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Abstract—One of the hot topics discussed recently in relation to
machine learning is the question of actual performance of modern
feature selection methods. Feature selection has been a highly ac-
tive area of research in recent years due to its potential to improve
both the performance and economy of automatic decision systems
in various applicational fields, including medicine, image analysis,
remote sensing, economics etc. The number of available methods
and methodologies has grown rapidly throughout recent years
while promising important improvements. Yet recently many
authors put this development in question, claiming that simpler
older tools are actually better than complex modern ones – which,
despite promises, are claimed to actually fail in real-world ap-
plications. We investigate this question, show several illustrative
examples and draw several conclusions and recommendations
regarding feature selection methods’ expectable performance.

I. INTRODUCTION

Dimensionality reduction (DR) concerns with the task of
finding low dimensional representation for high dimensional
data. DR is an important step in data preprocessing in machine
learning and pattern recognition applications.

Fig. 1. With finite training data inclusion of features improves classification
performance up to a certain point only

It is sometimes the case that such tasks as classification
of the data represented by so called feature vectors, can be
carried out in the reduced space more accurately than in
the original space. In general, the decision rule in classifier
must be estimated from a set of finite (usually small) number
of training samples. If the number of training samples is
small, problems are commonly manifested due to the so-called
peaking phenomenon [1] (see Figure 1). This phenomenon
concerns the dependence of the probability of correct recog-
nition of patterns outside the training set and the number

of features used. Initially the performance improves as new
features are added, but at some point inclusion of further
features may result in an actual degradation in performance.
As a consequence, it is possible to improve the accuracy of
the classifier’s performance by deleting a feature [2].

There are two main ways of doing DR depending on the
resulting features: DR by feature selection (FS) and DR by
feature extraction (FE). The FS approach does not attempt to
generate new features, but tries to select the “best” ones from
the original set of features. The FE approach defines a new
feature vector space in which each new feature is obtained by
transformations of the original features. FS leads to savings in
measurement cost and the selected features retain their original
physical interpretation, important e.g., in medical applications.
On the other hand, transformed features generated by FE may
provide a better discriminative ability than the best subset of
given features, but these new features may not have a clear
physical meaning. A typical feature selection process consists
of four basic steps: feature subset selection, feature subset
evaluation, stopping criterion, and result validation. Based
on the selection criterion choice, feature selection methods
may roughly be divided into four types: the filter [3], [4],
the wrapper [5], the embedded [6], but also [7] or [8], [9]
and the hybrid [10], [11], [12]. The filter model relies on
general characteristics of the data to evaluate and select feature
subsets without involving any mining algorithm. The wrapper
model requires one predetermined mining algorithm and uses
its performance as the evaluation criterion. It attempts to
find features better suited to the mining algorithm aiming to
improve mining performance. This approach tends to be more
computationally expensive than the filter approach. The em-
bedded approach integrates the feature selection process into
the model estimation process. Devising model and selecting
features is thus one inseparable learning process, that may be
looked upon as a special form of wrappers. Embedded methods
thus offer performance competitive to wrappers, enable faster
learning process, but produce results tightly coupled with
particular model. The hybrid aims at combining the advantages
of more than one of the listed approaches.

Certainly many key questions in FS remain unanswered and
key problems remain unsolved to satisfaction. For example,
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not enough is known about error bounds of many popular
feature selection criteria, especially about their relation to clas-
sifier generalization performance. Despite the huge number of
methods in existence, it is still a very hard problem to perform
FS satisfactorily, e.g., in the context of gene expression [13]
data, with enormous dimensionality and very few samples.
Similarly, in text categorization [14] the standard way of FS
is to completely omit context information and to resort to
much more limited FS based on individual feature evaluation.
In medicine these problems tend to become emphasized, as
the available datasets are often incomplete (missing feature
values in sample vectors), continuous and categorical data is
to be treated at once, and the notion of feature itself may be
difficult to interpret.

Among many criticisms of the current FS development
there is one targeted specifically at the effort of finding more
effective search methods, capable of yielding results closer to
optimum with respect to some chosen criterion. The key argu-
ment against such methods is their often observed tendency to
“over-select” features [15], or to find feature subsets fitted too
tightly to training data, what degrades generalization. In other
words, more search-effective methods are supposed to cause a
similar unwanted effect as classifier over-training. Indeed, this
is a serious problem that requires attention.

In recent literature the problem of “over-effective” FS has
been addressed many times [16], [15]. Yet, the effort to point
out the problem (which seems to have been ignored, or at
least insufficiently addressed before) now seems to have led
to the other extreme notion of claiming that most of FS
method development is actually contra-productive. This is, that
older simpler methods are actually superior to newer methods,
mainly due to better over-fitting resistance.

The purpose of this paper is to discuss the issue of com-
paring actual FS methods’ performance and to show experi-
mentally what impact of the more effective search in newer
methods can be expected.

A. FS Methods Overview

Before giving overview of the main methods to be discussed
further we should note that it is not generally agreed in
literature what the term “FS method” does actually describe.
The term “FS method” is equally often used to refer to a)
the complete framework that includes everything needed to
select features, or b) the combination of search procedure and
criterion or c) just the bare search procedure. In the following
we will focus mainly on comparing the standard search
procedures, which are not criterion- or classifier dependent.
The widely known representatives of such “FS methods” are:

• Best Individual Features (BIF) [17],
• Sequential Forward Selection (SFS), Sequential Back-

ward Selection (SBS), [18],
• “Plus l-take away r” Selection (+L-R) [18],
• Sequential Forward Floating Selection (SFFS), Sequential

Backward Floating Selection (SFBS) [19],
• Oscillating Search (OS) [20].

Many other methods exist (in all senses of the term “FS
Method”), among others the generalized versions of the ones
listed above, various randomized methods, methods related to
use of specific tools (FS for Support Vector Machines, FS for
Neural Networks) etc. For overview see, e.g., [17], [21]. The
selection of methods we are going to investigate is motivated
by their interchangeability – any one of them can be used
with the same given criterion, data and classifier. This makes
experimental comparison easier.

II. PERFORMANCE ESTIMATION PROBLEM

FS methods comparison seems to be understood ambigu-
ously as well. It is very different whether we compare concrete
method properties or the final classifier performance deter-
mined by use of particular methods under particular settings.
Certainly, final classifier performance (preferably on inde-
pendent test data) is the ultimate quality measure. However,
misleading conclusions about FS may be easily drawn when
evaluating nothing else, as classifier performance depends on
many more different aspects then just the actual FS method
used. Nevertheless, in the following we will adapt classifier
accuracy as the main means of FS method assessment.

There seems to be a general agreement in the literature that
wrapper-based FS enables creation of more accurate classifiers
than filter-based FS. This claim is nevertheless to be taken
with caution, while using actual classifier accuracy as the FS
criterion in wrapper-based FS may lead to the very negative
effects mentioned above (over-training). At the same time
the weaker relation of filter-based FS criterion functions to
particular classifier accuracy may help better generalization.
But these effects can be hardly judged before the building of
classification system has actually been accomplished.

In the following we will focus only on wrapper-based FS.
Wrapper-based FS can be accomplished (and accordingly its
effect can be evaluated) using one of the following methods:

• Re-substitution – In each step of the FS algorithm all
data is used both for classifier training and testing. This
has been shown to produce strongly optimistically biased
results.

• Data split – In each step of the FS algorithm the same
part of the data is used for classifier training and the
other part for testing. This is the correct way of classifier
performance estimation, yet it is often not feasible due
to insufficient size of available data or due to inability
to prevent bias caused by unevenly distributed data in
the dataset (e.g., it may be difficult to ensure that with
two-modal data distribution the training set won’t by
coincidence represent one mode and the testing set the
other mode)

• Cross-Validation (CV) – Training data is split to several
parts. Then in each FS step a series of tests is performed,
with all but one data part used for classifier training and
the remaining part used for testing. The average classifier
performance is then considered to be the result of FS
criterion evaluation. Because in each test a different part
of data is used for testing, all data is eventually utilized,
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without actually testing the classifier on the same data
on which it had been trained. This is significantly better
than re-substitution.

• Leave-one-out – A special case of CV with just one
sample left for testing in each data split. This is com-
putationally more expensive, but better utilizes the data.

• Hold-Out (HO) – Training data is randomly sampled.
In each FS step a series of tests is performed, with
part of the training data randomly sampled for classifier
training and another part randomly sampled for testing.
The average classifier performance is then considered to
be the result of FS criterion evaluation. Unlike CV this
may avoid possible bias caused by deterministically and
evenly splitted data, but requires possibly higher number
of trials than CV.

A. Feature Selection Stability

To investigate the robustness of the FS process, i.e., its
dependence on particular data sampling, we repeat each FS
experiment 100 times on differently sampled part of the train-
ing data. We define two measures to be called consistency and
weighted consistency, that expresses the stability, or robustness
of FS method with respect to various data samplings.

Let Y = {f1, f2, . . . , f|Y |} be the set of all features and let
S = {S1, S2, . . . , Sn} be a system of n > 1 feature subsets
Sj =

{
fki | i = 1, . . . , dj , fki ∈ Y, dj ∈ {1, . . . , |Y|}}, j =

1, . . . , n, n > 1, n ∈ N. Denote Ff the system of subsets in
S containing feature f , i.e.,

Ff = {S|S ∈ S, f ∈ S}. (1)

Let Ff be the number of subsets in Ff and X the subset of
Y representing all features that appear anywhere in system S,
i.e.,

X = {f |f ∈ Y, Ff > 0}. (2)

Let N denote the number of all features in system S, i.e.,

N =
∑

g∈X

Fg =
n∑

i=1

|Si|, N ∈ N, N ≥ n. (3)

Definition 1: The consistency C(S) of feature subsets in
system S is defined as:

C(S) =
1
|X |

∑

f∈X

Ff − 1
n − 1

. (4)

Definition 2: The weighted consistency CW (S) of system
S is defined as

CW (S) =
∑

f∈X

wf
Ff − 1
n − 1

, (5)

where wf = Ff∑
g∈X

Fg
, 0 < wf ≤ 1,

∑
f∈X wf = 1.

Because Ff = 0 for all f ∈ Y \ X, the weighted consistency
CW (S) can be equally expressed using notation (3) as

CW (S) =
∑

f∈Y

Ff

N
· Ff − 1

n − 1
. (6)

The main properties of both C(S) and CW (S) are:
1) 0 ≤ C(S) ≤ 1, 0 ≤ CW (S) ≤ 1.
2) C(S) = 1, CW (S) = 1 if and only if (iff) all subsets

in S are identical.
3) C(S) = 0, CW (S) = 0 iff all subsets in S are disjunct

from each other.
It is obvious that CW (S) = 0 iff N = |X|, i.e., iff Ff = 1 for
all f ∈ X. This is unrealistic in most of real cases. Whenever
n > |X|, some feature must appear in more than one subset
and consequently CW (S) > 0. Similarly, CW (S) = 1 iff
N = n|X|, otherwise all subsets can not be identical. Note
that for C(S) ≈ 0.5 on average each feature present in S
appears in about half of all subsets.

When comparing FS methods, higher stability of subsets
produced during experiment trials is clearly advantageous.
However, it should be considered a complementary measure
only as it does not have any straight relation to the key measure
of classifier generalization ability.
Remark: In experiments, if the best performing FS method also
produces feature subsets with high consistency, its superiority
can be more confidently assumed well founded.

III. EXPERIMENTS

To illustrate the differences between simpler and more
complex FS methods we have collected experimental results
under various settings: for two different classifiers, four FS
search algorithms and seven datasets with dimensionalities
ranging from 13 to 65 and number of classes ranging from
2 to 3. We used 3 different mammogram datasets as well as
wine and spectf datasets from UCI Repository [22], speech
data from British Telecom and sonar data [23]. For details see
Tables I to VII.

Note that the choice of classifier and/or FS setup may not
be optimal for each dataset, thus the reported results may be
inferior to results reported in the literature; the purpose of our
experiments is mutual comparison of FS methods only.

The following set-up was used in all experiments. The
number of FS trials (size of evaluated system of subsets) was
set to n = 100. From each dataset 25% of data in each class
was reserved for testing and as such excluded from FS process.
In each FS trial 90% of the remaining data was randomly
sampled to form a trial-local data set. In wrapper FS setting
the criterion value has been obtained as the average over 10
classification rates obtained using 10-fold hold-out, where in
each loop the trial-local data had been scattered randomly
to 60% training, 30% validation, and 10% unused data. In
filter setting the criterion values have been computed from the
training data part only. All reported classification rates have
been obtained on independent test data.

The application of BIF, SFS and SFFS was straightforward.
The OS algorithm allows various set-ups. Here we resorted
to the simple deterministic version, denoted as OS(1,BIF) in
the following as it is initialized by means of BIF and the
oscillating cycle depth [20] parameter has been set to enable
fastest search to Δ = 1. The problem of determining optimal
feature subset size was solved in all experiments by brute
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force. All algorithms were applied repeatedly for all possible
feature sizes whenever needed. The final result has been
determined as that with the highest classification accuracy (and
lowest subset size in case of ties).

A. Notes on Obtained Results

The examples (though naturally covering only a subset
of possible types of recognition problems) illustrate several
phenomena that can not be neglected in general case.

Over-fitting [15] is indeed a problem of utmost importance.
It manifests itself in degraded classification rate of stronger
FS methods on independent data when compared to BIF (see
Table IIa, IIIb, IVa,b, Va). However, it may be also seen
that in many cases it is the stronger selectors that yield
best classification rate of all methods and both classifiers on
independent data (see Table I, II, VI, VII). It is very difficult,
if not impossible, to predict which feature selector will yield
best results for particular problem. The best guess (although
not valid in all cases) is to expect the overfitting problem to
appear more often with too small number of sample data in
relation to dimensionality.

For illustration consider the average classification rate of
each method and classifier over the experiments. With gaus-
sian classifier the ordering of methods according to achieved
classification rate on independent test data is SFFS 70.9%,
SFS 70, 2%, BIF 69, 6% and OS(1,BIF) 68, 3%. With 3NN
classifier it is SFFS 81, 6%, BIF 81, 3%, SFS 80, 6% and
OS(1,BIF) 80, 2%. Note that SFFS is a strong feature selector,
yet it is shown here to overperform other (simpler) methods.
It is also shown that FS methods’ performance depends on
circumstances – here with gaussian classifier SFS performs
better than BIF, with 3NN it is the other way round.

Besides classification performance other performance char-
acteristics of the considered methods should not be neglected.
In terms of dimensionality reduction performance (percentage
of features discarded, relatively to full problem dimensional-
ity) in the presented experiments with gaussian classifier the
method ordering is BIF 74.2%, SFS 71, 9%, OS(1,BIF) 70.5%
and SFFS 69, 1%. However, with 3NN the most effective di-
mensionality reducer shows to be OS(1,BIF) 67, 6% followed
by SFS 65.2%, SFFS 63.1% and BIF 51.7%.

In terms of stability (robustness of feature preferencess)
as measured by the CW measure (5) the resulting method
ordering for gaussian classifier is BIF 0.559, OS(1,BIF) 0.487,
SFS 0.463 and SFFS 0.458. With 3NN it is BIF 0.658, SFFS
0.547, OS(1,BIF) 0.531 and SFS 0.485.

It is clear that no unanimous winner can be pointed out
among the considered methods. BIF proves to be the most
stable FS method, performing well whenever over-fitting is
a problem. However, in terms of classification accuracy on
independent data SFFS shows to be the most recommendable.

IV. DISCUSSION AND CONCLUSIONS

With respect to FS we can distinguish the following entities
which all affect the resulting classification performance: search
algorithms, stopping criteria, feature subset evaluation criteria,

data and classifier. The impact of the FS process on the final
classifier performance (with our interest targeted naturally
at its generalization performance, i.e., its ability to classify
previously unknown data) depends on all of these entities.

When comparing pure search algorithms as such, then there
is enough ground (both theoretical and experimental) to claim
that newer, often more complex methods, have better potential
of finding better solutions. This often follows directly from
the method definition, as newer methods are often defined
to improve some particular weakness of older ones. (Unlike
BIF, SFS takes into account inter-feature dependencies. Unlike
SFS, +L-R does not suffer the nesting problem. Unlike +L-
R, Floating Search does not depend on pre-specified user
parameters. Unlike Floating Search, OS may avoid local
extremes by means of randomized initialization etc.). Better
solution, however, means in this context merely being closer
to optimum with respect to the adopted criterion. This may
not tell much about final classifier quality, while criterion
choice has proved to be a considerable problem in itself. None
of applicable criteria seems to have good enough relation to
classifier generalization performance.

When comparing feature selection methods as a whole
(under specific criterion-classifier-data settings) the advantages
of more modern search algorithms may diminish considerably.
Reunanen [16] points out, and our experiments confirm, that
a simple method like BIF or SFS may lead to better classifier
generalization. The problem we see with the ongoing discus-
sion is that this is often claimed to be the general case. But
this is not true, as confirmed by several of our experiments.

Moreover, the possibly uneven resulting classification accu-
racy on independent test data in case of complex FS methods
may be viewed as a direct consequence of insufficient criteria.
In this view it is difficult to claim that more complex FS
methods are problematic per se.

Our concluding recommendation can be stated as follows:
whenever possible, try variety of methods ranging from BIF
to more complex ones. If one method only has to be chosen,
than we would stay with SFFS as the best general compromise
between performance, generalization ability and search speed.

A. Does It Make Sense to Develop New FS Methods?

Our current experience shows that no clear and unambiguous
qualitative hierarchy can be established within the existing
framework of methods, i.e., although some methods perform
better than others more often, this is not the case always
and any method can prove to be the best tool for some
particular problem. Adding to this pool of methods may thus
bring improvement, although it is more and more difficult to
come up with new ideas that have not been utilized before.
Regarding the performance of search algorithms as such,
developing methods that yield results closer to optimum with
respect to any given criterion may bring considerably more
advantage in future, when better criteria may have been found
to better express the relation between feature subsets and
classifier generalization ability.
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TABLE I
CLASSIFICATION PERFORMANCE AS RESULT OF WRAPPER-BASED FEATURE SELECTION ON WINE DATA.

Wine data: 13 features, 3 classes containing 59, 71 and 48 samples, UCI Repository
Criterion val. Classif. rate Subset Size Stability Time

Classifier FS Method Mean St.Dv. Mean St.Dv. Mean St.Dv. C CW h:m:s.ss

a) Gaussian BIF 0.601 0.023 0.532 0.036 2.41 0.81 0.338 0.831 00:00
SFS 0.645 0.025 0.515 0.065 3.27 0.77 0.29 0.672 00:00
SFFS 0.672 0.013 0.579 0.068 3.61 1.18 0.511 0.637 00:01
OS(1,BIF) 0.718 0.016 0.565 0.076 3.03 1.06 0.427 0.627 00:02

b) 3-NN BIF 0.969 0.005 0.959 0.018 9.14 1.89 0.7 0.884 00:00
scaled SFS 0.978 0.006 0.972 0.021 7.71 1.58 0.589 0.736 00:01

SFFS 0.985 0.003 0.968 0.022 7.57 1.81 0.578 0.75 00:02
OS(1,BIF) 0.990 0.004 0.974 0.019 7.4 1.85 0.565 0.717 00:02

TABLE II
CLASSIFICATION PERFORMANCE AS RESULT OF WRAPPER-BASED FEATURE SELECTION ON MAMMOGRAM DATA.

Mammogram data, 65 features, 2 classes containing 57 (benign) and 29 (malignant) samples, UCI Rep.
Criterion val. Classif. rate Subset Size Stability Time

Classifier FS Method Mean St.Dv. Mean St.Dv. Mean St.Dv. C CW h:m:s.ss

a) Gaussian BIF 0.701 0.019 0.685 0.057 3.13 1.97 0.099 0.397 00:07
SFS 0.746 0.020 0.671 0.081 5.33 2.38 0.078 0.236 02:17
SFFS 0.754 0.022 0.648 0.079 5.56 2.52 0.080 0.203 09:21
OS(1,BIF) 0.814 0.019 0.532 0.115 7.12 2.54 0.110 0.205 14:22

b) 3-NN BIF 0.792 0.026 0.757 0.068 10.9 7.51 0.186 0.509 00:00
scaled SFS 0.872 0.037 0.810 0.117 10.1 5.71 0.152 0.386 00:07

SFFS 0.909 0.035 0.886 0.102 7.28 4.58 0.112 0.521 00:40
OS(1,BIF) 0.917 0.026 0.814 0.109 8.5 5.36 0.133 0.449 00:41

TABLE III
CLASSIFICATION PERFORMANCE AS RESULT OF WRAPPER-BASED FEATURE SELECTION ON SONAR DATA.

Sonar data, 60 features, 2 classes containing 103 (mine) and 105 (rock) samples, Gorman & Sejnowski
Criterion val. Classif. rate Subset Size Stability Time

Classifier FS Method Mean St.Dv. Mean St.Dv. Mean St.Dv. C CW h:m:s.ss

a) Gaussian BIF 0.705 0.016 0.507 0.045 10.1 4.51 0.319 0.666 00:05
SFS 0.795 0.015 0.551 0.091 14.3 4.97 0.23 0.363 01:39
SFFS 0.819 0.015 0.548 0.085 16.7 5.10 0.272 0.404 10:53
OS(1,BIF) 0.846 0.014 0.500 0.065 16.46 5.64 0.277 0.414 25:23

b) 3-NN BIF 0.855 0.010 0.649 0.084 20.7 7.16 0.377 0.759 00:01
scaled SFS 0.885 0.013 0.516 0.086 20.7 8.35 0.338 0.417 00:30

SFFS 0.906 0.012 0.496 0.076 22.9 8.31 0.375 0.491 02:10
OS(1,BIF) 0.931 0.008 0.489 0.064 19.44 6.57 0.317 0.570 02:38

TABLE IV
CLASSIFICATION PERFORMANCE AS RESULT OF WRAPPER-BASED FEATURE SELECTION ON SONAR DATA.

Spectf data, 34 features, 2 classes containing 212 and 55 samples, UCI Repository
Criterion val. Classif. rate Subset Size Stability Time

Classifier FS Method Mean St.Dv. Mean St.Dv. Mean St.Dv. C CW h:m:s.ss

a) Gaussian BIF 0.800 0.001 0.783 0.020 4.18 7.59 0.141 0.321 00:01
SFS 0.806 0.004 0.758 0.034 14.5 5.16 0.322 0.406 00:22
SFFS 0.814 0.008 0.746 0.036 12.3 4.94 0.272 0.35 01:33
OS(1,BIF) 0.809 0.006 0.771 0.025 12.8 4.26 0.283 0.484 02:43

b) 3-NN BIF 0.804 0.011 0.762 0.037 6.12 7.20 0.137 0.257 00:01
scaled SFS 0.846 0.011 0.746 0.041 8.31 4.26 0.181 0.321 00:19

SFFS 0.859 0.012 0.752 0.039 10.1 5.28 0.222 0.387 01:33
OS(1,BIF) 0.884 0.009 0.735 0.040 8.9 3.91 0.199 0.363 02:15

ACKNOWLEDGEMENTS

The work has been supported by projects AV0Z1075050506
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TABLE V
CLASSIFICATION PERFORMANCE AS RESULT OF WRAPPER-BASED FEATURE SELECTION ON MAMMOGRAM DATA.

WPBC data, 31 features, 2 classes containing 151 (nonrecur) and 47 (recur) samples, UCI Repository
Criterion val. Classif. rate Subset Size Stability Time

Classifier FS Method Mean St.Dv. Mean St.Dv. Mean St.Dv. C CW h:m:s.ss

a) Gaussian BIF 0.756 0.006 0.755 0.028 6.39 7.42 0.198 0.295 00:00
SFS 0.783 0.012 0.722 0.044 7.86 4.52 0.246 0.314 00:04
SFFS 0.798 0.011 0.711 0.044 7.93 3.40 0.248 0.320 00:25
OS(1,BIF) 0.799 0.010 0.701 0.039 6.11 2.40 0.189 0.373 00:54

b) 3-NN BIF 0.742 0.014 0.677 0.076 7.59 9.59 0.237 0.319 00:00
scaled SFS 0.780 0.012 0.697 0.052 7.9 5.21 0.247 0.312 00:03

SFFS 0.791 0.010 0.707 0.042 9.85 5.77 0.311 0.360 00:16
OS(1,BIF) 0.789 0.012 0.693 0.040 4.93 3.67 0.151 0.282 00:28

TABLE VI
CLASSIFICATION PERFORMANCE AS RESULT OF WRAPPER-BASED FEATURE SELECTION ON MAMMOGRAM DATA.

WDBC data, 30 features, 2 classes containing 357 (benign) and 212 (malignant) samples, UCI Rep.
Criterion val. Classif. rate Subset Size Stability Time

Classifier FS Method Mean St.Dv. Mean St.Dv. Mean St.Dv. C CW h:m:s.ss

a) Gaussian BIF 0.940 0.003 0.940 0.007 22.7 7.64 0.753 0.817 00:00
SFS 0.962 0.004 0.947 0.014 8.37 3.51 0.272 0.456 00:07
SFFS 0.966 0.003 0.954 0.016 9.18 3.24 0.299 0.48 00:57
OS(1,BIF) 0.967 0.003 0.951 0.010 8.73 3.67 0.284 0.510 01:20
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