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In the following we give an overview of problems related to variable selection (also 
known as feature selection) techniques in decision-making problems based on machine 
learning with particular emphasis to recent knowledge. Several popular methods will be 
reviewed and assigned to a taxonomical context. Issues related to the generalization versus 
performance trade-off inherent to currently used variable selection approaches will be 
addressed and illustrated on real-world examples. 

Introduction 

A broad class of decision-making problems can be solved by learning approach. This can 
be a feasible alternative when neither an analytical solution exists nor the mathematical model 
can be constructed. In these cases the required knowledge can be gained from the past data 
which form the so-called learning or training set. Then the formal apparatus of statistical 
pattern recognition can be used to learn the decision-making. The first and essential step of 
statistical pattern recognition is to solve the problem of variable (feature) selection or more 
generally of dimensionality reduction, which can be accomplished either by a linear or 
nonlinear mapping from the measurement space to a lower dimensional feature space. The 
main aspects of the problem, i.e., criteria for evaluating variables and the associated 
optimization techniques will be discussed.  

The objective of the paper is to demonstrate the necessity of selecting the most 
informative variables in order to improve the quality of decision-making based on the 
learning approach. We will examine some of the most popular tools under various settings to 
point out several pitfalls often omitted in current literature. Note: in the following we will 
prefer the term feature selection to variable selection in accordance with statistical pattern 
recognition conventions. 

Common research issues in management and medicine 

Though managers, economists and physicians have different priorities in research issues, 
there exist issues common to both the fields.  Such an issue is the problem of selecting only 
that information which is necessary (and if possible also sufficient) for decision making. 
Since not only mathematicians and physicians „speak different language“, but often also even 
managers, economists and physicians, the same problem appears different for all of them. 
Somebody from outside of both the communities, capable of abstraction and involved directly 
neither in management or medicine, is needed to find formal similarities of the problems. We 
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strongly believe that statistical pattern recognition is the discipline capable to provide a 
common methodology.   

A typical problem which both managers and physicians often encounter is the problem of 
too many potential inputs into their respective decision-making problems.  This phenomenon 
has been extensively studied in mathematics and in artificial intelligence. The "curse of 
dimensionality" problem, as called by a famous American mathematician Richard Bellman, 
can be found perhaps in all the fields of science and application areas including economics, 
management and even medicine and medical care. Without going into the details of this 
phenomenon, it can be stated that in order to make reliable decisions (or more exactly to learn 
to make them based on the past experience and the available data) the need for the amount of 
data dramatically grows with the number of inputs. Mathematically it means that the sample 
size required grows exponentially with the data dimensionality. This problem is very relevant 
particularly to the field of medicine and economics as the process of medical or economic 
data acquisition is usually both time consuming and costly. Consequently, the data sets 
acquired are usually too small with respect to their dimensionality.  

Though managers and clinical physicians consider their respective problems to be of a 
very different nature (perhaps justly from their professional point of view), from the point of 
view of mathematics a formally the same problem exists. It is just the question of different 
terminology and abstraction needed to find a unified look at the problem. Let us just give an 
example what we mean by considering which sets of inputs managers and physicians use for 
their decision-making: 

1. Managers for managerial decision-making: economic indices, financial data, time 
series, prediction estimates, etc. 

2. Physicians for clinical decision-making: symptoms, anamnestic data, results of 
biochemical analyses, etc. 

For a mathematician, however, both the sets can be looked upon as the set of variables, 
forming the input vector (in pattern recognition which deals with this problem the term 
feature vector is used). In the majority of practical cases, the dimensionality (the number of 
inputs) of the original input space can be rather high. It is just natural consequence of the well 
known fact that in the design phase of any system for the support of decision-making it is 
extremely difficult or practically impossible to evaluate directly the "usefulness" of particular 
input variables.  

Both managers and physicians certainly faced this problem many times, even though not 
when designing any support system, but just when having to make the decision. A manager 
could have for instance a large number of economic variables to potentially consider for 
performing a multiple regression analysis (too many potential regressors). On the other hand, 
a physician could have (or arrange to have) a large number of analyses results to base the 
decision on. Yet, in both the cases, owing to often very complex relations and dependencies 
(sometimes rather strong) among all the respective inputs, there exist either economic 
variables or clinical analyses results (let us speak generally just about variables) which can be 
left out from decision-making without a great loss of information content. The theory of 
information, a special mathematical discipline, defines this as the existence of „redundancy“ 
in the set of variables. However, even if physicians or managers would be aware of this 
phenomenon, the problem of solving the task to find the redundant variables for complex 
problems with many potential inputs is beyond human capabilities.  



Acta Oeconomica Pragensia, roč. 16, č. 4, 2008. 

 39

The reasons for trying to reduce the set of our inputs into the decision-making process by 
eliminating redundancies have both practical and theoretical foundations. The practical ones 
perhaps need not be discussed - the cost reduction in the data acquisition is sufficient to 
substantiate the reduction. On the theoretical front we should like to mention a famous 
theorem by another American mathematician S. Watanabe. He has founded the mathematical 
theory of cognition and by paraphrasing a world-known fairytale of Norwegian author Hans 
Andersen, he formulated the „Theorem of ugly ducking“. It states, roughly said, that no 
cognition is possible unless our perceptions (input variables) are weighted and, consequently, 
many of them are given a null weight and thus eliminated from the cognition process.  

Each of the considered fields (managerial and clinical decision-making) has its own 
specificity and accordingly different ways of treating the problem. On the other hand, with the 
ever increasing specialization and diversification of scientific disciplines, it is not uncommon 
fact that similar problems are being tackled in other branches of science, usually without 
awareness of respective research and application communities. Yet the results and methods 
from one scientific discipline can be applied not only to solve problems in another quite 
different discipline, but they can also often enrich its methodology.  

It is our belief that the novel methods developed recently in the field of statistical pattern 
recognition to solve the problem of feature selection can enrich the methodology of selecting 
the most useful information used in other application areas. 

Dimensionality reduction 

We shall use the term “pattern” to denote the D-dimensional data vector x=(x1,…, xD) T of 
measurements, the components of which are the measurements of the features of the entity or 
object. Following the statistical approach to pattern recognition, we assume that a pattern x is 
to be classified into one of a finite set of C different classes Ω = {ω1, ω2,…, ωC}. A pattern x 
belonging to class ωi is viewed as an observation of a random vector X drawn randomly 
according to the known class-conditional probability density function p(x|ωi) and the 
respective a priori probability P(ωi). 

One of the fundamental problems in statistical pattern recognition is representing patterns 
in the reduced number of dimensions. In most of practical cases the pattern descriptor space 
dimensionality is rather high. It follows from the fact that in the design phase it is too difficult 
or impossible to evaluate directly the “usefulness” of particular input. Thus it is important to 
initially include all the “reasonable” descriptors the designer can think of and to reduce the set 
later on. Obviously, information missing in the original measurement set cannot be later 
substituted. The aim of dimensionality reduction is to find a set of new d features based on the 
input set of D features (if possible d<<D), so as to maximize (or minimize) an adopted 
criterion. 

Dimensionality reduction can have different forms according to the adopted strategy: 

1. feature selection (FS) 
2. feature extraction (FE) 

The first strategy (FS) is to select the best possible subset of the input feature set. The 
second strategy (FE) is to find a transformation to a lower dimensional space. New features 
are linear or non-linear combinations of the original features. Technically FS is a special case 
of FE. The choice between FS and FE depends on the application domain and the specific 
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available training data. FS leads to savings in measurements cost since some of the features 
are discarded and those selected retain their original physical meaning. The fact that FS 
preserves the interpretability of original data makes it preferable in, e.g., problems of 
automated credit-scoring or medical decision-making. On the other hand, features generated 
by FE may provide better discriminative ability than the best subset of given features, but 
these new features may not have a clear physical meaning. 

Dimensionality reduction may follow different aims: 

1. dimensionality reduction for optimal data representation 
2. dimensionality reduction for classification 

The first aim is to preserve the topological structure of data in a lower-dimensional space 
as much as possible, the second aim is to enhance the subset discriminatory power. In the 
sequel we shall concentrate on the feature selection problem aimed at classification problems 
only. For a broader overview of the subject see, e.g., [5], [20], [28], [37], [40]. 

Feature selection 

Given a set of D features, XD, let us denote Ξd the set of all possible subsets of size d, 
where d represents the desired number of features. Let J be some criterion function. Without 
any loss of generality, let us consider a higher value of J to indicate a better feature subset. 
Then the feature selection problem can be formulated as follows: find the subset Xd

• for 
which J(Xd

•)=max{Xd∈Ξd}J(Xd). Assuming that a suitable criterion function has been chosen to 
evaluate the effectiveness of feature subsets, feature selection is reduced to a search problem 
that detects an optimal feature subset based on the selected measure. Note that the choice of d 
may be a complex issue depending on problem characteristics, unless the d value can be 
optimized as part of the search process.  

Feature selection criterion functions 

The ideal criterion of feature set effectiveness is classification error. Kohavi [13] 
introduced a practically important distinction between two principally different approaches to 
FS according to the feature subset evaluation approach (cf. also [38]), differing in the way 
how the classification error is estimated: 

Wrappers – In wrappers the features are selected with respect to a chosen decision rule 
(classifier). Classification performance is then used directly to evaluate feature subset and to 
direct the feature selection process further. Wrappers are often the preferred approach of 
choice due to their often higher achieved classification accuracy, although the feature 
selection process can be very slow. Features selected using wrappers are unsuitable for any 
other classifier, than the one used in the FS process. Also, wrappers are often worse than 
filters regarding the ability to generalize (wrappers may over-train, i.e., select features too 
specific for training data classification while the performance on independent data 
deteriorates). 

Filters – In filters the criterion function used for feature subset evaluation aims at 
characterizing more general properties of features. Features are selected without respect to the 
concrete context in which they would be later used. Typically features are evaluated using 
probabilistic distance functions, probabilistic dependence functions or functions evaluating 
entropy of the system etc. Often some assumptions are accepted to enable the use of such 
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functions – many of them are defined for normal distributions only. They often exhibit 
monotonic behavior. Filters are fast, but often yield unsatisfactory results in concrete machine 
learning applications, as shown later in this paper. On the other hand, they may be less prone 
to over-fitting. 

Currently it is generally agreed that if practical circumstances allow the use of wrappers, 
they should be preferred. However, wrappers often cannot be used in practice due to 
computational complexity or other problems and we have to resort to other measures of 
feature set goodness, i.e., to filters. In the following we focus on the reasoning behind filter 
feature selection criteria. 

The ability to classify patterns by machine learning relies on the implied assumption that 
classes occupy distinct regions in the pattern (feature) space. Intuitively, the more distant the 
classes are from each other, the better the chances of successful recognition of class 
membership of patterns. It is reasonable, therefore, to select as the feature space that subspace 
of the pattern representation space, in which the classes are maximally separated. Various 
measures have been defined to express in some way this quality of feature subsets. With many 
such measures simplifying assumptions have to be made about the data to enable measure 
evaluation. This can be illustrated well on one of the basic measures – the Mahalanobis 
distance. Mahalanobis distance can be easily evaluated in case the data is normal – therefore 
the normality assumption is usually implied on the data to enable the use of this distance 
measure. The principle of the measure can be simply described as follows – it increases with 
increasing the distance of class mean values and with decreasing the class variance. Many 
feature selection criteria to evaluate inherent data properties without the need to evaluate 
classification error have been defined in a similar way – a simplified overview of their 
framework can be given as follows (for details see [4][5][8][12]): 

• probabilistic distance measures – Mahalanobis distance, generalized Mahalanobis 
distance, Bhattacharyya distance, the divergence, Patrick-Fischer distance etc. 

• probabilistic dependence measures – Mahalanobis dependence, Bhattacharyya 
dependence, Joshi dependence, Patrick-Fischer dependence, mutual information etc. 

• entropy measures – Shannon entropy, quadratic entropy etc. 
• interclass distance measures – linear, non-linear, based on various metrics 

In recent years due to the rapidly increasing speed of computers it becomes more feasible to 
evaluate the classification accuracy directly as a part of the feature selection process. 
Although the probabilistic criteria mentioned above still retain some advantages (speed, 
possibly better generalization ability / lower tendency to over-fit), it has been generally agreed 
that using concrete classifier accuracy in place of FS criterion function, i.e., using wrappers, 
makes it possible to achieve better performance in most practical applications. Yet this 
approach suffers drawbacks as well – the tendency to over-train is among the most 
problematic. Accordingly, one of the open problems of current research is the question of how 
closely the probabilistic measures for use in filters actually relate to the expected 
classification error of the pattern recognition system. Finding better criteria with better 
properties is probably one of the most difficult and urgent, yet unsolved problems of the field. 

The problem of FS method choice – which methods are suitable for what ? 

We have shown that there exists a wide variety of criteria that can be used to assess 
feature subsets. With subset search algorithms the situation is similar. There exists a broad 
framework of various algorithms capable of accomplishing the same feature selection task. 
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Question can be raised why do we need many various methods, why don’t we just choose one 
universal method for all problems? Unfortunately, this is a fundamental problem – it is 
generally agreed that there exists no unique generally applicable approach to the feature 
selection problem. Some search methods may show to be better than others, but only in 
specific data and classifier set-ups. Under different circumstances the opposite may be true. 
The suitability of particular FS method for particular task may depend on problem 
dimensionality, number of classes, training set size, missing values, type of values (nominal, 
continuous) and other inherent data properties as well as on properties of the classifier for 
which the features are selected. 

Due to this broadness of FS method framework we can only provide in the following an 
overview of some of the most popular methods and method families and to discuss briefly 
their basic properties. Some of the methods will be examined on real world data in the 
experimental section. Before focusing on concrete methods, let us first categorize FS methods 
into basic families: 

FS method categorization with respect to optimality 

Optimal methods – methods yielding solutions optimal with respect to the chosen 
criterion. These include exhaustive search (feasible for only small size problems) and 
accelerated methods, mostly built upon the branch & bound principle. The well known 
branch & bound [22] [35] algorithm guarantees to select an optimal feature subset of size d 
without involving explicit evaluation of all the possible combinations of d measurements. 
However, the algorithm is applicable only under the assumption that the used feature selection 
criterion J(.) satisfies the monotonicity property - given two subsets of the feature set XD, A 
and B such that A ⊆ B, the following must hold: A ⊆ B ⇒ J(A) ≤ J(B). That is, evaluating the 
feature selection criterion on a subset of features of a given set yields a smaller or equal value 
of the feature selection criterion. Note: This assumption precludes the use of classifier error 
rate as the criterion (cf. wrappers, see above). This is an important drawback as the error rate 
can be considered superior to other criteria [30], [13], [38]. Moreover, all optimal algorithms 
including B&B become computationally prohibitive for problems of mid- and high 
dimensionality. The exponential nature of all optimal algorithms can not be suppressed 
sufficiently enough for most of real-world problems. The problem of optimal feature selection 
(or more generally of subset selection) is thus difficult especially because of its time 
complexity. Therefore the preferred approach is to trade optimality for speed and resort to 
sub-optimal methods only. 

Sub-optimal methods – essentially trade the guarantee of optimality of the selected subset 
for computational efficiency. A comprehensive list of sub-optimal procedures can be found, 
e.g., in books [4], [8], [37], [40]. A comparative taxonomy can be found, e.g., in [2], [6], [9], 
[11], [12], [15], [16], [29], [39] or [42].  Because sub-optimal methods have been found 
considerably more useful for practical purposes, we focus on them in more detail in the 
following. 

FS method categorization with respect to problem knowledge 

From another point of view there are perhaps two basic classes of situations with respect 
to a priori knowledge of the underlying probability structures: 
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Some a priori knowledge is available – It is at least known that probability density 
functions (pdfs) are unimodal. In these cases, one of probabilistic distance measures (see 
above) may be appropriate as the feature subset evaluation criterion. For this type of 
situations one of the optimal or sub-optimal sequential search methods is appropriate. Many 
alternative or task-specific methods also exist for use with particular types of problems 
[7][10][14]. 

No a priori knowledge is available – we cannot even assume that pdfs are unimodal. The 
only source of available information is the training data. For these situations we have 
developed two alternative methods. Both are based on approximating unknown conditional 
pdfs by finite mixtures of a special type with feature selection being inherited in the mixture 
parameters estimation process [23] [24]. 

Evolution of sub-optimal search methods 

Despite recent advances in optimal search, for larger than moderate-sized problems we 
have to resort to sub-optimal FS methods. A broad range of sub-optimal feature selection 
methods is currently available, based on various assumptions and adopting various search 
algorithms. 

The simplest choice is to evaluate each feature individually and eventually choose the 
features yielding the highest criterion value. This so-called individually best (IB) search is 
widely used in problems of prohibiting dimensionality (e.g., in text categorization or gene 
analysis with thousands of features) due to search time constraints. However, it completely 
ignores inter-feature relations and as such can not reveal solutions, where combinations of 
features are needed (see Figure 1). 

Figure 1: In this 2D case neither feature 1 nor 2 is sufficient to distinguish patterns 
from classes of rectangles and circles. Only when information from both features is 

combined, classes can be separated (dotted line) 

 

When feature relations are to be taken into account, the basic feature selection approach is 
to build up a subset of required number of features incrementally starting with the empty set 
(bottom-up approach) or to start with the complete set of features and remove redundant 
features until d features retain (top-down approach). The simplest widely used choice, the 
Sequential Forward [41] (or Backward [18]) Selection methods – SFS (SBS) – iteratively add 
(remove) one feature at a time so as to maximize the intermediate criterion value until the 
required dimensionality is achieved. Earlier sequential methods suffered from the so-called 
nesting of feature subsets which significantly deteriorated the performance. The first attempt 
to overcome this problem was to employ either the Plus-l-Minus-r, also known as “(l,r)” or 
“+L-R” [36] which involves successive augmentation and depletion process, or generalized 
algorithms [4]. Among the more recent approaches the following two families of methods can 
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be pointed out for general applicability and performance reasons: Sequential Forward (or 
Backward) Floating Search methods SFFS, SBFS, [25], and Oscillating Search (OS) methods 
[33]. An overview of the evolution of sequential search methods is given in Table 1. 

Tab. 1: Evolution of sequential search methods 

Method (Simplest first) Properties / Improvement over previous method 
Individually Best (IB) Evaluate each variable separately, completely ignore variable 

relations 
SFS / SBS 
(Sequential Selection) 

Sequentially build subset, in each step with respect to the 
currently included features 

GSFS / GSBS 
(Generalized Seq. Sel.) 

As SFS/SBS, but in each step evaluate groups of features 
instead of single features to reveal more complicated 
dependencies 

Plus-l-Minus-r Prevent “nesting”: alternate the adding and removing of one 
feature based of parameters L and R 

GPlus-l-Minus-r 
(Generalized P-l-M-r) 

Same as Plus-l-Minus-r, but in each step evaluate groups of 
features instead of single features to reveal more complicated 
dependencies 

SFFS / SBFS 
(Floating Search) 

Automatically determine the sequence of additions and 
removals – to avoid user parameters and improve search 
effectivity 

GSFFS / GSBFS 
(Generalized Float. S.) 

As SFFS/SBSF, but in each step evaluate groups of features 
instead of single features to reveal more complicated 
dependencies 

ASFFS / ASBFS 
(Adaptive Float. Search) 

Automatically adjust the size of feature groups evaluated in 
each step to better focus on desired dimensionality 

OS 
(Oscillating Search) 

Focus straight on the desired dimensionality + enable greater 
flexibility: optional randomized search, result tuning, time-
constrained search etc. 

 

Note: if the methods in Table 1 are used as filters, the hierarchy corresponds reasonably 
well with the ability to find solutions closer to the optimum with respect to the chosen 
evaluation function (IB – often the worst, OS – often the best). However, this is often 
insufficient to enable construction of good decision rules, because better criterion values often 
coincide with worse generalization, i.e., resulting classification performance on new, 
previously unseen data. Tests on independent data show, that any method regardless its 
principle may become the best for some problem settings. The negative implication is that it is 
difficult to give any universal recommendation about which method to choose. According to 
long-term experiments and independent studies (see, e.g., [15]) we can state that it is the 
floating search that most often offers the best compromise between performance and 
generalization. 
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Figure 2: Comparing the course of search (current subset size depending on time) 
in standard sequential search methods 

 

Floating search methods 

The Sequential Forward Floating Selection (SFFS) [25] procedure consists of applying 
after each forward step (adding the feature that maximizes the criterion the most) a number of 
backward steps (removing the feature, that causes the least criterion decrease) as long as the 
resulting subsets are better than previously evaluated ones at that level. Consequently, there 
are no backward steps at all if intermediate result at actual level (of corresponding 
dimensionality) cannot be improved. The same applies for the backward version of the 
procedure. Both algorithms allow a 'self-controlled backtracking' so they can eventually find 
good solutions by adjusting the trade-off between forward and backward steps dynamically. 
In a certain way, they compute only what they need without any parameter setting (unlike 
Plus-l-Minus-r). Formal description of this now classical procedure can be found in [25]. The 
floating course of search is illustrated and compared to other approaches in Figure 2. 

Floating search algorithms have been critically acclaimed as universal tools not only 
outperforming all predecessors, but also keeping advantages not met by more sophisticated 
algorithms (e.g., cf. [15]). They find good solutions in all problem dimensions in one run. The 
overall search speed is high enough for most of practical problems. Recent experiments show 
that the floating search principle overcomes exceptionally well the optimization performance 
vs. generalization trade-off problem (see experiments below). The idea of floating search was 
later extended in the adaptive floating search algorithms [32].  

Oscillating search method 

The Oscillating Search (OS) [33] can be considered a „higher-level” procedure, that takes 
use of other feature selection methods as sub-procedures within the main course of search. 
The concept is highly flexible and enables modifications for different purposes. Unlike other 
methods, the OS is based on repeated modification of the current subset Xd of d features. In 
this sense the OS is independent on pre-dominant search direction. This is achieved by 
alternating so-called down- and up-swings. Both swings attempt to improve the current set Xd 
by replacing some of the features by better ones. The down-swing first removes worst 
feature(s), then adds back best ones, while up-swing first adds, then removes. Two successive 
opposite swings form an oscillation cycle. The OS can thus be looked upon as a controlled 
sequence of oscillation cycles of specified depth (number of features to be replaced in one 
swing). For details see [33]. The course of OS search is compared to SFFS and SFS in 
Figure 2. 

Every OS algorithm requires some initial set of d features. The initial set may be obtained 
randomly or in any other way, e.g., using some of the traditional sequential selection 
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procedures. Furthermore, almost any feature selection procedure can be used to accomplish 
the up- and down-swings. This makes the OS more a framework than a single procedure. The 
OS can thus be adjusted for extremely fast search (low cycle depth limit, random 
initialization) in problems of high dimensionality or very intensive search aimed at achieving 
highest possible criterion values (high cycle depth limit, repeated runs from different random 
starting points to avoid local extremes, or other complex initialization). The OS can be used to 
tune solutions obtained elsewhere. 

As opposed to all sequential search procedures, OS does not waste time evaluating subsets 
of cardinalities too different from the target one. This "focus" improves the OS ability to find 
good solutions for subsets of given cardinality. The fastest improvement of the target subset 
may be expected in initial phases of the algorithm run. This behavior is advantageous, 
because it gives the option of stopping the search after a while without serious result-
degrading consequences (OS is thus usable in real-time systems). Moreover, because the OS 
processes subsets of target cardinality from the very beginning, it may find solutions even in 
cases, where standard sequential procedures fail due to numerical problems. 

Non-sequential and alternative methods 

In addition to sequential search methods a broad range of alternative approaches to feature 
selection is available, often having properties targeted at particular problems. Other 
alternatives aim at making the best of existing methods (not necessarily FS methods only) by 
means of combinations. Many methods inherit both the search procedure and subset 
evaluation criteria in one indivisible unit. 

Randomized methods. Sub-optimal sequential methods are prone to get stuck in local 
extremes. Randomizing may help to overcome this problem. It may also help to find solutions 
in significantly shorter time, although this is not guaranteed. The optimization power of 
purely randomized procedures like genetic algorithms [10] [19] [39] has been found slightly 
inferior to sequential methods. Extending sequential methods to include limited 
randomization may be a good compromise, as is the case with repeatedly randomly initialized 
oscillating search [33]. A well-known procedure performing the search semi-randomly with 
an inherited evaluation criterion is the relief algorithm [14]. 

Hybrid methods. The motivation to take the best of various approaches led to development 
of the so-called hybrid methods. These usually attempt to take use of the better properties of 
several existing methods while suppressing their drawbacks; the search then often consists of 
steps performed by means of various sub-methods. Attempts have been made to achieve 
Wrapper-like performance in Filter-like search time, etc. The idea of hybridization is studied 
in detail in [16]. 

Mixture-modeling based methods. Mixture-modeling approaches are suitable especially 
when the data is large and suspected to be multi-modal or otherwise complex in structure. 
Mixture modeling methods enable simultaneous construction of decision rules and feature 
selection [23] [24] [26]. 

Problem-specific methods. In many fields the standard methods can be used only with 
difficulties or not at all, often due to extreme dimensionality and small number of samples in 
the input data. This is the case in genetics [1] or text categorization [7], where the individually 
best feature selection is often the only applicable procedure. The deficiency of the IB search is 
compensated for by defining highly-specialized criteria suitable for the particular tasks. 
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Examining FS methods on real-world data 

The differences between standard FS methods and practical consequences of their 
application can be best illustrated on real world data. We have collected a set of examples to 
investigate the expectable behavior of optimal versus sub-optimal FS methods and wrapper 
versus filter [13] methods. We investigated two standard datasets available at the UCI 
Repository [21]: the standard benchmark 30-dimensional continuous mammogram data 
representing 357 benign and 212 malignant patient samples (classes not completely 
separable), collected at the Wisconsin diagnostic breast center and the 14-dimensional (6 
continuous, 8 nominal) australian credit scoring data representing 4 classess of 204, 256, 103 
and 127 bank clients (not well separable) divided by their credibility (cf. also [31]).  

The methods and functions we intend to employ and evaluate are currently defined for 
continuous data only. For this reason, we had to transform the australian dataset to eliminate 
the nominal features while preserving the information contained in them. We have adopted 
the simplest way to do that – we replaced each nominal feature by a number of binary features 
representing every possible nominal value that the original feature can take. It should be noted 
that such a transformation has negative consequences. First, the overall dimensionality of the 
problem increases with the unchanged number of data samples, in case of the australian data 
to 38 dimensions. Second, the new binary features are highly correlated. However, it will be 
shown that despite these drawbacks the use of feature selection methods leads to reasonable 
results. 

Data, classifiers and feature selectors all determine classification performance 

To illustrate the complexity of problems related to a classification system design we have 
collected a series of experimental results in Figures 3 to 5. We compare standard feature 
selection methods in both the wrapper and filter settings. In some cases we use different 
setups of the same method – e.g., in case of the oscillating search we compare the fast 
OS(5,IB) setup (denoting the deterministic sequential OS with maximum swing depth 5, 
initialized by means of the individually best feature search) to the slow, more thorough 
OS(5,rand15)setup (denoting the sequential OS with the maximum swing depth 5, called 
repeatedly with random initialization as long as at least 15 consecutive runs do not lead to a 
better solution).  

We conducted the experiments with various standard classifiers. For detailed explanation 
of the principle of the considered classifiers – 1-Nearest Neighbor (1-NN) classifier, 
Gaussian classifier, Support Vector Machine (SVM) – as tools that automatically decide on 
the assignment of samples to classes see, e.g., [3][5][37][40]. 

Note: whenever a classifier had been trained, standalone or as a wrapper, its classification 
rate was determined using 10-fold cross-validation. In 10-fold cross-validation the data is 
split to 10 equally sized intervals; the experiment is repeated 10 times with 9 data intervals 
used for training and 1 for testing (each interval used once for testing during the 10 
experiments). The 10 obtained classification rates are eventually averaged to get the final 
result. This technique helps to reduce the problem of small sample size – most of the data is 
used for training in this way to obtain better classification rate estimates. 
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Figure 3: 1-Nearest Neighbor classifier performance optimized on mammogram data 
by means of wrapper- and filter-based feature selection methods 

a) b)

 

Figure 4: Gaussian classifier performance optimized on mammogram data by means 
of wrappers and filters 

a) b)

 

Figures 3 and 4 share one representative set of feature selection procedures used to 
optimize two different classifiers –1-NN in Figure 3 and the Gaussian classifier in Figure 4. 
The main observable points are in both cases: 1) very good performance/time-cost ratio of 
floating search in wrapper setting is confirmed here, 2) the problem of often indirect (and 
thus insufficient) relation between probabilistic distance criteria and concrete classifiers is 
clearly visible – filter-based results tend to be inferior to those of wrappers when assessed 
using concrete classifier accuracy. 

In Figure 3 the filters exhibit mediocre performance. Bhattacharyya distance clearly has 
very weak relation to 1-NN performance on this dataset. This is emphasized even more by the 
fact that Bhattacharyya optimization (optimal result yielded by the Fast Branch & Bound 
(FBB)[35] vs. the mere individually best (IB) feature ranking) does not lead to any observable 
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improvement of the 1-NN accuracy; moreover, its impact seems to be of almost random 
nature. Another important observation is the filter and wrapper time cost. Wrappers are often 
considered unusable due to high time complexity. Here we can see that in many setups sub-
optimal wrappers are faster than optimal filters. Certainly for the presented type of data the 
problem of wrapper time complexity does not matter. 

In Figure 4 the superiority of wrappers is confirmed. However, unlike in the preceding 
case here filter optimization brings notable improvement (compare FBB to IB). This is most 
likely due to the fact that the Gaussian classifier and Bhattacharyya distance criterion (here in 
the normal form) are both based on the same assumption of the normality of data. The fact 
that the assumption is not true for this particular dataset implies mediocre overall Gaussian 
classifier performance. 

A comparison of Figures 3 and 4 illustrates two additional points: 1) for this dataset the 
Gaussian classifier is notably inferior to 1-NN. This implies that the data distribution does not 
exhibit normal behavior. 2) Better results can be obtained by investing more search time (this 
is made possible here by the flexibility of the oscillating search procedure). However, the 
trade-off between achieved classification rate and search time is clearly visible. From certain 
OS thoroughness-setting any improvement becomes negligible while the search time penalty 
increases beyond acceptable limits. Moreover, pushing the search procedure to its limits may 
have negative consequences in form of undesirably biased result [17] [27], what would lead to 
deteriorated classification performance on new, independent data (outside the training sets). 

In Figures 3b and 4b the speed difference between deterministic and randomized search 
can be clearly seen. Deterministic procedures [OS(5,IB)] tend to be significantly faster than 
the randomized [OS(5,rand15)], with more consistent time complexity across various 
subset sizes. However, randomness may be the key property needed to avoid local extremes 
(see the problem, e.g., in Figure 3a where the best overall result comes from OS(5,IB) for 
subsets of 13 and 14 features). Our experience shows that all deterministic sequential methods 
are prone to getting caught in local extremes. As there is no procedure available to guarantee 
optimal wrapper-based feature selection result, the best results we could get come from the 
sub-optimal randomized oscillating search. 

The well known peaking phenomenon is clearly demonstrated in Figures 3a and 4a. 
Figure 3a shows that with the mammogram dataset the 1-NN classifier performs best on 13-
dimensional subspace, while the Gaussian classifier performs best on 9-dimensional subspace. 
Although theoretically it should be possible to achieve better classification accuracy at any 
moment by adding features, in practice this is not the case due to finite and often too small 
number of samples in the training set. 

It should be noted that for both SFFS and SBFS the speed advantage over other methods 
is considerably higher than it may seem from Figures 3b and 4b – note that unlike other 
presented methods the SFFS and SBFS need only one run to obtain results for all subset sizes 
(denoted by respective horizontal lines in Figures 3b and 4b). 
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Figure 5: Classifier performance optimized on Austrian credit scoring data by means 
of Wrapper- and Filter-based feature selection methods 
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Figure 5 illustrates comparable results as Figures 3 and 4, obtained for the credit scoring 
data. The superiority of wrappers over filters is confirmed. The graph confirms the weak 
relation of normality-assuming probabilistic distance measures (Bhattacharyya, Divergence, 
Patrick-Fischer distances) to the performance of the 1-NN classifier, which does not assume 
normality of the data. This situation is to be expected in general, as most of the probabilistic 
feature selection criteria impose assumptions on data that are most often not met.  

As in Figures 3 and 4 the graph illustrates well the so-called peaking phenomenon, or the 
fact that from a certain number of features the overall classification performance drops. In 
case of this credit scoring dataset the best results have been obtained with the Gaussian 
classifier wrapper optimized using the randomized oscillating search (for subset size ~10) or 
using the sequential forward floating search (for subset size ~14). The shape of the graph 
coincides with the fact that the features were highly correlated – the maximum achieved 
classification rate does not change much for most subset sizes roughly up to 30. Note: the 
Gaussian classifier is shown to be equally good as 1-NN for this data.  

Note: missing values in Fig. 5 follow from numerical problems. This also illustrates the 
advantage of forward methods over backward ones – here the sequential forward floating 
search proved capable of yielding results for subset sizes up to 70% of the full 
dimensionality, in the same setting the backward methods fail to yield any result at all. 

Pitfalls of feature subset evaluation – experimental comparison of criterion functions 

As stated before, in certain type of tasks it is important to judge the importance of 
individual features. Although in decision theory the importance of every feature may be 
evaluated, in practice 1) we usually lack enough information about the real underlying 
probabilistic structures and 2) analytical evaluation may become computationally too 
expensive. Therefore, many alternative evaluation approaches were introduced. It is generally 
accepted that in order to obtain reasonable results, the particular feature evaluation criterion 
should relate to a particular classifier. From this point of view, we may expect at least slightly 
different behavior of the same features with different classifiers. In fact, even more 
differences can be observed between feature evaluation made using wrappers and filters. 
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Tab. 2: Single features in descending order, first best 7 then last worst 7, according to 
individual criterion values (i.e., „individual discriminative power“), 4-class, 38-

dimensional australian credit scoring data 

Bhattacharyya 37 29 31 19 6 28 20 … 14 24 23 13 32 0 12 
Divergence 37 31 29 6 19 28 20 … 14 24 23 13 32 0 12 
G.Mahalanobis 29 30 31 28 37 2 26 … 0 25 17 13 24 35 12 
Patrick-Fisher 29 6 19 10 25 20 18 … 12 13 32 0 1 37 36 
Gauss. cl. (10-f. CV) 6 10 35 25 29 19 2 … 34 8 9 20 33 31 37 
1-NN (10-fold CV) 29 30 31 28 19 16 26 … 35 37 12 14 36 1 2 
SVM lin (10-f. CV) 29 3 16 18 14 31 4 … 20 27 22 15 6 7 24 

 

In the example in Table 2 we demonstrate the differences between some standard criterion 
functions – both the probabilistic measures (filter setting: Bhattacharyya, Divergence, 
generalized Mahalanobis, Patrick-Fisher distances) and the classification accuracy (wrapper 
setting: Gaussian classifier, 1-Nearest Neighbor, Support Vector Machine with linear kernel 
[3], classification accuracy evaluated by means of 10-fold cross-validation). We evaluated 
single features of the australian credit scoring data using each of the criteria and ordered 
them descending according to the respective criterion values. In this way the more distinctive 
features should appear in the left part of the table, while the noisy and less important should 
appear in the right. The differences in feature ordering illustrate the importance and also the 
possible pitfalls of the choice of suitable criterion. Although some features are evaluated as 
good by most of the criteria (29, 31) and some as bad (12), with many others the results vary 
considerably and may show conflicting evidence (6, 14). This is an undesired effect 
illustrating how difficult it may be to draw general conclusions about which features are 
generally best to select – it can also be taken as an argument in favor of using wrappers 
instead of filters, to identify features with more certainty with respect to the given decision 
rule. 

Following the examples above it can be concluded that by employing classifier-
independent criteria one accepts certain simplification and possibly misleading assumption 
about data (note that most of probabilistic criteria are defined for unimodal normal 
distributions only). Nevertheless, classifier-independent criteria may prove advantageous to 
prevent over-fitting in cases when wrapper based feature selection fails to identify feature 
subsets that generalize well. 

A different view of criterion functions – visual subspace comparison 

The examples in Figure 5 illustrate spatial properties of different feature subsets (pairs, for 
easy viewing) identified in the mammogram data. Figure 6a shows the best pair of features 
identified by maximizing the Bhattacharyya distance (the same pair has been found using 
Divergence). Figure 6b shows the best pair identified by maximizing the Patrick-Fisher 
distance. Figure 6c illustrates an example of „bad“ feature pairs unsuitable for discrimination, 
obtained for this purpose by means of minimizing the Bhattacharyya distance. Note the 
difference between the “good’ feature pairs (Figs. 6a and 6b) and the “bad” pair (Fig. 6c). In 
case of the “bad” pair the classes overlap considerably, what makes their distinction 
considerably harder. This example also illustrates the common situation with real world data – 
often there exists no subspace in which the classes are completely separable. In most cases 
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some non-zero classification error is to be expected. Note: The images for Figure 6 were 
obtained using the Feature selection toolbox software [34]. 

Figure 6: Visual comparison of 2D subspaces found on mammogram data by 
maximizing: a) Bhattacharyya distance [the same was found by the Divergence], b) 
Patrick-Fischer distance. Figure c) shows a subspace unsuitable for discrimination 

due to high overlap of classes, found by minimizing the Bhattacharyya distance. 

a) b) c)

 

Summary of recent sub-optimal feature selection methods and recommendations 

Our own research and experience has led us to the conclusion that there exists no unique 
generally applicable approach to the feature selection problem. Some feature selection 
approaches and methods are more suitable under certain conditions, others are more 
appropriate under other conditions, depending on the properties and our knowledge of the 
given problem. Hence continuing effort is invested in developing new methods to cover the 
majority of situations which can be encountered in practice. 

A number of recent feature subset search strategies have been reviewed and compared. 
Following the experimental analysis of their respective advantages and shortcomings, the 
conditions under which certain strategies are more pertinent than others have been suggested. 

Recent developments of algorithms for optimal search led to considerable improvements 
of the speed of search. Nevertheless, the exponential nature of optimal search remains and 
will remain one of key factors motivating the development of principally faster sub-optimal 
strategies. Among the family of sequential search algorithms the floating search and 
oscillating search methods deserve particular attention as a practically useful compromise 
between speed and optimization performance. 

Concerning our current experience, we can give the following recommendations – the 
floating search can be considered the first tool to try. It is reasonably fast and yields generally 
very good results in all dimensions at once, often succeeding in finding global optimum with 
respect to the chosen criterion. The floating search also shows to be a good compromise to 
deal with the optimization efficiency versus generalization (impact on classifier performance 
on new data) trade-off. The oscillating search may become a better choice when: 1) the 
highest possible criterion value must be achieved but optimal methods are not applicable, or 
2) a reasonable solution is to be found as quickly as possible, or 3) numerical problems hinder 
the use of standard sequential methods, or 4) extreme problem dimensionality prevents any 
use of standard sequential methods, or 5) the search is to be performed in real-time systems. 
Especially when repeated with different random initial feature subsets the oscillating search 
shows outstanding ability to avoid local extremes in favor of finding the global optimum. 
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It should be stressed that, as opposed to the optimal branch & bound algorithm, the sub-
optimal sequential methods are tolerant to deviations from monotonic behavior of feature 
selection criteria. It makes them particularly useful in conjunction with non-monotonic FS 
criteria like the error rate of a classifier (cf. wrappers [13]), which according to a number of 
researchers seem to be the only legitimate criterion for feature subset evaluation. Superior 
performance of wrappers over filters has been verified experimentally in this paper as well. 

The importance of feature selection for classification performance has been clearly 
demonstrated. Note: selected algorithm source codes are available for download at 
http://ro.utia.cas.cz/dem.html. 
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Identifikace nejinformativnějších proměnných pro problémy 
rozhodovacího typu – přehled současných postupů a problémů 

Pavel Pudil – Petr Somol 

Článek podává přehled problémů souvisejících s vyhledáváním proměnných (výběru 
příznaků) pro rozhodování založené na metodách strojového učení, a to s ohledem na aktuální 
stav problematiky. Je porovnáno několik populárních metod a zařazeno do taxonomického 
kontextu. Rovněž je diskutován problém protichůdnosti požadovaných vlastností příslušných 
metod – na schopnost zobecňovat a schopnost efektivní optimalizace. Problém je ilustrován 
pomocí experimentů na reálných datech. 

Klíčová slova: identifikace proměnných, výběr příznaků, strojové učení, rozhodovací 
pravidla, klasifikace. 

Identifying the most informative variables for decision-making problems – 
a survey of recent approaches and accompanying problems 

ABSTRACT  

We give an overview of problems related to variable selection (also known as feature 
selection) techniques in decision-making problems based on machine learning with particular 
emphasis to recent knowledge. Several popular methods are reviewed and assigned to a 
taxonomical context. Issues related to the generalization versus performance trade-off 
inherent to currently used variable selection approaches are addressed and illustrated on real-
world examples.  

Key words: variable selection, feature selection, machine learning, decision rules, 
classification. 
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