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Abstract: In experimental thin film physics, there is a demand to characterize a growing
thin film or the thin film resulting from an experiment. While methods for discontinuous,
island-like thin films have been developed, there is a lack of results directly applicable
to semicontinuous thin film description. In this contribution, a unique combination of
image processing methods is collected and further developed, which results in a novel set
of semicontinuous thin film descriptors. In particular, the shape of the thin film contours
and the thin film image intensity profiles are analyzed in a multiscale manner. The
descriptiveness of the proposed features is demonstrated on a few thin film photographs
from real experiments. This work establishes a basis for further measurement, description,
simulation or other processing in the physics of semicontinuous thin films, using any direct
imaging modality.
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1 Introduction

One of the most important tasks in thin film physics is thin film description. Both
description of the final thin film product and monitoring of a growing thin film are
important. There are many thin film imaging modalities available nowadays, e.g. TEM
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or SEM. Typical thin film examples are shown in the section with experimental results.

Usually, in the initial stages, thin film images contain objects resembling drops. Dur-
ing further deposition, they undergo coalescence, in which they get larger and connected.
Differences in thin film morphology (surface structure, spatial distribution, etc.) are due
to different materials used and different physical conditions during an experiment.

Discontinuous thin film image description is a well elaborated field—see e.g. works
devoted to mathematical morphology and other statistics [1, 2, 3, 4]. However, applica-
bility of these results to semicontinuous thin film description is limited and other image
processing tools have to be used.

The range of growth stages of interest in this contribution is from the later stages
of discontinuous thin films, where the island perimeters stop being circular, to the stage
where the thin film is soon to become continuous. To our knowledge, there has been no
attempt to treat this problem either in physics, or in image processing literature.

In this paper, the problems of semicontinuous thin film segmentation and its natural
representation are solved. Signals characterizing the semicontinuous thin film morphology
are derived, namely modified tangents of the thin film segment contours, and profiles along
the thin film branches. Discrete wavelet transform coefficients of these signals are used
to calculate features which describe the semicontinuous thin films in a multiscale and
natural manner, and which are easy to interpret.

The paper is organized as follows. Firstly, the concepts of deformable template,
skeleton, wavelet transform and feature extraction are introduced and the way they are
going to be used is explained. The section with experimental results and discussion
follows. Some of the explanations are brief to keep the text to a reasonable length. For
more details, references are provided.

2 Image processing tools for semicontinuous thin film image
analysis

Thin film segmentation is essential for its coming analysis. A survey of segmentation
methods in image processing can be found, for example, in [5]. In cases of highly struc-
tured background or noisy images, it is often not clear what the thin film borders are.
Another source of difficulty is strongly adherent thin films, where the transition between
the thin film and the background is smooth. Then it is difficult to detect the borders
precisely without any further knowledge (e.g. about the expected border shape). In this
paper, to detect borders at least consistently, they are calculated based on points with
maximum slopes, i.e. with extremes in the first derivative.

Segmentation is preceded by an initial normalization to eliminate non-homogeneous
image brightness and contrast due to non-ideal imaging. Afterwards, simple thresholding
and binary image processing are applied and an initial estimate of the segment contour
is obtained. The contour is further refined by means of a deformable template, in this
case called a snake. In this contribution, the snakes are used not only for contour refine-
ment, but also for thin film segment skeleton calculation. Therefore, the snakes are more
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thoroughly described below.

In case of more complicated thin films, like in the examples presented below, it is
natural to represent their spatial distribution by graphs generated by their skeletons.
Both the skeleton calculation and its representation are also discussed below.

Both the thin film segment contours and the image intensity profiles along the skele-
ton branches naturally characterize the thin film. These signals can then be efficiently
analyzed by stationary wavelet transform. This is an integral transform increasingly used
to describe textures or patterns at different levels of resolution. Based on the transform
coefficients, features characterizing the signals and correspondingly also the thin film
are calculated. Stationary wavelet transform and the calculated features are explained
further in the following sections.

2.1 Contour representation

In this paper, wavelets are used both for processing and approximation of: a) the contour
shape, where the contour coordinates are the processed information themselves, and b)
the thin film profile which is attributed to a certain curve, corresponding to a skeleton
segment.

In digital image processing, the curve/contour coordinates are usually represented by
an ordered list of z and y coordinates (x(s),y(s)), where s is a sampling along the curve.
For later convenience, the sampling should be even.

Another representation used in this paper is equivalent to the angle 6(s) between the
curve and a reference direction. It is constructed so that

0(s) = arctan™(x(s + 1) — z(s),y(s + 1) — y(s)) + 2k~ for keZ,

0(s+ 1) —6(s)| <,
and 6(0) = 0.

Here, arctan* is a four-quadrant inverse tangent and its range is (—7, 7). 6(s) corresponds
to the angle of the curve, adjusted so that there are no large discontinuities arising from
the 2m-periodicity of arctan®.

2.2  Snake

In this paper, the snake is a curve attributed with a linear mass density and developing
in time. The snake from [6] is used here. The dynamics of the snake is solved using
Hamilton’s Integral Principle.

The snake is first initialized. Then it starts moving according to the potential energy,
which determines its stretching, bending and moving across the potential field. The
acquired kinetic energy is dissipated by means of frictional forces. The ends of the snake
can be attached to pre-determined points.
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The snake is used here for two tasks. Firstly, it is used to refine the contours. Approx-
imation of the gradient is calculated using the Canny edge detector (see [5]). The scale
of the edge detection filter has to be chosen taking into account the contradicting de-
mands of precision and robustness. Then the gradient magnitude is calculated. Taken
negatively, it is used as the potential field.

Secondly, the snake is used to calculate the skeleton of a thin film segment. Euclidean
distance from the contour, measured inside the segment and taken negatively, is used as
the potential field. This makes the snake fall into striations of the field which correspond
to the skeleton position. In the case of the skeleton calculation, the positions of the end
nodes (the ends of the snakes—see Fig. 1) on the contour have to be pre-determined.
This is done by following maxima of the wavelet coefficient magnitudes from coarsest to
finest scale, similarly as in, e.g. [7], and using heuristics.

2.3 Skeleton and its representation

It is natural to characterize the spatial distribution of a semicontinuous thin film by
means of its skeleton. It is calculated as follows [6]. Between every pair of corners (the
pre-determined points) of the segment contours, a single snake is initialized. The snake
propagates according to the potential, which is equivalent to the negative Euclidean
distance of the inner segment points from the closest contour. The meeting points of
different snakes constitute the skeleton, in the sense of this paper.

Compared to some other methods, this approach gives a rotation-invariant skeleton.
Moreover, its versatility promises usage in various applications, e.g. in thin film resistance
estimation (see [8]).

An example of a skeleton is shown in Fig. 1. It can be represented naturally by a
graph, containing a lot of useful structural information. In the figure, it is denoted by
marks: what we call an inner node, an end node, an inner branch and an end branch.

The structure of the thin film surface can be well characterized by the image profile
p along the skeleton branches. Features calculated on the profile p are explained below.
If (z(s),y(s)) are coordinates of a skeleton branch and I is the thin film image intensity,
then

2.4 Stationary wavelet transform

The features used in this paper are based on stationary wavelet transform (SWT) of the
investigated signals. Therefore, it is described in more detail here. Additional details can
be found in [9]. SWT is used here because it is shift-invariant. If the original signal is
shifted, the transform coefficients are shifted in the same way.

SWT is explained here on a discrete signal xg, x1, ..., zy_1 with length N. Its elements
are evenly taken samples of a continuous signal, e.g. a thin film profile. SWT is based
on a combination of low-pass and high-pass filtering. Filtering by the low-pass filters H
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END NODE [

Fig. 1 Euclidean distance transform and skeleton on one particular segment. The distance is
measured from the contour inside. It is presented negatively, as it is used for skeleton calculation,
i.e. the darker gray level denotes more distant pixels. The image is overlaid by the segment’s
skeleton together with explanation of terminology.

and the high-pass filters G corresponds to convolving the signal x with reversed filter
coefficients h and g, respectively. For example,

(Hz), = Z [

One-level SWT is then equivalent to the transformation of an initial sequence ¢ (obtained
from z—see below; the superscript 0 denotes the initial level) of length N into two signals

ct=H and d' = Gc,

of lengths N.
Since H is a low-pass filter, ¢! is a smoother version of ¢°. In the response d' to the
high-pass filter, information about variation (or details) of the ¢ sequence is stored.
This process can be recursively repeated:

Ci-l—l — H[z]cz and di—i—l — G[z]cz

Filters HU! and G are derived from the filters H and G, respectively, by inserting 2¢ — 1
zeros between all filter elements. Assume the decomposition is J-level. The original
sequence ¢ is thus transformed to ¢”, corresponding to the approximation at the coarsest
scale J, and to d', d?, ..., d’, corresponding to details at the particular scales.
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Fig. 2 Example of the SWT decomposition of a one-dimensional thin film profile. The signal is
decomposed into 2 levels. All of the detail and approximation coefficients are shown.

The same can be done with the thin film profile. An example of the SWT decompo-
sition of a one-dimensional thin film profile is shown in Fig. 2. However, an initialization
usually has to be done, converting the investigated signal z into ® (see [10]). Wavelet
theory gives a clear interpretation to the coefficients ¢, and dj The coefficients 07 cor-
respond to projections of the original sequence x on dilations and translations ¢;; of the
so-called scaling function ¢, where

din(x) = 27729(277 (x — k),

where j is an index for scaling and k is an index for shifting. Similarly, the coefficients
d;. correspond to projections of the original sequence x on dilations and translations wy
of the so-called wavelet function w, where

wir(x) = 279 Pw2 7 (x — k).

Both the scaling function and the wavelet function solve the two-scale dilation equations
r) =2 hp¢(2x — k)
k

and
x) = Zng¢(2$ —k
k

The dilation equations thus establish correspondence between the filters H and G and
the functions ¢ and w.

As can be expected, ¢ is a kind of smoothing function, while w is able to capture signal
variation at the corresponding scales. In Fig. 3, the ¢ and w used in this contribution are
shown. It can be readily seen from Fig. 2 that the sequences ¢?, d* and d' correspond to
the signal magnitudes and variation at particular scales and positions.

Symmetry, number of vanishing moments and regularity are the most relevant wavelet
attributes (see [10]). Symmetry (or antisymmetry) simplifies interpretation of the decom-
position of the analyzed signal. Regularity ensures reasonable change of the decompo-
sition coefficients when the original signal is shifted. Given the chosen wavelet has ¢
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Fig. 3 Scaling function and wavelet used in this paper (biorl.3, [11]).

vanishing moments, the coefficients of the detail responses d are zero if the transformed
signal is a linear combination of polynomials up to the (¢—1)-th order. Therefore, for the
detection of an intensity change corresponding to the first derivative, the wavelet should
have only one vanishing moment.

3 Feature extraction

The features derived in this paper carry information about thin film morphology. They
are calculated on particular branches or contours and also on the whole image.

Invariance of the features under shift, scale change and rotation of the thin film image
is desirable. Shift and rotation invariance are ensured by: a) relating some of the features
to skeletons which have the same invariance, b) using only the detail coefficients in the
case of the signal 6, and c¢) using features insensitive to the sampling order.

Approximate scale invariance is ensured by an initial re-sampling of the curves. The
sampling rate is 2% samples per length 4L. N is the desired level of decomposition. In
case of low resolution, fewer levels are used. L is a characteristic size of the thin film,
calculated as two times the most probable value of the Euclidean distance along all the
thin film branches to the closest contour. L is then the most probable width of the
thin film branches. It has been experimentally verified that the histogram of Euclidean
distances exhibits a relatively sharp single peak. The quantity Lo is thus well defined.
Structures with larger Lo are decomposed into more levels. Comparison between feature
values is then performed at the corresponding scales.

For ease of interpretation, the wavelet coefficients are normalized, so that a signal
scaled in the spatial parameter by the factor 2 would give the same response in the
wavelet domain, but at the next scale.

At the end of the J-level wavelet decomposition, every signal (i.e. 6 and p) is decom-
posed into smooth signal ¢’ and detail signals d”,d’~!,...,d". The following features are
calculated on the detail signals:

mean absolute value

1 K
ma(e) = 2= >l
j=1



652 Jif{ Boldys and Rudolf Hrach / Central European Journal of Physics 2(4) 2004 645-659

energy (the second moment)

K
1 2
E(z) = i E Ty,
Jj=1
cross-correlation by means of Pearson’s coefficient

p(r,y) = A
NI

auto-correlation by means of Pearson’s coefficient

and

r(z,N) = p(z, SV ).

The range of Pearson’s coefficient is (—1,1). S¥ means a shift by N samples. At the
level of decomposition j, N equals 2/. Correlation is equivalent to covariance here, since
the mean of the detail coefficients is usually, in practise, close to zero. It is also usually
modeled in this way, and the mean is not subtracted here.

It is difficult to interpret the values m4 and E. Sometimes it is worth evaluating
the expression m? /E, further denoted 3 (see e.g. [12]). Its value is smaller when a few
coefficients are significantly higher then the others, i.e. when the structure is sharper.
On the other hand, the ratio is higher for smoother structures at a particular scale.

To summarize the set of calculated features, the following features are evaluated at
every scale j: ma(d’), E(d&), p(d?, &), r(d?,27) and B(d’). The features are calculated
on the signals # and p. m 4, F and 3 estimate signal variation, each feature in a different
way. The correlation features p and r compare variation either at different scales, or
for spatially shifted coefficients. In the case of the signal #, variation corresponds to
curvature.

A parameter o can be obtained using Fisher’s transformation [13] of Pearson’s coef-
ficient and used for comparisons

a = arctanh p. (1)

It is more natural for comparisons of p where |p| approaches one. The distribution of the
values of « is close to the normal distribution.

For analogous reasons to those for Pearson’s coefficient, logarithms of the features m 4
and E can be calculated. These also have a distribution close to normal, as has been
experimentally verified. The logarithm of (3 is then simply calculated from the logarithms
of my and F.

As has been mentioned, the mean and standard deviation of the feature values over
the whole thin film image can be calculated. If the features are calculated on the signal
6, the significance of their values varies with the perimeter length of different segments.
This is taken into account using weighted mean and weighted standard deviation, where
the weight equals the perimeter length.



Jif{ Boldys and Rudolf Hrach / Central European Journal of Physics 2(4) 2004 645-659 653

4 Experimental results

In this section, experimental results are presented and discussed. The experiments were
performed on three thin film images, parts of which are shown in the left halves of
Figs. 4, 5 and 6.

In the right halves, examples of one particular thin film segment are shown, delineated
by the refined contour. The segmentation and contour refinement by means of a snake is
described in detail above.

Fig. 4 Example of a thin film number 1. Left: image region of size 600 x 600 pixels. Right: one
particular segment outlined by snake. For comparison, the characteristic length Lo is shown by
the thick line.

Fig. 5 Example of a thin film number 2. Left: image region of size 600 x 600 pixels. Right: one
particular segment outlined by snake. For comparison, the characteristic length L¢ is shown by
the thick line.
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Fig. 6 Example of a thin film number 3. Left: image region of size 600 x 600 pixels. Right: one
particular segment outlined by snake. For comparison, the characteristic length Lo is shown by
the thick line.

Subsequently, the skeletons were calculated for all thin film segments with contour
length larger then a threshold. This is because for small circular islands it is difficult
to determine stable and meaningful corners. The second reason is that the features are
either defined for signals corresponding to inner skeleton branches or they require long
enough contours. The skeleton of one example segment, corresponding to Fig. 4, is shown
in Fig. 7.

In Figs. 8 and 9, typical examples of the signals # and p are shown. All signals are
re-sampled respectively to one characteristic length.

Values of the features my, E, p, r and 3 were calculated and are summarized in
Tables 1 and 2 for signals € and p, respectively. The features were calculated for all thin
film segments where possible. Afterwards, both the mean and standard deviation of the
features were calculated for the whole set of segments contained in one image. If a cell was
empty, the statistics could not be calculated. The reasons for this are small resolution of
the image, signals which are too short or insufficient number of feature values to calculate
the statistics.

First, it has to be pointed out that after all the normalization steps, the three thin films
give very similar signals 6 and p. Therefore, distinguishing these images is a challenging
task. Some of the features give a similar value for these images. Since the characteris-
tics of the separate segments from one image vary as well, the standard deviations are
sometimes large. This fact requires proper caution when interpreting or otherwise pro-
cessing the results. However, even values with large standard deviations can be used in
a more complex similarity measure, using the deviations to normalize the differences of
the means.

Nevertheless, certain features at certain scales can be found which provide high dis-
crimination power even in this challenging case. Some of these are discussed here, begin-
ning with the signal 6 and its feature values contained in Table 1.
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Fig. 7 Skeleton of one particular segment from the thin film number 1. Black line denotes
contour, red line denotes skeleton and gray-level values correspond to Euclidean distance from
the segment border.
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Fig. 8 Segment of the angle signal 6 of one particular island from thin film numbers 1 (red), 2
(green) and 3 (blue). It is depicted in units of the characteristic length Lc.

The feature m 4 has lower values for image 1 at finer and medium scales. This feature
corresponds to the amount of curvature at a particular scale. Therefore, the reason
is probably that image 1 contains many larger clusters with respectively lower average
curvature.

The values of E are less straightforward to interpret. High value of E can be caused
by high curvature on average, or by a few very high coefficients corresponding to locally
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Fig. 9 Segment of the profile signal p of an inner skeleton edge of one particular island from
thin films number 1 (red), 2 (green) and 3 (blue). It is depicted in units of the characteristic

Le

length L.
1/8 1/4 1/2 1 2
ma, 1 | 0.66 £ 0.06 0.95 £ 0.06 1.19£0.05 1.38 £0.05 1.50 £0.05
ma, 2 | 0.80 £ 0.05 1.08 £0.05 1.30 £ 0.04 1.454+0.03 1.54 +0.03
ma, 3 | 0.87+0.05 1.07 £ 0.04 1.26 £ 0.03 1.42 £0.03 1.563 £0.03
Bl 1.7+0.1 2.1£0.1 2.58 £0.09 2.94 +0.09 3.17 £ 0.08
B 2 1.9+0.1 2.38 = 0.09 2.78 £ 0.08 3.07 £ 0.05 3.25£0.05
E 3 20+0.1 2.38 £ 0.08 2.72+0.07 3.03 £0.05 3.224+0.05
p, 1 1.4+0.1 1.8+£0.2 1.6 £0.1 1.46 = 0.09 1.2£0.1
P, 2 1.6 £0.2 1.7+ 0.1 1.57£0.09 1.24 £0.08 1.11 £0.07
P, 3 1.8+£0.2 1.40 £ 0.08 1.3£0.1 1.31+£0.09 1.10 £ 0.08
r, 1 0.3+0.2 0.1£0.1 —-0.2£0.1 —-0.3£0.1 —-0.2£0.1
r, 2 0.21 £ 0.09 —0.1+0.1 —-0.19+£0.09 -0.22+£009 —-02+£0.1
r, 3 —-0.02+£0.08 —-0.01£0.08 —-0.21+£0.08 —-0.24£0.1
6,1 | —033£0.08 —0.26+0.06 —0.20£0.04 —-0.17+0.03 —0.17=+0.02
6,2 | —0.30£0.05 —0.22+0.03 —-0.18+0.03 —-0.16+0.02 —0.16=+0.02
6,3 | —0.27+£0.06 —-0.23+0.05 —-0.20+0.02 -0.184+0.02 —0.16=+0.01

Table 1 Values of the features ma, E, § (their logarithms log,,) and p, r (their o parameters
(1)) calculated for the signal 6. The type of feature and image number are denoted in the leftmost
column. In the top row, scale is denoted in units of the characteristic length L. Differences of
points in distance n L¢ are detected at scale n. Both mean and standard deviation are calculated
for the whole set of segments contained in one image.
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large curvature. Better insight can be obtained by calculating the feature 3. Lower (3
means sharper characteristics in terms of the curvature (many points with low curvature
and some points with large curvature). For example, thin film number 1 seems sharper
at finer scales and approximately equally sharp at coarser scales (in the sense of signal
6—see Fig. 8), corresponding to the measured values of 3. However, the results must be
adopted with caution because of the high values of the standard deviations.

On the other hand, the feature p provides fine discrimination in certain cases. The
value for image 3 and scale 1/2 is an example worth commenting on. As might be seen
from Fig. 8, there is lower correlation for curvature at this scale and the next finer scale,
as compared to the other thin films. The feature r is sufficiently discriminative for finer

scales.

1/32 1/16 1/8 1/4 1/2
ma, 1 —-1.94+0.1 —1.6+0.1 —1.4+0.1 —-1.24+0.1
ma, 2 —1.704+0.08 —-1.464+0.09 —-1.30+0.09 —1.22+0.08
ma, 3| —1.994+0.05 —-1.82+0.07 —-1.6+0.1 —1.37+0.08

E 1 —3.5+0.2 —3.0+£0.2 —2.6+0.2 —2.2+0.2
E, 2 —-3.24+0.1 —2.7+0.2 —2.4+0.2 —2.34+0.2
E, 3 —-3.8+0.1 -3.4+0.2 —-3.0+0.2 —2.5+0.2

p, 1 1.7+£0.2 1.54+0.3 1.5+0.2
P, 2 1.7+ 0.2 1.5+0.2 1.24+0.2
P, 3 1.3+£0.1 1.4+£0.3 1.9+£0.2

r, 1 0.2+0.2 0.1+0.2 —0.1+£0.2 —0.3+£0.2
T, 2 0.1+0.2 —0.240.2 —0.3+0.2 —0.24+0.2
T, 3 0.1£0.2 0.3£0.2 0.1£+0.3

6,1 —0.24+0.09 —-0.22+0.08 —-0.21+0.08 —0.21=+0.05
G, 2 —0.194+0.04 —-0.184+0.04 —-0.19+0.04 —0.19+0.06
6,3 | —=0.21£0.03 —-0.22+£0.05 —-0.21+£0.08 —-0.24+0.08

Table 2 Values of the features ma, E, § (their logarithms log,,) and p, r (their a parameters
(1)) calculated for the signal p. The type of feature and image number are denoted in the leftmost
column. In the top row, scale is denoted in units of the characteristic length L. Differences of
points in distance n Lo are detected at scale n. Both mean and standard deviation are calculated
for the whole set of segments contained in one image.

Feature values for the signal p are presented in Table 2. Both the features m 4 and
E suggest that there is more variation at the middle scales for image 2 than for images
1 and 3 (see also Fig. 9). Further, the feature p provides good discrimination of the
image 3 from the other two images, at the largest measurable scale, again in accordance
with Fig. 9. The correlation coefficient r is significantly lower for image 2 and the middle
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scales. Fig. 9 suggests that the profile characteristics for this image are rather predictably
variable at the characteristic scales under discussion.

It can be concluded that even for these examples which have relatively similar pro-
files and contour shapes, several sufficiently discriminating features can be found. Some
features have large standard deviations to distinguish between the thin films themselves.
These can be used in a weighted distance measure, depending on application.

There is no doubt, that a whole class of features with simple intuitive meaning can be
derived, based on the graph representation. Further exploitation of the skeleton structure
should result in the benefit of finding longer characteristic signals containing several
consecutive branches. At the same time, it is possible to use information about widths
of thin film branches, measured along the skeleton branches. However, further analysis
of all the possibilities would exceed the scope of this paper and is thus left for our future
work.

5 Conclusions

A methodology of semicontinuous thin film analysis has been elaborated here. A set
of image processing methods has been used for thin film image segmentation, contour
refinement, skeleton calculation, and characterization of thin film morphology. A set of
features has been calculated, with a clear meaning and good descriptive power, demon-
strated on rather challenging thin film images. The results are immediately applicable to
real experimental photographs. To the authors’ knowledge, similar analysis has not been
described yet in the literature.

There are many directions of future interest to us. The graph representation of the
skeleton offers the derivation of more extensive and more complex features and informa-
tion, using results from graph theory. Further, another choice of the end node positions
can be used, depending on the application. Another application-dependent issue is the
speed of computation, which can be improved at the expense of precision or robustness.
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