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Ústav teorie informace a automatizace

Academy of Sciences of the Czech Republic
Institute of Information Theory and Automation

RESEARCH REPORT

Igor Vajda:

Modifications of Divergence Criteria

for Applications in Continuous Families

No. 2230 November 2008
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Modifications of Divergence Criteria

for Applications in Continuous Families

Igor Vajda

ÚTIA AV ČR
〈vajda@utia.cas.cz〉

1. INTRODUCTION

Let φ : (0,∞) 7→ R be twice differentiable strictly convex function with φ(1) = 0 and
(possibly infinite) continuous extension to t = 0+ denoted by φ(0), and let Φ be the class
of all such functions. We use also the related functions

φ#(t) = φ(t)− tφ′(t) and φ∗(t) = tφ(1/t) (1)

where φ′ denotes the derivative, φ# is nonincreasing, φ∗ belongs to Φ and the star oper-
ation is idempotent in the sense (φ∗)∗ = φ.

Let P, Q be probability measures on a measurable space (X ,A) with densities p, q
w.r.t. a dominating σ-finite measure λ. Following Liese and Vajda (1987 or 2006), for
every φ ∈ Φ we define φ-divergence of P and Q by

Dφ(P, Q) =





∫
φ (p/q) dQ if pq > 0 λ-a. s.

φ(0) + φ∗(0) if pq = 0 λ-a. s.
(2)

Here the condition pq > 0 λ-a. s. means that P, Q are measure-theoretically equivalent
(in symbols P ≡ Q) and pq = 0 λ-a. s. means that P, Q are measure-theoretically
orthogonal (in symbols P⊥Q).

We shall deal mainly with the power divergences

Dα(P, Q) := Dφα(P,Q) of real orders α ∈ R (3)

for the power functions φα ∈ Φ defined by

φα(t) =
tα − αt + α− 1

α(α− 1)
if α(α− 1) 6= 0 (4)

and otherwise by the corresponding limits

φ0(t) = − ln t + t− 1, φ1(t) = φ∗0(t) = t ln t− t + 1. (5)
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For P ≡ Q we get from (2) and (4) or (5)

Dα(P, Q) =





1
α(α−1)

[∫
(p/q)α dQ− 1

]
if α(α− 1) 6= 0

∫
ln(p/q) dP = D0(Q,P ) if α = 1

(6)

and for P⊥Q similarly

Dα(P, Q) =

{
1/α(1− α) if 0 < α < 1

∞ otherwise.
(7)

The special cases D2(P, Q) or D1(P, Q) are sometimes called Pearson or Kullback diver-
gences and D−1(P, Q) = D2(Q,P ) or D0(P,Q) = D1(Q,P ) reversed Pearson or Kullback
divergences, respectively.

The φ-divergences and power divergences will be applied in the standard statistical
estimation model with i.i.d. observations X1, . . . , Xn governed by Pθ0 from a family
P = {Pθ : θ ∈ Θ} of probability measures on (X ,A) indexed by a set of parameters
Θ ⊂ Rd. The family is assumed to be dominated with densities

pθ = dPθ/dλ for all θ ∈ Θ (8)

and to satisfy the relations

Pθ({x}) = 0 for all x ∈ X , θ ∈ Θ (9)

and

Pθ 6= Pθ0 and Pθ ≡ Pθ0 for all θ, θ0 ∈ Θ with θ 6= θ0. (10)

Here (9) means that the family P is continuous (nonatomic). The first property in (10)
means the identifiability of true parameter θ0 and the second property means the measure-
theoretic equivalence of all pairs from the family P . In this model the parameter θ0 is
assumed to be estimated on the basis of observations X1, . . . , Xn by measurable functions
θ̂n : X n 7→ Θ called estimates. Collection of estimates for various sample sizes n is an
estimator.

The assumed strict convexity of φ(t) at t = 1 together with the identifiability of
θ0 assumed in (10) means that Dφ(Pθ̂, Pθ0) ≥ 0 for all θ̂, θ ∈ Θ with the equality iff

θ̂ = θ0. In other words, the unknown parameter θ0 is the unique minimizer of the function
Dφ(Pθ̂, Pθ0) of variable θ̂ ∈ Θ,

θ0 = argminθ̂D(Pθ̂, Pθ0) for every θ0 ∈ Θ. (11)

Further, the observations X1, . . . , Xn are in a statistically sufficient manner represented
by the empirical probability measure

Pn =
1

n

n∑
i=1

PXi
(12)
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where Px denotes the Dirac probability measure with all mass concentrated at x ∈ X .
The empirical measures Pn are known to converge weakly to Pθ0 as n → ∞. Therefore
the minimizer

θ̂n = θ̂n,φ = argminθ̂∈ΘDφ (Pθ̂, Pn) (13)

is intuitively expected to estimate θ0 consistently in the usual sense of the convergence
θ̂n → θ0 for n →∞. However, the reality is different: the problem is that for the continu-
ous family P under consideration and the discrete family Pemp of empirical distributions
(12)

Pθ̂⊥Pn =⇒ Dφ(Pθ̂, Pn) = φ(0) + φ∗(0) when Pθ̂ ∈ P and Pn ∈ Pemp. (14)

This means that the estimates θ̂n proposed in (13) are trivial, with the arg min extending
over the whole space Θ.

In this paper we list and motivate several modifications of the minimum divergence
rule (13) which allow to bypass the problem (14). Some of them are new and some known
from the previous literature. The estimators corresponding to the listed modifications
will be studied in more detail in a subsequent paper.

2. SUBDIVERGENCES AND SUPERDIVERGENCES

In the rest of the paper we consider the probability measures

P ∈ P and Q ∈ Q for Q = P ∪ Pemp (cf. (14)) (15)

These measures are either measurable-theoretically equivalent (if Q ∈ P) or measurable-
theoretically orthogonal (if Q ∈ Pemp). Therefore the φ-divergences Dφ(P,Q) are well
defined by (1) for all (P, Q) ∈ P ⊗Q.

We often use also the likelihood ratios `θ,θ̂ = pθ/pθ̂ well defined a. s. on X in the
statistical model under consideration. In the rest of the paper we suppose that

{
φ

(
`θ,θ̂

)
, φ′

(
`θ,θ̂

)
, φ#

(
`θ,θ̂

)}
⊂ L1(Q) for all θ, θ̂ ∈ Θ and Q ∈ Q (16)

where L1(Q) denotes in this paper the set of all absolutely Q-integrable functions L :
X 7→R so that (16) automatically holds if Q ∈ Pemp. Further, we put for brevity

Q · L =

∫
L dQ for L ∈ L1(Q). (17)

Finally, for all pairs θ, θ̂ ∈ Θ we consider the functions Lφ(θ, θ̂) = Lφ(θ, θ̂, x) of
variable x ∈ X defined by the formula

Lφ(θ, θ̂) = Pθ · φ′(`θ,θ̂) + φ#(`θ,θ̂) (cf. (1))

which are due to (16) Q-integrable for all Q ∈ Q. Therefore

dφ,θ̂ (Pθ, Q) = Q · Lφ(θ̂, θ) = Pθ · φ′(`θ,θ̂) + Q · φ#(`θ,θ̂), θ̂ ∈ Θ (18)
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is for all Pθ ∈ P and Q ∈ Q a family of finite expectations. If Q ∈ P then, by a
supremal representation of φ-divergences established independently by Broniatowski &
Keziou (2006) and Liese & Vajda (2006), each φ-divergence Dφ (Pθ, Q) is maximum of the

subdivergences dφ,θ̂ (Pθ, Q) over θ̂ ∈ Θ, in symbols

Dφ (Pθ, Q) = sup
θ̂∈Θ

dφ,θ̂ (Pθ, Q) for all Pθ, Q ∈ P . (19)

This to some extent justifies to interpret (18) as a family of subdivergences of Pθ ∈ P
and Q ∈ Q. Obviously, if Q = Pθ0 ∈ P then the subdivergence formula (18) reduces to

dφ,θ̂ (Pθ, Pθ0) = Pθ · φ′(`θ,θ̂) + Pθ0φ
#(`θ,θ̂), θ̂ ∈ Θ (20)

and if Q = Pn ∈ Pemp then it reduces to

dφ,θ̂ (Pθ, Pn) = Pθ · φ′(`θ,θ̂) + Pn · φ#(`θ,θ̂) (21)

= Pθ · φ′(`θ,θ̂) +
1

n

n∑
i=1

φ#(`θ,θ̂(Xi)), θ̂ ∈ Θ. (22)

The supremum of all subdivergences of dφ,θ̂ (Pθ, Q), θ̂ ∈ Θ,

Dφ (Pθ, Q) = sup
θ̂∈Θ

dφ,θ̂ (Pθ, Q) (cf. (18) - (21)) (23)

is well defined for all Pθ ∈ P , Q ∈ Q and represents a superdivergence of Pθ and Q.
If Q ∈ P then it is seen from (19) that the superdivergence Dφ (Pθ, Q) coincides with the
φ-divergence Dφ (Pθ, Q) , i.e.,

Dφ (Pθ, Q) = Dφ (Pθ, Q) for all Pθ, Q ∈ P . (24)

If Q = Pθ0 then (24) reduces to the formula Dφ (Pθ, Pθ0) = Dφ (Pθ, Pθ0) for all θ ∈ Θ.
This superdivergence representation of of the φ-divergence function Dφ (Pθ, Pθ0) of variable
θ ∈ Θ justifies the replacement of the meaningless minimum divergence estimates (13) by
the meaningful minimum superdivergence estimates

θ̂n = θ̂n,φ = argminθ̂Dφ (Pθ̂, Pn) (cf. (23)) (25)

= argminθ̂ sup
θ∈Θ

[
Pθ̂ · φ′(`θ̂,θ) + Pn · φ#(`θ̂,θ)

]
(cf. (21))

= argminθ̂ sup
θ∈Θ

[
Pθ̂ · φ′(`θ̂,θ) +

1

n

n∑
i=1

φ#(`θ̂,θ(Xi)) (cf. (22))

]
. (26)

We see that this approach to the estimation of unknown parameter θ0 bypasses the prob-
lem mentioned in (14) by replacing the θ̂-insensitive divergence Dφ (Pθ̂, Pn) in the argmin
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formula (13) by the θ̂-sensitive superdivergence Dφ (Pθ̂, Pn). Then, by the strong law of
large numbers,

1

n

n∑
i=1

φ#(`θ̂,θ(Xi))
a.s.−→ Pθ0φ

#(`θ̂,θ) for all θ̂, θ ∈ Θ.

This means that under a mild additional regularity the supremum in (26) tends for each
argument θ̂ ∈ Θ to sup[Pθ̂ · φ′(Lθ̂,θ) + Pθ0φ

#(`θ̂,θ)] which is by (20), (23)and (24) the
divergence Dφ (Pθ̂, Pθ0) . In other words, the nontrivial functions Dφ (Pθ̂, Pn) of variable

θ̂ ∈ Θ tend to the nontrivial function Dφ (Pθ̂, Pθ0) of the same variable, while the trivial

constant function Dφ (Pθ̂, Pn) of the variable θ̂ ∈ Θ does not do so. Moreover, the limit
function Dφ (Pθ̂, Pθ0) = Dφ (Pθ̂, Pθ0) preserves the optimality condition (11), i.e.,

θ0 = argminθ̂Dφ (Pθ̂, Pθ0) for each θ0 ∈ Θ (27)

which means that the minimum superdivergence estimator (25) is Fisher consistent (cf.
e.g. Hampel et al. (1986)).

Note that the minimum superdivergence estimators (26) were first introduced under
the name minimum φ-divergence estimators by Liese and Vajda (2006) and indepen-
dently by Broniatowski and Keziou (2007) under the name minimum dual φ-divergence
estimators.

Example 1. Restrict ourselves to the logarithmic function φ(t) = − ln t+t−1 introduced
in (5). For this function we get φ′(t) = (t−1)/t and φ#(t) = − ln t so that the integrability
(16) takes place if the likelihood ratios `θ̂,θ = pθ̂/pθ satisfy for all θ, θ̂, θ0 ∈ Θ the condition
Pθ0 · `θ̂,θ < ∞. Further, Pθ̂ · φ′(`θ̂,θ) = 0 so that

dφ,θ̂ (Pθ, Pn) = Pn · φ#(`θ̂,θ) = Pn · [ln pθ − ln pθ̂]. (28)

Hence we see from (26) that the minimum superdivergence estimator is in this case the
MLE

θ̂n = argminθ̂ sup
θ∈Θ

[(
1

n

n∑
i=1

[ln pθ(Xi)− ln pθ̂(Xi)]

)]
= argmaxθ̂

n∑
i=1

ln pθ̂(Xi). (29)

3. SUBDIVERGENCE DEFICITS

In this section we study for arbitrary convex function φ ∈ Φ the family of differences

Dφ,θ̂(Pθ, Q) = Dφ(Pθ, Q)− dφ,θ̂ (Pθ, Q) , θ̂ ∈ Θ (30)

between the φ-superdivergences (23) and φ-subdivergences (18) of probability measures
Pθ ∈ P and Q ∈ Q. These differences can be interpreted as deficits of subdivergences
on the space P ⊗Q parametrized by θ̂ ∈ Θ. By (21), the subdivergence deficit formula
(30) can be rewritten into the equivalent form

Dφ,θ̂(Pθ, Q) = Dφ(Pθ, Q)−
[
Pθ · φ′(`θ̂,θ) + Q · φ#(`θ̂,θ)

]
, θ̂ ∈ Θ (31)
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where `θ̂,θ are the likelihood ratios pθ̂/pθ.

From Theorem 1 below we see that the subdivergence deficits Dφ,θ̂(Pθ, Pθ0) as functions

of the parameter θ̂ ∈ Θ satisfy the optimality condition

θ0 = argminθ̂Dφ,θ̂(Pθ, Pθ0) for all θ, θ0 ∈ Θ. (32)

Therefore the minimum subdivergence deficit estimators of θ0 defined for all
possible statistical parameters θ ∈ Θ by the formula

θ̂n,θ = θ̂n,θ,φ = argminθ̂Dφ(Pθ, Pn)

= argmaxθ̂

[
Pθ̂ · φ′(`θ̂,θ) + Pn · φ#(`θ̂,θ)

]
(cf. (31))

= argmaxθ̂

[
Pθ̂ · φ′(`θ̂,θ) +

1

n

n∑
i=1

φ#(`θ̂,θ(Xi)) (cf. (22))

]
(33)

are Fisher consistent.

Theorem 1. For arbitrary θ, θ̂, θ0 ∈ Θ it holds

Dφ,θ̂(Pθ, Pθ0) ≥ 0 (34)

and the equality takes place iff θ̂ = θ0.

Proof. By the Taylor theorem for convex functions φ it holds for all θ, θ̂, θ0 ∈ Θ

φ

(
pθ

pθ0

)
≥ φ

(
pθ

pθ̂

)
+ φ′

(
pθ

pθ̂

)(
pθ

pθ0

− pθ

pθ̂

)
λ-a.s.

which is under (16) equivalent to

Pθ0 ·
[
φ

(
pθ

pθ0

)
− pθ

pθ0

φ′
(

pθ

pθ̂

)
− φ

(
pθ

pθ̂

)
− pθ

pθ̂

φ′
(

pθ

pθ̂

)]
≥ 0

or to

Pθ0 · φ
(

pθ

pθ0

)
− Pθ · φ′

(
pθ

pθ̂

)
− Pθ0 · φ#

(
pθ

pθ̂

)
≥ 0,

i.e. to

Dφ(Pθ, Pθ0)−
[
Pθ · φ′(`θ̂,θ) + Pθ0 · φ#(`θ̂,θ)

]
≥ 0.

By (24) Dφ(Pθ, Pθ0) = Dφ(Pθ, Pθ0) so that (34) follows from the definition of Dφ,θ̂(Pθ, Pθ0)

in (31), this means that (34) holds for all θ, θ̂, θ0 ∈ Θ. The equalities above take place iff

pθ

pθ̂

=
pθ

pθ0

λ-a.s.
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which is equivalent to pθ̂ = pθ0 λ-a.s., or to Pθ̂ = Pθ0 . The desired equivalence with the

equality θ̂ = θ0 follows from the identifiability of the true parameter θ0 assumed in (10).
¤

The minimum subdivergence deficit estimating formula (33) can be rewritten into the
more detailed form

θ̂n,θ = argmaxθ̂

[
Pθ̂ · φ′

(
pθ(Xi)

pθ̂(Xi)

)
+

1

n

n∑
i=1

φ#

(
pθ(Xi)

pθ̂(Xi)

)]
(35)

for φ# defined in (1). The estimators (35) were first introduced by Broniatowski and
Keziou (2007) under the name dual φ-divergence estimators.

Example 2. If φ(t) = − ln t + t− 1 then it follows easily from the formulas of Example
1 that for every θ ∈ Θ

θ̂n,θ = argmaxθ̂

[(
1

n

n∑
i=1

[ln pθ̂(Xi)− ln pθ(Xi)]

)]
= argmaxθ̂

n∑
i=1

ln pθ̂(Xi) (36)

so for this choice of φ all estimates θ̂n,θ, θ ∈ Θ minimizing the subdivergence deficits are
the MLE’s.

4. DECOMPOSABLE PSEUDODISTANCES

The φ-divergences Dφ(P, Q), φ ∈ Φ can be characterized by the information processing
property, i. e. by the complete invariance w.r.t. the statistically sufficient transformations
of the observation space (X ,A). This property is useful but probably not unavoidable in
the minimum distance estimation based on similarity between theoretical and empirical
distributions. Hence we admit in the rest of the paper general pseudodistances D(P,Q)
of probability measures P ∈ P and Q ∈ Q = P ∪ Pemp restricted only by the reflexivity
condition

D(P,Q) ≥ 0 with D = 0 iff P = Q (37)

on the subdomain P ⊗ P . For such functionals of (P,Q) ∈ P ⊗ Q the information
processing property may not hold.

An additional restriction considered in this section will be the decomposability on the
statistical family P , i.e. the existence of mappings D̂, D0 : P 7→ R and δ, ρ : R 7→ R such
that

D(P, Q) = D0(Q) + D̂(P ) + Q · ρ(p), P,Q ∈ P , p = dP/dλ. (38)

In the rest of this paper the decomposable pseudodistances are called briefly decodistances
.

Note that using in this section the symbol D(P, Q) we do not indicate any connection
of the present concepts with the superdivergences Dφ(P, Q) of Section 2. The only known
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connection is between some special pseudodistances D(P, Q) and φ-divergences Dφ(P,Q)
mentioned after formula (45) below.

The class of all decodistances

D(Pθ̂, Pθ0) = D0(Pθ0) + D̂(Pθ̂) + Pθ0 · ρ(pθ̂), θ̂, θ0 ∈ Θ (cf. (38)) (39)

defines the minimum decodistance estimators of the true parameter θ0 by the
formula

θ̂n = argminθ̂

[
D̂(Pθ̂) + Pn · ρ(pθ̂)

]

= argminθ̂

[
D̂(Pθ̂) +

1

n

n∑
i=1

ρ(pθ̂(Xi)

]
. (40)

Due to the reflexivity of D(Pθ̂, Pθ0) the true parameter θ0 ∈ Θ is identifiable by this
decodistance in the sense

θ0 = argminθ̂D(Pθ̂, Pθ0). (41)

Hence the minimum decodistance estimators are Fisher consistent. Further, the decom-
posability of D(P,Q) leads to the additive structure of the criterion function in (40) which
opens the possibility to apply the methods of the asymptotic theory of M -estimators (cf.
Hampel et al. (1986), van der Vaar and Wellner (1996) and Mieske and Liese (2008)).

The next two subsections deal with two different classes of decodistances and with
the related minimum decodistance estimators. Here we present a simple example allow-
ing to interpret the estimators minimizing the subdivergence deficits as the minimum
decodistance estimators.

Example 3. Let us consider the special class of pseudodistances of probability measures
P ∈ P and Q ∈ Q = P ∪Pemp parametrized by θ ∈ Θ and given for each θ by the formula

Dφ,θ(P, Q) = Dφ,θ (Pθ̂, Q) when P = Pθ̂ (42)

By Theorem 1 of previous section, these pseudodistances are reflexive. Further, by (42)
and (31),

Dφ,θ(P, Q) = Dφ(P, Q)−
[
Pθ · φ′(`θ,θ̂) + Q · φ#(`θ,θ̂)

]
when P = Pθ̂.

For every θ̂ ∈ Θ and P = Pθ̂ with the density p = dP/dλ it holds

Dφ,θ(P, Q) = D0
φ,θ(Q) + D̂φ,θ(P ) + Q · ρφ,θ(p)

as it is required in the decomposability condition (38), with the components finite and
given by

D0
φ,θ(Q) = Dφ(P,Q), D̂φ,θ(P ) = −Pθ · φ′(`θ,θ̂), ρφ,θ(p) = −φ#(`θ,θ̂). (43)

Thus the pseudodistances Dφ,θ(P,Q) of probability measures P = Pθ̂ ∈ P and Q ∈ P ∪
Pemp are for all θ ∈ Θ decodistances and the corresponding special minimum decodistance
estimators coincide with the minimum subdivergence deficit estimators of Section 3.
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5. DISTURBED POWER DIVERGENCES

In this section we study a special class of integral pseudodistances of the above introduced
probability measures P ∈ P and Q ∈ Q = P ∪ Pemp called ψ-pseudodistances. They are
defined by

Dψ(P, Q) =

∫
ψ(p, q) dλ, p = dP/dλ, q = dQ/dλ (44)

for nonnegative functions ψ(s, t) of arguments s, t ≥ 0 reflexive in the sense ψ(s, t) = 0 iff
s = t. The φ-divergences Dφ(P, Q) are special ψ-pseudodistances for the functions

ψ(s, t) = φ(s/t) t− φ′(1)(t− 1), s, t > 0 (45)

since they are nonnegative and reflexive, and Dψ(P,Q) = Dφ(P,Q) for all P, Q.

Obviously, the ψ-pseudodistances for the functions ψ decomposable in the sense

ψ(s, t) = ψ̂(s) + ψ0(t) + ρ(s) t, s, t ≥ 0 (46)

for some ψ̂, ψ0, ρ : [0,∞) → R are decodistances in sense of the previous section satisfying
the decomposability condition

Dψ(P,Q) = D0
ψ(Q) + D̂ψ(P ) + Q · ρ(p) (cf. (38)) (47)

for

D0
ψ(Q) =

∫
ψ0(q) dλ and D̂ψ(P ) =

∫
ψ̂(p) dλ. (48)

EXAMPLE 3. The quadratic function ψ(s, t) = (s− t)2 defines the L2-distance

Dψ(P, Q) = ‖p− q‖2
2 =

∫
(p− q)2 dλ

which is reflexive and also decomposable in the sense of (47), (48) for

D0
ψ(Q) =

∫
q2 dλ, D̂ψ(P ) =

∫
p2 dλ and ρ(p) = −2p.

In other words the L2-distance is an example of decodistance. For this distance the
minimum decodistace estimator defined by (40) is the L2-estimator

θ̂n = argmaxθ̂

[
2

n

n∑
i=1

pθ̂(Xi)−
∫

p2
θ dλ

]
(49)

which is known to be robust but not efficient.

To build a smooth bridge between the robustness and efficiency, one needs to replace
the reflexive and decomposable functions ψ by classes {ψα : α ≥ 0} of reflexive functions
decomposable in the sense

ψα(s, t) = ψ0
α(t) + ψ̂α(s) + ρα(s) t for all α ≥ 0 (cf. (46)) (50)
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and satisfying the conditions

lim
α↓0

ψα(s, t) = ψ0(s, t) and

∫
ψ̂0(pθ̂) dλ = const, ρ0(s) = − ln s. (51)

Then for all α ≥ 0

Dψα(P, Q) = D0
ψα

(Q) + D̂ψα(P ) + Q · ρα(p) (cf. (38)) (52)

with

D0
ψα

(Q) =

∫
ψ0

α(q) dλ and D̂ψα(P ) =

∫
ψ̂α(p) dλ (53)

are decodistances which define in accordance with (40) the family of minimum decodistance
estimators of θ0 by the formula

θ̂n,α = argminθ̂

[
D̂ψα(Pθ̂) + Pn · ρα(pθ̂))

]
(54)

= argminθ̂

[∫
ψ̂α(pθ̂) dλ +

1

n

n∑
i=1

ρα(pθ̂(Xi))

]
, α ≥ 0. (55)

Obviously, this family contains as a special case for α = 0 the efficient MLE

θ̂0,n = argminθ̂

[
const− 1

n

n∑
i=1

ln pθ̂(Xi)

]
. (56)

The next theorem presents one family of functions ψα(s, t), α ≥ 0 satisfying (50) – (56).

Theorem 2. Each of the functions defined on the domain s, t > 0 by

ψα(s, t) =

{
s1+α + t1+α

α
− (1+α) sαt

α
if α > 0

s + t ln t− t ln s if α = 0
(57)

is nonnegative, reflexive and decomposable in the sense of (50) with

ψ0
α(t) =

{
t1+α

α

t ln t
, ψ̂α(t) =

{
s1+α

s
and ρα(t) =

{
(1+α) sαt

α
if α > 0

t ln s if α = 0
(58)

and the class (57) satisfies (51) for const = 1.

Proof. For arbitrary arguments s, t > 0 and fixed parameters a, b > 0 with the property
1/a + 1/b = 1 it holds

st ≤ sa

a
+

tb

b
(59)

10



with the equality iff sa = tb. Indeed, from the strict concavity of the logarithmic function
we deduce the inequality

ln(st) =
1

a
ln sa +

1

b
ln tb ≤ ln

(
sa

a
+

tb

b

)

and the stated condition for equality. Substituting s → sα, a → (1 + α)/α and b → 1 + α
for α > 0 we get

sαt ≤ s1+α

(1 + α)/α
+

t1+α

1 + α

with the equality condition sαa = tb, i.e. s1+α = t1+α. This implies that the function
ψα(s, t) is nonnegative and reflexive. It is easy to see that it satisfies (50) and also (51)
for ψ0(s, t) given in (57)and const = 1. ¤

By Theorem 2,

Dψα(P,Q) =

∫
ψα(p, q) dλ, α ≥ 0 (60)

=

{
P · pα + 1

α
Q · qα − (1+α)

α
Q·pα if α > 0

1 + Q · ln q −Q · ln p if α = 0.
(61)

is a family of decodistances. Its relation to the family of the classical power divergences
Dα(P, Q) defined by (3) is rigorously established in the next theorem. This theorem refers
to the family of functions

ϕα(s, t) = s1+αt−α +
t

α
− 1 + α

α
sαt1−α (62)

of arguments s, t > 0 parametrized by α > 0 with the limit

ϕ0(s, t) = lim
α↓0

ϕα(s, t) = ψ0(s, t) (63)

given by the second row in (57). One can easily verify that the functions (62), (63) define
the following mixed power divergences

(1 + α) [α D1+α(P, Q) + (1− α) Dα(P,Q)] =

∫
ϕα(p, q) dλ, α ≥ 0. (64)

Theorem 3. The decodistances Dψα(P,Q) of (60) are distorted versions of the mixed
power divergences (64) in the sense that the decodistance density ψα(p, q) appearing in
(60) is for every α > 0 the product wα(q)ϕα(p, q) of the weight function wα(q) = qα with
the power divergence density ϕα(p, q) appearing in (64) and for α = 0 it is the limit

ψ0(p, q) = lim
α↓0

wα(q)ϕα(p, q) = p + q ln q − q ln p (cf. (57), (63)). (65)
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Proof. Let α > 0 and

φ̃α = (1 + α) [αφ1+α + (1− α)φα] ∈ Φ

for φα given by (4). Then

φ̃α(s) = s1+α +
1

α
− (1 + α)

α
sα (66)

and we get from the definition of φ-divergence in (1)

Dφ̃α
(P, Q) =

∫
qφ̃α(p/q) dλ.

By (66),

tφ̃α(s/t) = ϕα(s, t) (cf. (62))

which proves the power divergence formula (64) for ϕα given by (62). The equality
ψα(s, t) = tαϕα(s, t) is clear for all s, t > 0 from the definitions of ψα(s, t) and ϕα(s, t) in
(57), (62). Verification of the convergence (65) is easy. ¤

The next theorem deals with the continuity of the decodistances (61) at α = 0. It
assumes that for some β > 0

pβ, qβ, ln p ∈ L1(Q) for all P ∈ P , Q ∈ P ∪ Pemp. (67)

This assumption is equivalent to

pβ
θ , pβ

θ0
, ln pθ ∈ L1(Pθ0) for all θ, θ0 ∈ Θ

because if Q = Pn ∈ Pemp then (67) automatically holds for all β > 0.

Theorem 4. If (67) holds for some β > 0 then the decodistances Dψα(P,Q) from (61)
are well defined for all 0 ≤ α ≤ β and satisfy the limit relation

lim
α↓0

Dψα(P, Q) = Dψ0(P, Q) = Q · ln q −Q · ln p < ∞. (68)

Proof. The convergences P · pα → 1 and Q · pα → 1 follow from the assumptions of
integrability and from the monotone convergence theorem for integrals. The convergence
of

1

α
(Q · qα −Q · pα) = Q · qα − 1

α
−Q · pα − 1

α

to the meaningful above bounded limit Q · ln q − Q · ln p follows from the monotone
convergence as well. Indeed, for every fixed t > 0

d

dα

tα − 1

α
=

1− tα(1− ln t)

α2
>

1− tαt−α

α2
= 0

12



so that the expressions (qα − 1)/α and (qα − 1)/α tend monotonically to ln q and ln p. ¤

In accordance with (54) and (55), the decodistances

D̂ψα(Pθ̂) + Pn · ρα(pθ̂) =

{
Pθ̂ · pα

θ̂
+ 1

α
Pθ0 · pα

θ0
− (1+α)

α
Pθ0 · pα

θ̂
if α > 0

1 + Pθ0 · ln pθ0 − Pθ0 · ln pθ̂ if α = 0
(cf. (61))

(69)

define the family of estimators θ̂n,α which minimize the functions

D̃α(Pθ̂, Pn) =

{
Pθ̂ · pα

θ̂
− (1+α)

α
Pn · pα

θ̂
if α > 0

1− Pn · ln pθ̂ if α = 0
(cf. (53), (58))

i.e.,

θ̂n,α =





argminθ̂

(∫
p1+α

θ̂
dλ− 1+α

nα

∑n
i=1 pα

θ̂
(Xi)

)
if α > 0

argmaxθ̂

∑n
i=1 ln pθ̂(Xi) if α = 0.

(70)

In view of the interpretation of the decodistances (69) in Theorem 2, the estimators
(70) can be called minimum distorted power divergence estimators.

Example 4. By (70),

θ̂n,1 = argminθ̂

(∫
p2

θ̂
dλ− 2

n

n∑
i=1

pθ̂(Xi)

)

so that this estimator coincides with the L2-estimator θ̂n from Example 3. The family of
estimators θ̂n,α from (70) smoothly connects this robust estimator with the efficient MLE

θ̂n,0 when the parameter α decreases from 1 to 0.

Remark. The above mentioned robustness and efficiency properties expected in the
family of the estimators (70) were in fact confirmed by Basu et al. (1998) who first
introduced these estimators and related divergences. The verification of nonnegativity
and reflexivity given in the proof of Theorem 1 seems to be new. In fact, the relation of
the weighted power divergences (70) to the classical power divergences (3) of Liese and
Vajda (1987) and Read and Cressie (1988) was not clarified by Basu et al. and the precise
relation given in Theorem 2 is a new result.

6. DISTURBED RÉNYI DIVERGENCES

In this section we propose for probability measures P ∈ P and Q ∈ Q = P ∪ Pemp

considered in the previous sections a family of decodistances Dα(P, Q) for α > 0 which
are not of the integral type as Dψ(P,Q) of (44) or Dψα(P, Q) of (61). Our proposal is
based on the following theorem.
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Theorem 5. The formula

Dα(P, Q) =

{
ln (P · pα) + 1

α
ln(Q · qα)− 1+α

α
ln(Q · pα) if 0 < α < β

Q · ln q −Q · ln p if α = 0.
(71)

well defines a family of decodistances satisfying (39) and the limit relation Dα(P, Q) →
D0(P, Q) for α ↓ 0.

Proof. Under (16) the expressions ln(Q ·qα), ln(Q ·pα) and Q · ln p appearing in (71) are
finite so that the expressions Dα(P,Q) are well defined by (71). Substituting for α > 0

s =
pα

(∫
pαa dλ

)1/b
, t =

q(∫
qb dλ

)1/b
and a =

1 + α

α
, b = 1 + α

in the inequality (59) and integrating both sides we obtain the Hölder inequality

∫
pαq dλ ≤

(∫
p1+α dλ

)α/(1+α) (∫
q1+α dλ

)1/(1+α)

with the equality iff pαa = qb λ-a. s., i.e. iff p = q λ-a. s. Thus the Rényi type divergence

Dα(P,Q) = ln

[(∫
p1+α dλ

)α/(1+α) (∫
q1+α dλ

)1/(1+α)
]
− ln

∫
pαq dλ (cf.(71))

is pseudodistance which is equivalently given by (71) and thus satisfies the decomposability
(38) for

D̂α(P ) = ln(P · pα), D0,α(Q) =
1

α
ln(Q · qα), δα(s) =

1 + α

α
s, ρα(s) = sα. (72)

Therefore the expressions Dα(P, Q) are decodistances. The limit relation

D0(P, Q) = lim
α↓0

Dα(P,Q)

can be proved in a similar manner as in the proof of Theorem 3. ¤

There is some similarity between the decodistances Dα(P, Q), α > 0 of (71) and the
Rényi divergences

Rα(P, Q) =
1

α− 1
ln (Q · (p/q)α) , α > 0 (cf. Rényi (1961).

Namely, replacing in the decodistance formula

Dα(P,Q) = ln
Q · (p1+α/q)

Q · pα
+

1

α
ln

Q · qα

Q · pα

the ratios of expectations by the expectations of ratios, we get

Dα(P,Q) = ln(Q · (p/q)) +
1

α
ln(Q · (q/p)α) = Rα+1(Q,P ) (73)
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Therefore we call the special decodistances (71) distorted Rényi distances.

If we substitute in the Rényi type divergences Dα(Pθ̂, Pθ0) with parameters θ̂, θ0 ∈ Θ
the hypothetical distribution Pθ0 by the empirical distribution Pn, we get the diver-
gences Dα(Pθ̂, Pn) satisfying the integrability condition of Theorem 4 for all Pθ̂ ∈ P
and β > 0. From (40) and (72) we obtain the family of minimum distorted Rényi
distance estimators

θ̂n,α = argminθ̂

[
ln(Pθ̂ · pα

θ̂
)− 1 + α

αn
ln

n∑
i=1

pα
θ̂
(Xi)

]
for α > 0, (74)

θ̂n,0 = argminθ̂

[
− 1

n

n∑
i=1

ln pθ̂(Xi)

]
. (75)

The estimates θ̂α,n of (74) tend under obvious regularity to the MLE (75),

lim
α↓0

θ̂n,α = θ̂n,0. (76)

Example 5. The minimum distorted Rényi distance estimator θ̂n,1 defined by (74) dif-

fers from the minimum distorted power divergence estimator θ̂n,1 from Example 4 in that
it minimizes the ratio

∫
p2

θ̂
dλ�

n∏
i=1

n

√
p2

θ̂
(Xi)

instead of the difference

∫
p2

θ̂
dλ− 2

n

n∑
i=1

pθ̂(Xi).

It is easy to verify, that the two estimators are different.
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