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On the Bahadur-Efficient Testing of Uniformity by
means of the Entropy
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Abstract— This paper compares the power divergence statistics
of orders o > 1 with the information divergence statistic in
the problem of testing the uniformity of a distribution. In this
problem the information divergence statistic is equivalent to the
entropy statistic. Extending some previously established results
about information diagrams, it is proved that the information
divergence statistic in this problem is more efficient in the
Bahadur sense than any power divergence statistic of order
a > 1. This means that the entropy provides in this sense the most
efficient way of characterizing the uniformity of a distribution.

Index Terms— Bahadur efficiency, entropy, goodness-of-fit,
index of coincidence, information diagram, power divergences.

I. POWER DIVERGENCE STATISTICS

ET M (k) denote the set of all discrete probability distri-
butions of the form P = (py, ..., px) and

M(kln) = {P € M(k):nP € {0,1,...}'} (1)

the subset of types. One of the fundamental problems of
mathematical statistics can be described by n balls distributed
into boxes 1,...,k independently according to an unknown
probability law

Pn = (pnh 7pnk) eM (k) (2)

possibly depending on the number of balls n. This results in
frequency counts X1, ..., X, the vector of which X,, =
(Xn1,.-- Xnx) € {0,1,...}* has a multinomial distribution
with parameters k, n, P,,

X, ~ Multinomialy(n, P,). 3)

The problem is to decide on the basis of observations X,
whether the unknown law (2) is equal to a given Q =
(g1, -, qx) € M (k) or not.

The observations X, are represented by the (random)
empirical probability distribution

~ ~ AN N AN

and the hypothesis ) about P, is usually decided by means
of a procedure 7 called a test. This procedure uses a statistic
T,.(P, Q) which characterizes the goodness-of-fit between
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the distributions P, and Q. The test 7 rejects the hypothesis
P, =Q if T = T,(P,,Q) exceeds certain rejection level
rn € R.

The goodness-of-fit statistic is usually one of the power
divergence statistic

Ta:Ta,n:2nDa(pn;Q)v a€eR (5)

where D, (P, Q) denotes the so-called a-divergence (power
divergence of order «) of distributions P,Q € M (k) defined
by

k
i=1 %

for the power function ¢, of order o € R given in the domain

t > 0 by the formula

t* —at—-1)—1
ala—1)

da(t) = when ala—1)#0 (7)

and by the corresponding limits

do(t) = —Int+t—1, 8)
G1(t) =tInt —t + 1. )

For details about the definition (6) and properties of power
divergences, see [1] or [2]. Next we cite the best known
members of the family of statistics (5) with a reference to
the skew symmetry D, (P,Q) = D;1_,(Q, P) of the power
divergences (6).

Example 1: The quadratic divergences

Dy(P,Q) = D_1(Q, P) =

k
(p; — q;)?
— 4q;

j=1

lead to the well known Pearson statistics

k

X’n" — ngj; 2
e
J

(10)

j=1
and Neyman statistics
X —ngj)?
Ty =1y, =y B )
j=1

The logarithmic divergences

k
Di(P,Q) = Do(Q,P) =Y _p, h% (11)
j=1 J



SUBMISSION TO IEEE TRANSACTIONS ON INFORMATION THEORY

lead to the log-likelihood ratio

Xnj
q

ng;

k
Ty =Tin=2) Xpln (12)
j=1

and reversed log-likelihood ratio statistics

k
TO = TO,n = 27’2,(]] Z In ;L(qj .

nj

j=1
The symmetric Hellinger divergence

k

D1ja(P.Q) = Diya(Q.P) =43 (Vi ~ V@)’

leads to the Freeman—Tukey statistic

k
Tijo = Tipon =23 (Vi = V75
j=1

2

(13)

In this paper we would like to find the power divergence
statistic T,, o € R that is most suitable for testing the
hypothesis that the true distribution P, is uniform, i.e. the

hypothesis H : P,, = U = (1/k,...,1/k). Hence in our model

X, ~ Multinomiali(n,U) under H. (14)

The alternative to the hypothesis H is denoted by A,,. Thus
by (3),

X, ~ Multinomialg(n, P,) under A, (15)

for P, assumed in (2).
Next follows a typical example of the hypotheses testing
model introduced in (14) - (15).

Example 2: Let u, v be two different probability measures
on the Borel line (R, B) with absolutely continuous distrib-
ution functions F, G and Y7,...,Y, an ii.d. sample from
the probability space (R, B, ). Consider a statistician who
knows neither the probability measure p governing the random
sample (Y7,...,Y,,) nor this sample itself. Nevertheless he
observes the frequencies X,, = (Xp1,..., Xnx) of the sam-
ples Y7, ...,Y,, in an interval partition P, = {A,1,..., Ank}
of R chosen by him. Using X ,, he has to decide about the
hypothesis H that the unknown probability measure on (R, B)

is the given v. Thus for a partition P,, = {Ap1,..., Ank}
under his control he obtains the observations
X, ~ Multinomialy(n, Py,) (16)

where
Pn = (M(An1)7 ce 7/14(Ank:))

and his task is to test the hypothesis H : ¢ = v. Knowing v, he
can use the quantile function G~! of v or, more precisely, the
quatiles G=1(j/k) of the orders j/k for 1 < j < k cutting R
into a special system of intervals P,, = {An1,..., Ank} with
the property v(A,;) = 1/k for 1 < j < k. Hence for this
special partition we get from (16)
P,=U=(1/k,...,1/k) € M(k|n)

under H 17)

Fig. 1. The domain of a Cauchy distribution divided in five bins with equal
probabilities.

and

We see from (16) - (18) that the quantile-generated partitions
P, lead exactly to the situation assumed in (14) - (15). This

under A,,.

idea is illustrated in Figure 1.
The formulas for divergences D, (P, Q) simplify when Q =
U, eg.,

Dy(P,U)=Ink—H(P) for PeM(k) (19

where H(P) denotes the Shannon entropy

k
H(P) = —ij Inp;.
j=1

Similarly, (6) and (7) imply for all « > 1 and P € M (k)
Sy (/R 1

Da(P.U) = ala—1)
LAY Ry
- afla—1)
_ kTHC,(P) — 1
N ala—1) ' (20)
Here .
IC,(P) =Y _p§ for P € M(k) 1)

j=1
is the index of coincidence of P of order a > 1 introduced in
[3], taking on values between k'~% (when P is the uniform
distribution U) and 1 (when P is the Dirac distribution P;
with p; =1 for some 1 < j < k).

From (19) we see that the log-likelihood ratio statistics
statistic T3 ,, = 2nD1 (P, Q) is one-one related to the entropy

statistic 2nH (P,), and from (20) we see that for each o > 1
the power divergence statistic Ty, ,, = 2nD,(P,, Q) is one-

one related to the corresponding IC-statistic 2nIC,, (P, ). The
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entropy H (P,) as well as the indices of coincidence IC,,(P,,),
a > 1 characterize the uniformity of the distribution I:’n. We
are interested in the characterization which is most efficient
from the statistical point of view.

The rest of the paper is organized as follows. In Section
I the basic idea behind Bahadur efficiency is explained
and previous result related to efficiency of certain tests are
mentioned. These previous results have been an important
inspiration for developing the results of this paper, but they
are not used directly. In Section III conditions are given for
the plug-in estimator of power divergence to be consistent
are given. These conditions play an important role in the
formulation and the proof of the main results, but the results
should also be of independent interest. Section IV is the most
technical where Bahadur functions are introduced and the link
to result from [3] is established.

Section V states the main result of the paper and proves
it using results of the previous sections This result is then
discussed in Section VI.

II. BAHADUR EFFICIENCY

In the previous section we introduced the family of power
divergence statistics T, or the one-one related family of
statistics Do (P, Q), a € R. In the rest of this paper we
are interested in the relative asymptotic efficiencies of these
statistics for 1 < a; < as < oo when applied in testing the
uniformity hypothesis (14). To this end we use the concept of
Bahadur asymptotic relative efficiency of T,, with respect to
T, (briefly Bahadur efficiency, in symbols BE(T,, | Ta,))-
Roughly speaking, this efficiency compares the sample sizes
n; needed by the T, -tests of the same powers to achieve the
same asymptotic sizes. It differs from the Pitman asymptotic
relative efficiency of T,,, with respect to 7, which compares
the sample sizes n; needed by the T, -tests of the same sizes
to achieve the same asymptotic powers (cf. [4, pp.332-341]
or [5]). We use the general concept of Bahadur efficiency
introduced in [6] where it was extended the original concept
of [7]. Before its formal definition, we briefly review some
useful preliminary testing results.

Let us first suppose that k£ remains fixed while n tends to
infinity. In this case the goodness-of-fit statistic (5)—(13) have
been studied systematically by [2]. They proved under H the
limit law

L

Tom = Xp1 asn—o0, a€R (22)

where x7_, stands for the y2-distributed random variable
with k — 1 degrees of freedom and where — here denotes
convergence in distribution. In [2] the authors also proved a
modification of (22) under the local alternatives

A, : P, =(1-1/v/n)U+ P/y/n for Pe M(k) fixed.
(23)
An extension of (22) to the case where (14) remains valid but

k = k,, increases slowly to co as n — oo in the sense

lim v, =0 for ~, = k (24)
n—oo n

has been studied for @« = 2 by [8] and for arbitrary positive
integers « by [9].
The asymptotic normality
Ton—k

V2k

has been proved under H subsequently in [10], [11] and [12]
under stronger alternatives to the slow convergence condition
(24), namely

L N(0,1) asn—oo, acR (25

k*Ink k?

2 2
A In"n and "= (26)
n

lim v, =0 for ~,= ,

n— o0 n

respectively. Extension of (25) to a local alternative of the
type (23) can be found for « = 1 and o = 2 in [9], and for
arbitrary a € R in [13].

If contrary to (24) or (26), k = k,, increases fast to co in
the sense i
nlin;o Yo =7>0 for ~,= - 27
then (25) has to be replaced by more complicated limit laws
established in [14], [15], [2] and [16]. However, the practical
situations where the model satisfies (27) are rare. In our in-
troductory example with distribution of balls, this assumption
means that the number of boxes is comparable with the number
of balls. Hence either the frequencies X,,1,..., X,x of balls
in all boxes remain bounded as n — oo, or majority of the
boxes remains empty.

In what follows we restrict ourselves to the usual situations
where k = k,, satisfies the conditions of the type (24) or (26).
The limit laws mentioned above enable us to specify for any
a € R the T,-based test of the hypothesis H of an arbitrary
asymptotic size s € |0, 1[. Under the normal law (25) such a
test is defined by the rejection rule

To > 7n(s) for 7,(s) =kn + 12k, @7 (1 —5) (28)

for the quantile of the order 1 — s of the standard normal
distribution function ®. We would like to choose the optimal
statistic T,,,, from the family 7, o € R. This leads to
the comparison of the asymptotic relative efficiencies in this
family.

If £ = k, increases slowly as assumed in (24) or (26),
then the Pitman asymptotic relative efficiencies of all sta-
tistics T, @ € R coincide (cf. e.g. [2]). In this situation
preferences between these statistics must be based on the
Bahadur efficiencies BE(T,, | Tu,). The key result in this
direction was established in [6] where it was demonstrated that
BE(T, | Tz) = oo so that the log-likelihood ratio statistic T
(cf. (12)) is more Bahadur efficient than the Pearson statistic
T5 (cf. (10)). Using the results from [17], this first achievement
was extended in [18] where it was proved that the Bahadur
efficiencies of the reversed log-likelihood ratio statistic T} (cf.
(12)) and the Neyman statistic 71 (cf. (10)) coincide and both
are less Bahadur efficient than the Pearson’s 75. A problem
left open in the previous literature is to evaluate the Bahadur
efficiencies of the remaining statistics 7,,, o € R, in particular
to confirm or reject the conjecture that the log-likelihood ratio
statistic 73 is most Bahadur efficient in the class of all power
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divergence statistics T, a € R. In this paper we present a
partial solution to this problem for o > 1. Our solution is
based on the results for indices of coincidence established in
[3]. The above mentioned Bahadur efficiency BE (T, | Tw,)

is defined under the condition that for « = o and o = s
the statistic Da(Pn, U) is consistent and admits the so-called
Bahadur function. These two concepts are given in Definition
1 and 2 below. In what follows we often use the statistics
D, (Pn,U instead of the ono-one related T, = T, , .

Further by P(B,,) we shall denote the probabilities of events
B,, depending on the random observations X ,, (cf. (14) and
(15)) and by E the corresponding expectations.

Definition 1: For o € R we say that

1) the model satisfies the Bahadur condition if there exists
0 < A, < oo such that under the alternatives A,

lim Da(Pp,U) = Aq,

n—oo

(29)

2) the statistic D (P,,U) is consistent if the Bahadur
condition holds and for n — oo

EDo(P,,U) — 0 under H (30)

and

Do(Pn,U) 25 A, under A,. (31)

The inequality 0 < A, < oo in the Bahadur condition
means that in term of the statistic Da(Pn, U), the alternatives
A,, are neither too near to nor too far from the hypothesis H.
The next example demonstrates that in the model of Example
2 this important condition holds.

Example 3: Let us consider the typical situation of Example
2 leading to the present statistical testing model. If the proba-
bility measure ;1 considered there is dominated by v then, by
[19, Theorem 2],

lim Da(P,,U)

n—oo

= / Do <d,u> dv for all « € R.
| dv

o0

The integrals are a-divergences D, (p, V) of probability mea-
sures p and v, see [1]. Thus (29) holds for A, = D, (u,v)
when g is dominated by v and A, > 0 unless 4 = v (i.e.
H = A, forall n =1,2,...). This means that if the model of
Example 2 is nontrivial then then the Bahadur condition holds
for all @« € R such that D, (u,v) < .

The consistency of Dy (P,,U) introduced in Definition 1
means that Da(lf’m U)-based test of the hypothesis H : U
against the alternative A,, : P, of any fixed size has power
tending to 1. Indeed, under H we have Da(Pn, U) 2500
that the rejection level 7, (s) of the Dy (P,,U)-based test of
size s €]0, 1] tends to 0 for n — oo while under A,, we have
Do(Pn,U) 25 A, > 0.

Definition 2: For o € R we say that g, is the Bahadur
function for the statistic T, = 2nDy (P, U) if g4 : (0,00) —

(0,00) is continuous and there exists a sequence ¢y, > 0
such that under H

lim — & 10 P(Dy (P, U) > A)

(32)
n—oo n
= Ja (A) y

A > 0.

Remark 1: One should note that the Bahadur function de-
pends on the sequence c,,,. For the kind of results that
we are interested in, the crucial thing is to determine the
asymptotic behavior of sequences ¢, admitting the Bahadur
function rather than the exact value of this. Nevertheless we
shall calculate the exact value of the Bahadur function for
certain sequences because this will allow us to use standard
terminology and because the determination of the Bahadur
function may be of independent interest.

Next follows the basic definition of the present paper where
Ay, Ay, are the limits from the Bahadur condition and g,,,,
Jap aNd Cqy i, Cay,n are the functions and sequences from the
definition of Bahadur function. In this definition we apply to
the power divergence statistics Ty, and. T,, the concept of the
Bahadur efficiency BE(T; | T») introduced for more general
statistics 77 and 75 in [6, p. 732].

Definition 3: Let the statistic Dy, (P,,U) and Dy, (P,,U)
be consistent and let the Bahadur functions g,, and go, of
the power divergence statistics 7y, and. T,,exist. Then the
Bahadur efficiency BE(T,, | T.,) of T,, with respect to
T,, is defined by

Cal,n

a1 (Day) .
BE(T,, | Ty,) = Jr(Ber) 1)

Gy (Do) n—oo Caq,n

(33)

provided the limit exists in [0, oo]. Therefore this efficiency
takes on values in the domain [0, oc].

Assume that the statistics D, (P,,U) are consistent for i
{1,2} and that there exist Bahadur functions g,, satisfying
(32) for some sequences cq,n, > 0. Then the definition of
consistency implies that both the Ty, -tests of the uniformity
hypothesis H : U will achieve identical powers

7 =P(Da, (P, U) > 10)
for m €]0,1] and ¢ € {1,2} under A, if and only

if r; | Ag, for i € {1,2} as n — oo. The convergence
Tni I Aq, leads to the approximate T, -test sizes
A A
Sn,i = P(Da, (Pna U) > Aal)
~ P(Dai (pn; U) Z Tn,i)

for i € {1,2} under H where s,; — 0 as n — oo for
i € {1,2} under H. By (32), the T,,-tests need different
sample sizes
(e 7N 12 ]- .
np = S gy e {1,2) (34)

g(Xi (Aal ) STL
to achieve the same approximate test sizes s, = Sp,1 = 5p2

when n is here playing the role of a formal parameter that
increases to co. Thus Definition 3 formalizes the concept of
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N y3/2 ,

Fig. 2. The function y — y< illustrated for « = 3/2 by the full curve. The
lower bound given in (35) is indicated by the dashed line for x = 0.5 . The
upper bound in (36) is indicated by the dotted curve.

asymptotic relative efficiency announced at the beginning of
this section.

Before presenting the main results based on Definition 3 in
Section 5, we investigate sufficient conditions for consistency
of the statistic D,, (Pn, U) in the domain o > 1 in Section
3. Section 4 presents conditions for the existence of the
corresponding Bahadur functions g,, o > 1 and explicitly
evaluates these functions.

III. CONSISTENCY

When a statistician uses Do, (P,,U) as a statistic to distin-
guish between P,, and U then he does so because he considers
Do(P,,U) as a good estimate of Dy (P,,U). This idea
was made precise in Definition 1 dealing with the important
concept of consistency of DQ(I:’", U). Our next theorem
presents consistency conditions for all statistic Da(pn,U ),
a > 1. It is based on the following auxiliary result.

Lemma I: For xz € [0;1] and y € [0;1] and « € ]1;2[ we
have

y* — 2% <z My — 2+ (@ =12 (y - 2)°.

Proof: First we observe that
y® > 2%+ az® ! (y — x) (35)

because the function y — y© is convex. Next we prove the
inequality

a2 (y—x)*.
The upper and lower bounds in (35) and (36) are illustrated

in Figure 2.
We have to prove that

v = (2° + e (y—2) + (e = Va2 (y - 2)°)

y* <2 +az* Tty —z) + (o - (36)

is negative. This is obvious for y = x and for y = 0. The
derivative is

a—1

ay® ' — (az® (- 1) 2?2 (y — )

=ay* '+ (a—2)2* (2 - 2a) " .
The derivative is 0 for y = x. Differentiate once more and get

Dy 2+ (2—2a)z%?
=(a—1) (ayo‘*2 —

ala—
21,&72) ;

1
which is positive for y < (%) *~> x < x. Combining (36) and
(35) leads to

0<y*—2%—az* ' (y—z) < (a—1)2° 2 (y —2)* (37)

Now 1 — 2% — ax®~1 (1 — z) is increasing in 2 and equals 0
for x = 1 so the lower bound in (37) side is negative and we
have

2

Ty —ax)”.

ly® — 2 — a1 (y — )| <(a-1ax
The inequality follows because
ly* — 2| < |aa®"! (y — 2))|
+ |y — 2 - az® 1 (y — z)|.
|
We shall also use the following upper bound a number of
times
pi (1 —p))
n
pj
n

E(p; — pj)° =
<

For divergence of order 2 it gives

k ~ 2
ED, (PnHP) =27E(pjfpj) (38)

pj

M- 1
SN

<

=

Si=5

Theorem 1: For all a > 1 let the Bahadur condition (29)
hold. Then D (P,,U) is consistent if

a€ll;2] and lim — =0, 39)

n—oo n

or po1
a>2 and lim =0. (40)

n—oo N

Proof: Under H we have D, (P,,U) = D,(U,U) = 0.
Hence it suffices to prove that under both H and A,

lim E|Dy(Pn,U) — Do(P,,U)| =0 forall a> 1.

n—oo

Put for brevity A, , = Da(pn, U) — D,(P,,U) and denote
the variance by Var and the covariance by Cov. The cases
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i) = 1,ii) a € ]1;2] and iii) & > 2 have to be treated
separately.
(i) For « = 1 we have

k
A=) (piInp; —pjlnp).,

j=1

(41)

where we dropped the subscript n everywhere in the sum.
From (41) we obtain

ij ln Z( pj)lnpi

pj J

j=1
and hence
. u 1
|A1,n > (PmPn)+ Z(ﬁj _pj)hl*_
j=1 Pi
If n; = p;n is the number of observations of type ¢ then

Dl (pru Pn) < 2D2(Pna Pn)-
Therefore

E |A1,n| S

2E Dy(P,, P,) +E 42)

M;r

" 1
—p;j)ln—
7 py

J:1 J

The last term on the right hand side can be bounded using
Jensen’s Inequality.

o\ 1/2
. 1 . 1
E Z(ﬁ]‘pj)lnf <|E Z(ﬁj_pj)lnf
=1 Pj j=1 Pj
i 1/2
= Z In p; In p; COV (p;, p;)
Q=1
i 1/2
COV (s, 7
= S gy ) ) g
ij=1 "
Further,
k
Cov (0,
> Inp; hlpi#
ij=1 n
k
Var Cov (1,1
D
i=1 i#£]
k
Pi np;p;
< Z (Inp;)> s Zlnpj Inp; n2]

i=1 i#j

1< 1 (& ’
= sz‘ (Inp;)* + - (Z}% 1npj> - (44
i=1 i=1

The function z — xIn” x is concave in the interval [0; e
and convex in the interval [ - 1] Therefore we are able to
use [3, Theorem 3.1] to see that Z _,pi (In pl) attains its

maximum for a mixture of uniform distributions on k£ and
k — 1 points. Thus

k k 1 2
sz (lnpl) < Z m (hl k) (45)
=1 i=1
_ k(lnk)’
k-1
<2(Ink)’

The sum Zle p; Inp; equals minus the entropy, which has
maximum In k. By combining (38), (42), (43), (44), and (45)

we get
1/2
3(Ink)? /
n

and the right hand side tends to zero under the condition (39)
for n tending to infinity. This proves (39) for a = 1.

\A1n|<% (
n

(ii) For every « € ]1;2[ we have

a7 k
Aoz,n Oé_l lej 7pj
]:

Using the abbreviation

Da,n = Da(Pn;U)v (46)
we obtain
|Aan| <
gt & ap$ =t p; — pjl
J J <
nres DU GRS P E
1/2 . 1/2
ka_l } a/2 2 : o 2
e (5w (Surnew
j=1 j=1
a—1 k
a— 2
- > i -p) =
j=1
e ( ala—1)Dgp )1/2 i 1/2
+1 a—2 (A 2
a—1 ij (Bj — pj)
7j=1
kafl k oo 9
+ > P (B - pj)
j=1
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because Zlep;-’ = [a(a —1) Dy, + 1]/, Thus

ElAanl
ka;l k 1/2
2 1/2
< ——(a(a=1)Dan+1 Z

koz 1 w_oDj
Zp 2r]
1/2
_ vl 1Dy e 11 (k YRS )
n

a—1

ka—l k 1
+ r
an ;p]

The sequence D, ., is upper bounded and that implies that
there exists a constant ¢ < 1 such that p; < ¢ for all n, j.
Thus

ElAan| <
( o(a—1) Do >1/2 ey
+1 k* 1k (1)
a—1 n
2 ket ()"
« n
_ (O‘(O‘_l)Dan+1)1/2(k)l/2 k
o a—1 an

This proves (39) for « € ]1;2].
(iii) For a > 2 we shall use the second order Taylor
expansion

ala—1)

P =05 +opi T (B~ ) + =& (b — p)”
leading to
po—1 k po—1 k
|Aan| < Z - 1pj — pi| + 5 Z(ﬁj *pj)Q
= = 47)

We use Cauchy-Schwartz’ inequality on the first term on the
right hand side of (47) to get

fo— 1k 1
> s —pil <

— 1<
j=1
1/2 1/2
k[ a1 : L2 43
a—1 ij Z(PJ*PJ) (48)
j=1 j=1
Using the sequence D, , introduced in (46) we get

(49)

k 1) k
(a—l) Dy +1
ko—1 :

By combining (47), (48) and (49) we get

E|Aanl

kel <a
<
T a-1

1/2

k
(@ —1)Dan+1\"? X
ka—l ZE(pJ

k

kozfl )
t— ZIE(p
j=

1 ka—l 1/2 ka—l
< — —-1)D 1 .
Ta-—1 ( n (ar(a ) Dan + >> + 2n

But D, ,, is zero under the hypothesis of a uniform distribution
and, by (29), has a finite limit under the alternative. This
completes the proof of (40). [ ]

Example 4: Assume that for o = 3 the model satisfies the
Bahadur condition, in particular that (29) holds with o = 3.
Then

k2E (Z;?:lpg) 1
6

EDs (Pn, U) _

where

N ~ ~ 2 A~ 3
P35 =} +3p7 (b5 —pj) +3p; (B — ;)" + (B —ps)°

Therefore
ED; (P, U)
+3p; (s - pj)
12 E( p; 3 \Pi — P 1
= ZJ ' +3p; (B — pa) +(pj_pj)3
6
2,3
_ kpj —1
6
g2k
=1
By taking mean values we get
ED; (Pn U) = Dy (P,,U)
B2 &
k? pj) pj (1 —p;) (1 —2p;)
6 Z_:< * n
L
3 (P, U) + —
GnZ
j=1
Dy (P, U k2(1_z§:1p§)
- 3( n )+ 6n
k2 — 6D (P,,U) — 1
— Dy (P U) + o (1. 0)

By (29), D3 (P,,U) is bounded away from 0 under A,
uniformly for all sufficiently large n. Therefore (40) is not only
sufficient but also necessary for the consistency of statistic

D, (Pn, U) in the spacial case o = 3.
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IV. BAHADUR FUNCTIONS

Throughout this section we consider the statistical testing
model (14) - (15) under the hypothesis 7. This means that
P(B,) denotes the probability of the random events B,
depending on X, with a multinomial distribution in the
sense of (14). As before, we consider k£ = k,, depending on
the sample size n and we study the Bahadur functions (32)
corresponding to the statistic Da(I:’n, U) for a > 1.

Example 5: Let k = k,, increase so slowly that

. klnn
lim

n—oo N

=0.

(50)
Then (32) holds for the sequence c;, = 1 and function

g1(A)=A forall A >0, (51)

i.e., (51) is the Bahadur function for the log-likelihood ratio
statistic
T1 = 271D1(Pn, U)

This result was first obtained independently in [20, Corollary
2.4] and [6, Theorem 2]. Using the simple method based on
the inequality (52) below, it was obtained in [17, Theorem 2].

According to the result of [21] made precise in [22, Problem
1.2.11] and in [23, p. 16], for every subset A C M (k) the
divergence D1 (P, U) defined by (11) satisfies the inequality

1 .
inf  Dy(P,U)+ ~InP(P, € A)‘ (52)
PeANM (k|n) n
< kinm+1)
n

(53)

Hence the approximation of —1In P(P, € A) in (32) by
means of the infimum appearing in (52) is possible under the
restriction

(54)
on the sequence k = k,,, in addition to (24).

In the rest of this section we present an alternative to the
formula (32) for the Bahadur functions g,, a € R which
is based on the inequality (52). These formulas are given in
terms of the Shannon entropy H (P) maximized on the sets

Awa(k) = {P € M(k): Do(PU) > A} (55)

and

Aa.a(kln) = Ao a(k) N M(kn) (56)

or, equivalently, in terms of the information divergence
D, (P,,U) minimized on these sets.

Lemma 2: Assume that for some o« € R and &k = k&,
there exist co,,, > 0 satisfying (54) such that the sequence
of functions

Gan(kln) =can < D, (P, U)) , A>0(57)

inf
PeAq a(Kn)
converges to a positive limit limit

go(A) = lim G a(kln), A>0. (58)

Fig. 3. In the simplex of distributions on a 3-element set, the distributions
with index of coincidence less a certain value are indicated by the shaded area.
A level curve of the entropy function is indicated by a full curve. Mixtures
of the uniform distribution U and a Dirac distribution at one of the extreme
points is indicated by a dashed line. Maximal entropy over the shaded area is
obtained at the point where the dashed line leaves the shaded area. The two
other points with maximal entropy are indicated as well.

Then the Bahadur function for the power divergence statistic
T, is equal to g, .

Proof: Using (19) and (52) we get that the functions (57)
satisfy the inequality

CQT’” In P(Da(Pna U)zA)+ Ga’A(k|n)
< M

n

Since (54) holds, (58) follows from here and from (33). ®
In the following assertion we consider for arbitrary a € R,
k =k, and c, , > 0 the sequence of functions

Gan(k) =can < inf

Da PyU ) A > 0. 59
PeAq a(k) ( )) (59)

Obviously, G a (k) < Go a(k|n).

Lemma 3: Let for some o € R the Bahadur condition hold
and c, , > 0 satisfy (54). If the corresponding sequences of
functions (57) and (59) asymptotically coincide in the sense

Jim [Go a(k[n) = Ga,a(K)] =0 (60)

and at the same time G a (k) converges to a positive limit
Ja (A) - (61)

then g, is the Bahadur function for the power divergence
statistic T,.
Proof: Clear from the assumption (60) and Lemma 2.
|
In [3] it was proved that for every = € [k!~%;1] and for the
Dirac distribution 1 = (1,0,...,0) € M(k), the equation

lim Goa(k), A>0

n—oo

IC,(s1+ (1—s)U) =z (62)
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has a unique solution s € [0; 1] and that this solution satisfies
the relation

sup H(P)=H(s1+(1-s)U). (63)

IC,(P)>=z

This result is illustrated in Figure 3. It leads to the following
lemma using the constants

1-(1—1/k)Y D

ok = 0;1[. 64
Sk = T (1= 1k <10 (64)
Lemma 4: For every a > 1 and
1 kel —1
— <AL — 65
ala—1)k ~ ala—1)’ (63)
the equation
1
E(kzs—l—l—s)“—i—(l—s)a:1+a(a—1)A (66)

has a unique solution s € [0, 1] and this solution satisfies the
inequality

Sak <s<1 (67)

and the equality

inf Dy(P,U) =
PeAqy a(k)

%(ks +1-s)In(ks+1—s)+(1—s)In(l —s). (68)
Proof: By definition of A, a(k) in (55) and (20), P €
Ay a(k) if and only if IC,(P) > « for

z=k""1+ala—1)A]
By the definition of IC, (P) in (21),
IC,(s1+ (1 —s)U)
=kl (;(ks +1-—98)"+(1- s)a) (69)
so that the equation (62) is equivalent to (66). Further,
Di(s1—-(1—-s)U,U) =
%(ks+1—s)ln(ks+1—5)+(1—s)1n(1—s). (70)

Therefore, by (63) and (62), the relation (68) will be proved
if we prove that the equation (66) has a unique solution s €
[0,1]. One can verify by differentiation that the continuous
function

() = %(ks+ =)+ (1—8)% secl0,1] (1)

appearing on the left of (66) is decreasing on the interval
[0, sq.x] and increasing on the complement s, x, 1]. Since

¥(0) = % 1 oand (1) = koL,

for each A satisfying (65) the solution s € [0, 1] is unique and
strictly greater than s, ;. Thus not only (68) but also (67) is
valid. ]

In the following lemma and everywhere in the sequel, con-
vergence as well as the symbols o(-) and O(-), are considered

for n — oo. We remind that k& = k,, is assumed to satisfy
(24).

Lemma 5: For every a > 1 and A > 0,

inf Dy(P,U) =
PEAQ7A(IC)

1/ 1/
(1ot —1) A1V 1 o(1)) %
Proof: Consider arbitrary « > 1 and € > 0. Since k = k,,
satisfies (24), Lemma 4 implies for all sufficiently large n that
the equation (66) has in the interval ]s, j, 1] a unique solution
s = sy, satisfying (68). Therefore it suffices to prove that the
sequence

T = %(ksk +1—sk)In(ksy +1—si) (72)
+ (1 — s) In(1 — sg) (73)
and the positive constant
6 = [a(a — 1) A]/
satisfy the asymptotic relation
o0 = (54 o)) R (74)

k
By (64) and (67), si is a positive sequence and (66) with s
replaced by s obviously contradicts the assumption
limsup s > 0.
k—o0

Therefore, under (24), s = o(1) and, consequently, (66) with
s replaced by sj leads to the asymptotic relation

1

k
This relation implies that

§kl/a Ll/a
Sk = L +0< k)

and the desired relation (74) follows from here and from the
definition of x in (72). [ ]
In the rest of the paper we are interested in the sequences

ok
Con = Fi/a I ki/e

ks + O()]*+ 1+ o0(1) =1+ <

(75)

(76)

for a > 1 and k = k,, satisfying (24).

Lemma 6: If ¢, is given by (76) and (24) is satisfied then
(60) holds for every o > 1 and A > 0.

Proof: Let a, A and sj be the same as in the previous

proof. Further, denote by ¢, the integer part of n(1 — si)/k,

n(l—s
by, = {( [’ ’“)J ,
and define
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where 1 and U are the same elements of M (k) as in (69) and
(70). Then

k
3k§§k§3k+ﬁ> (77

and one obtains from (20), (69) and (71)

ﬁ (ke Yp(58) — 1)

1 a—1
m (k? Y(sk) — 1) :

The distribution P}, belongs to A, a(k) of (55). Indeed, sy
satisfies (66) and, consequently, D, (P, U) = A. The distrib-
ution P, belongs to M (k|n) C M (k) defined by (1). Further,
in the proof of Lemma 4 we argued that the function ¢ (s) of
(71) is increasing in the domain |sg, 1] C]sg, q, 1]. Therefore
the left-hand side of (77) implies Dy, (Pk,U) > A, which

means that Py belongs to A, a(k|n) of (56). Consequently,

Da(pkv U) =

and
D, (Py,U) =

inf D, (P,U)< D, (Pk, U)

PeAy a(kln)

where
D, (Pk, U) —Ink — H(B})
—Ink— H(G1+4 (1—5)U)

=i, cf (70)

for x; defined by (72) with s; replaced by Si. Further, in
the previous proof we deduced for x; of (72) the formula
(74) from the asymptotic property (75) of si. However, under
(24) the sequence §; satisfies this asymptotic property too.
Therefore (74) remains to be valid with x; replaced by Ty.
This means that under (24) takes place the asymptotic relation

inf D, (P,U)
PeAq a(k|n)
kl/al kl/a
< (la(a = 1) A]* +o(1) ) =———.
Combining this with the result of Lemma 5, we obtain the
desired relation (60). ]

In (51) we presented a simple explicit formula for the
Bahadur function g; of the log-likelihood ratio statistic 77.
Now we can give explicit formulas for the Bahadur functions
of the remaining statistic 7, o > 1.

Theorem 2: Let k = k,, increase to infinity slowly in the
sense that for some v > 1

j2- (/)

Inn

=0. (78)

n—oo  nlnk,

Then (33) holds for the sequence ¢, , given by (76) and for
the function

ga(A) = [a(a

i.e., (79) is the Bahadur function of the statistic T,.

Proof: Let o« > 1 be arbitrary fixed. If ¢, is given
by (76) then (78) implies (24) as well as (54). Hence it
follows from Lemmas 3 and 6 that (32) holds for c, , under
consideration and for g, given by (79). Employing Lemma 4

—1)AYY A>0 (79)

we find that (61) reduces to (79) which completes the proof.
|
The particular case of Theorem 2 for o = 2 was obtained in
[6, Theorem 1] by using more complicated analytic methods
involving limit theorems for multinomial and Poisson distrib-
utions. This particular case has been obtained also by [17] by
using similar simple method as here, based on the inequality
(52).

V. MAIN RESULTS

The functions g, as well as the normalizing sequences ¢,
have been explicitly evaluated in Theorem 2 and Example
5 for all @ > 1. Therefore (33) provides explicit Bahadur
efficiencies BE(T,, | Tw,) on the whole domain ay, as > 1.
These efficiencies are given in the following main result of
this paper.

Theorem 3: Let 1 < a1 < ag < 0.
(i) If the statistics D, (P, U) and D, (P,,U) are consis-
tent and k = k,, increases so slowly that

k2-Ye2lpnp
lim ———

n— 00 n

=0 (80)
then the Bahadur efficiency of the statistic 7, with respect
to T, satisfies the relation
BE(T,, | Ta,) = . 81)
(i) If k£ = k,, increases to infinity slowly in the sense that
for some 5 > 3
kB

lim — =0
n—oo M

(82)

then (80) and the consistency required in (i) hold for all
1 < a1 < as < B+ 1. Hence in this case also the Bahadur
efficiency relation (81) holds for all 1 < a3 < g < S+ 1.

Proof: (i) Let the assumptions of (%) hold for some 1 <
a1 < ag < oo. Then (80) implies (78) for @« = «; and
a = ap. By Theorem 2, the sequences ¢, and cq, , given
by (76) for lead to the corresponding Bahadur functions g¢,,
and go, given by (32) and to the limit

_ kYerIngt/en
R vz Ry

. CO{ n
lim =2 =
n—00 Cqy n

(83)

Relation (81) thus follows from (33) in Definition 3. If the
assumptions of (%) hold for 1 = @ < @s < oo then instead
of the above considered Bahadur function g,, given by (32)
we have gq, (A) = A given by (51), and instead of cq, n =
len [/ In ki " given by (76) we have Cayn = 1 given in
Example 5. Therefore the limit

Ca

. n
lim =2 =
n—00 Coy.n

kr
lim 1/« 1/«
=00 o/ In k2

remains to be infinite as in (83).
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(i) If (82) holds for 5 > 3 then (8 —2)/8 > 0 so that (82)
implies
. k?
AT 57E
g kInn
= oo n2/Bn(B-2)/8

o k2lnn
= lim .
n—oo n

Therefore (82) holds for all ccy > 1. Further, if

then it is easy to verify that the consistency conditions of
Theorem 1 are satisfied for all 1 < « < 3, and if (82) holds
then these conditions are satisfied for all 1 < o < g+ 1. This
completes the proof. ]

VI. DISCUSSION

The special case of (81) with a; = 1 and as = 2
with increasing £ = k, has been obtained in [6]. In the
present paper we extended the fact that the log-likelihood ratio
statistic 77 is more Bahadur efficient than the classical Pearson
statistic 75 by proving that 77 is more Bahadur efficient than
any statistics T, with @ > 1. Moreover, we found that the
Bahadur efficiency of the power divergence statistic Ty, strictly
decreases with « increasing in the domain [1; co[. In particular
any statistic Ty, 1 < o < 2, is more Bahadur efficient than
the Pearson’s T5.

One of the aims of this paper was to verify whether there
is a statistic T, o € R more efficient in the Bahadur sense
than 7. In this respect, the result of of Theorem 3 is negative.
All we can say is that, if such a statistic exists, then it is most
likely that it is of the form T, with « € ]0; 1[. Let us comment
this conclusion in more detail.

In spite of that we do not have a systematic result for v < 1,
some fragments of such a result are available. Namely, [17]
found the Bahadur functions go(A) = g—1(A) = A for all
A > 0, under the identical sequences co, = c—1,, = ky
figuring in (32). There is a small problem with the condition
(29), because the event min; p,; = 0 takes place with a
positive probability and implies D,(P,,U) = oo for all
a < 0. Nevertheless the probability of this unpleasant event
tends exponentially to zero, and one can modify the statistic
Ty, and T'_; ,, in such a way that the above evaluated Bahadur
functions and sequences remain unaltered and, at the same
time, the consistency condition (30) hold, see [18] and [24].
Therefore in the light of present Theorem 2, the result of [17]
means that the reversed log-likelihood ratio statistic 7}, and the
Neyman statistic 7_1, are mutually equally Bahadur efficient,
and each of them is less Bahadur efficient than any 7,,, o > 1.
This extends the previous result of [18] who found T; and
T_1 to be less Bahadur efficient than T5. If the low Bahadur
efficiency of Ty and T_; is shared by all statistics 7, of the
non-positive powers « < 0 then the possibility to find T},
comparable with T or better is restricted to o € (0,1), as
conjectured above.

Acknowledgement: We would like to thank Wouter
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of this paper.
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