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Abstract

In this article, an efficient algorithm for an optimal decision strat-
egy approximation is introduced. It approximates the Bellman equa-
tion without omitting the principal uncertainty stemming from an un-
complete knowledge. Thus, the approximated optimal strategy re-
tains the ability to constantly verify the actual knowledge, which is
the essence of dual control. An integral part of the proposed solution
is a reduction of memory demands using HDMR approximation. The
result of this method is a linear algebraic system for an approximated
upper bound on the Bellman function. One illustrative example has
been completely resolved.

Note: this article has been send to the 15th IFAC Symposium on
System Identification as a draft of regular paper.



1 Motivation

Decision making is a selection between different possibilities in a specific
situation, the choice of aims and means for their achieving. It is everyday
experience of all living creatures to achieve their ultimate aim to stay alive.
Human decision making is always a mixed pack containing three ingredients,
namely subconscious decision making, conscious decision making and uncon-
scious decision making. Therefore, it can fail easily. Decision-making theory
was developed to help avoiding these failures.

The main focus of this article is to develop approximation tool suitable to
enlarge the class of computationally feasible decision-making problems. This
work copes with principal problem within the stochastic dynamic program-
ming which is known as curse of dimensionality, see (3). In the contemporary
state of arts, there is a lack of approximation techniques capable to encom-
pass problems with a larger decision-making horizon. To this end, properties
of an approximative tool called High Dimensional Model Representations
(thereinafter "HDMR") are promising. It was stimulated by applications
in chemistry, see (1), focused to reduce enormous memory demands of the
involved models. In its background, there stands simple observation: only
low-order correlations amongst input variables have a significant impact upon
the outputs of a typical model.

A general form of a HDMR expansion reads

9(x) ~ §(z) = gz, 20,...,3,) = (1)
2 B om—1
m=1 m=1 n=1

Here, a zero-order component gy denotes a constant scalar value over the
domain of ¢g(z); the first-order components g, (z,,) describes an independent
effect of the each variable z,,; the second-order component Gy, (Zm, ) rep-
resents the joint effect of the variables x,, and z, and so on. Experience
shows that even the low-order case often provides sufficient description of
9(@).

Such a function approximation (representation) yields two main advan-
tages. The first is data reduction. The memory space necessary to store all
values of the original function g(x) grows exponentially with the dimension
4, whereas the size growth of decomposition components is just a polynomial
in p. This property helps us to cope with high-dimensional problems of the
real world. The second advantage is reduction of computational complexity.
In general, it allows us to split high-dimensional linear problem into several
low-dimensional subproblems. For instance, it could reduce integration over
high-dimensional domain into the sum of low-dimensional integrations.



The outline of this work is as follows. Section 2 deals with the current
state of art in the decision making theory. A central point here is the pre-
sentation of the Bellman equation with its notorious difficulties, mainly the
problem of a rapidly growing domain of the Bellman function. To cope with
this inconvenience, an approximative technique of HDMR is introduced in
a detail within Section 3. Also, a system of linear equation determining an
optimal function approximation is derived here. Its linearity does not match
well with a non-linear Bellman equation. Thus, a linear equation for an upper
bound on the Bellman function is derived, see Section 4. Connecting it with
HDMR approximation, a viable technique for approximative decision making
is obtained. In Section 5, there are concise instructions for implementation
of this approximation technique in real applications. For an illustration, one
toy example is completely resolved. Section 6 is devoted to conclusion.

Throughout this work, a few general conventions are followed. A domain
of a variable x is denoted X, z € X. |X| denotes a finite cardinality of
the countable set X or its Lebesque measure in the case it is not countable.
Next, x; is a quantity x at the discrete time instant labeled by ¢ € T'. The
letter " f" is reserved for a probability density function (pdf). Its specific
meaning is given through the name of its arguments. The same letter is
used for conditioned pdfs, arguments in condition are separated by "|" in an
argument list. Knowing f(z|y), it is possible to introduce the expected value
of a variable x conditioned by y

€[x|y]E/X:rf(x|y)dr

For a vector z € X, X C R¥, and m € M = {1,...,u}, 2™ denotes its
m-th coordinate. Therefore, it reads z = (z',...,2#). Taking some N =
{n',...,n"} C M, a projection z/y € R” is defined for all x = (z',... ,2#) €
X in this manner z/y = (2™,...,2"™) € RY. A HDMR approximation of a
function h(x) is marked by A(z). For a domain of h(x), dom(h) is used.

2 Decision Making Theory

Within this section, the classical results are briefly summarized together with
their classical troubles. Detailed discussion is to be found in (4), for example.

Decision-making theory formalizes and solves decision-making task, con-
sisting in selection the decision-maker’s strategy which ensures decision-
maker’s aim with the part of the world (so-called system) be reached. De-
cision maker observes or influences a system over a finite decision making
horizon 7 < oo. Data (system output) observed at a time instance t € T =
{1,...,7} is denoted by y; € Y;. It provides the decision maker information



about the system behavior. Analogously, decisions (actions) are denoted as
a; € A;. Tt is the value that can be directly chosen by the decision maker for
reaching decision-maker’s aims. A strategy {R:}:cr is a collection of map-
pings transforming an actual experience d(t—1) = (y;_1,a¢ 1, ..., Y1, a;1) into
a choice of the next decision a; € A;.

Next thing to do is to formalize a degree of achievements of the decision-
maker’s aims. The idea of loss function is promising. A loss value is assigned
to the each possible system trajectory d(7) respecting just one rule: the more
suitable some trajectory is, the lower loss value it posses. This way, a loss
function Z(d(7)) is obtained. Often, a less general concept of an additive
loss function is introduced, i.e., the case when losses accumulate with time

Z(d(T)) =Yz (an,y)  where z(an,y) >0 (2)

Now, it is necessary to describe the involved system. In this work, a
stochastic approach is held. Thus, the system is completely described in a
probabilistic manner by the following collection of pdfs called outer model of
a system

{/ (yelar, d(t = 1) }yer (3)

There are many ways how to find these formulae, see (5).

Knowing a loss function (2) altogether with an outer model (3), the op-
timal strategy is determined by the Bellman theorem. It claims: a strategy
{R:}ier selecting decisions af** and such that a{*" minimizes

Vier(d(t = 1)) = min E[2(y;, ar) + Vi(d(?)) | ar, d(t — 1)
at all times ¢ € 7', minimizes also the expected value of the overall loss
Z(d(7)) provided the boundary condition V, = 0 is satisfied.

The essential problem is to evaluate Bellman function V; for all ¢ € T.
Its exact recursive calculation is computationally infeasible in the majority
of practical applications for the reason of geometrically growing size of its
domain with increasing decision making horizon 7. This paper aims for
reduce a memory demands necessary to represent an approximated strategy.

2.1 Sufficient Statistic

When operating with a large amount of data, it is meaningful to compress
them into a set of smaller dimension as follows

or = o¢(d(t)) (4)



Such a mapping is called statistic. For a random variable x;, statistic o; is
sufficient if there exists f(x;|o(d(t)),t) satisfying the following condition for
all times ¢ € T and all possible trajectories d(t), t € T

f(@d(t)) = flao(d(t)), 1)

The explicit appearance of the time coordinate in condition is for the sake of
simplicity in sequel.

A collection of the following mappings {S;}icr is necessary to effectively
update statistic. Si(y1,a1) = o1(y1,a1), and for all t € {2,..., 7}, anew data
y; € Y; observed after a decision a; € A; is carried out and an old statistic
value 0,1 = oy_1(d(t — 1)), it reads

Se(ys, ar, o1-1) = o(d(t)) (5)

In this article, a function approximation would be searched over a statistic
domain. To find an optimal approximation, it would be contributive to define
the exact statistic domain ¥; for all times ¢ € T'. For X, it obviously holds
Y, =3%,(Y1,4;) and for all t € {2,..., 7}, such a domains are introduced in
a recursive manner

X = St(Yt;AtyEt—ﬂ

In the context of the Bellman equation (4), an existence of a statistic
{ov € Yi}ier sufficient for a system model (3) is assumed. It suggests to
rewrite the Bellman equation (4) valid over all ¥, ¢t € T, using a shortcut

Oi—1 = O't_l(d(t - 1))
with the condition V;, = 0. For all ¢t € {2,...,7} it holds

Vifl(th) = (6)
Hgg Elze(ye, ar) + Vi(Se(ys, ap, 04-1)) | ag, 041, — 1]
at t
The previous compression of the domain of the Bellman function is a crucial
step towards solution of the problem.

3 High Dimensional Model Representation

This section is to prepare a HDMR approximation technique to reduce mem-
ory demands to represent the Bellman function defined by (6). There are
many ways how to construct decomposition like (1), see (1). To reduce this
ambiguity, it is necessary to formalize the desired properties of decomposi-
tion.



A function Hilbert space L?(X) is an useful concept for a function ap-
proximation. Generally, it is a space of real functions defined over X with a
finite norm ||g|| = \/(g¢, ¢) inducted by the following scalar product

(g, hyy = /X 9(z) h(z) da (7)

The optimal HDMR, decomposition g of a function g € L*(X) is a mini-
mizer of an approximation error evaluated in this norm, i.e., it is a function
minimizing ||g — g

Partial Constancy of Decomposition Components

To get rid of an ellipsis "..." in (1), it is suitable to index decomposition

components by elements of a general index set. Consider u € N equal to
a dimension of X, X C R¥. Introducing M = {1,...,u}, a decomposition
component can be addressed by an element of the following index set

D C {N|N c M}

Set’s elements are indices, determining which variables a decomposition com-
ponent depends on. This way, it is possible to prescribe different component
order for different variables (or groups of variables). It could be useful if there
is some a priori information on the degree of their influence. The resulting
HDMR decomposition of g(x) has the following general form

i)=Y jnla) ®)

KeD

Obviously, considering decomposition components within the space L?(X)
is not strict enough. For any K € D, a HDMR decomposition component
g () must not depend on ™ for m € M\ K. A space of constant functions
would be useful. For all K C M, they can be introduced as

Cx(X) = {h]dom(h) = X, 9)
V (a/x =ylk — h(z) = h(y))}

x,yeX

These functions are constant in all the variables but z*, k¥ € K. Such a
restriction is non-optional when talking about HDMR approximation.
Support Restriction of Decomposition Components

Another restriction is necessary to guarantee an uniqueness of the each sepa-
rate decomposition component. The problem stems from the fact, that only



the overall sum of the decomposition components enters the minimization
task. For instance, a constant value gy can be nullified and added to any
higher-order decomposition component. There are many ways how to man-
age this ambiguity. The one proposed here aims to decrease the resulting
memory demands as much as possible. Key idea is to nullify decomposition
components on a specific border parts of their domains. Thus, for K C M a
Xx C X is defined

Xe= ) {xeX

meEM\K

z™ > minym} (10)

yeX

Reminding a concept of a function support
supp(h) = {z € dom(h), h(z) # 0}

it would be contributive to reduce supports of decomposition components in
the way that for all K € D it reads supp(jx) C Xk. With the following
condition put on D

Vv Vv LeD (11)

KeD LCK

an uniqueness of the each separate decomposition component gx, K € D,
is guaranteed. It is an easy exercise to verify this fact. The resulting de-
composition would give the same error of approximation with or without
these conditions. It rests to take a general optimal decomposition {gx } kep,
complete the index set D in the sense of (11), and by induction from the
largest to the lowest component orders restrict their support appropriately.
The only thing to take care about is the overall sum of components, which
have to be fixed during these operations. Within this process, an exact value
of the each restricted component is directly calculated, i.e., the collection of
restricted components is determined uniquely.

A small example would be helpful to clarify the used notation. If the
aim is to obtain just a first order decomposition of a function g(z1,zs,x3),
dom(g) = X; x Xy x X3 C R3, the following choice of an index set is the

right one
D ={0,{1},{2}.{3}}
Then, ¢ is going to be approximated in this way
g(w1, 29, 73) = Go + G1(71) + Go(22) + G3(73)

Compare with the general form (8). If a hypothesis exists that the biggest
influence originates from the cooperation of x5 with z3, an addition of a set



{2,3} into index set D is a good idea. It would change a searched HDMR
decomposition into this form

Go + g1 (1) + go(2) + G3(x3) + Gos (2, x3)

Afterwards, the presence of the second-order decomposition component goz(xs, 3)
should result in a noticeable decrease of the approximation error. For the
purpose of readability, g3} (w2, z3) is shorten into gos(w2, 3), ete.

At the moment, the main function spaces are defined for any K C M in
this way

Hyg(X) ={h € L*(X)NCx(X) |supp(h) C Xk} (12)

where C'kx(X) is defined by (9). Functions within this space depend only on
z* for k € K and, moreover, they are nullified on a part of border of their
domains, see (10). It leads to an observation that all the (possibly) non-zero
values of h € Hy(X) are fully determined by its values on the following set
X# C RIX

Xit = {afx |v € Xg CR*} (13)

This definition would be of high importance within the next section.

3.1 Optimality Conditions

Taking gx € Hg(X), K € D, for an optimal decomposition g defined in (8)
it holds

ge | Hrx(X)

On the right hand side, there is a closed subspace of L?(X) and therefore a
classical result for projection on closed subspace of a Hilbert space can be ap-
plied. It guarantees the existence and uniqueness of a function § minimizing
the approximation error ||g — g||. And more, it prescribes conditions for the
optimal decomposition § defined in (8). For all K € D and all h € Hg(X)
it holds

<§ -9, h> =0

According to definition of a scalar product, see (7), this equation reads
[ (@) = g@) hw) d =0 (14
X

Dirac delta function 6,(z), y € R, symbolizes a linear functional defined
over dom(d,) = R, thus it could be applied only within the context of some
real function p(x). Then, it operates in this way

/R 5, () plx) dz = p(y)



Its extension to a higher dimension is straightforward. From a formal point
of view, this concept is uncorrect, but it could be formalized directly at the
cost of a very technical notation.

The previously written optimality conditions (14) are valid for all K € D
and for all test functions h € Hg(X). To rewrite them in a dé-function
formalism, it is necessary to think over an effective domain of h carefully.
Formerly, it was deduced that such a function is fully determined by its

values on X3, see (13). On that account, a more complex delta function
Oy, dom(dx,) = X, is defined for all K € D and all y € X3 in this way

O y(7) = 0y (a/k)
Next, considering a d-function index as an element of
I={(K,y)|KeD,ye Xy} (15)

it is possible to rewrite the previous optimality conditions (14) in an equiv-
alent form valid for all Kk € 7

/X (3(2) — g(2)) 6u(x) de = 0

Expanding a HDMR approximation ¢ in accordance with its definition,
see (8), the last equations turn into

Z/X!?L(HC) 0r () dz:/}(g(a:)éﬁ(x) dx (16)

LeD

Again, considering the support of the decomposition components alto-
gether with its constancy in some variables, see (12), this system could be
represented by linear operators P, R and a system of equations valid for all

keTL
Py / Pt Gu(a) dr = Rg (17)

LeD’ XL
where for operator elements P, , resp. Ry[g], and all k, A\ € Z it holds

Py = / 5x(x) 6, () d (18)
X
Rilg] = / o(x) 6 (2) dz (19)
X
In sequel, a linear system (17) can be written
P x§= R[q] (20)

This is a linear system determining the precisely one optimal HDMR de-
composition of g minimizing its approximation error in L?(X) norm. From
numerical point of view, an important feature of this system is the symmetry
of the operator P.



4 Stochastic Dynamic Programming Approxi-
mation

In the previous section, the HDMR tool was introduced. It is based on linear
equations determining the optimal decomposition (20), whereas the Bellman
equation (6) is highly nonlinear due to the operator of minimization. This
fact obstructs the direct use of HDMR. For that reason, it is necessary to
find some linear approximation of the Bellman equation first.

As a mean value of some function have to be higher or equal to its min-
imum value, the following upper estimate holds for all ¢ € {2,...,7}, all
0i—1 € ¥y—1 and the Bellman function defined in (6)

1
Vici(opm1) < mx

/ El2e(ye, ar) + Vi(Se(ye, ar, 001)) [ ag, 001, — 1] day
Ay
This inequality can be rewritten in a more compact way by introducing a few

shortcuts. At first, the following uniform pdf would be useful f(a;|oy 1,t —

1) = \A_ltl' It is a mere shortcut, but it could be also interpreted as a simplest

possible optimal strategy predictor. It permits to introduce Z;(o), a function
evaluating expected one-step-ahead loss

Zy(0) = E[ 241 (Yer1, 1) | 0, 8]
Then, introducing the following conditioned pdf

oy, a1, 00) = 0oy, (St (Yis1, Gg1, 04))
representing a model of statistic dynamic, and using the chain rule, see for
instance (5), gives the pdf

flogilo,t) = / f(o1lyisr, aggr, 04, ) X
Yig1 J A
F(yirilag, 00, t) X flagi|og, t) dagy dye

Now, the previous previous can be rewritten as follows

Vici(orm1) £ Zii(o4-1) + E[Viloy) o1, t — 1]

Thanks to the recursive nature of the Bellman equation, see (6), this inequal-
ity spreads over the whole domain of V. Considering just an equality part,
it turns into a recursive equation for a function U, which is an upper bound
on the Bellman function

Ui1(oy-1) = Zy1(oy1) + E[Uoy) | o1, — 1] (21)

10



It is a linear equation, and therefore it can be solved easier than the exact
Bellman equation.

With the knowledge of U, the approximated optimal decision at time step
te Tis a € A, satisfying

opt

ay = argrﬁinﬁ[zt(yt, Gt) + Ut(st(yta Qs Ut—l)) |@t7 O¢-1, t]
at€AL

Here, again the shortcut oy 1 = oy 1(d(t — 1)) was used.

4.1 HDMR-based Approximation

The linearity of equation (21), which describes the upper bound on the Bell-
man function U, allows applying HDMR approximation directly. For all
times ¢ € T', an optimal HDMR decomposition component UEK, K € D, have
to be searched within Hg(X;). Firstly, a common index set M = {1,..., u}
is selected obeying the condition

Ui cr

teT

Next, an appropriate decomposition set D is chosen satisfying (11). Its choice
fully determines a structure of the following approximation. Some a priori
knowledge can be applied here, or they can be all selected up to the same
order. Typical choice is the second order decomposition, i.e., the case when
D is chosen as follows

D ={0} U {{m}m € M}yuU{{m,n}m,n € M,m < n}
It rests to prepare index sets Iy, ¢ € T, see (15). Not only an index set D,

bud also a geometry of the each approximation domain 3, plays role here.

Respecting the recursive nature of equation (21), and also the border
condition U, = 0, it is necessary to start from ¢t = 7 — 1, find a collection
{U},LK}KED determining approximated values of U at time ¢ = 7 — 1, de-
crease time by one and repeat this procedure until £ = 1. Inserting (21) into
(20) and respecting condition U, = 0 the following equation is obtained

Py« U‘rfl =R, [ZTfl]

with P._, resp. R,_;, defined analogously to (18), resp. (19). Its solution
is a collection {U;_1 g} kep fully determining the HDMR approximation of
the upper bound on Bellman function for time ¢t = 7 — 1.

Now, knowing {Uttl,K}KeD for some t 4+ 1 € T, the analogous procedure
is performed to find {U; k }kep- It leads to an equation

Pt*ﬁt = Rt [Zt +8[Ut+1(0't+1) |O'7t]]

11



This equation is the exact equation for an optimal HDMR decomposition
components of U, having only one, but crucial problem. On the right hand
side, there occurs the exact value of Uy q(0¢y1), which is unknown at the
moment. To avoid this, again, its HDMR decomposition

ﬁt+1(0) = Z Ut+1,K(U)

KeD

is substituted instead. This way, the previous equation turn into
PxU, =R, [Z] 4+ Qey1 * Upia (22)

where

Qi1 * Ut+1 =Ry

Z £ [UtH,K(UtH) ‘ Uﬂf}]

KeD

Reminding a definition of R[g], see (19), altogether with a detailed meaning
of a "starred" product, see (20), for all k € Z;, A € Z,,; and an operator
element (4.1 4, it holds

Qts1,60 = / f(0t+1|07 75) 5&(0) do 5A(0t+1) doiy
DUEE R I

Solution of the series of linear systems (22) is equivalent to finding ap-
proximative solution U of the upper bound of the Bellman equation (21)
using the HDMR technique.

5 Toy Problem Example

An unknown coin tossing considered to depict backgrounds of this work. A
decision maker plays a hazard game with a (two-sided) coin. Only one side
is the winning one. The coin is unfair and pay-off probabilities of its sides
are unknown. Also, it is not clear whether the result of tossing depends on
the starting orientation of the coin. The only, but crucial knowledge is that
the pay-off probabilities are fixed, i.e., the coin is rigid.

The decision-maker’s problem is: how to find the best strategy to pick
the winning side of the coin? Even though this problem could be formulated
so easily, it is a real teaser for a longer game horizon as it is hard to balance
exploration and exploitation. Winning in the first turn does not mean a
decision maker should play still this coin side as it excludes an opportunity
to learn pay-off probability of the opposite coin side.

Consider a finite decision making horizon of 7 steps. Using the previous
notation, y; represents the observed value (upper side of the coin when it

12



has landed) for the each time step and a; decision (selected coin side before
tossing) of a player (decision maker). As the game rules are fixed and even
the coin itself is rigid, the range of system input and/or output is still the
same. For all ¢t € T, it holds a; € A; = A = {0,1} and similarly y; € V; =
Y ={0,1}, where "0" stands for the "Tails" side of the coin and "1" for the
"Heads" side.

Note, for computation of the expected value in (4), the knowledge of an
outer system model (??) is crucial. It can be composed from two separate
probability densities, a parametric system model pdf and a describing internal
unknown parameter (pay-off probability of coin sides). For more detailed
info, see (2).

Before writing the resulting formulae, it is necessary to introduce a suf-
ficient statistic. Introducing a Kronecker’s symbol for j, k € N, §;, = 1 if
J = k and ¢;; = 0 otherwise, a sufficient statistic can be identified with a

three-dimensional vector o,(d(t)) = (o}, 07, 0}) as follows

t t t
O = Z : 6y170 5(17;,07 Z : 6y170 50,7;,17 : : 5y7l71 50‘7550
i=1 i=1 i=1
1

These values are simply sums of different game results. For instance, o,
equals to count of the previous game turns starting with a coin on the "Tails"
side (denoted by 0) and landing on the same side. Then, the outer system
model is

1_|_1
f(0l0,0,1) = m

3_|_1
fl0.00) = s

2
Ol o) = gt
faoy - S

Naturally, for a statistic values it holds o} + 07 + o} < ¢. This constraint
implies these statistic domains >, t € T'

2= {(0},0},0}) € {0.....t}%| o} +0} + 0 <t}

To completely formalize the problem, let prescribe a form of the statistic
updating mapping postulated in (5). In the context of the toy problem, it is
time independent

2

S(y,a,01,0 ,03) =

(O'1 + 60,y 60,a; 02 + 60,y 61,(1; 03 + 61,y 60,(1)

13



In the experiments, the coin tossing was simulated with an use of pseudo-
random generator simulating a coin with a pay-off probability of the "Heads"
side fixed at 60% and the pay-off probability of the "Tails" side sampled from
0% to 100% by a 1% step. At first, a short-horizon experiments were made to
compare results of different orders of the used HDMR approximation. Index
sets are

D, {0, {1}.{2}.{3}}
Dy = {0,{1}, {2}, {3}, {1,2},{1,3},{2,3}}

On a short game horizon, i.e., 7 = 10, each experiment was repeated 5000
times for the various strategies: exact optimal strategy prepared according
(6) and for both approximated optimal strategies derived according equations
(22) using index set Dy, resp. D,. Results of these experiments are depicted

in Figure 1.
0.95

0.9 exact
first order

0.85F second order

0.8

0.75F /
/

0.65[ 4

0.6 e
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. pay-off probability of the "Taijls" side (%) . .
Figure 1: The average gain of the optimal strategy compared with the gains

obtained from approximated strategies based on index sets Dy, resp. Ds.

average gain over a horizon of 10 steps
o
~
T
\

Comparing results of the approximated strategies based on index set D
and Dy, the first-order approximation driven by D, seems to be good enough
in the context of the toy problem. Therefore, it is used also in the long hori-
zon experiments. To illustrate the power of the newly introduced technique,
a game horizon of 200 steps is to be solved. There is no more possible to
compare these results of the approximated suboptimal solution with an opti-
mal one. For a basic illustration, results obtained by the "receding horizon"
technique are attached. It run with a receding horizon of 5 steps. Both
strategies run in 100 repetitions, for the results see Figure 2.
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Figure 2: The average ggfﬁﬁg?bt%'gyﬁ}tsh ot esfd%&lgofaroximation based on index
set Dy compared with the average gain obtained from the "receding horizon"
approximation.

6 Conclusion

The aim of this work was to cope with infeasible memory demands neces-
sary to represent an optimal decision making strategy. An upper bound of
the Bellman function was founded permitting an HDMR approximation eas-
ily. To obtain the best possible approximation, the HDMR technique was
tuned to work with a general shape of approximation domain. Combining
both these approaches, a series of linear systems implicitly determining the
approximated quantity appears.

As illustrated in the example of an unknown coin tossing, an agreement of
the results produced by the approximated strategy with the optimal results
was very good. Extended experiments on more complex systems is needed
to confirm these results.

A bottle-neck of this approximation technique is the complicated con-
struction of the central matrices (22). It still needs to pass through the
whole solution domain. It could be parallelized easily, but the need for a
smarter idea is evident. The most promising variant seems to be a recy-
cling of these matrices into a new step of decision making, i.e., introducing a
receding-horizon-like conception with a much longer horizon possible thanks
to the use of HDMR approximation. It is a topic of the future.
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