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Abstract

The paper introduces scaled Bregman distances of probability distributions which admit non-uniform con-

tributions of observed events. They are introduced in a general form covering not only the distances of discrete

and continuous stochastic observations, but also the distances of random processes and signals. It is shown

that the scaled Bregman distances extend not only the classical ones studied in the previous literature, but

also the information divergence and the related wider class of convex divergences of probability measures.

An information processing theorem is established too, but only in the sense of invariance w.r.t. statistically

sufficient transformations and not in the sense of universal monotonicity. Pathological situations where coding

can increase the classical Bregman distance are illustrated by a concrete example. In addition to the classical areas

of application of the Bregman distances and convex divergences such as recognition, classification, learning and

evaluation of proximity of various features and signals, the paper mentions a new application in 3D-exploratory

data analysis. Explicit expressions for the scaled Bregman distances are obtained in general exponential families,

with concrete applications in the binomial, Poisson and Rayleigh families, and in the families of exponential

processes such as the Poisson and diffusion processes including the classical examples of the Wiener process

and geometric Brownian motion.

Index Terms — Bregman distances, divergences, sufficiency, exponential distributions, exponential processes,

classification, statistical decision, information retrieval, machine learning.

I. INTRODUCTION

Bregman (1967) introduced for convex functions φ : R
d → R with gradient �φ the φ-depending nonnegative

measure of dissimilarity

Bφ(p, q) = φ(p) − φ(q) − �φ(q)(p − q) (1)

of d-dimensional vectors p, q ∈ R
d. His motivation was the problem of convex programming, but in the

subsequent literature it became widely applied in many other problems under the name Bregman distance in

spite of that it is not in general the usual metric distance (it is a pseudodistance which is reflexive but neither
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symmetric nor satisfying the triangle inequality). The most important feature is the special separable form

defined by

Bφ(p, q) =
d∑

i=1

[φ(pi) − φ(qi) − φ′(qi)(pi − qi)] (2)

for vectors p = (p1, ..., pd), q = (q1, ..., qd) and convex differentiable functions φ : R → R. For example, the

function φ(t) = (t− 1)2 leads to the classical squared Euclidean distance

Bφ(p, q) =
d∑

i=1

(pi − qi)
2
. (3)

In the optimization-theoretic context the Bregman distances are usually studied in the general form (1), see

e.g. Csiszár and Matúš (2008, 2009). In the information-theoretic or statistical context they are typically used

in the separable form (2) for vectors p, q with nonnegative coordinates representing generalized distributions

(finite discrete measures) and functions φ : [0,∞) → R differentiable on (0,∞) (the problem with qi = 0

is solved by resorting to the right-hand derivative φ′+(0)). The concrete example φ(t) = t ln t leads to the

well-known Kullback divergence

Bφ(p, q) =
d∑

i=1

pi ln
pi

qi
. (4)

Of course, the most common context are discrete probability distributions p, q since vectors of hypothetical or

observed frequencies p, q are easily transformed to the relative frequencies normed to 1. For example, Csiszár

(1991, 1994, 1995) or Pardo and Vajda (1997, 2003) used the Bregman distances of probability distributions

in the context of information theory and asymptotic statistics.

Important alternatives to the Bregman distances (2) are the φ-divergences defined by

Dφ(p, q) =
d∑

i=1

qiφ

(
pi

qi

)
(5)

for functions φ which are convex on [0,∞), continuous on (0,∞) and strictly convex at 1 with φ(1) = 0.

Originating in the paper of Csiszár (1963), they share some properties with the Bregman distances (2), e.g.

they are pseudodistances too. For example, the above considered functions φ(t) = (t − 1)2 and φ(t) = t ln t

lead in this case to the classical Pearson divergence

Dφ(p, q) =
d∑

i=1

(pi − qi)
2

qi
(6)

and the above mentioned Kullback divergenceDφ(p, q) ≡ Bφ(p, q) which are asymmetric in p, q and contradict

the triangle inequality. On the other hand, φ(t) = |t−1| leads to the L1-norm ||p−q|| which is a metric distance

and φ(t) = (t− 1)2/(t+ 1) defines the LeCam divergence

Dφ(p, q) =
d∑

i=1

(pi − qi)
2

pi + qi

which is a squared metric distance (for more about the metricity of φ-divergences see Vajda (2009)).

However, there exist also some sharp differences between these two types of pseudodistances of distributions.

A distinguished property of the Bregman distances is the optimality of the k-means algorithm for them. For

the squared Euclidean error (3) this optimality was known long ago (see in this respect the seminal work of



3

Lloyd (1982) reprinting a Technical Report of Bell Laboratories dated by 1957). For all Bregman distances

(1) it was established relatively recently by Banerjee et al. (2005). This property is not shared by those of the

φ-divergences which are not Bregman distances, e.g. by the Pearson divergence (6). A distinguished property

of φ-divergences is the information processing property, i.e. the impossibility to increase the value Dφ(p, q) by

transformations of the observations distributed by p, q and preservation of this value by the statistically sufficient

transformations (Csiszár (1967), see in this respect also Liese and Vajda (2006)). This property is not shared

by the Bregman distances which are not φ-divergences. For example, the distributions p = (1/2, 1/4, 1/4) and

q = (1, 0, 0) are mutually closer (less discernible) in the Euclidean sense (3) than their reductions p̃ = (1/2, 1/4)

and q̃ = (1, 0) obtained by merging the second and third observation outcomes into one.

Depending on the need to exploit one or the other of these distinguished properties, the Bregman distances

or Csiszár divergences are preferred, and both of them are widely applied in important areas of information

theory, statistics and computer science, for example in

(Ai) information retrieval (see e.g. Do and Vetterli (2002), Hertz at al. (2004)),

(Aii) optimal decision (for general decision see e.g. Boratynska (1997), Freund et al. (1997), Bartlett et al.

(2006), Vajda and Zvárová (2007), for speech processing see e.g. Carlson and Clements (1991), Veldhuis and

Klabers (2002), for image processing see e.g. Xu and Osher (2007), Marquina and Osher (2008), Scherzer et

al. (2008)), and

(Aiii) machine learning (see e.g. Laferty (1999), Banerjee et al. (2005), Amari (2007), Teboulle (2007), Nock

and Nielsen (2009)).

In this context it is obvious the importance of the functionals of distributions which are simultaneously

divergences in both the Csiszár and Bregman sense or, more broadly, of the research of relations between the

Csiszár and Bregman divergences. This paper is devoted to this research. It generalizes the separable Bregman

distances (2) as well as the φ-divergences (5) by introducing the scaled Bregman distances which for the discrete

setup reduce to

Bφ(p, q|m) =
d∑

i=1

[
φ(pi/mi) − φ(qi/mi)

−φ′+(qi/mi)(pi/mi − qi/mi)
]
mi (7)

for arbitrary finite scale vectorsm = (m1, ...,md), convex functions φ and right-hand derivatives φ′+. Obviously,

the uniform scales m = (1, ..., 1) lead to the Bregman distances (2) and the probability distribution scales m =

q = (q1, ..., qd) lead to the φ-divergences (5). We shall work out further interesting relations of the Bφ(p, q|m)

distances to the φ-divergences Dφ(p, q) and Dφ(p,m) and evaluate explicit formulas for the stochastically

scaled Bregman distances in arbitrary exponential families of distributions, including also the non-discrete setup.

Section II defines the φ-divergencesDφ(P,M) of general probability measures P and arbitrary finite measures

M and briefly reviews their basic properties. Section III introduces scaled Bregman distances Bφ(P,Q|M) and

investigates their relations to the φ-divergences Dφ(P,Q) and Dφ(P,M). Section IV studies in detail the

situation where all three measures P,Q,M are from the family of general exponential distributions. Finally,
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Section V illustrates the results by investigating concrete examples of P,Q,M from classical statistical families

as well as from a family of important random processes.

Notational conventions: Throughout the paper, M denotes the space of all finite measures on a measurable

space (X ,A) and P ⊂ M the subspace of all probability measures. Unless otherwise explicitly stated

P,Q,M are mutually measure-theoretically equivalent measures on (X ,A) dominated by a σ-finite measure λ

on (X ,A). Then the densities

p =
dP
dλ

, q =
dQ
dλ

and m =
dM
dλ

(8)

have a common support which will be identified with X (i.e. the densities (8) are positive on X ). Unless

otherwise explicitly stated, it is assumed that P,Q ∈ P , M ∈ M and that φ : (0,∞) �→ R is a continuous

and convex function. It is known that then the possibly infinite extension φ(0) = limt↓0 φ(t) and the right-hand

derivatives φ′+(t) for t ∈ [0,∞) exist, and that the adjoint function

φ∗(t) = tφ(1/t) (9)

is continuous and convex on (0,∞) with possibly infinite extension φ∗(0). We shall assume that φ(1) ≡
φ∗(1) = 0.

II. DIVERGENCES

For P,Q, ∈ P and M ∈ M we consider

Dφ(P,M) =
∫
X
mφ

( p

m

)
dλ (cf. (8)) (10)

generated by the same convex functions as considered in the formula (5) for discrete P and M . Dφ(P,Q) is

a special case.

The existence (but possible infinity) of the φ-divergences follows from the bounds

φ′+(1)(p−m) ≤ mφ
( p

m

)
≤ mφ(0) + p φ∗(0) (11)

on the integrand, leading to the φ-divergence bounds

φ′+(1)(1 −M(X )) ≤ Dφ(P,M) ≤ M(X )φ(0) + φ∗(0). (12)

The integrand bounds (11) follow by putting s = 1 and t = p/m in the inequality

φ(s) + φ′+(s)(t− s) ≤ φ(t) ≤ φ(0) + tφ∗(0), (13)

where the left-hand side is the well-known support line of φ(t) at t = s. The right-hand inequality is obvious

for φ(0) = ∞. If φ(0) <∞ then it follows by taking s→ ∞ in the inequality

φ(t) ≤ φ(0) + t
φ(s) − φ(0)

s
,

obtained from the Jensen inequality for φ(t) situated between φ(0) and φ(s). Since the function ψ(p,m) =

mφ(p/m) is homogeneous in the sense ψ(tp, tm) = tψ(p,m) for all t > 0, the divergences (10) do not depend

on the choice of the dominating measure λ.
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Notice that Dφ(P,M) might be negative. For probability measures P,Q the bounds (12) take on the form

0 ≤ Dφ(P,Q) ≤ φ(0) + φ∗(0), (14)

and the equalities are achieved under well-known conditions (cf. Liese and Vajda (1987), (2006)): the left

equality holds if P = Q, and the right one holds if P ⊥ Q (singularity). Moreover, if φ(t) is strictly convex at

t = 1, the first if can be replaced by iff, and in the case φ(0)+φ∗(0) <∞ also the second if can be replaced

by iff.

An alternative to the left-hand inequality in (12), which extends the left-hand inequality in (14) including

the conditions for the equality, is given by the following statement (for a systematic theory of φ-divergences

of finite measures we refer to the recent paper of Stummer and Vajda (2009)).

Lemma 1: For every P ∈ P , M ∈ M one gets the lower divergence bound

M(X )φ
(

1
M(X )

)
≤ Dφ(P,M) , (15)

where the equality holds if

p =
m

M(X )
P -a.s. (16)

If Dφ(P,M) < ∞ and φ(t) is strictly convex at t = 1/M(X ), the equality in (15) holds if and only if (16)

holds.

Proof: By (10) and the definition (9) of the convex function φ∗

Dφ(P,M) =
∫
X
φ∗

(
m

p

)
dP.

Hence by Jensen’s inequality

Dφ(P,M) ≥ φ∗
(∫

X

m

p
dP

)
= φ∗(M(X )) (17)

which proves the desired inequality (15). Since

m

p
= M(X ) P -a. s.

is the condition for equality in (17), the rest is clear from the easily verifiable fact that φ∗(t) is strictly convex

at t = s if and only if φ(t) is strictly convex at t = 1/s. �

For some of the representation investigations below, it will also be useful to take into account that for

probability measures P,Q we get directly from definition (10) the “skew symmetry” φ-divergence formula

Dφ∗(P,Q) = Dφ(Q,P ) , (18)

as well as the sufficiency of the condition

φ(t) − φ∗(t) ≡ constant · (t− 1) (19)

for the φ-divergence symmetry

Dφ(P,Q) = Dφ(Q,P ) for all P,Q . (20)

Liese and Vajda (1987) proved that under the assumed strict convexity of φ(t) at t = 1 the condition (19) is is

not only sufficient but also necessary for the symmetry (20).
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III. SCALED BREGMAN DISTANCES

Let us now introduce the basic concept of the current paper, which is a measure-theoretic version of the

Bregman distance (7). In this definition it is assumed that φ is a finite convex function in the domain t > 0,

continuously extended to t = 0. As before, φ′+(t) denotes the right-hand derivative which for such φ(t) exists

and p, q,m are the densities defined in (8).

Definition 1: The Bregman distance of probability measures P, Q scaled by an arbitrary measure M on

(X ,A) measure-theoretically equivalent with P, Q is defined by the formula

Bφ (P,Q |M)

=
∫
X

[
φ

( p

m

)
− φ

( q

m

)
− φ′+

( q

m

)( p

m
− q

m

)]
dM

(21)

=
∫
X

[
mφ

( p

m

)
−mφ

( q

m

)
− φ′+

( q

m

)
(p− q)

]
dλ.

The convex φ under consideration can be interpreted as a generating function of the distance.

Remark: By putting t = p/m and s = q/m in (13) we find the argument of the integral in (21) to be

nonnegative. Hence the Bregman distance Bφ (P,Q |M) is well-defined by (21) and is always nonnegative

(possibly infinite).

The special scaled Bregman distances Bφ (P,Q |M) for probability scales M ∈ P were introduced by

Stummer (2007). Let us mention some other important previously considered special cases.

(a) For X finite or countable and counting measureM = λ some authors were already cited above in connection

with the formula (2) and the research areas (Ai) - (Aiii). In addition to them, one can mention also Byrne (1999),

Collins et al. (2002), Murata et al. (2004), Cesa-Bianchi and Lugosi (2006).

(b) For open Euclidean set X and Lebesgue measure M = λ on it one can mention Jones and Byrne (1990),

as well as Resmerita and Anderssen (2007).

In the rest of this paper, we restrict ourselves to the Bregman distances Bφ (P,Q |M) scaled by finite

measures M ∈ M and to the same class of convex functions as considered in the φ-divergence formulas (5)

and (10). By using the remark after Definition 1 and applying (13) we get

Dφ(P,M) ≥ Dφ(Q,M) +
∫
X
φ′+

( q

m

)
(p− q)dλ (22)

if at least one of the right-hand side expressions is finite. Similarly,

Bφ (P,Q |M) = Dφ(P,M) −Dφ(Q,M) −
∫
X
φ′+

( q

m

)
dλ (23)

if at least two of the right-hand side expressions are finite (which can be checked e.g. by using (12) or (15)).
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The formula (21) simplifies in the important special cases M = P and M = Q. In the first case, due to

φ(1) = 0 it reduces to

Bφ (P,Q |P ) =
∫
X

[
φ′+

(
q

p

)
(q − p) − pφ

(
q

p

)]
dλ (24)

=
∫
X
φ′+

(
q

p

)
(q − p)dλ−Dφ(Q,P ) , (25)

where the difference (25) is meaningful if and only if Dφ(Q,P ) ≡ Dφ∗(P,Q) is finite. The nonnegative

divergence measure Bφ (P,Q) := Bφ (P,Q |P ) is thus the difference between the nonnegative dissimilarity

measure

Dφ (Q,P ) =
∫
X
φ′+

(
q

p

)
(q − p) dλ ≥ Dφ(Q,P )

and the nonnegative φ−divergence Dφ(Q,P ). Furthermore, in the second special case M = Q the formula

(21) leads to the equality

Bφ (P,Q |Q) = Dφ(P,Q) (26)

without any restriction on P,Q ∈ P as realized already by Stummer (2007).

Conclusion 1: Equality (26) – together with the fact that Bφ (P,Q |M) depends in general on M (see e.g.

Subsection B below) – shows that the concept of scaled Bregman distance (21) strictly generalizes the concept

of φ−divergence Dφ(P,Q) of probability measures P,Q.

Example 1: As an illustration not considered earlier we can take the non-differentiable function φ(t) =

2|t− 1| for which

Bφ (P,Q |Q) = V (P,Q)

i.e. this particular scaled Bregman distance reduces to the well known total variation.

As demonstrated by an example in the Introduction, measurable transformations (statistics)

T : (X ,A) �→ (Y,B) (27)

which are not sufficient for {P,Q} can increase those of the scaled Bregman distances Bφ (P,Q |M) which are

not φ-divergences. On the other hand, the transformations (27) which are sufficient for {P,Q} need not preserve

these distances either. Next we formulate conditions under which the scaled Bregman distances Bφ (P,Q |M)

are preserved by transformations of observations.

Definition 2: We say that the transformation (27) is sufficient for the triplet {P, Q, M} if there exist

measurable functions gP , gQ, gM : Y �→ R and h : X �→ R such that

p(x) = gP (Tx)h(x), q(x) = gQ(Tx)h(x)

and m(x) = gM (Tx)h(x). (28)

If M is probability measure then our definition reduces to the classical statistical sufficiency of the statistic

T for the family {P, Q, M} (see pp. 18-19 in Lehman (2005)). All transformations (27) induce the probability

measures PT−1, QT−1 and the finite measure MT−1 on (Y,B). We prove that the scaled Bregman distances

of induced probability measures PT−1, QT−1 scaled by MT−1 are preserved by sufficient transformations T .
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Theorem 1: The transformations (27) sufficient for the triplet {P,Q, M} preserve the scaled Bregman

distances in the sense that

Bφ

(
PT−1, QT−1 |MT−1

)
= Bφ (P,Q |M) . (29)

Proof.: By (21) and (28), the right-hand side of (29) is equal to∫
X

[φP,M (Tx) − φQ,M (Tx) − ΔP,Q,M (Tx)] dM (30)

for

φP,M (y) = φ

(
gP (y)
gM (y)

)
, φQ,M (y) = φ

(
gQ(y)
gM (y)

)
(31)

and

ΔP,Q,M (y) = φ
′
+

(
gQ(y)
gM (y)

)
(gP (y) − gQ(y)) . (32)

By Theorem D in Section 39 of Halmos (1964), the integral (30) is equal to∫
Y

[φP,M (y) − φQ,M (y) − ΔP,Q,M (y)] dMT−1 (33)

and, moreover,

P (T−1B) =
∫

B

gP (y)h(T−1y) dλT−1

and similarly for Q instead of P . Therefore

dPT−1

dλT−1
= gP (y)h(T−1y) and

dQT−1

dλT−1
= gQ(y)h(T−1y)

which together with (31), (32) and (21) implies that the integral (33) is nothing but the left-hand side of (29).

This completes the proof. �

In the rest of this section we discuss some important special classes of scaled Bregman distances obtained

for special distance-generating functions φ.

A. Bregman logarithmic distance

Let us consider the special function φ(t) = t ln t. Then φ′(t) = ln t+ 1 so that (21) implies

Bt ln t (P,Q |M)

=
∫
X

[
p ln

p

m
− q ln

q

m
−

(
ln

q

m
+ 1

)
(p− q)

]
dλ

=
∫
X

[
p ln

p

m
− p ln

q

m

]
dλ

=
∫
X
p ln

p

q
dλ = Dt ln t (P,Q) . (34)

Thus, for φ(t) = t ln t the Bregman distance Bφ (P,Q |M) exceptionally does not depend on the choice of

the scaling and reference measures M and λ; in fact, it always leads to the Kulllback-Leibler information

divergence (relative entropy) Dt ln t(P,Q), see Stummer (2007).
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B. Bregman reversed logarithmic distance

Let now φ(t) = − ln t so that φ′(t) = −1/t. Then (21) implies

B− ln t (P,Q |M)

=
∫
X

[
m ln

m

p
−m ln

m

q
+
m

q
(p− q)

]
dλ (35)

= Dt ln t(M,P ) −Dt ln t(M,Q) +
∫
X

mp

q
dλ−M(X ) (36)

= D− ln t(P1,M) −D− ln t(q,M) +
∫
X

mp

q
dλ−M(X ) (37)

where the equalities (36) and (37) hold if at least two out of the first three expressions on the right-hand side

are finite. In particular, (35) implies (in consistency with (26))

B− ln t (P,Q |Q) = D− ln t(P,Q) (38)

and (36) implies for Dt ln t(P,Q) <∞ (in consistency with (25))

B− ln t (P,Q |P ) = χ2(P,Q) −Dt ln t(P,Q) (39)

where

χ2(P,Q) =
∫
X

(p− q)2

q
dλ

is the well-known Pearson information divergence. From (38) and (39) one can also see that the Bregman

distance Bφ (P,Q |M) does in general depend on the choice of the reference measure M .

C. Bregman power distances

In this subsection we restrict ourselves for simplicity to probability measures M ∈ P , i.e. we suppose

M(X ) = 1. Under this assumption we investigate the scaled Bregman distances

Bα (P,Q |M) = Bφα (P,Q |M) , α ∈ R, α �= 0, α �= 1 (40)

for the family of power convex functions

φ(t) ≡ φα(t) =
tα − 1
α(α− 1)

with φ′α(t) =
tα−1

α− 1
. (41)

For comparison and representation purposes, we use for P (and analogously for Q instead of P ) the power

divergences

Dα(P,M) = Dφα(P,M)

=
1

α(α − 1)

[∫
X
pαm1−α dλ− 1

]
(42)

=
exp ρα(P,M) − 1

α(α − 1)
with ρα(P,M) = ln

∫
X
pαm1−α dλ

(43)

of real powers α different from 0 and 1, studied for arbitrary probability measures P,M in Liese and Vajda

(1987). They are one-one related to the Rényi divergences

Rα(P,M) =
ρα(P,M)
α(α − 1)

, α ∈ R, α �= 0, α �= 1,
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introduced in Liese and Vajda (1987) as an extension of the original narrower class of the divergences

Rα(P,M) =
ρα(P,M)
α− 1

, α > 0, α �= 1

of Rényi (1961).

Returning now to the Bregman power distances, observe that if Dα(P,M) +Dα(Q,M) is finite then (23),

(40) and (41) imply for α �= 0, α �= 1

Bα(P,Q |M)

= −Dα(Q,M) − 1
α− 1

∫
X

( q

m

)α−1

(p− q) dλ (44)

= Dα(P,M) −Dα(Q,M)

− 1
α− 1

∫
X

[( q

m

)α−1

p−
( q

m

)α

m

]
dλ (45)

= Dα(P,M) − (1−α)Dα(Q,M)

− 1
α−1

[∫
X

( q

m

)α−1

p dλ− 1
]
. (46)

In particular, we get from here (in consistency with (26))

Bα(P,Q |Q) = Dα(P,Q) (47)

and in case of Dα(Q,P ) ≡ D1−α(P,Q) <∞ also

Bα(P,Q |P ) = (α− 2)Dα−1(Q,P ) + (α− 1)Dα(Q,P )

(48)

≡ (α− 2)D2−α(P,Q) + (α− 1)D1−α(P,Q). (49)

In the following theorem, and elsewhere in the sequel, we use the simplified notation

D1(P,M) = Dt ln t(P,M) and D0(P,M) = D− ln t(P,M) (50)

for the probability measures P,M under consideration (and also later on where M is only a finite measure).

This step is motivated by the limit relations

lim
α↓0

Dα(P,M) = D− ln t(P,M) and

lim
α↑1

Dα(P,M) = Dt ln t(P,M) (51)

proved as Proposition 2.9 in Liese and Vajda (1987) for arbitrary probability measures P,M . Applying these

relations to the Bregman distances, we obtain

Theorem 2: If D0(P,M) +D0(Q,M) <∞ then

lim
α↓0

Bα(P,Q |M)

= D0(P,M) −D0(Q,M) +
∫
X

mp

q
dλ− 1 (52)

= B− ln t(P,Q |M). (53)
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If D1(P,M) +D1(Q,M) <∞ and

lim
β↓0

∫
X

(q/m)−β − 1
β

dP

=
∫
X

lim
β↓0

(q/m)−β − 1
β

dP = −
∫
X

ln
q

m
dP (54)

then

lim
α↑1

Bα(P,Q |M) = D1(P,M) −
∫
X

ln
q

m
dP (55)

= D1(P,Q) = Bt ln t(P,Q |M) . (56)

Proof: If 0 < α < 1 then Dα(P,M), Dα(Q,M) are finite so that (46) holds. Applying the first relation

of (51) in (46) we get (52) where the right hand side is well defined because D0(P,M) + D0(Q,M) is by

assumption finite. Similarly, by using the second relation of (51) and the assumption (54) in (46) we end up

at (55) where the right-hand side is well defined because D1(P,M )+D1(Q,M ) is assumed to be finite. The

identity (53) follows from (52), (37) and the identity (56) from (55), (34). �

Motivated by this theorem, we introduce for all probability measures P, Q, M under consideration the

simplified notations

B1(P,Q |M) = Bt ln t(P,Q |M) (57)

and

B0(P,Q |M) = B− ln t(P,Q |M) , (58)

and thus, (56) and (53) become

B1(P,Q |M) = lim
α↑1

Bα(P,Q |M) (59)

and

B0(P,Q |M) = lim
α↓0

Bα(P,Q |M). (60)

Furthermore, in these notations the relations (34), (38) and (39) reformulate (under the corresponding assump-

tions) as follows

B1(P,Q |M) = D1(P,Q) , (61)

B0(P,Q |Q) = D0(P,Q) (62)

and

B0(P,Q |P ) = χ2(P,Q) −D1(P,Q)

= 2D2(P,Q) −D1(P,Q). (63)
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(a) p=0.25, q=0.20 (b) p=0.25, q=0.30

Fig. 1. 3D-discrimination plots (64) for P = B(10, p), Q = B(10, q) with 0.2 ≤ α ≤ 2 and 0 ≤ β ≤ 1.

Remark 1: The power divergences Dα(P,Q) are usually applied in the statistics as criteria of discrimi-

nation or goodness-of-fit between the distributions P and Q. The scaled Bregman distances Bα(P,Q |M) as

generalizations of the power divergencesDα(P,Q) ≡ Bα(P,Q |Q) allow to extend the 2D-discrimination plots

{[Dα(P,Q); α] : c ≤ α ≤ d} ⊂ R
2 into more informative 3D-discrimination plots

{[Bα(P,Q |βP + (1 − β)Q); α; β] : c ≤ α, β ≤ d} ⊂ R
3 (64)

reducing to the former ones for β = 0. The simpler 2D-plots known under the name Q–Q-plots are famous tools

for the exploratory data analysis. It is easy to consider that the computer-aided appropriately coloured projections

of the 3D-plots (64) allow much more intimate insight into the relation between data and their statistical

models. Therefore this computer-aided 3D-exploratory analysis deserves a deeper attention and research. The

next example presents projections of two such plots obtained for a binomial model P and its data based binomial

alternative Q.

Example 2: Let P = B(n, p) be a binomial distribution with parameters n, p (with a slight abuse of

notation), and Q = B(n, q). Figure 1 presents projections of the corresponding 3D-discrimination plots (64)

for 0.2 ≤ α ≤ 2 and 0 ≤ β ≤ 1, where the Subfigure (a) used the parameter constellation n = 10, p =

0.25, q = 0.20 whereas the Subfigure (b) used n = 10, p = 0.25, q = 0.30. In both cases, the ranges of

Bα(P,Q |βP + (1 − β)Q) are subsets of the interval [0.06, 0.088].

IV. EXPONENTIAL FAMILIES

In this section we show that the scaled Bregman power distances Bα(P,Q |M) can be explicitly evaluated for

probability measures P, Q, M from exponential families. Let us restrict ourselves to the Euclidean observation

spaces (X ,A) ⊆ (Rd,Bd) and denote by x ·θ the scalar product of x, θ ∈ R
d. The convex extended real valued

function

b(θ) = ln
∫

Rd

ex·θdλ(x), θ ∈ R
d , (65)
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and the convex set

Θ = {θ ∈ R
d : b(θ) <∞} (66)

define on (X ,A) an exponential family of probability measures {Pθ : θ ∈ Θ} with the densities

pθ(x) ≡ dPθ

dλ
(x) = exp{x · θ − b(θ)}, x ∈ R

d, θ ∈ Θ. (67)

The cumulant function b(θ) is infinitely differentiable on the interior Θ̊ with the gradient


b(θ) =
(

∂

∂θ1
, ...,

∂

∂θd

)
b(θ), θ ∈ Θ̊. (68)

Note that (67) are exponential type densities in the natural form. All exponential type distributions such as

Poisson, normal etc. can be transformed to into this form (cf. e.g. Brown (1986)).

The formula ∫
Rd

ex·θ dλ(x) = eb(θ), θ ∈ Θ (69)

follows from (65) and implies ∫
Rd

x ex·θ dλ(x) = eb(θ)∇b(θ), θ ∈ Θ̊. (70)

Both formulas (69) and (70) will be useful in the sequel.

We are interested in the scaled Bregman power distances

Bα (Pθ1 , Pθ2 |Pθ0) for θ0, θ1, θ2 ∈ Θ, α ∈ R. (71)

Here Pθ1 , Pθ2 , Pθ0 are measure-theoretically equivalent probability measures, so that we can turn attention to

the formulas (46), (34), (37), and (57) to (63), promising to reduce the evaluation of Bα(Pθ1 , Pθ2 |Pθ0) to the

evaluation of the power divergences Dα(Pθ1 , Pθ2). Therefore we first study these divergences and in particular

verify their finiteness, which was a sufficient condition for the applicability of the formulas (46), (34) and (37).

Theorem 3: If α ∈ R differs from 0 and 1, then the power divergence Dα(Pθ1 , Pθ2) is for all θ1, θ2 ∈ Θ

finite and given by the expression

exp
{
b(αθ1 + (1 − α) θ2) − αb(θ1) − (1 − α) b(θ2)

} − 1
α(α− 1)

.

(72)

In particluar, it is invariant with respect to the shifts of the cumulant function linear in θ ∈ Θ in the sense

that it coincides with the power divergence Dα(P̃θ1 , P̃θ2) in the exponential family with the cumulant function

b̃(θ) = b(θ) + c+ v · θ where c is a real number and v a d−vector.

Proof: As a slight extension of (43), put for arbitrary α ∈ R and θ1, θ2 ∈ Θ

ρα(θ1, θ2) = ln
∫

Rd

pα
θ1
p1−α

θ2
dλ (73)

= ln
∫
Rd

exp
{
α[x · θ1 − b(θ1)] + (1 − α) [x · θ2 − b(θ2)]

}
dλ(x)

= ln

∫
Rd exp{x · [αθ1 + (1 − α) θ2]} dλ(x)

exp{αb(θ1) + (1 − α) b(θ2)}

= ln
exp{b(αθ1 + (1 − α) θ2)}

exp{αb(θ1) + (1 − α) b(θ2)} (cf. (69)).
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Hence

ρα(θ1, θ2) = b
(
αθ1 + (1 − α) θ2

)
− αb(θ1) − (1 − α) b(θ2) , (74)

where the right hand side is finite if 0 ≤ α ≤ 1. Furthermore, (43) implies for α ∈ R\{0, 1}

Dα (Pθ1 , Pθ2) =
exp ρα(θ1, θ2) − 1

α(α− 1)
. (75)

Thus, (72) follows from (74) and (75). The declared finiteness of Dα (Pθ1 , Pθ2) is immediately clear, also the

invariance. �

The remaining power divergences D0(Pθ1 , Pθ2) and D1(Pθ1 , Pθ2) are evaluated in the next theorem.

Theorem 4: For all θ1, θ2 ∈ Θ and α ∈ R different from 0 and 1 there holds

Dα (Pθ2 , Pθ1) = D1−α (Pθ1 , Pθ2) (76)

and for θ2 ∈ Θ̊

D− ln t (Pθ1 , Pθ2) = D0 (Pθ1 , Pθ2) = lim
α↓0

Dα (Pθ1 , Pθ2) (77)

= b(θ1) − b(θ2) −∇b(θ2) (θ1 − θ2) (78)

= lim
α↑1

Dα (Pθ2 , Pθ1) = D1 (Pθ2 , Pθ1) = Dt ln t (Pθ2 , Pθ1) . (79)

Proof: (a) Let α(α − 1) �= 0 and θ1, θ2 ∈ Θ. By (9) and (41)

φ∗α(t) =
t1−α − t

α(α − 1)
.

Hence, from the definitions (10) and (42) one can see that Dφ∗
α
(Pθ2 , Pθ1) coincides with the power divergence

D1−α(Pθ2 , Pθ1). Therefore (76) follows from the relations

D1−α (Pθ2 , Pθ1) ≡ Dφ∗
α

(Pθ2 , Pθ1)

= Dφα (Pθ1 , Pθ2) ≡ Dα (Pθ1 , Pθ2) (cf. (18)).

Alternatively, (76) follows from (75) using the skew symmetry

ρα(θ1, θ2) = ρ1−α(θ2, θ1)

which is evident from (74).

(b) The equalities (77) and (79) follow from the already proved skew symmetry (76) and from the definition

of the α-divergences of orders α = 0 and α = 1 in (51), (50). It remains to prove that the limit in (77) equals

(78). For this, let us first observe that for every real valued function ρ(α) defined in the open set (−ε, ε)\{0}
(ε > 0) it holds

lim
α→0

eρ(α) − 1
α(α − 1)

= − lim
α→0

ρ(α)
α

in the sense that one of the limits exists if and only if the other does so, and then the two are equal. With the

help of (75), for ρ(α) = ρα(θ1, θ2) this is the equivalent to

lim
α→0

Dα (Pθ1 , Pθ2)
α(α − 1)

= − lim
α→0

ρα(θ1, θ2)
α

,
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and the proof is completed by the easy verification of the relation

− lim
α→0

ρα(θ1, θ2)
α

≡ lim
α→0

α b(θ1) + (1 − α) b(θ2) − b(α θ1 + (1 − α) θ2)
α

(cf. (74))

= b(θ1) − b(θ2) + ∇b(θ2) (θ2 − θ1).

for θ2 from the interior Θ̊. �

The main result of this section is the following representation theorem for Bregman distances in exponential

families, where in addition to the functions ρα(θ1, θ2) of (74) we also use the functions σα(θ0, θ1, θ2) (α ∈ R,

θ0, θ1, θ2 ∈ Θ) defined as the difference

σα(θ0, θ1, θ2) = σI
α(θ0, θ1, θ2) − σII

α (θ0, θ1, θ2) (80)

of the nonnegative (possibly infinite)

σI
α(θ0, θ1, θ2) = b

(
α θ1 + (1 − α) [θ1 − θ2 + θ0]

)
(81)

and the finite

σII
α (θ0, θ1, θ2) = α b(θ1) + (1 − α)

[
b(θ1) − b(θ2) + b(θ0)

]
. (82)

Alternatively,

σα(θ0, θ1, θ2) = ρα(θ1, θ0 + θ1 − θ2)

+(1 − α) [b(θ0 + θ1 − θ2) − b(θ0) − b(θ1) + b(θ2)] . (83)

Theorem 5: Let θ0, θ1, θ2 ∈ Θ be arbitrary. If α(α−1) �= 0 then the Bregman distance of the exponential

family distributions Pθ1 and Pθ2 scaled by Pθ0 is given by the formula

Bα (Pθ1 , Pθ2 |Pθ0)

=
expρα(θ1, θ0)
α(α − 1)

+
exp ρα(θ2, θ0)

α
+

expσα(θ0, θ1, θ2)
1 − α

. (84)

If θ0 respectively θ1 is from the interior Θ̊, then the limiting Bregman power distances are

B0 (Pθ1 , Pθ2 |Pθ0)

= b(θ1) − b(θ2) −∇b(θ0) (θ1 − θ2)

+ expσ0(θ0, θ1, θ2) − 1 (85)

respectively

B1 (Pθ1 , Pθ2 |Pθ0) = b(θ2) − b(θ1) −∇b(θ1) (θ2 − θ1) . (86)

In particluar, all scaled Bregman distances (84) - (86) are invariant with respect to the shifts of the cumulant

function linear in θ ∈ Θ in the sense that they coincide with the scaled Bregman distances Bα

(
P̃θ1 , P̃θ2 | P̃θ0

)
in the exponential family with the cumulant function b̃(θ) = b(θ) + c+ v · θ where c is a real number and v a

d−vector.
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Proof: (a) By (67) it holds for every α ∈ R and θ0, θ1, θ2 ∈ Θ(
pθ2(x)
pθ0(x)

)α−1

pθ1(x)

= exp
{
(α− 1)

[
x · (θ2 − θ0) − (b(θ2) − b(θ0))

]
+x · θ1 − b(θ1)

}
= exp

{
x · (α θ1 + (1 − α) [θ1 − θ2 + θ0]

)
−σII

α (θ0, θ1, θ2)
}

with σII
α (θ0, θ1, θ2) from (82). Since (69) leads to∫

Rd

exp
{
x ·

(
α θ1 + (1 − α) [θ1 − θ2 + θ0]

)}
dλ

= expσI
α(θ0, θ1, θ2)

for σI
α(θ0, θ1, θ2) given by (81), it holds∫

X

(
pθ2

pθ0

)α−1

pθ1 dλ = expσα(θ0, θ1, θ2) (87)

where σα(θ0, θ1, θ2) was defined in (80). Now, by plugging

P = Pθ1 , Q = Pθ2 , M = Pθ0 (cf. (67))

in (46), we get for α(α − 1) �= 0 the Bregman distances

Bα (Pθ1 , Pθ2 |Pθ0)

= Dα (Pθ1 , Pθ2) − (1 − α)Dα (Pθ2 , Pθ0)

+
1

1 − α

[∫
X

(
pθ2

pθ0

)α−1

pθ1 dλ− 1

]
. (88)

Applying the power divergence formula (75) together with (87) to (88), one obtains the desired formula (84).

(b) By the definition of B0(P,Q |M) in (58) and by (52)

B0 (Pθ1 , Pθ2 |Pθ0)

= D0 (Pθ1 , Pθ0) −D0 (Pθ2 , Pθ0) +
∫
X

pθ0 pθ1

pθ2

dλ− 1

where ∫
X

pθ0 pθ1

pθ2

dλ = expσ0(θ0, θ1, θ2) (cf. (87)).

For θ0 ∈ Θ̊ the desired assertion (85) follows from here and from the formulas

D0 (Pθi , Pθ0) = b(θi) − b(θ0) −∇b(θ0) (θi − θ0) for i = 1, 2

obtained from (78).

(c) The desired formula (86) follows immediately from the definition (57) and from the formulas (55), (56),

(78) and (79).

(d) The finally stated invariance is immediate. �
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The Conclusion 1 of Section 3 about the relation between scaled Bregman distances and φ-divergences can

be completed by the following relation between both of them and the classical Bregman distances (1).

Conclusion 2: Let Bφ(x, y) be the classical Bregman distance (1) of x, y ∈ R
d and P =

{
Pθ : θ ∈ R

d
}

the exponential family with cumulant function φ, i.e. with densities pθ(s) = exp{s · θ − φ(θ)}, s ∈ R
d. Then

for all Px, Py, Pz ∈ P
Bφ(x, y) = B1(Py , Px|Pz) = D1(Py , Px) ,

i.e. there is a one-to-one relation between the classical Bregman distance Bφ(x, y) and the scaled Bregman

distances B1(Py, Px|Pz) and power divergences D1(Py , Px) of the exponential probability measures generated

by the cumulant function φ. This means that the family
{
Bα(Py , Px|Pz) : α ∈ R, z ∈ R

d
}

of scaled Bregman

power distances and the family {Dα(Py, Px) : α ∈ R} of power divergences extend the classical Bregman

distances Bφ(x, y) to which they reduce at α = 1 and arbitrary Pz ∈ P . In fact, we meet here the extension of

the classical Bregman distances in three different directions: the first represented by various power parameters

α ∈ R, the second represented by various possible exponential distributions parametrized by θ ∈ R
d, and the

third represented by the exponential distribution parameters z ∈ R
d which are relevant when α �= 1.

Remark 2: We see from Theorems 4 and 5 that – in consistency with (34), (56) – for arbitrary interior

parameters θ0, θ1, θ2 ∈ Θ̊

B1 (Pθ1 , Pθ2 |Pθ0) = D1 (Pθ1 , Pθ2) ,

i. e. that the Bregman distance of order α = 1 of exponential family distributions Pθ1 , Pθ2 does not depend on

the scaling distribution Pθ0 . The distance of order α = 0 satisfies the relation

B0 (Pθ1 , Pθ2 |Pθ0) = D0 (Pθ1 , Pθ2) + expσ0(θ0, θ1, θ2) − 1

= B1 (Pθ2 , Pθ1 |Pθ0) + Δ(θ0, θ1, θ2) ,

where

Δ(θ0, θ1, θ2) = expσ0(θ0, θ1, θ2) − 1

represents a deviation from the skew-symmetry of the Bregman distancesB0 (Pθ1 , Pθ2 |Pθ0) andB1 (Pθ2 , Pθ1 |Pθ0)

of Pθ1 and Pθ2 . This deviation is zero if (for strictly convex b(θ) if and only if ) θ0 = θ2.

Remark 3: We see from the formulas (72) – (86) that for all α ∈ R the quantitiesDα (Pθ1 , Pθ2), ρα(θ1, θ2),

σα(θ0, θ1, θ2) and Bα (Pθ1 , Pθ2 |Pθ0) only depend on the cumulant function b(θ) defined in (65), and not

directly on the reference measure λ used in the definition formulas (65), (67).

V. EXPONENTIAL APPLICATIONS

In this section we illustrate the evaluation of scaled Bregman divergences Bα (Pθ1 , Pθ2 |Pθ0) for discrete

and continuous exponential families, and also for exponentially distributed random processes.



18

Binomial model: Consider for fixed n ≥ 2 on the observation space X = {0, ..., n} the binomial

probabilities

P (x) =
(
n

x

)
px(1 − p)n−x = λ(x) exp{x · θ − b(θ)} (89)

where

λ(x) =
(
n

x

)
, θ = ln

p

1 − p
∈ Θ = R and b(θ) = n ln(1 + eθ).

After some calculations one obtains from (74) and (83)

ρα(θ1, θ2) = n ln
1 + eαθ1+(1−α)θ2

(1 + eθ1)α(1 + eθ2)1−α

and

σα(θ0, θ1, θ2) = n ln

(
1 + eθ1+(1−α)(θ0+θ1−θ2)

)
(1 + eθ2)1−α

(1 + eθ0)α(1 + eθ1)
.

Applying Theorem 5 one obtains an explicit formula for the binomial Bregman distances Bα (Pθ1 , Pθ2 |Pθ0)

from here.

Rayleigh model: An important role in communication theory play the Rayleigh distributions defined by

the probability densities

pθ(x) = θx exp
{
−θx

2

2

}
, θ ∈ Θ = (0,∞) (90)

with respect to the restriction λ+ of the Lebesgue measure λ on the observation space X = (0,∞). The

mapping

T (x) = −
√

2x

from the positive halfline (0,∞) to the negative halfline (−∞, 0) transforms (90) into the family of Rayleigh

densities

pθ(x) = θ exp {θx} = exp {θx− b(θ)}

for b(θ) = − ln θ, θ > 0

with respect to the restriction λ− of the Lebesgue measure λ on the observation space X = (−∞, 0). These

are the Rayleigh densities in the natural form assumed in (67). After some calculations one derives from (74)

ρα(θ1, θ2) = ln
θα
1 θ

1−α
2

αθ1 + (1 − α)θ2
(91)

and

σα(θ0, θ1, θ2) = ln
θ1 θ

1−α
0

(αθ1 + (1 − α)(θ0 + θ1 − θ2)) θ1−α
2

. (92)

Applying Theorem 5 one obtains the Rayleigh-Bregman distances Bα (Pθ1 , Pθ2 |Pθ0) from here.

Theorem 1 about the preservation of the scaled Bregman distances by statistically sufficient transformations is

useful for the evaluation of these distances in exponential families. It implies for example that these distances

in the normal and lognormal families coincide. The next two examples dealing with distances of stochastic

processes make use of this theorem too.
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Exponentialy distributed signals: Most of the random processes modelling physical, social and economic

phenomena are exponentially distributed. Important among them are the real valued Lévy processes XXt =

(Xs : 0 ≤ s ≤ t) with trajectories xxt = (xs : 0 ≤ s ≤ t) from the Skorokchod observation spaces (Xt,At)

and parameters from the set

Θ = {θ ∈ R : c(θ) <∞}

defined by means of the function

c(θ) =
∫

R\{0}
x2eθx/(1 + x2) dν(x)

where ν is a Lévy measure which determines the probability distribution of the size of jumps of the process and

the intensity with which jumps occur. It is assumed that 0 belongs to Θ and it is known (cf. e.g. Küchler and

Sorensen (1994)) that the probability distributions Pt,θ induced by these processes on (Xt,At) are mutually

measure-theoretically equivalent with the relative densities

dPt,θ

dPt,0
(xxt) = exp{θ xt − bt(θ)} (93)

for the end xt of the trajectory xxt. The cumulant function appearing here is

bt(θ) = t

(
δθ +

1
2
σ2θ2 + γ(θ)

)
(94)

for two genuine parameters δ ∈ R respectively σ > 0 of the process which determine its intensity of drift

respectively its volatility, and for the function

γ(θ) =
∫

R\{0}
[eθx − 1 − θx/(1 + x2)] dν(x).

The formula (93) implies that the family Pt = {Pt,θ : θ ∈ Θ} is exponential on (Xt,At) for which the

“extremally reduced” observation T (xxt) = xt is statistically sufficient. Thus, by Theorem 1,

B(Pt,θ1 , Pt,θ2 |Pt,0) = B(Qt,θ1 , Qt,θ2 |Qt,0) (95)

where Qt,θ is a probability distribution on the real line governing the marginal distribution of the last observed

value Xt of the process XXt.

Queueing processes and Brownian motions: For illustration of the general result of the previous subsection

we can take the family of Poisson processes with initial value X0 = 0 and intensities η = eθ, θ ∈ Θ = R for

which δ = σ = 0 and c(θ) = eθ − 1 so that bt(θ) = t
(
eθ − 1

)
. Then Qt,θ is the Poisson distribution Po(τ)

with parameter τ = tη = teθ and probabilities

e−τ (τ)x

x!
= λ(x) exp

{
xϑ− eϑ

}
for ϑ = ln τ = θ + ln t, λ(x) =

1
x!

.

The exponential structure is similar as above, so that by applying (74) to the cumulant function b(ϑ) = eϑ = teθ

we get for the Poisson processes with parameters θ1 and θ2

ρα(θ1, θ2) = t
[
eαθ1+(1−α)θ2 − αeθ1 − (1 − α)eθ2

]
.

Combining this with (83) and Theorem 5 we obtain an explicit formula for the scaled Bregman distance (95)

of these Poisson processes.
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To give another illustration of the result of the previous subsection, let us first introduce the standard Wiener

process X̃t which is the Lévy process with ν ≡ 0, δ = 0, σ = 1 and θ = 1. It defines the family of Wiener

processes

Xs = θ X̃s, 0 ≤ s ≤ t, θ ∈ (0,∞), (96)

which are Lévy processes with δ = 0, σ = 1 and c(θ) ≡ 0 so that (94) implies bt(θ) = θ2/2. They are

well-known models of the random fluctuations called Brownian motions. If the initial value X0 is zero then

Qt,θ is the normal distribution with mean zero and variance v2 = tθ2. The corresponding Lebesgue densities

1√
2πv2

exp
{
− x2

2v2

}
=

√
ϑ

π
exp

{−ϑx2
}

for ϑ =
1

2v2

are transformed by the mapping x �−→ −√|x| of R on the negative halfline (−∞, 0) into the natural exponential

densities exp {ϑx− b(ϑ)} with respect to the dominating density 1/
√
π|x| where b(ϑ) = − 1

2 lnϑ = − ln 1
θ +

1
2 ln 2t. Thus by (74)

ρα(θ1, θ2) = − ln
θα
1 θ

1−α
2

αθ1 + (1 − α)θ2
(cf. (91)).

This together with (83) and Theorem 5 leads to the explicit formula for the scaled Bregman distance (95) of

the Wiener processes under consideration.

Geometric Brownian motions: From the abovementioned standard Wiener process one can also build up

the family of geometric Brownian motions (geometric Wiener processes)

Ys = exp{σX̃s + θs}, 0 ≤ s ≤ t, θ ∈ R, (97)

where the family-generating θ can be interpreted as drift parameters, and the volatility parameter σ > 0 is

assumed to be constant all over the family. Then, σX̃t + θt is normally distributed with mean m = θt and

variance v2 = σ2t, and Yt is lognormally distributed with the same parameters m and v2. By (95), the scaled

Bregman distance of two geometric Brownian motions with parameters θ1, θ2 reduces to the scaled Bregman

distance of two lognormal distributions LN(θ1t, σ2t), LN(θ2t, σ2t). As said above, it coincides with the scaled

Bregman distance of two normal distributions N(θ1t, σ2t), N(θ2t, σ2t). This is seen also from the fact that the

reparametrization

ϑ =
μ

v2
, τ =

1
2v2

and transformations R �−→ R
2 similar to that from the previous example lead in both distributions N(μ, v2)

and LN(μ, v2) to the same natural exponential density

pϑ,τ (x1, x2) = exp {x1ϑ+ x2τ − b(ϑ, τ)}

with

b(ϑ, τ) =
1
2

ln τ +
ϑ2

4τ
.

These two distributions differ just in the dominating measures on the transformed observation space X = R
2.

For (μ1, v
2
1) = (θ1t, σ2t) and (μ2, v

2
2) = (θ2t, σ2t) we get

(ϑ1, τ1) =
(
θ1
σ2

,
1

2σ2t

)
and (ϑ2, τ2) =

(
θ2
σ2

,
1

2σ2t

)
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and thus

b(α(ϑ1, τ1) + (1 − α)(ϑ2, τ2)) − αb(ϑ1, τ1) − (1 − α)b(ϑ2, τ2)

=
(αθ1 + (1 − α)θ2)

2 − αθ21 + (1 − α)θ22
2σ2

t .

Hence, for distributions Pt,θ1 , Pt,θ2 of the geometric Brownian motions considered above we get from (74)

ρα(θ1, θ2) =

[
(αθ1 + (1 − α)θ2)

2 − αθ21 + (1 − α)θ22
]

2σ2
t .

The expression (83) can be automatically evaluated using this. Applying both these results in Theorem 5 one

obtains explicit formula for the scaled Bregman distance (95) of these geometric Brownian motions.
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