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Evaluation of Tight Bounds for Divergences
Peter Harremoës and Igor Vajda

Abstract

The paper develops a general method for evaluation of the joint range of f -divergences
for two di¤erent functions f . Via topological arguments it demonstrates that the joint
range for general distributions equals the joint range achieved by the much simpler and
easily tractable distributions on binary or at most quarternary observation spaces. The
joint range provides in a straightforward manner achievable upper and lower bounds
for one f -divergence in terms of other f -divergence. As well known, such bounds play
important role in information theory, identi�cation of parameters and detection of signals.

1. Divergences and divergence statistics

Many of the divergence measures used in the information theory and statistics are of the
f -divergence type introduced by Csiszár in 1963 and independently by Ali and Silvey in
1966. Divergences of this type have been systematically studied in detail by Liese and
Vajda (1987). Let f : R+ ! R denote a convex function satisfying f (1) = 0: The f (0) is
de�ned as the limit limt!0 f (t). We de�ne f � (t) = tf (t�1) : Then f � is a convex function
and f � (0) is de�ned as limt!0 tf (t

�1) = limt!1
f(t)
t
:

Assume that P and Q are absolutely continuous with respect to a measure �; and that
p = dP

d�
and q = dQ

d�
: For arbitrary distributions P and Q the f -divergence Df (P;Q) � 0

is de�ned by the formula

Df (P;Q) =

Z
fq>0g

f

�
p

q

�
dQ+ f � (0)P (q = 0) : (1.1)

For details about this de�nition and properties of the f -divergences, see Liese and Vajda
(1987), Read and Cressie (1087), Liese and Vajda (2006). This de�nition implies

Df (P;Q) = Df� (Q;P ) :

Example 1. The function f(t) = jt� 1j de�nes the L1-distance

kP �Qk =
kX
j=1

qj

����pjqj � 1
���� = kX

j=1

jpj�qjj (cf. (1.1)) (1.2)

which plays an important role in information theory and mathematical statistics (cf.
Barron et al. (1992) or Fedotov and Topsoe (2003).
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In (1.1) is often taken the convex function f which is one of the power functions ��
of order � 2 R given in the domain t > 0 by the formula

��(t) =
t� � �(t� 1)� 1

�(�� 1) when �(�� 1) 6= 0 (1.3)

and by the corresponding limits

�0(t) = � ln t+ t� 1 and �1(t) = t ln t� t+ 1: (1.4)

The �-divergences

D�(P;Q)
def
= D��(P;Q); � 2 R (1.5)

based on (1.3) and (1.4) are usually referred to as power divergences of orders �: For details
about the properties of power divergences, see Liese and Vajda (2006) or Read and Cressie
(1087). Next we mention the best known members of the family of statistics (1.5), with a
reference to the skew symmetry D�(P;Q) = D1��(Q;P ) of the power divergences (1.5).

Example 2. The �2-divergence or quadratic divergence

D2(P;Q) = D�1(Q;P ) =
1

2

kX
j=1

(pj � qj)2
qj

(1.6)

leads to the well known Pearson and Neyman statistics. The information divergence

D1(P;Q) = D0(Q;P ) =
kX
j=1

pj ln
pj
qj

(1.7)

leads to the log-likelihood ratio and reversed log-likelihood ratio statistics. The symmetric
Hellinger divergence

D1=2(P;Q) = D1=2(Q;P ) = H(P;Q)

leads to the Freeman�Tukey statistic.

Metric divergences D�(P;Q) must be symmetric in P;Q. The symmetry condition is

t�(1=t) = �(t); t > 0 (cf. Vajda (1972) or Liese and Vajda (2006)). (1.8)

The metric divergences Df�(P;Q) from Examples 1 - 4 can be obtained by the sym-
metrization of some �-divergences D�(P;Q) based on the formulas

D�(P;Q) = Df (1)(P; (P +Q)=2),

D�(P;Q) = Df (2)(Q; (P +Q)=2)
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for the convex functions

f (1)(u) = (2� u)�
�

u

2� u

�
,

f (2)(u) = u�

�
2� u
u

�
; 0 < u < 2

(cf. (9) in Vajda (1972)). This leads for every convex �(t); t > 0 to the inverse formulas

D�(P; (P +Q)=2) = D�(1)(P;Q);

D�(Q; (P +Q)=2) = D�(2)(P;Q)

where

�(1)(t) =
1 + t

2
�

�
2t

1 + t

�
; (1.9)

�(2)(t) =
1 + t

2
�

�
2

1 + t

�
; t > 0

are the convex functions functions studied previously in Vajda (1972) and Vajda (1989).
As a result we get the symmetrized version of arbitrary �-divergence

D�(P; (P +Q)=2) +D�(Q; (P +Q)=2) = D�(1+2)(P;Q) (1.10)

for the convex function

�(1+2)(t) = �(1)(t) + �(2)(t), t > 0:

Since it holds
t�(1)(1=t) = �(2)(t) and t�(2)(1=t) = �(1)(t);

the symmetry condition (1.8) holds for �(1+2)(t) as it is expected.

Example 3. By de�nition, for the total variation f0 = f
(1)
0 = f

(2)
0 so that the sym-

metrized total variation is the total variation itself. For the symmetric Hellinger diver-
gence the corresponding power function �1=2 leads to new symmetrized function �

(1+2)
1=2

with the corresponding �(1+2)1=2 -divergence di¤erent from the Hellinger divergence. There-
fore the symmetrized Hellinger divergence is not the Hellinger divergence itself. For the
quadratic power function �2 of (1.3) it holds �

(1+2)
2 (t) = f�1(t) where f�1(t). Therefore

the LeCam divergence is nothing but the symmetrized Pearson divergence.

If the original �-divergence is symmetric then its symmetrized version may be identical
(e.g. the total variation) or not identical (e.g. the Hellinger divergence). Similarly, the
symmetrization may preserve an already symmetrized divergence (see again the total
variation) or it may change it (see e.g. the symmetrization of the symmetrized Pearson
divergence).
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2. Joint range of f-divergences

In this section we are interested in the range of the map (P;Q)! (Df (P;Q) ; Dg (P;Q))
where P and Q are probability distributions on the same set.

De�nition 1. A point (x; y) 2 R2 is a (f; g)-divergence pair if there exist a Borel space
(X ;F) with probability measures P and Q such (x; y) = (Df (P;Q) ; Dg (P;Q)) : A (f; g)-
divergence pair (x; y) is achievable in Rd if there exist probability vectors P;Q 2 Rd such
that

(x; y) = (Df (P;Q) ; Dg (P;Q)) :

Lemma 1. Assume that
P0 (A) = Q0 (A) = 1

and
P1 (B) = Q1 (B) = 1

and that A \B = ?: If P� = (1� �)P0 + �P1 and Q� = (1� �)Q0 + �Q1 then

Df (P�; Q�) = (1� �)Df (P0; Q0) + �Df (P1; Q1) :

Theorem 2. The set of (f; g)-divergence pairs is convex.

Proof. Assume that (P;Q) and
�
~P ; ~Q

�
are two pairs of probability distributions on

a space (X ;F) : Introduce a two-element set B = f0; 1g and the product space X�B
as a measurable space. Let � denote projection on B: Now we de�ne a pair

�
~P ; ~Q

�
of

joint distribution on X�B: The marginal distribution of both ~P is ~Q on B is (1� �; �) :
The conditional distributions are given by P (� j � = i) = Pi and Q (� j � = i) = Qi where
i = 0; 1: Then�

Df (P�; Q�)
Dg (P�; Q�)

�
= �

(1� �)Df (P0; Q0) + �Df (P1; Q1)
(1� �)Dg (P0; Q0) + �Dg (P1; Q1)

�
= (1� �)

�
Df (P0; Q0)
Dg (P0; Q0)

�
+ �

�
Df (P1; Q1)
Dg (P1; Q1)

�

= (1� �)
�
Df (P;Q)
Dg (P;Q)

�
+ �

0@ Df

�
~P ; ~Q

�
Dg

�
~P ; ~Q

� 1A :
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Example 4. Briët and Harremoës (2009) have studies the relation between total vari-
ation with Jensen Shannon divergence. They found that the set of pairs achievable in
R2 is not convex but the set of pairs achievable in R3 is convex and equals the set of all
(f; g)-divergence pairs achievable in the union of all observation spaces.

Theorem 3. Any (f; g)-divergence pair is a convex combination of two (f; g)-divergence
pairs, both of them achievable inR2. Consequently, any (f; g)-divergence pair is achievable
in R4.

Proof. Let P and Q denote probability measures on the same measurable space. De�ne
the set A = fq > 0g and the function X = p=q on A: Then Q satis�es

Q (A) = 1 and X dQ � 1:

Now we �x X and A: The formulas for the divergences become

Df (P;Q) =

Z
A

f (X) dQ+ f � (0)P
�
{A
�

=

Z
A

f (X) dQ+ f � (0)

�
1�

Z
A

X dQ

�
=

Z
A

(f (X) + f � (0) (1�X)) dQ

= E [f (X) + f � (0) (1�X)]

and similarly
Dg (P;Q) = E [g (X) + g

� (0) (1�X)] :
Hence, the divergences only depend on the distribution of X: Therefore we may without
loss of generality assume that Q is a probability measure on R0;+.

De�ne C as the set of probability measures on R0;+ satisfying E [X] � 1: Let C+ be
the set of additive measures � on R0;+ satisfying � (A) � 1 and

R
A
X d� � 1: Then C+

is convex and compact under setwise convergence. According to the Choquet�Bishop�de
Leeuw theorem any other point in C+ is the barycenter of a probability measure over such
extreme points. In particular an element Q 2 C is the barycenter of a probability measure
Pbary over extreme points of C+ and these extreme points must in addition be probability
measures with Pbary-probability 1. Hence Q 2 C is a barycenter of a probability measure
over extreme points in C:

Let Q be an element in C: Let Ai; i = 1; 2; 3 be a disjoint cover of R0;+ and assume
that Q (Ai) > 0: Then

Q =
3X
i=1

Q (Ai)Q (� j Ai) :
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For a probability vector � = (�1; �2; �2) let Q� denote the distribution

Q� =
3X
i=1

�iQ (� j Ai) :

Then Q� is element in C if and only if
3X
i=1

�i

Z
A

X dQ (� j Ai) � 1: (2.1)

An extreme probability vector � that satis�es (2.1) has one or two of its components equal
to 0. Hence, if Q is extreme in C and Ai; i = 1; 2; 3 is a disjoint cover of A; then at least
one of the three sets satis�es Q (Ai) = 0: Therefore an extreme point Q 2 C is of one of
the following two types:

1. Q is concentrated in one point

2. Q has support on two points. In this case the inequality
R
A
X dQ � 1 holds with

equality and P (A) = 1 so that P is absolutely continuous with respect to Q and
therefore supported by the same two-element set.

The formulas for divergence are linear in Q: Hence any (f; g)-divergence pair is a the
barycenter of a probability measure Pbary over pairs generated by extreme distributions
Q 2 C: The extreme distributions of type 2 generate pairs achievable in R2.
For extreme points Q concentrated in a single point we can reverse the argument

at make a barycentric decomposition with respect to P . If an extreme P has a two-
point support then Q is absolutely continuous with respect to P and generates a (f; g)-
divergence pair achievable in R2. If P is concentrated in a point then this point may
either be identical with the support of Q and the two probability measures are identical,
or the support points are di¤erent and P and Q are singular but still (P;Q) is supported
on two points. Therefore any (f; g)-divergence pair has a barycentric decomposition into
pairs achievable in R2.
Let y = (y; z) be a (f; g)-divergence pair. Then (y; z) is a the barycenter of (f; g)-

divergence pairs achievable in R2. According to the Carathéodory�s theorem barycentric
decomposition may be obtained as a convex combination of at most three points yi; i =
1; 2; 3: Assume that all three points have positive weight. Let `i be the line through y
and yi: The point y divides the line `i in two half-lines `+i and `

�
i where `

�
i is contains yi:

The lines `+i ; i = 1; 2; 3 divide R2 into three sectors, each of them containing one of the
points yi; i = 1; 2; 3: The set of (f; g)-divergence pairs achievable in R3 is curve-connected
so there exist a continuous curve of (f; g)-divergence pairs achievable in R2 from y1 to y2
that must intersect `+1 [ `+3 in a point z: If z lies on `+i then y is a convex combination
of the two points yi and z: Hence, any (f; g)-divergence pair is a convex combination of
two points that are (f; g)-divergence pairs achievable in R2. From the construction in the
proof of Theorem 2 we see that any (f; g)-divergence pair is achievable in R4.

6



Remark 1. We do not have any example of functions (f; g) such that the set of pairs
achievable in R3 is not convex.

Remark 2. An f -divergence on a arbitrary �-algebra can be approximated by the f -
divergence on its �nite sub-algebras. Any �nite �-algebra is a Borel �-algebra for discrete
space so for probability measures P;Q on a �-algebra the point (Df (P;Q) ; Dg (P;Q)) is
in the closure of the pairs achievable in R4. For many function pairs ((f; g)) the set of
pairs achievable in R2 is closed and then the set of all (f; g)-divergence pairs is closed and
contains (Df (P;Q) ; Dg (P;Q)) even if P;Q are measures on a non-atomic �-algebra.

The (f; g)-divergence pair achievable in R2 can be parametrized as P = (1� p; p) and
Q = (1� q; q) : If we de�ne (1� p; p) = (p; 1� p) then Df (P;Q) = Df

�
P ;Q

�
: Hence

we may assume without loss of generality assume that p � q and just have to determine
the image of the simplex � = f(p; q) j 0 � p � q � 1g : This result makes it very easy to
make a numerical plot of the (f; g)-divergence pair achievable in R2 and the joint range
is just the convex hull.

3. Image of the triangle

In order to determine the image of the triangle � we have to check what happens at inner
points and what happens at or near the boundary. Most inner points are mapped into
inner points of the range. On subsets of � where the derivative matrix is non-singular
the mapping (P;Q) ! (Df ; Dg) is open according to the open mapping theorem from
calculus. Hence, all inner points that are not mapped into interior points of the range
must satisfy �����

@Df
@p

@Dg
@p

@Df
@q

@Dg
@q

����� = 0:
Depending on functions f and g this equation may be easy or di¢ cult to solve, but in
most cases the solutions will lie on a 1-dimensional manifold that will cut the triangle �
into pieces, such that each piece is mapped isomorphically into subsets of the range of
(P;Q)! (Df ; Dg) : Each pair of functions (f; g) will require its own analysis.

The diagonal p = q in � is easy to analyze. It is mapped into (Df ; Dg) = (0; 0) :

Lemma 1. (i) If f (0) =1; and limt!0 inf
g(t)
f(t)

= �0; then the supremum of

� �Df (P;Q)�Dg (P;Q)

over all distributions P;Q is 1 if � > �0:

(ii) If f � (0) =1; and limt!1 inf
g(t)
f(t)

= �0; then the supremum of

� �Df (P;Q)�Dg (P;Q)
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over all distributions P;Q is 1 if � > �0:

(iii) If g (0) =1; and limt!0 sup
g(t)
f(t)

= 
0; then the supremum of

Dg (P;Q)� 
Df (P;Q)

over all distributions P;Q is 1 if 
 < 
0:

(iv) If g� (0) =1; and limt!1 sup
g(t)
f(t)

= 
0; then the supremum of

Dg (Q;P )� 
Df (Q;P )

over all distributions P;Q is 1 if 
 < 
0:

Proof. (i) Assume that

f (0) =1 and lim
t!0

inf
g (t)

f (t)
= �0:

The �rst condition implies

Df ((1; 0) ; (1=2; 1=2)) =1

and the second condition implies that g (0) =1 and

Dg ((1; 0) ; (1=2; 1=2)) =1:

We have

Dg ((p; 1� p) ; (1=2; 1=2))
Df ((p; 1� p) ; (1=2; 1=2))

=
g (2p) =2 + g (2 (1� p)) =2
f (2p) =2 + f (2 (1� p)) =2

=
g (2p) + g (2 (1� p))
f (2p) + f (2 (1� p)) :

Let (tn)n be a sequence such that
g(tn)
f(tn)

! � for n!1: Then

Dg

��
tn
2
; 1� tn

2

�
; (1=2; 1=2)

�
Df

��
tn
2
; 1� tn

2

�
; (1=2; 1=2)

� ! �

and the �rst result follows. The remaining cases (ii) - (iv) follow by interchanging
f and g; and/or replacing f by f � and g by g�; using the fact that limt!0 inf

g�(t)
f�(t) =

limt!0 inf
tg(t�1)
tf(t�1) = limt!1 inf

g(t)
f(t)
:
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Proposition 2. Assume that f and g are C2 and that f 00 (1) > 0 and g00 (1) > 0: Assume
that limt!0 inf

g(t)
f(t)

> 0; and that limt!1 inf
g(t)
f(t)

> 0: Then there exists � > 0 such that

Dg (P;Q) � � �Df (P;Q) (3.1)

for all distributions P;Q:

Proof. The inequality limt!0 inf
g(t)
f(t)

> 0 implies that there exist �0,t0 > 0 such that

g (t) � �0f (t) for t < t0: The Inequality limt!1 inf
g(t)
f(t)

> 0 implies that there exists
�1 > 0 and t1 > 0 such that g (t) � �1f (t) for t > t1: According to Taylor�s formula
we have

f (t) =
f 00 (�)

2
(t� 1)2 and g (t) =

g00 (�)

2
(t� 1)2

for some � and � between 1 and t: Hence

g (t)

f (t)
=
f 00 (�)

g00 (�)
! f 00 (1)

g00 (1)
for t! 1:

Therefore there there exists �1 > 0 and an interval ]t�; t+[ around 1 such that
g(t)
f(t)

� �1
for t 2 ]t�; t+[ : The function t ! g(t)

f(t)
is continuous on the compact set [t0; t�] [ [t+; t1]

so it has a minimum ~� > 0 on this set. Inequality 3.1 holds for � = min
n
�0; �1; �1;

~�
o
:

4. Bounds for power divergences

As an example we shall determine the exact range of a pair of power divergences. We
have

f (t) = �2(t);

g (t) = �3(t):

In this case we have

Df ((p; 1� p) ; (q; 1� q)) =
1

2

 
(p� q)2

q
+
(p� q)2

1� q

!
;

Dg ((p; 1� p) ; (q; 1� q)) =
1

6

 �
p

q

�3
q +

�
1� p
1� q

�3
(1� q)� 1

!
:
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First we determine the image of the triangle. The derivatives are

@Df

@p
=
1

2

@

@p

 
(p� q)2

q
+
(p� q)2

1� q

!

=
2

2
� (p� q)
(1� q) q ;

@Df

@q
=
1

2

@

@q

 
(p� q)2

q
+
(p� q)2

1� q � 1
!

=
1

2
� (2pq � q � p) (p� q)

(1� q)2 q2
;

@Dg

@p
=
1

6

@

@p

 �
p

q

�3
q +

�
1� p
1� q

�3
(1� q)

!

= �3
6
� (2pq � q � p) (p� q)

(1� q)2 q2
;

@Dg

@q
=
1

6

@

@q

 �
p

q

�3
q +

�
1� p
1� q

�3
(1� q)� 1

!

=
2

6
�

�
pq + p2 + q2�

3pq2 � 3p2q + 3p2q2
�
(p� q)

(q � 1)3 q3
:

The determinant of derivatives is�����
@Df
@p

@Dg
@p

@Df
@q

@Dg
@q

����� =
(p� q)2

12q4 (1� q)4

������
2 3p+ 3q � 6pq

2pq � q � p
�

6pq2 � 2p2 � 2q2
�2pq + 6p2q � 6p2q2

� ������
= � 1

12

�
p� q
q (1� q)

�4
:

We see that the determinant of derivatives is di¤erent from zero for p 6= q so the
interior of � is mapped one-to-one to the image. Hence we just have to determine the
image of points on or near the boundary of �:
For P = (1; 0) and Q = (1� q; q) we get

Df (P;Q) =
1

2

�
q +

q2

1� q

�
=
1

2

�
1

1� q � 1
�
;

Dg (P;Q) =
1

6

�
1

(1� q)2
� 1
�
=
1

6

(2� q) q
(1� q)2

:
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The �rst equation leads to

q =

�
1� 1

2Df + 1

�
and hence

Dg =
2

3
Df (Df + 1) :

We have
f (t)

g (t)
=

t2�2(t�1)�1
2

t3�3(t�1)�1
6

!1 for t!1:

All points (0; s) ; s 2 R0;+ are in the closure of the range of (P;Q) ! (Df ; Dg) : By
combing these two results we the range consists of the point (0; 0) ; all points on the curve�
x; 2

3
x (x+ 1)

�
; x 2 R+, and all point above this curve. Therefore

InfD2(P;Q)=x D3(P;Q) =
2

3
x (x+ 1) for x 2 [0;1) (4.1)

and
SupD2(P;Q)=x D3(P;Q) =1 for x 2 [0;1): (4.2)

In other words, for arbitrary D2(P;Q) and D3(P;Q) it holds

2D2(P;Q) [D2(P;Q) + 1]

3
� D3(P;Q) � 1 (4.3)

and both these bounds are tight. Similar results holds for any pair of power divergences
(D�; D�), but for other pairs than (D2; D3) the computations become much more involved.

Let us conclude the paper by the remark that the Rényi divergences are monotone
functions of the power divergences so our results easily translate into the results on the
Rényi divergences.
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