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Abstract. The paper addresses the state estimation in the factorized form. The target application area is the urban
traffic control, where the main controlled variables (queues) are not directly observable and have to be estimated.
Additional problem is that some state variables are of a discrete-valued nature. Thus, estimation of mixed-type data
(continuous and discrete valued) models is highly desirable. Factorized state estimation is a potential solution of this
problem. The underlying methodology is Bayesian filtering. Factorized version of the filter is obtained by applying
the chain rule to the state-space model. The general solution represents the recursive entry-wise performance of
data updating and time updating steps. Application of the solution to linear Gaussian state-space models gives the
factorized Kalman filter.

1 INTRODUCTION

The urban traffic systems are overloaded almost everywhere: modern, powerful cars move slowly and inefficiently
through towns within permanently extending peak hours. Adequate extension of traffic network is expensive and
often impossible, especially in historical towns. It calls for exploiting all available means starting from economical
pressure, various regulative measures up to exploitation of modern, ideally adaptive, feedback control. One of the
main controlled variables in traffic systems is a queue length, which expresses the optimality of a traffic network
most adequately. It is directly unobserved and, therefore, has to be estimated. At the same time, other state variables
are of a discrete-valued nature. Thus, estimation of mixed-type data (continuous and discrete valued) models is
highly desirable. A potential solution to this problem calls for a factorized version of the state estimator (filter),
which allows to model the entries of the state individually. In this way, the taskhow to obtain the estimates of the
individual time-varying state factorsis addressed in the paper.

In Bayesian methodology, adopted in the paper, the factorized version of the filter is obtained by applying chain
rule to the state-space model. The problem was already solved for a degenerate case of time-invariant state, which
coincides with parameter estimation [1]. The obtained results indicated a chance to update posterior probability
density functions in the entry-wise manner.

The state of the art of the problem includes a series of research in the field. Most works found are devoted to
factorization of well-known Kalman filter [2]. Despite the variety of the research at this area, the global aim of
majority of these works is reduction of the computational complexity with the help of lesser rank of the covariance
matrix, but not the obtaining of the estimates of the individual state entries, which is the aim of the present work. For
example, the work [3] deals with factorization of the covariance matrix in Kalman filter, where the covariance matrix
was decomposed with the help of square root factorization. TheQR-factorized filter and smoother algorithms for
use on linear time-varying discrete-time problems, that can handle the general case of a singular state transition
matrix, are discussed in [4]. TheUD-factorization of Kalman filter for the multi-sensor data fusion is presented
in [5]. Another work, devoted to theUD-factorized covariance filter application, is concerned with development
of a connected element interferometer [6]. The method for particle filtering, which factorizes the likelihood, was
proposed in [7]. It considers the problem, when the state space can be partitioned in groups of random variables,
whose likelihood can be independently evaluated.

As regards the nonlinear estimation, the following research works should be noted here. The square root form
of unscented Kalman filter (UKF) for the state and parameter estimation, which, in its turn, was proposed as an
alternative to the extended Kalman filter, used for nonlinear estimation, is described in [8]. This square-root UKF
has better numerical properties and guarantees positive semi-definiteness of the underlying state covariance.

The factorization of the covariance matrices is also used in problems of systems classification, dealing with
multivariate Gaussian random field [9].

The problem of filtering with Gaussian models can be also considered with the help of dynamic Bayesian networks
[10]. Within this framework the problem of joint state-parameter estimation is often met.
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The work [11] was directed exactly at the estimation of the individual state factors, and it proposed the recursive
algorithm of factorized filtering, requiring a special, reduced, form of the state-space model. The present paper
offers the solution without such a restriction.

Moreover, the overview of the problem showed the results mostly with Gaussian models. The general solution,
based on the Bayesian framework, can be potentially helpful in the case of other models.

The layout of the paper includes the following sections. The basic facts of the dynamic Bayesian decision making
[1] are given in Section 2. It provides the probabilistic formulation of the model used and basic equations of the
Bayesian filtering. Section 3 describes the general solution to the factorized filtering, which represents the recursive
entry-wise performance of data-updating and time-updating steps. The example with Gaussian model is provided
in Section 4. It demonstrates application of solution to the simple single output system. The remarks in Section 5
close the paper.

2 PRELIMINARIES

The following notations and notions are used in the paper:

≡ means the equality by definition.

f (| ) is the letter reserved for conditional probability density functions (pdf). The meaning of the p(d)f is given
through the name of its argument. When the argumentx coincides with realization of the corresponding
random variable then it is made bold, i.e.f (x).

x∗ denotes the range ofx, x ∈ x∗.

x̊ denotes the number of members in the countable setx∗ or the number of entries in the vectorx.

xt is a quantityx at the discrete time instant labelled byt ∈ t∗ ≡ {1, . . . , t̊}.

t̊ ≤ ∞ is called (decision, learning, prediction, control, advising) horizon.

xi
t is anith entry of the arrayx at timet. The subscript symbol is a time index.

xk:l denotes the sequencexk, . . . , xl. xl:k is an empty sequence and reflects just the prior information ifl < k.

The following adopted simplifications are also used: integrals used are always definite ones. The integration
domain coincides with support of the pdf in its argument.

Within the considered Bayesian framework,the most complete descriptionof the behavior of the closed control
loop system is the joint pdff(xt, d

1:t|x0), wherext is the system state, datad1:t ≡ (yt, ut) include the measured
outputsyt and the optional inputsut. Using the chain rule for pdfs, the joint pdf can be decomposed into product of
the following models.
The model of observation

f
(
yt

∣∣ut, d
1:t−1, xt

)
, t ∈ t∗, (1)

which relates outputsyt to the current inputsut, the past datad1:t−1, and current statext.
The model of evolution

f
(
xt

∣∣ut, d
1:t−1, xt−1

)
, t ∈ t∗, (2)

which describes time evolution of the statext.
The model of strategy

f
(
ut

∣∣d1:t−1, xt

)
, t ∈ t∗, (3)

which describes, generally randomized, generating of inputsut based ond1:t−1, xt.
By definition, admissible strategies cannot exploit directly unobserved state, i.e., they have to meet so called

natural conditions of control[12]

f
(
ut

∣∣d1:t−1, xt

)
= f

(
ut

∣∣d1:t−1
)
, t ∈ t∗. (4)

Proposition 2.1 (Bayesian prediction and filtering) Under natural conditions of control, the predictor
f
(
yt

∣∣ut, d
1:t−1

)
is given by the formula

f
(
yt

∣∣ut, d
1:t−1

)
=
∫

f
(
yt

∣∣ut, d
1:t−1, xt

)
f
(
xt

∣∣ut, d
1:t−1

)
dxt. (5)

The pdff
(
xt

∣∣ut, d
1:t−1

)
, estimating the statext, evolves according the following coupled formulas.
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Data updating

f
(
xt

∣∣d1:t
)

=
f
(
yt

∣∣ut, d
1:t−1, xt

)
f
(
xt

∣∣ut, d
1:t−1

)
f
(
yt

∣∣ut, d1:t−1
) ,

∝ f
(
yt

∣∣ut, d
1:t−1, xt

)
f
(
xt

∣∣ut, d
1:t−1

)
, (6)

that incorporates the experience contained in the datadt consisting of the outputyt and the inputut.
Time updating

f
(
xt+1

∣∣ut+1, d
1:t
)
∝
∫

f
(
xt+1

∣∣ut+1, d
1:t, xt

)
f
(
xt

∣∣d1:t
)

dxt. (7)

The recursions start from the prior pdff (x1|u1), that expresses the subjective prior knowledge on the initial
statex1.

The application to Gaussian state-space model with Gaussian prior onx0 and Gaussian observations provides
Kalman filter [2].

3 GENERAL SOLUTION OF FACTORIZED FILTERING

The factorized version of the filter is obtained by applying chain rule to the time evolution and observation models,
so that individual entries of state are modelled individually. It should be noted, that the proposed factorization can
be made even more extensive by full factorizing the observation model; in this case the output entries are modelled
individually too. Here, to simplify the presentation, this line will not be followed. But practical algorithms should
deal with such a factorization too.

Proposition 3.1 (Factorized prediction and filtering) The factorized prediction, under natural conditions of con-
trol and according to (5), is performed in the following way

f
(
yt

∣∣ut, d
1:t−1, xi+1:̊x

t

)
=
∫

f
(
yt

∣∣ut, d
1:t−1, xi:̊x

t

)
f
(
xi

t

∣∣ut, d
1:t−1, xi+1:̊x

t

)
dxi

t, (8)

where the predictorf
(
yt

∣∣ut, d
1:t−1

)
is the last pdf of the sequence of the partially conditioned predictors.

The pdfsf
(
xi

t

∣∣ut, d
1:t−1, xi+1:̊x

t

)
, i = 1, . . . , x̊, determining the state estimate, are factorized through the chain

rule as

f
(
xt

∣∣ut, d
1:t−1

)
=

x̊∏
i=1

f
(
xi

t

∣∣ut, d
1:t−1, xi+1:̊x

t

)
. (9)

They evolve according the following coupled formulas.
Factorized data updating

f
(
xi

t

∣∣d1:t, xi+1:̊x
t

)
=

f
(
yt

∣∣ut, d
1:t−1, xi:̊x

t

)
f
(
xi

t

∣∣ut, d
1:t−1, xi+1:̊x

t

)
f
(
yt

∣∣ut, d1:t−1, xi+1:̊x
t

) ,

∝ f
(
yt

∣∣ut, d
1:t−1, xi:̊x

t

)
f
(
xi

t

∣∣ut, d
1:t−1, xi+1:̊x

t

)
, (10)

that incorporates the experience contained in the datadt, consisting of the outputyt and the inputut.
Factorized time updating

The pdff
(
xt+1

∣∣ut+1, d
1:t
)

is the last member of the sequence of the partially conditioned state estimates indexed
by j = 1, . . . , x̊

f
(
xt+1

∣∣∣ut+1, d
1:t, xj+1:̊x

t

)
∝

∫
f
(
xt+1

∣∣∣ut+1, d
1:t, xj :̊x

t

)
f
(
xj

t

∣∣∣d1:t, xj+1:̊x
t

)
dxj

t . (11)

The recursions start from the prior pdfsf (x1|u1), that expresses the subjective prior knowledge on the initial
sequence of internal quantities.

The factorized version of the state estimate after time-updating is obtained by straightforward application of the
chain rule for pdfs.

Proof: See [13].
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4 APPLICATION TO GAUSSIAN MODELS

Here, Proposition 3.1 is applied to linear Gaussian state space model with Gaussian prior on initial state. This
state estimation is known to be described by Kalman filter [14].

Straightforward proofs of the recursions, that will be offered below, are based on the use of operations of square
completion and integration of non-normalized Gaussian pdf. Because of the limitation of the place, the proofs will
not be given at the present paper, but they can be found in [13]. The proposition of completion of squares follows.

Proposition 4.1 (Square completion and integration of Gaussian pdf)For real scalarsx, α, β, γ and positive
scalarsr, p, it holds

h(x) ≡ exp
{
− (β − γx)2

2r
− (x− α)2

2p

}
= exp

{
− (x− x̂)2

2R
− λ

2

}
with (12)

R =
rp

r + γ2p
, x̂ =

αr + βγp

r + γ2p
, λ =

(β − αγ)2

r + γ2p
,∫

h(x) dx =
√

2πR exp
{
−λ

2

}
.

Proof: See [13].
The state estimate is assumed in the form

f
(
xi

t

∣∣ut, d
1:t−1, xi+1:̊x

t

)
= Nxi

t

(
µ̂t|t−1;i +

x̊∑
k=i+1

gt|t−1;ikxt;k, pt|t−1;i

)
, (13)

whereµ̂t|t−1;i is the term, depending on the dataut, d
1:t−1 only, gt|t−1;ik are coefficients, which are data and state

independent similarly as the variancept|t−1;i > 0.
For presentation simplicity, the system with single output,ẙ = 1, is considered. This helps us to avoid conse-

quences of the incomplete factorization, mentioned in Section 3. Thus, we assume

f
(
yt

∣∣ut, d
1:t−1, xt

)
= Nyt

(
ρt +

x̊∑
k=1

ct;kxt;k, rt

)
, (14)

where the offsetρt, coefficientsct;k, k = 1, . . . , x̊, and variancert are assumed to be known functions ofut, d
1:t−1.

Proposition 4.2 (Partially conditioned Gaussian observation models)For the Gaussian factors of the state esti-
mate (13) and the observation model (14), it holds

f
(
yt

∣∣ut, d
1:t−1, xi:̊x

t

)
= Nyt

(
ρt;i +

x̊∑
k=i

ct;ikxt;k, rt;i

)
, (15)

where the state independent offsetsρt;i, coefficientsct;ik, k = i, . . . , x̊, evolve according to the following recursions,
for i = 1, . . . , x̊

ρt;i+1 = ρt;i + ct;iiµ̂t|t−1;i (16)

ct;(i+1)k = ct;ik + ct;iigt|t−1;ik, for k > i

rt;i+1 = rt;i + pt|t−1;ic
2
t;ii.

The recursions start fromρt;1 = ρt, ct;1k = ct;k andrt;1 = rt.

Proof: See [13].
The recursions contain no numerically dangerous operation.

Proposition 4.3 (Factorized data updating)The functional form of the state estimate (13) preserves in data up-
dating. Specifically, after data updating it is obtained

f
(
xi

t

∣∣d1:t, xi+1:̊x
t

)
= Nxt;i

(
µ̂t|t;i +

x̊∑
k=i+1

gt|t;ikxt;k, pt|t;i

)
, (17)
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with

Kt|t;i ≡ ct;iipt;i

rt;i+1
(18)

µ̂t|t;i = µ̂t|t−1;i + Kt|t;i(yt − ρt;i − ct;iiµ̂t|t−1;i)
gt|t;ik = gt|t−1;ik −Kt|t;i(ct;ik + ct;iigt|t−1;ik) for k > i

pt|t;i =
rt;i

rt;i+1
pt|t−1;i

Proof: See [13].
For time updating, we have to evaluate partially conditioned linear Gaussian time evolution model. The chain

rule implies, that the fully conditioned model can be always given by the form

f
(
xt+1

∣∣ut+1, d
1:t, xt

)
=

x̊∏
i=1

f
(
xi

t+1

∣∣xi+1:̊x
t+1 , ut+1, d

1:t, xt

)
(19)

=
x̊∏

i=1

Nxi
t+1

(
ζt+1;i +

x̊∑
k=i+1

αt+1;ikxt+1;ik +
x̊∑

k=1

βt+1;ikxt;k, Rt+1;i

)
,

where for alli ∈ {1, . . . , x̊} the offsetζt+1;i, coefficientsαt+1;ik with k = i + 1, . . . , x̊, βt+1;ik with k = 1, . . . , x̊
and variancesRt+1;i are assumed to be known functions ofut+1, d

1:t.
The scalar variablexj

t to be integrated out occurs now in all factors in (19). Thus, for proofs of the recursions of
the factorized time updating the modified version of Proposition 4.1 is to be used.

Proposition 4.4 (Integration of a product of Gaussian pdfs)For real scalarx, vectorsβ ≡ [β1, . . . , ββ̊ ]′, γ ≡

[γ1, . . . , γβ̊ ]′ and diagonal precision matrixω ≡ diag
[
r−1
1 , . . . , r−1

β̊

]
, it holds

∫
h(x) dx ≡

∫
exp

−
β̊∑

i=1

(βi − γix)2

2ri

 dx ∝ exp
{
−λ

2

}
with (20)

λ ≡ β′
(

ω − ωγγ′ω

γ′ωγ

)
β ≡

β̊−1∑
l=1

(∑β̊
i=l Uliβi

)2

pl
, where

the upper triangular(β̊ − 1, β̊) matrixU with unit diagonal is found viaU ′DU decomposition

U ′diag
[
p−1
1 , . . . , p−1

β̊

]
U = ω − ωγγ′ω

γ′ωγ
. (21)

The relation is obtained by completion of squares with respect to the scalarx and integration of univariate Gaussian
pdf. The mentioned matrix decomposition can be performed similarly to the algorithm REFIL [12].
Proof: See [13].

Proposition 4.5 (Partially conditioned Gaussian time-evolution models, Factorized time-updating)For the
Gaussian factors of the state estimate (17) and the time evolution model (19), it holds

f
(
xt+1;i

∣∣∣xi+1:̊x
t+1 , ut+1, d

1:t, xj+1:̊x
t

)
(22)

= Nxt+1;i

µ̂t+1|t;ij +
x̊∑

k=i+1

gt+1|t;ikjxt+1;k +
x̊∑

k=j+1

βikjxt;k, pt+1|t;ij

 ,

where fori ∈ {1, . . . , x̊} offsetsµ̂t+1|t;ij , coefficientsgt+1|t;ikj with k = i + 1, . . . , x̊, βikj with k = j + 1, . . . , x̊
and variancespt+1|t;ij > 0 are the state independent. The following recursions overj = 1, . . . , x̊ hold

µ̂t+1|t;i(j+1) = µ̂t+1|t;ij +
x̊∑

l=i+1

Uilµ̂t+1|t;lj − Ui(̊x+1)µ̂t|t;j (23)

gt+1|t;ik(j+1) = gt+1|t;ikj +
x̊∑

l=i−1

Uilgt+1|t;lkj −
x̊∑

l=i+1

Uil

βik(j+1) = βikj +
x̊∑

l=i+1

Uilβlkj − Ui(̊x+1)gt|t;jk, k > j. (24)
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The upper triangular(̊x, x̊+1) matrixU with unit diagonal as well as the positive scalarspt+1|t;i(j+1) are obtained
via the decomposition

ω − ωγγ′ω

γ′ωγ
≡ U ′diag

[
p−1

t+1|t;1(j+1), . . . , p
−1
t+1|t;̊x(j+1)

]
U with (25)

γ′ ≡ [β1jj , . . . , βx̊jj , 1]

ω ≡ diag
[
p−1

t+1|t;1j , . . . , p
−1
t+1|t;̊xj , p

−1
t|tj

]
.

The recursions start from̂µt+1|t;i1 = ζt+1;i, andpt+1|t;i1 = Rt+1;i, gt+1|t;ik1 = αt+1;ik andβik1 = βt+1;ik .
The result, obtained after the step̊x, provides parameters of the time-updated factors.

Proof: See [13].

5 CONCLUSION

The paper proposes solution to the factorized filtering, obtained by applying the chain rule to the state-space
models. Factorized filter provides the update of posterior probability density functions for the individual state
entries, that can be helpful for solution to the task of the joint modelling of the mixed-type data. The recursions for
calculating the factorized data updating and time updating are offered. The application of the solution is shown at the
example of the linear Gaussian single output system, which gives the factorized Kalman filtering. For the factorized
Kalman filtering the operations of completion of square and integration of non-normalized Gaussian probability
density functions are used.

Among the advantages of the proposed approach one may note, unlike the previous solution of the factorized
filtering, offered in [11], the present work does not require any restrictions for the state-space models. It should be
also noted, that the proposed recursions do not contain any numerically dangerous operations.
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