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Abstract

The goal of the paper is to recall a recently introduced concept of con-
ditional independence in evidence theory and to discuss Markov properties
based on this independence concept.

1 Introduction

Any application of models of artificial intelligence to practical problems must
manage two basic issues: uncertainty and multidimensionality. At present the
most widely used models managing it are so-called probabilistic graphical Markov
models.

In these models, the problem of multidimensionality is solved with the help
of the notion of conditional independence, which enables factorization of a multi-
dimensional probability distribution into small parts, usually marginal or condi-
tional low-dimensional distributions (or generally into low-dimensional factors).
Such a factorization not only decreases the storage requirements for represen-
tation of a multidimensional distribution but it usually also induces efficient
computational procedures allowing inference from these models. Many analo-
gies of results concerning conditional independence and Markov properties from
probabilistic framework were achieved also in possibility theory [7, 8].

It is easy to realize that if we need efficient methods for representation of
probability and possibility distributions (requiring an exponential number of
parameters), the greater is the need of an efficient tool for representation of
belief functions, which cannot be represented by a distribution (but only by a
set function), and therefore the space requirements for its representation are
superexponential.

After a thorough study of relations among stochastic independence, pos-
sibilistic T-independence, random set independence and strong independence
[9, 10] we came to the conclusion that the most proper independence concept
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in evidence theory is random set independence. Furthermore, in [11] we intro-
duced a new concept of conditional independence and proved in which sense it
is superior to the formerly introduced one [1]. Therefore, all results presented
in this contribution are based on this new conditional independence concept.

The contribution is organized as follows. After a short overview of neces-
sary terminology and notation (Section 2), in Section 3 we recall the recently
introduced concept of conditional independence and its properties [11] and in
Section 4 we discuss its Markov properties.

2 Basic Notions

The aim of this section is to introduce as briefly as possible basic notions and
notations necessary for the understanding the following text.

For an index set N = {1,2,...,n} let {X;};en be a system of variables,
each X; having its values in a finite set X;. In this paper we will deal with
multidimensional frame of discernment

XN:X1><X2X...XX”,
and its subframes (for K C N)
XK - XiEKXi'

When dealing with groups of variables on these subframes, Xx will denote a
group of variables {X;}iex throughout the paper.

A projection of © = (x1,xa,...,x,) € Xy into X will be denoted e
for K = {il,ig, . ,’Lk}

o = (z, @y, 20,) € Xk
Analogously, for M € K C N and A C Xk, A'M will denote a projection of A
into X!
AWM =y e Xy | Fr € Ay =atM}.

In addition to the projection, in this text we will also need an opposite
operation, which will be called an extension. By an extension of two sets A C
Xk and B C Xy, (K,L C N) we will understand a set

A@B={recXgy: 2 € A & 2 € B}
Let us note that if K and L are disjoint, then
AR B=AXB.

In evidence theory (or Dempster-Shafer theory) two measures are used to
model the uncertainty: belief and plausibility measures. Both of them can be

1Let us remark that we do not exclude situations when M = (). In this case A!? = §.
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defined with the help of another set function called a basic (probability or belief)
assignment m on Xy, i.e.

m: P(Xy) — [0,1]

> m(4)=1.

ACXy

for which

Furthermore, we assume that m(()) = 0.

A set A € P(Xy) is a focal element if m(A) > 0. A pair (F,m), where F
is the set of all focal elements, is called a body of evidence. A basic assignment
is called Bayesian if all its focal elements are singletons. A body of evidence is
called consonant if its focal elements are nested.

For a basic assignment m on X and M C K a marginal basic assignment
of m is defined (for each A C X/):

mtM(A) = > m(B).

BCX:BIM=A

Having two basic assignments m; and my on Xy and Xj, respectively
(K,L C N), we say that these assignments are projective if

which occurs if and only if there exists a basic assignment m on Xz such
that both m and my are marginal assignments of m.

3 Conditional Independence and Its Properties

Let us start this section by recalling the notion of random sets independence
[2].2

Definition 1 Let m be a basic assignment on Xy and K, L C N be disjoint.
We say that groups of variables X and X are independent with respect to
basic assignment m if

mLKUL(A) _ le(AlK) _miL(AlL)
for all A C X1 for which A = A x AL and m(A) = 0 otherwise.

It has been shown in [9] that application of Definition 1 to two consonant
bodies of evidence leads to a body of evidence which is not consonant any more.
It seemed that this problem could be avoided if we took into account the
fact that both evidence and possibility theories could be considered as special
kinds of imprecise probabilities. Furthermore, we proved that strong indepen-
dence implies possibilistic independence based on product t-norm. Nevertheless,

2Klir [4] uses the notion noninteractivity.
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in [10] we showed that the application of strong independence to two general
bodies of evidence (neither Bayesian nor consonant) leads to models beyond the
framework of evidence theory.

Therefore, at present random sets independence seems to be the most ap-
propriate independence concept in the framework of evidence theory. For this
reason in [11] we introduced the following generalization of this concept.

Definition 2 Let m be a basic assignment on X and K, L, M C N be disjoint,
K # 0 # L. We say that groups of variables Xz and X are conditionally
independent given Xy with respect to m (and denote it by K I L|M [m]), if
the equality

leULuM(A) _mlM(AlM) _ leuM(AlKUM) .miLuM(ALLUM) (1)

holds for any A C Xxyruar such that A = AKUM @ ALLUM " and m(A) = 0
otherwise.

Let us note that for M = @ the concept coincides with Definition 1, which
enables us to use the term conditional independence. Let us also note that (1)
resembles, from the formal point of view, the definition of stochastic conditional
independence [5].

Theorem 1 taken from [11] expresses the fact that this concept of conditional
independence is consistent with marginalization. What that means can be seen
from the following definition.

An independence concept is consistent with marginalization iff for arbitrary
projective basic assignments (probability distributions, possibility distributions,
etc.) my on Xg and mg on X, there exists a basic assignment (probability dis-
tribution, possibility distribution, etc.) m on Xy, satisfying this independence
concept and having m; and ms as its marginals.

Furthermore, the following assertion presents a form expressing the joint
basic assignment by means of its marginals.

Theorem 1 Let mi and mo be projective basic assignments on Xg and Xg,
respectively. Let us define a basic assignment m on Xy by formula

my(AHE)  mgy(ALE)

m(A) = m%KﬁL(AleL)

Jor A = AV @ AL such that mi™ " (AYEOLY > 0 and m(A) = 0 otherwise.
Then

for any B € Xk and C € Xy, respectively, and (K\ L) 1L (L\ K)[(KNL) [m].
Furthermore, m is the only basic assignment possessing these properties.
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This is the main advantage of conditional independence concept in com-
parison with the widely used notion of conditional noninteractivity based on
commonality functions instead of basic assignments [1]. For more details the
reader is referred to [11].

Among the properties satisfied by the ternary relation K I L|M [m], the
following are of principal importance:

(A1) K I L|M [m] = L 1L K|M [m],

(A2) K I LUMI|I [m] = K 1L M|I [m],

(A3) K I LUM|I [m] = K 1L LIM U [m],

(A4) K L LIMUT [m] A K I M|I [m] = K 1L LUM]|I [m],
(A5) K L LIMUT [m] A K I M[LUT [m] = K 1L LUM|I [m].

Let us remind that stochastic conditional independence satisfies so-called
semigraphoid properties (A1)—(A4) for any probability distribution, while axiom
(A5) is satisfied only for strictly positive probability distributions. Conditional
noninteractivity [1], on the other hand, satisfies axioms (A1)—(A5) for general
basic assignment m, as proven in [1]. For conditional independence introduced
by Definition 2 we get the following assertion proven in [11].

Theorem 2 Conditional independence K 1L L|M [m] satisfies (A1)-(A4).

Analogous to probabilistic case, conditional independence K I L|M [m)]
does not generally satisfy (A5), as can be seen from the following example.

Example 1 Let X, X5 and X3 be three variables with values in X, X5 and
X3 respectively, X; = {a;,a;},i = 1,2,3, and their joint basic assignment is

defined as follows:
m({(z1,x2,23}) = 1/16,

m(X1 X X.2 X Xg) = 1/2,
for x; = a;,a;, values of m on the remaining sets being 0. Its marginal basic
assignments on X; X Xg, X3 X X3,Xo x X3 and X;,7=1,2,3 are
mi2({z1,20}) = 1/8,
mllz(Xl X X2) = 1/2,

miB({xy,23}) = 1/8,
mll?’ X x Xg) = 1/2,

(

(
m123({x2,x3}) = 1/&
m123(X2 X X3) = 1/2,
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and
mbi(x;) = 1/4,
mii(X;) =1/2,

respectively. It is easy (but somewhat time-consuming) to realize that
m(All?) ® A123) . ml?)(AlB) _ ml13<A113) . ml23(A123)

and
m(A112 ® A123) -ml2(A12) 112 (A112) ,ml23(Al23)

for any A such that A = A2 @ Al23 and A = A3 @ A2 (the values of
remaining sets being zero), while e.g.

m({(a1,a2,a3)}) = % 7 i ' é =m"({a1}) - m**({(@2,a3)}),

i(ie. {1} 1L {2}/{3} [m] and {1} 1L {3}[{2} [m] hold, but {1} L {2,3}[0 [nz>]
oes not.

This fact perfectly corresponds to the properties of stochastic conditional
independence. In probability theory (A5) need not be satisfied if the joint
probability distribution is not strictly positive. But the counterpart of strict
positivity of probability distribution for basic assignments is not straightfor-
ward. It is evident, that it does not mean strict positivity on all subsets of the
frame of discernment in question — in this case variables are not (conditionally)
independent (cf. Definitions 1 and 2). On the other hand, it can be seen from
Example 1 that strict positivity on singletons is not sufficient (and, surprisingly,
as we can see in Theorem 3, also not necessary).

Theorem 3 Let m be a basic assignment on Xy such that m(A) > 0 if and
only if A= X ,cnA;, where A; is a focal element on X;. Then (A5) is satisfied.

Example 1 suggests that the assumption of positivity of m(A) on any A =
X ienA;, where A; is a focal element on X; is substantial. On the other hand,
the assumption that m(A) = 0 otherwise may not be so substantial and (A5)
may hold for more general bodies of evidence than those characterized by the
assumption of Theorem 3 (at present we are not able to find a counterexample).

Let us note that for Bayesian basic assignments assumption of Theorem 3
seems to be more general than that of strict positivity of the probability distri-
bution. But the generalization is of no practical consequence — if probability of
a marginal value is equal to zero, than this value may be omitted. On the other
hand, nothing similar can be done (in general) in evidence theory, because this
value may belong to some bigger focal element.
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4 Markov Properties

Markov properties of probability distributions belong to the area of mathematics
called graphical modeling. In this section we will introduce their counterparts
in evidence theory, but first let us present a few notions from graph theory that
will appear necessary.

A graph is a pair G = (V, E), where V is a finite set of vertices and the set
of edges E is a subset of the set V x V of (unordered) pairs of distinct vertices.
A subset of the vertex set K C V induces a subgraph Gx = (K, Fx), where
the edge set Ex = EN (K x K) is obtained from G by keeping edges with both
endpoints in K.

A graph is complete if any pair of vertices is joined by an edge. A subset
is complete if it induces a complete subgraph. A maximal (with respect to set
inclusion) complete subset is called a clique.

If there is an edge between k € V and [ € V', k and [ are said to be adjacent,
otherwise they are nonadjacent. The boundary bd(K) of a subset K of vertices

is the set of vertices in V'\ K that are adjacent to vertices in K. The closure of
K is d(K) = KUbd(K).

If there is a path from k to [ (a sequence k = ko, k1,...,k, = [ of distinct
vertices such that (k;—1,k;) € E for alli =1,...,n) we say that k and [ are in
the same connectivity component. A subset S C V is called an (k,1)-separator
if all paths from k to [ intersect S. The subset S separates K CV from L CV
if it is an (k,1)-separator for every k € K and [ € L.

Now, let us consider the conditional independence in a special situation: we
have a graph G = (V, E) and a finite collection of variables {X;};cv. We will
identify variables with vertices of the corresponding graph.

We can (analogous to probability theory) associate three different Markov
properties with any undirected graph G = (V, E) and a collection of variables
{X;}icv. Basic assignment m is said to obey
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(P) the pairwise Markov property, relative to G if, for any pair (i, ) of non-
adjacent vertices,

{i} L {GHV \ AL, 5} m];
(L) the local Markov property, relative to G if, for any vertex i € V,
{i} LV N\ cd({i})[bd({i})[m];

(G) the global Markov property, relative to G if, for any triple (K, L,S) of
disjoint subsets of V' such that S separates K from L in G,

K 1L L|S[m].

The global Markov property (G) gives a general criterion for deciding whether
two groups of variables K and L are conditionally independent, given a third
group of variables S. It is the strongest property, as can be seen from Propo-
sition 1 and Examples 2 and 3, inspired by Examples 3.6 and 3.5 from [5],
respectively.

The following two assertions (Proposition 1 and Theorem 4) are presented
without proofs. Their proofs completely depend on semigraphoid and graphoid
properties, respectively, and not on the framework in question. Therefore, the
reader is referred to [5].

Proposition 1 For any undirected graph G and any basic assignment on Xy
it holds true that

(G) = (L) = (P). (2)

Example 2 Let X, X5 and X3 be three binary variables with values in X1, X5
and X3, respectively, X; = {a;,a;},i = 1,2, 3, on the graph

&) &) &)

and the basic assignment m be defined as in Example 1.

From the results obtained in that example, we can see that this basic assign-
ment satisfies the pairwise Markov property (P), implied by {1} 1L {3}|{2} [m],
but does not satisfy the local Markov property (L), due to the fact that {1} 1L
{2,3}]0 [m] is not true. &

Example 3 Let X1, X5, X3, X4 and X5 be five binary variables with values in
X1,X9,X3,X, and Xj respectively, X; = {a;,a;},7 = 1,...,5, be defined on
the graph
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and the basic assignment m have the only focal element, namely
A = {(a1,a2,0a3,a4,a5), (@1, G2, a3, a4, as) }.

Therefore, all marginal basic assignments on any subspace of X; x Xo x X3 X

X, x X5 have also only one focal element, namely for m!2345 11345 11245
123 1238 1315 0112 118 124 12 g 13

412345 {(az,as, a4, as), (az, as, aq,as)},
AW — f(q) a3, a4, a5), (a1, as, ag, as)},
AV = f(ay, ay,dy,as), (@1, a0, a4, as)},
AU = L(ay,a9,a3), (a1, a2,d3)},
AV = L(ay,as,a4), (ao,a3,a4)},
ABS = ((ay,a4,a5), (as, a4, a5)},
A2 = {(a1,a9), (a1, a2},
AT = {(ay,aa). (@,d3)).
AP = {(ay,dy), (G2, a4)},
A2 = {as, a2} =X,

and

AP = A{ag},

respectively, are corresponding focal elements.
Therefore we can easily check that

le(Aw) _ m112(A¢12) -ml2345(A12345), (3)
m(A) .mL13(A113) _ m1123(A1123) . ml1345(A11345), (4)
and
m(A) X ml24(Al24) —_ m1124(A1124) . ml1245(A11245).

These equalities imply (due to the fact that A is the only focal element) that
{1} UL {3,4,5}{2}, {2} AL {4,5}|{1,3} and {3} A {1,5}|{2,4}, respectively.
Analogous to (3) and (4) we can check that also {5} 1L {1,2,3}|{4} and {4} 1L
{1,2}|{3,5}, respectively, hold, which means that this basic assignment satisfies
local Markov property (L). Nevertheless, since

m(B) .mLS(BLS) -0 7é 1= m1123(31123) _m1345(BL345)’
where
B = {(0,0,0,0,0),(1,1,0,0,0),(0,0,0,1,1),(1,1,0,1,1)},

it does not satisfy (G). &
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The following theorem is a counterpart of the well-known theorem by Pearl
and Paz [6] in the framework of evidence theory.

Theorem 4 If a basic assignment m on X is such that (A5) holds true for
K I L|M[m)], then
(G) = (L) = (P).

Due to the results obtained in the previous section (Theorem 3), we imme-
diately get the following

Corrolary 1 Let m be a basic assignment such that m(A) > 0 if and only if
A= X ienAi, where A; is a focal element on X;. Then

(G) == (L) <= (P).

5 Summary and Conclusions

The paper started with a brief discussion, based on recently published results,
why random sets independence is the most appropriate independence concept
in evidence theory. Then we have compared two generalizations of random
sets independence — conditional noninteractivity and the new concept of con-
ditional independence. We showed that although from the viewpoint of formal
properties satisfied by these concepts conditional noninteractivity seems to be
slightly better than conditional independence (for more details see [11]), from
the viewpoint of multidimensional models the latter is superior to the former, as
it is consistent with marginalization. Finally, we introduced Markov properties
of basic assignments and demonstrated the relationship among them.

There are still some problems to be solved. First, it is the question of
the possibility to weaken the sufficient condition in order (A5) would be still
satisfied. Another problem is the relationship between Markov properties and
factorization of basic assignments with respect to a graph — i.e. the analogy of
results from probabilistic [3] and possibilistic [8] frameworks.
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