(Al), 989 records
7.2.4 Comparison of Bayesian and Deterministic Estimate of ExcretionsQuantity Eri called \excretion" is de�ned in the part 3.7, page 29.From 3 612 records, deterministic estimates of excretions Er2 and Er3 yielded 25 records (0,7%of records) where Er2 + Er3 � 0. No record where Er2 + Er3 > 100% was detected.Using Bayesian estimates Êr2 � �Er2 and Êr3 � �Er3, quantities �r(Êr2; Er2), �r(Êr2; Er2),�r(Êr2; �Er2) and �r(Êr3; �Er3) (see (7.1)) were computed and processed in the Table 7.10.

arithmetic mean standard deviationÊr2 67,5 14,9Êr3 15,6 5,8�r(Êr2; �Er2) 5,6�10�2 0,131�r(Êr3; �Er3) 0,201 0,210�r(Êr2; Er2) 1,28�10�2 0,285�r(Êr2; Er2) 3,14�10�2 0,405
Table 7.10: Comparison of deterministic and Bayesian estimate of excretions

Greater di�erence between Bayesian and deterministic estimate (over 3%) is for Er3 than forEr2. At the same time, Er2 is estimated with lower relative uncertainty (cca. 6% in average) thanEr3 (with almost 20%).
7.2.5 Inuence of Data Quality on Thyroid Gland Mass EstimateDuring data screening, it was found that thyroid gland masses measured by palpation di�er inmany cases signi�cantly from those by sonography, if both the measurements are available for onethyroid gland.Let us denote data hpalp as result of palpation measurement with relative precision !palp.Similarly, hsono and !sono is data pair for sonographic measurement. Bayesian estimate is thenH = Ĥ � �H .The di�erences between hpalp and hsono are visible in the Figure 7.8. Also some characteristics
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Figure 7.8: Scatterplot of hsono vs. hpalp for thyroid gland mass measurement, 487 records
of �r(hsono; hpalp) (see (7.1)) are shown in the Table 7.11.

arithmetic mean �r(hsono; hpalp) = 8,47standard deviation ��r = 16,31minimum value �r;min(hsono; hpalp) = �0,71maximum value �r;max(hsono; hpalp) = 213,29 (!!)
Table 7.11: Relative di�erence of palpation and sonographic data � r(hsono; hpalp) for thyroid glandmass estimationWe tried to consider inuence of these di�erences on the estimate uncertainty. We chose 487records where both palpation and sonographic measurement was �nished.We investigated dependence of �r(Ĥ; �H) on �r(hsono; hpalp) and other quantities. It wasfound, as property on logarithmic-normal pdf , that �r(Ĥ; �H) is constant and does not depend onany data combination.Histograms of quantities � r(H;hpalp) and �r(H;hsono) are shown on the Figure 7.9 and Fig-ure 7.10. The characteristics of these quantities are shown in the Table 7.12.arithmetic mean standard deviation�r(H;hpalp) 4,8 7,7�r(H;hsono) �0,233 0,14

Table 7.12: Arithmetic means and standard deviations of � r(H;hpalp) and �r(H;hsono)
From the �gures and the tables, it is visible that relative di�erence between the Bayesianestimate and palpation measurement is much higher (up to 5-times in average with a very highdispersion) than in case of sonographic one (cca. 23%). It means that, according to (6.2), page 56,the lower ! is, the more it attracts a �nal estimate. In other words, sonographic measurementinuences the �nal estimate much more than palpation one, if both the measurements are available.Anyway, the methodology of the thyroid gland measurement should be revised to avoid sohigh average di�erences between palpation and sonographic data, as thyroid gland mass in a very
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Figure 7.9: Histogram of �r(H;hpalp), 487 records

Figure 7.10: Histogram of �r(H;hsono), 487 records
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important quantity to estimate a absorbed dose (see 3.10, page 30). At least, correctness of values!palp and !sono should be tested.
7.3 Experiments with Individual Estimation Tasks
In this section, some single estimates on selected data are investigated. Inuence of prior infor-mation is shown on the example of thyroid gland mass estimation. Further, quality of model fore�ective half-life estimation is tested by modifying a subset of data selected from two measurementsequences.
7.3.1 Inuence of Prior Information on the EstimateAs derived in part (6.1.4), page 57, prior information for thyroid gland mass estimation is givenby (6.3) and it was obtained from batch processing of sonographic data. The prior informationrepresents �ctitious data corresponding to h=5,4g and !=5,38. In the Table 7.13, the estimatesand deviations are shown for simulated data h=2g, 27 g, 100 g and 500 g. At �rst it is consideredonly palpation measurement, at second only sonographic measurement and at third combinationof palpation and sonographic one with the same h. For the given pdf , intervals for probability 95%(�=0,05) and 67% (�=0,23) were found. It is visible that combination of data slightly decreases

95%-interval 67%-intervalh palpation sonography palp.+sono. palpation sonography palp.+sono.2 2,74� 1,96 2,14� 0,79 2,11� 0,72 2,11� 0,88 2,02� 0,38 2,01� 0,3527 31,5� 22,5 27,0� 10,3 27,8� 9,5 24,0� 10,0 26,5� 5,0 26,5� 4,6100 107� 77 102� 37 102� 35 83� 35 97� 18 97� 17500 487� 348 501� 184 501� 171 375� 157 474� 90 477� 83
Table 7.13: Estimation of thyroid gland mass with sonographic priors, ĥ0=0,998, �0 = r=3,395

uncertainty.If we do batch processing of only palpation data, we �nd that �h=16,7 g and �s=32,18 g. Theprior is expressed by ĥ0=7,69 and �0 = r=1,55 which corresponds �ctitious data h=16,7 g and!=1,93. The results are shown in the Table 7.14. As the standard deviation is relatively less than
95%-interval 67%-intervalh palpation sonography palp.+sono. palpation sonography palp.+sono.2 3,22� 2,32 2,22� 0,81 2,19� 0,74 2,59� 1,05 2,11� 0,40 2,09� 0,3627 32,3� 22,6 28,1� 10,3 28,0� 9,5 25,2� 10,2 26,7� 5,0 26,7� 4,6100 101� 71 101� 37 101� 34 79� 32 96� 18 96� 17500 414� 290 485� 178 487� 166 324� 131 459� 86 465� 81

Table 7.14: Estimation of thyroid gland mass with palpation priors, ĥ0=7,69, �0 = r=1,55
in case of the sonographic priors, the prior information has stronger inuence on the result. Wecan see that esimates of higher values are shifted down and estimates of lower values are shiftedup. Again, with combination of data, the means of the intervals get closer to h and width of theinterval decreases.If we introduce no prior information ( ĥ0=1, �0=0), which corresponds to ! ! +1 andh=anything, we get results shown in the Table 7.15. The interval means are generally increasedand procesing of more pieces of data both shifts the means to the data values and decreases theestimate uncertainty.
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95%-interval 67%-intervalh palpation sonography palp.+sono. palpation sonography palp.+sono.2 2,92� 2,13 2,15� 0,80 2,13� 0,73 2,22� 0,95 2,04� 0,39 2,03� 0,3627 39,5� 28,8 29,0� 10,8 28,8� 9,9 29,9� 12,8 27,5� 5,3 27,4� 4,8100 146� 107 108� 40 107� 37 111� 48 102� 19 101� 18500 731� 533 538� 199 533� 183 554� 238 509� 97 507� 89

Table 7.15: Estimation of thyroid gland mass with no prior information, ĥ0=1, �0=0
In case of thyroid gland mass estimation, the prior information inuences mostly the cases ifonly one measurement is available. The prior information causing the best match of data andmean of the con�dence interval seems to be the one obtained by batch processing of sonographicdata.

7.3.2 Inuence of Data Amount on E�ective Half-life EstimateThe model of e�ective half-life Tef treats values of activities Aj measured in time instants tj fortj > t1; j = 1; : : : ;m, where m is number of measurements, according to (6.19), page 65. Thequestion is how can m (i.e. number of measurements performed) inuence the estimate of Tef .In practice, m is about 2 or 3 for diagnostic measurement, mostly over four for therapeuticmeasurement. Time gaps in therapeutic data sequences mean weekends, holidays etc.We chose two sequences (red number 5138 applied 7.2.1999 and 3214 applied 19.12.1992) oftherapeutic data with total number of measurements n = 12. We selected a sub-sequence ofdata with m members. We �xed t1 as a measurement time where activity reaches its maximumand changed a number of subsequent data m. The Table 7.16 shows means of intervals T̂ef anddeviations �Tef .
sequence 1 sequence 2m T̂ef �Tef T̂ef �Tef1 4,0380 3,8063 4,0376 3,80302 1,5069 0,0047 4,9750 0,01533 6,5893 0,0394 3,4135 0,00554 3,9261 0,0069 2,7098 0,00285 2,9426 0,0031 2,3553 0,00186 2,4882 0,0019 2,2432 0,00157 2,2607 0,0016 2,1859 0,00138 2,1328 0,0015 2,1509 0,00129 2,0802 0,0014 2,1231 0,001110 2,0425 0,0013 2,1047 0,001111 2,0216 0,0012 2,0970 0,001012 2,0079 0,0012 2,0929 0,0010

Table 7.16: Dependence of Tef on number of data m
It is visible that estimate of T̂ef in both cases approaches some value with increasing m. Whatis surprising is a very low value of �Tef in all the cases except of m = 1.

7.3.3 Inuence of t1 on E�ective Half-life EstimateThe model of e�ective half-life Tef treats values of activities Aj measured in time instants tj fortj > t1 according to (6.19), page 65. The time t1 represents a time from which the activity course
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A(t) can be treated as exponential. The question is, how can a choice of t1 inuence the estimateof Tef .In practice, t1 is chosen as a measurement time when the activity reaches its highest value. Wecheck the validity of this decision and inuence of this choice on the Tef estimate.The same data sequences as in the part 7.3.2 are chosen.At �rst, m was set to 8 and t1 was changed from the �rst to the �fth measurement. In this way,�ve sub-sequences were obtained and used to compute estimate of Tef . The means of intervalsT̂ef and deviations �Tef are shown in the Table 7.17. Symbol n1 denotes (absolute) index of themeasurement taken (relative) as the �rst one (i.e. n1 = 3 means 3rd measurement in the sequenceis taken as the �rst one in this computation, 4 th one as the second one etc.) Symbol t1(n1) denotestime t1 corresponding to the n1-th measurement taken as the �rst one.

sequence 1 sequence 2n1 t1(n1) T̂ef �Tef t1(n1) T̂ef �Tef1 1,954 2,1328 0,0015 0,815 2,1509 0,00122 2,902 1,9899 0,0014 3,800 1,4721 0,00133 3,920 1,5476 0,0011 4,807 1,5689 0,00164 6,913 0,8643 0,0011 5,837 1,7001 0,00215 7,889 0,9264 0,0021 10,811 2,2102 0,0084
Table 7.17: Dependence of Tef on t1 for m = 8

Another experiment was done with both m and t1 variable. The measurements were cut o� fromthe beginning and the computations were done on the data that \remained", i.e. n1 +m = n� 1.The results for both the data sequences are shown in the Table 7.18.
sequence 1 sequence 2n1 m t1(n1) T̂ef �Tef t1(n1) T̂ef �Tef1 12 1,954 2,0079 0,0012 0,815 2,0929 0,00102 11 2,902 1,8869 0,0010 3,800 1,5113 0,00123 10 3,920 1,5181 0,0009 4,807 1,6070 0,00164 9 6,913 0,9974 0,0011 5,835 1,7221 0,00215 8 7,889 1,1921 0,0019 10,811 2,2099 0,00846 7 8,911 1,4893 0,0034 11,864 1,8713 0,00797 6 9,880 1,6970 0,0054 12,810 1,8196 0,00958 5 10,916 1,8613 0,0080 13,809 1,9277 0,01379 4 13,887 2,4612 0,0366 15,860 7,9947 0,044710 3 14,901 7,8592 0,1777 16,855 7,9902 0,049111 2 15,947 2,8026 0,1912 17,894 4,1365 0,468012 1 16,891 4,0200 3,8190 18,849 4,0200 3,8190

Table 7.18: Dependence of Tef on t1 for variable m
It is obvious that estimates of Tef strongly depend on the subset of chosen data and deviationsare too small to cover this dispersion. This observation can indicate insu�ciency of the model(6.19), page 65.



Chapter 8
Conclusions
Application of the Bayesian methodology in nuclear medicine for solution of the estimation prob-lems mentioned above and other ones seems to be promising both theoretically and practically.At the practical level, the speci�c problems at the speci�c Clinic of nuclear medicine (con-nected to optimization of radiation load on patients, ful�lling more strict radiohygienic regulationmeasures, more economical exploitation of radiopharmaceuticals etc.) are solved.At the theoretical and algorithmic level, problems related to applicability of Bayesian method-ology, especially numerical ones, are addressed.Within this e�ort, several results have been achieved. Among them, the most important are:

� The Bayesian estimates of speci�c biophysical quanties were derived, as summarized in Chap-ter 6.
� The estimates were generally and safely implemented and computer programs for Bayesianestimations were created.
� The software system JodNew that ensures complete data management of patients and con-tains implemented Bayesian estimates runs at the KNM .
The work described in this thesis is a part of e�ort to contribute to improvement of treatmentby better data processing using sophisticated mathematical methods.The estimates and algorithms are designed for the KNM but they can be used in other clinicsor related �elds, e.g. dosimetry, radiation protection etc.

8.1 The Contributions
The main �elds to which this work contributed are as follows:
Application of the Bayesian theory in a new �eldSuccessful application of formulae derived using some theory can be a task for itself. In this work,focus was mainly put on practical implementation of theoretical results with stress on numericalprecision and stability.

1. Solutions of important numerical and programming tasks are derived in Chapter 5.
� Construction of symmetric con�dence interval had the important subtasks to derivecriteria for variable integration step, con�dence interval shift and its correction and ter-mination of the step-by-step numerical integration. The task was to �nd the con�denceinterval limits with the given numerical precision.

89
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� Design of integration table for uni-variate function with oating distance of its pointsis focused on determining such a distance between adjacent points, according to thefunction curvature, to keep the given precision of quadratic interpolation between thetable points.� Other numerical tricks and methods are mentioned there, e.g. pseudo-normalizationof non-normalized function, half-width searching, domain restriction, testing of simplexmethod, modi�cation of its procedure and termination test.� Programming approach is described together with hierarchy of numerical classes andwith other methods of solution.2. The estimation formulae, derived in [11], were modi�ed and extended in Chapter 6. Othercontribution is in implementation remarks to each estimation task where speci�c features ofpractical realization are mentioned.3. The extensive tests of the algorithms are performed in Chapter 7 with the following results:
� The algorithms are numerically stable, run on cca. 5 000 patient data records passedsuccessfully.� The algorithms are numerically precise within requested accuracy.� Run times of the estimation programs are within fractions of seconds except of signal es-timation. Therefore some simpli�cation based on Gaussian approximation was adoptedfor this task that increased the computation speed 50-times.4. Experiments with batch processing of data and individual estimation tasks are also performedin Chapter 7. The main conclusions are:
� Bayesian estimates are always physically meaningful compared to the deterministic ones.For example, in the investigated data sets, almost 10% of deterministic Tef estimatesand up to 1% of deterministic excretions estimates were physically meaningless.� Bayesian predictions of radio-hygienic limits yield worse results (but always meaningful)than deterministic ones. The reason can be in insu�cient model of activity course intime.� Uncertainty of estimates depends on data uncertainty and other information used forthe estimation. Results of thyroid gland mass estimation show that in case of smallamount of uncertain data, prior information becomes more signi�cant for values of theestimates.� Estimation of Tef depends strongly on starting time t1 and amount of data and uncer-tainty of the estimates are too low which is not realistic. Again, this observation canindicate insu�cience of the activiy time course model.

Use of results of the Bayesian theory in practice | JodNewThe software system JodNew is used for everyday work at the KNM . Except of computing theBayesian estimates for medical purposes, it completely manages patients' data including adminis-trative ones, includes routines for preparation of radioactive solutions, supports technical dosimet-ric operations (calibrations of devices, measurement of standard sources. . . ), prints reports for thephysicians, updates data archives and saves data obtained during various biophysical measurementsfor \scienti�c purposes" | further procesing and analyses, hopefully performed in future.
The Bayesian estimates as inputs for eventual retrospective studies for �ner individ-ualization of therapeutic activityEstimated parameters have physical meaning and estimate methodology should respect it. Bayesianestimates on biophysical data are designed so that they are always meaningful physically . There
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was detected an insu�ciency in modelling of A(t) that may cause medical meaninglessness of someestimates. The model improvement is already �nished [13] and its algorithmical implementationshould be done soon.Results of the retrospective studies can indicate ways to re�ne individual therapeutic activity.However, this topic is beyond scope of this thesis.
Observations of data qualityIn this context, it was observed that palpation and sonographic data in the task of thyroid glandmass di�er in many cases signi�cantly, even by 2{3 orders. This observation has brought a messageto the KNM to check the measurement methodology and precision.This question is very important as thyroid gland mass H is a quantity that enters formulae forestimate of dose absorbed by thyroid gland, which is a key quantity to determine a therapeuticactivity. H appears both in speci�c irradiation estimation (see part 6.9.1, page 69) and MIRDmethod (see part 6.9.3, page 71). As H usually reaches low values and it is in denominator, thedose estimates are very sensitive to thyroid gland mass uncertainty.
8.2 Open ProblemsResults of this thesis indicate that application of Bayesian theory in solution of the estimationtasks in nuclear medicine described here seems to be successful both in theoretical and practicallevel. In order to take more advantage of this approach, the following open problems should beaddressed:

� algorithmical implementing of the alternative model for estimation of Tef and predictions ofradio-hygienic limits [13] and testing existence of di�erences in 131I kinetics during diagnosticsand therapy,
� approximating of the posterior pdf in the task of signal on background estimation for betterfurther theoretical applicability and practical performance,
� looking for optimization methods with proved reliability and convergence properties for thegiven class of tasks and substuting them for the simplex method,
� testing of properness of Gaussian approximation for deriving of integration criteria for otherpdfs treated here,
� deriving Bayesian estimates for the MIRD method as it is the best tool for doses estimationand contains independent input quantities (Aapl, � and S) in contrast to SI th and SIKformulae,
� designing a retrospective study trying to discover inuence of biophysical data and estimateson success of therapy.
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