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Abstract 
The paper deals with the design of predictive control intended for systems, 
which can be described by linear autoregressive models (ARX models), 
inclusive multidimensional cases. The model parameters are assumed 
to be constant or slightly time-varying and to be obtained on-line by identification 
of least squares. The design of predictive control arises from a state-space 
formulation. In the paper, the initial ARX model representing Input/Output form 
is transformed to specific ‘pseudo state-space’ form with non-minimal state. 
This form requires the same computational demands at control design as usual 
state-space approach. 

Keywords: ARX models, on-line identification, state-space predictive control 

 
Introduction 

Systems in engineering practice usually change their prop-
erties. From mathematical point of view and also from con-
trol theory point of view, the key properties are being usually 
expressed by parameters included in a mathematical model, 
which describes considered system. Some of the parame-
ters may be more or less constant without any connection 
to system property changes or may be variable. Changes 
may be caused either by a system wear or by its nonlinear 
character. 

In control design, it is advantageous, if information on these 
changes can be involved in the computation of control ac-
tions. Model-based control strategies offer such possibility. 
In these strategies, the different types of parametric models 
are used. There are generally two ways to obtain values 
of the parameters. One way is to determine parameters 
by mathematical-physical analysis. The second way is using 
some experimental identification, at consideration of chan-
geable parameters, running on-line. 

The model-based control strategy, which uses models with 
appropriately changed parameters on-line, is usually called 
adaptive control strategy. In this paper, the one of such 
strategies – adaptive predictive control – will be investi-
gated. 

The predictive control [1] is nowadays very popular strategy 
mainly in chemical processes. However, it is also efficient 
in applications of mechanical engineering. It offers to simply 
manage multidimensional systems with different number 
of inputs and outputs [6] simultaneously with different types 
of constraints. Due to its multi-step character, it can optimize 
future control actions, which fit real demands. The tuning 
of the predictive control is not difficult and it follows directly 
from order of controlled system and from requirements 
on system behavior. 

As a model with possible time-varying parameters, the auto-
regressive model with external input (ARX model) is consi-
dered in this paper. 

The paper is organized as follows: 

At first, the multidimensional ARX model will be defined. 
Then, the identification based on least square method will 
be outlined in square-root form. Next section will deal with 
reformulation of ARX model leading to state-space like 
model. In subsequent section, the derivation of predictive 
control will be shown in brief. Closing sections will contain 
several practical examples with laboratory models: 
• ball on rod representing single-input and single-output 

system; 
• simplified model of the helicopter representing system 

with two inputs and two outputs. 

Model definition 

Predictive control can be designed with different model 
forms. Standard forms are the ARX model (input-output 
formulation) and state-space model. The both have their 
pros and cons. 

The ARX model represents unique description and is more 
suitable form Single-Input Single-Output (SISO) systems. 
It operates only with delayed inputs and outputs, therefore 
it does not need any observers. 

On the other hand, the state-space model is not unique, 
but it is more transparent for multidimensional cases (i.e. 
for Multi-Input Multi-Output (MIMO) systems). In general, 
it needs state-space observer. In this paper, the advantages 
of both will be taken together. 

Due to digital character of automating devices, the discrete 
control techniques are preferred. Therefore, the models 
used for control design are considered to be discrete in spite 
of the facts that controlled systems are continuous. Discrete 
realization is useful, because naturally respects finite prede-
fined time for computation of control actions. 

As was mentioned in introduction, the design of predictive 
control will be based on specific state-space formulation. 
However, as initial model, the ARX model is used. 
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Let us arise from definition of ARX model: 

∑∑
==

+−−−=
n

i
i

n

i
i keikyaikubky

11

)()()()(  (1) 

where n  is a system order, )(⋅y  and )(⋅u  are values of sys-
tem output and input, and )(ke  is model error, respectively 
noise of measurement of output )(ky . The coefficients ib  
and ia  are model parameters. The model (1) can be also 
written in the following condensed forms; either in row pa-
rameter orientation 

)()( keky kk += fϑ  (2) 

or in column parameter orientation T
kk ϑθ =  

)()( keky k
T
k += θf  (3) 

i.e. vector of the parameters )( T
kk θϑ =  is defined as 

][ 11 nnk aabb −−= LLϑ  (4) 

and data vector is composed from delayed values of control 
actions (inputs) and measured outputs 

T
k nkykynkuku )]()1()()1([ −−−−= LLf  (5) 

The model (1) and its condensed forms (2) and (3) are in-
tended for SISO systems. They can serve also for MIMO 
systems. Thus, the model (1) for MIMO systems is: 
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where n  is still system order, )(⋅u  and )(⋅y  are vectors 
of values of nu  inputs and ny  outputs, i.e. 

T
nu ikuikuik )](,),([)( 1 −−=− Lu  

T
ny ikyikyik )](,),([)( 1 −−=− Ly  

and )(ke  is an ny  dimensional vector of noise of measure-
ment of system outputs )(ky . The model parameters are 
included in matrices iB  and iA  
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The model (6) can be rewritten again in two possible forms. 

One of them is a multivariate linear regression form 
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where individual coefficients (parameters) are in horizontal 
rectangular matrix ϑϑk ; and kf  is 

TT
k nkknkk TTT )]()1()()([ −−−= yyuuf LL  

The second form is a fully polynomial form 

)()( kk k
T
k ey += θF  (8) 

where individual parameters are situated in column vector 

kθ  and the data are in horizontal rectangular matrix T
kF . 

Their internal structures are the following: 
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The model (8) can be written separately for each system 
output 
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This form means decomposition to a set of equations 
expressing the relation of individual current outputs to all 
appropriate inputs (current and delayed) and appropriate 
delayed outputs. Then, the identification can be realized 
formally as well as in SISO case. 

The difference of both forms for MIMO systems becomes 
evident in initialization of identification and influence of evo-
lution of identified parameters by a priori information. 

Model identification 

The sufficient and well known identification method is least 
square method [4]. In this paper will be briefly summed up 
in square-root form. 

For definiteness, let us consider ARX model (7), where )(ke  
represents, in view of least squares, model error: 

ϑϑ kkkk fye −= )()(  (10) 

The expression (10) do not represent enough equations 
for identification, since it is only yn  equations for determina-

tion of )( uyy nnnnn ⋅+⋅×  parameters ϑϑk . 

On the assumption, that the parameters are close to con-
stants or they are varied only slightly during a real control 
process, then it is possible to write needful number of equa-
tions of errors with changeless vector of parameters ϑϑk  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡−=−=
I

yFFye T
kkk

T
kkkk ϑϑ ][

 (11) 

where kF  is a square matrix of order uy nnnn ⋅+⋅  composed 

of appropriate data vectors T
if . 

Then, the criterion for identification is 
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To minimize the criterion, it is sufficient to minimize only its 
square-root J  as it follows from (12) 
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The computationally effective minimization is provided by 
orthogonal-triangular decomposition (14) (e.g. house-holder 
algorithm [5]). 
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which converts matrix ][ kk yF  to upper triangle (15): 
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 (15) 

This matrix consists of sub-matrices partly corresponding 
to unknown parameters and partly to square-root lc  of loss 
of the criterion. 

By considering sub-matrices related to unknown parame-
ters, the following equation is obtained 

0RR =+− PR
T
kPPϑ  (16) 

from which, the unknown parameters can be determined 
by backward substitution (due to triangular form of matrix 

PPR ). This process is provided on-line in each time step 
with connecting refreshed data kf  and )(ky  to current tri-
angular matrix R . 

Thus, appropriate part of matrix R  is restored to new upper 
triangular matrix newR . 
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Since the identification of parameters should not start 
from zeros, the initial filling of matrix R  (a priori parameter 
setting) can be done as follows 
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This selection (diagonal elements of R ) influences evolu-
tion of identified parameters. In case of parameters of SISO 
systems and in case parameterization (9) for MIMO systems 
these diagonal elements correspond to individual parame-
ters. By setting of some element to zero means that appro-
priate parameter is fixed, i.e. keeps its initial value. 

This property is useful e.g. for a priori setting of the depend-
ency of individual outputs on inputs and other outputs; 
i.e. presence of the appropriate parameter or not. The pa-
rameterization in multivariate linear regression form has 
limited this property. However, it is less computationally 
demanding. 

To increase the weight of the newest data, the exponential 
forgetting factor )19.0( −=fi  RR fi=  is useful [4]. It is realized 
after obtaining current parameters. 

Design of predictive control 

At design of predictive control, the composition of predictive 
equations is the most important. In this section, the empha-
sis is laid on specific reorganization of ARX model (7) [3]. 
Their result is state-space like model, which preserves 
Input-Output character simultaneously with transparency 
of state-space formulation applied to MIMO systems. 

The reorganized model is used in the composition of equa-
tions of predictions. At the end of this section, the criterion 
minimization is briefly recapitulated. 

Model reorganization 

To compose equations of predictions from available ARX 
model (7), there are several possibilities how to do it. 
One of the possibilities is to express the equations directly 
from ARX model [2]. However, such way requires solution 
of Diofantic equation and storing previous values of inputs 
and outputs as in second possibility – utilization of ‘pseudo 
state-space’ model. 

The second possibility obtaining suitable model will be ex-
plained. Let us arise from ARX model in one-ahead predic-
tive style. 
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Then, the suitable form can be structured as follows 
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State-space model (equations (20) and (21)) has two pseu-
do state-space matrices A  and 0B . Their dimensions are 
similar as in the use of usual (pure) state-space models. 
Subscript of matrix 0B  will be significant in next subsection 
at the composition of equations of predictions. 

Equations of predictions 

Usual composition of equations of predictions follows 
from ordinary state-space model 
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which is a model with minimal state. It maps interval of one 
sampling period. 
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Principle of the equations is expression (prediction) of future 
values of outputs y  from current measured state )(kx  as 
follows: 
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Equation (23) can be condensed in matrix notation 
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Considering the state-space model (20) without (21), 
the equations can be composed again recursively as it was 
indicated in (23). 
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The support notation has the following meaning 
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The equations of predictions (26) considering (21) can be 
also rewritten to appropriate matrix notation: 
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representing: free response + forced response. 

Such composed equations of predictions have the same 
dimension as the equations (24), which are based on state-
space model with minimal state. 

Control action computation 

The control actions are obtained by minimization of quad-
ratic criterion 
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where ,N  No  and Nu  are horizons; yQ  and uQ  are pe-
nalizations; and )( jk +w  are desired values. That criterion 
can be again condensed in matrix notation 
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from which, only one part (square-root) is sufficient to mini-
mize. 
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The minimization leads to the solution of algebraic equa-
tions for unknown control actions 

0
0

fwQu
Q
GQ y
u

y
=⎥

⎦

⎤
⎢
⎣

⎡ −
−⎥

⎦

⎤
⎢
⎣

⎡ )(
 

0buA =−  (32) 

This system of algebraic equations can be effective evalu-
ated again by orthogonal-triangular decomposition [5]. 
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Orthogonal matrix TQ  transforms the matrix A  to upper 
triangle 1R . Unknown control actions from the algebraic 
system (33) can be determined by backward substitution. 

From obtained vector u , which represents designed control 
actions for whole horizon N , only first appropriate actions 
are really applied to controlled system. This process is re-
peated in every time step. 

Finally, let us discuss the parameter tuning of predictive 
control in case of MIMO systems. The selection of horizons 
corresponds to system order and rate of changes of desired 
values. It is more or less straightforward choice. The tuning 
of elements of penalization matrices depends on character 
(case) of individual inputs and outputs. When the matrices 

yQ  and uQ are generally defined as follows: 

]),,,([ 1 ny
yy
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uu
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Then, the values of individual elements may have properties 
indicated in Tab. 1. 

 

case \ penalizations uQ  yQ  

I similar + O sim. .consti
u =λ  1=i

yλ  

I sim. + O different .consti
u =λ  different i

yλ  

I diff. + O sim. different i
uλ  1=i

yλ  

I diff. + O diff. different i
uλ  different i

yλ  

Tab.1 Selection of penalization matrices  
(I = Inputs, O = Outputs) 
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Examples 

Presented adaptive predictive control was tested on labora-
tory model ‘ball on rod’ and simplified model of helicopter. 
The control was implemented under MATLAB-Simulink 
environment using measuring card and Real-Time toolbox. 

The model ‘ball on rod’ represents SISO system. The task is 
to stabilize the ball in defined position. 

 
Fig.1 Laboratory model ‘ball on rod’ 

 
Fig.2 Appropriate Simulink scheme  

of adaptive predictive control 

 
Fig.3 Time histories of ball position  

and corresponding control actions 

The following model of helicopter (Fig. 4) represents MIMO 
system with two inputs and two outputs, which was con-
trolled by circuit shown in Fig.5. 

 
Fig.4 Model ‘helicopter’ (Humusoft Co.) 

 
Fig.5 Simulink scheme with predictive controller 

   
Fig.6 Time history of elevation and azimuth 

The desired motion (blue curves) was combination of sin 
and rectangular signals. During the real-time control pro-
cess, it is perceptible, that the identification was not adequa-
tely excited. Therefore the parameters were changed slower 
than reality. It caused degradation of the control, which lost 
adequate model. However, improper control actions caused 
exciting of identification and it improved the identification 
of model parameters and such way the control was cor-
rected again. 

 
Fig.7 Time history of one selected segment  

of control actions referred to Fig. 6 
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Conclusion 

In the paper, the adaptive predictive control was introduced. 
Multi-Input Multi-Output ARX model was used for composi-
tion of equations of predictions in specific state-space like 
formulation. This formulation requires comparable dimen-
sions of matrices as usual state-space formulation; i.e. it has 
similar computational demands. Different condensed forms 
of ARX model were demonstrated. Finally, the tuning of the 
parameters of the predictive controller applied to MIMO 
systems was briefly outlined. 
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