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Abstrakt: V předložené práci studujeme problematiku hledáńı nejlepš́ıho
rozhodnut́ı na základě určité předchoźı zkušenosti se systémem. Využ́ıváme
k tomu dynamické programováńı a jeho aproximaćı. V práci shrnujeme teorii
potřebnou k použit́ı dynamického programováńı a zabýváme se jej́ı aplikaćı
v př́ıpadě obchodováńı s futures kontrakty, při kterém se snaž́ıme naj́ıt nej-
lepš́ı obchodńı strategii (to je posloupnost rozhodnut́ı), která maximalizuje
náš zisk, respektive minimalizuje ztrátovou funkci. Zavád́ıme pojem ”Bell-
manova funkce”, vysvětlujeme nutnost aproximace této funkce, uvád́ıme
jednu z již testovaných aproximačńıch metod společně s jej́ımi výsledky a
snaž́ıme se navrhnout metodu, kterou bychom dosáhli nejlepš́ı aproximace
v rozumné době a s dostupnými výpočetńımi prostředky.
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deal with its application on futures dealing trying to find best strategy, id est
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Chapter 1

Introduction

The main aim of this work is to familiarize readers with the theory of
decision-making, the usage of dynamic programming in decision making and
how it is possible to use this mathematical machinery in practice during
dealing with futures contracts.
The reasons why we decided to show the decision-making theory on the case
of futures dealing are simple: this problem is very actual, the financial back-
ground is highly interesting (with good strategy of dealing we can earn a
lot of money) and mainly the Department of adaptive systems of The Insti-
tute of Information Theory and Automation in cooperation with company
Colosseum a.s. has been dealing with the optimization of futures dealing for
a long time, so it was possible to use wide spectrum of data, software for
data computing and previous approaches to solve this optimization problem.
Mainly in the beginning of this work, the theory is presented very generally,
so it can be used for different optimization tasks; not only for dealing with
futures contracts. Later we show that the dynamic programming applied on
problems from the real world can be very difficult and we have to use some
approximation methods.
In this work we demonstrate one already tested approximation method and
we present our proposal how to improve this method. However, this proposal
is only one possible way of the approximation and should be treated as one
small part of longtime running research, during which many quantitatively
and qualitatively different approaches will be tested. These approaches are
going to be examined according to the different points of view and appro-
priately combined to get better and stabilized strategy.
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Let us shortly characterize the contents of chapters.
In Chapter 2, after we establish main notation, we present the basic and
very important lemma of decision-making and all important propositions
for dynamic programming. We define there the Bellman function and show
one general method of its approximation called Iterations spread in time.
In next chapter, we characterize the futures dealing, define a gain function
which we are trying to optimize and show by a simple example why the
approximation is needed.
Chapter 4 contents finding the best form of approximation of the Bellman
function, description of one possible method of approximation and the real
proposal of this method improvement. At the end of this chapter our exper-
iments are demonstrated.
Our conclusions are summarized in the last chapter.
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Chapter 2

Principal theory of
decision-making

In this chapter, we will summarize the basic theory of decision-making that
helps the decision-maker to choose the best of his options. We will describe
how we use the dynamic programming for finding the best option.

2.1 Main conventions and notions

First we present the list of notations we use in all text; for some quantities
we present even some short characterization.

f means probability density function (pdf).

x∗ is the set of all admissible values of x, x ∈ x∗.

x̂ denotes the number of members in countable set x∗.

t̂ is called time horizon.

xt is quantity x at the time t, t ∈ t∗, where t∗ ≡ {1, ..., t̂}
a denotes the decision, a ∈ a∗. The task of decision-making is meaningful

for â > 1 only.

Pa is knowledge (experience) about the system available for choosing the
decision a ∈ a∗.
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Fa is knowledge (ignorance) about the system unavailable for choosing
the decision a ∈ a∗.

Q means the set of all quantities that describe the behavior of the system.
We can split the behavior with respect to any decision a ∈ a∗ into
(Pa∗ , a, Fa∗). Q∗ consists of all possible realizations of Q and is called
system behavior.

∆t means the innovation. It contains the quantities that are not included
in Pat but are included in Pat+1 . Often the innovation is exactly the
observable output of the system.

R denotes the decision rule generating the decision a, R : Q∗ → a∗.
Ro means the optimal decision rule giving us the best decision ao.

R means a sequence of decision rules Rt, R ≡ {Rt : Q∗ → a∗t}{t∈t∗}. R is
called strategy.

Z is called loss function and quantifies the difference between decision-
maker’s aim and achievement.

E(Z) ≡ ER(Z) means the expected loss and assigns a value in [0,∞] to
every loss function Z and strategy R. For expected loss we have

E(Z) =
∫

Q∗
Z(Q)f(Q)dQ (2.1)

2.2 Dynamic programming

First we prepare one lemma creating the base of decision-making theory.

Proposition 2.1 (Basic decision-making lemma) The optimal admis-
sible decision rule Ro, defining the optimal decision ao,

Ro(Pa∗) ≡ ao(Pa∗), ∀Pa∗ ∈ P ∗
a∗

minimizing the expected loss (2.1) can be constructed value-wise as follows.
To each Pa∗ ∈ P ∗

a∗ , a minimizing argument ao(Pa∗) in

min
a∈a∗E[Z(Pa∗ , a, Fa∗) | a, Pa∗ ] (2.2)
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is assigned as the value of the optimal decision rule corresponding to the
considered argument. The reached minimum is

min
{R:P ∗

a∗→a∗}
E[Z(Pa∗ , a, Fa∗)] = E

{
min
a∈a∗E[Z(Pa∗ , a, Fa∗) | a, Pa∗ ]

}
. (2.3)

Proof : Can be seen in Kárný (2006).

The optimal strategy can be found by using a stochastic version of dynamic
programming. It is a repetitive application of proposition (2.1).

Proposition 2.2 (Stochastic dynamic programming) The optimal strat-

egy
{
Ro

t : P ∗
a∗t
→ a∗t

}
t∈t∗

∈
{
Rt : P ∗

a∗t
→ a∗t

}
t∈t∗

acting on non-decreasing se-

quence of experience Pa∗t ⊂ Pa∗t+1
and minimizing the expected loss func-

tion E[Z(Q)] can be constructed value-wise way. For every t ∈ t∗ and each
Pa∗t ∈ P ∗

a∗t
, it is sufficient to take a minimizing argument ao(Pa∗t ) in

ν(Pa∗t ) = min
at∈a∗t

E[ν(Pa∗t+1
) | at, Pa∗t ], t ∈ t∗ (2.4)

as the decision generated by t-th rule of the optimal strategy, i.e. ao(Pa∗t ) =
Ro

t (Pa∗t ). The recursion (2.4) is performed in the backward manner against
the course given by the increasing experience. It starts with

ν(Pa∗
t̂+1

) ≡ E[Z(Q) | Pa∗
t̂+1

] (2.5)

The reached minimum has the value

E[ν(Pa∗1)] = min{Rt:P ∗a∗
t
→a∗t }t∈t∗ E[Z(Q)].

The function ν is called Bellman function.

Proof : Can be seen in Kárný (2006).

From this moment we will assume that loss function is additive and depends
only on the outputs of the system (the innovations) and on the decisions and
does not depend on the internal parameters of the system (the ignorance Fa

contains only unobserved data), that gives us following expression of loss
function:
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Z(Q) =
∑t̂

t=1 z(∆(t), a(t)).

For this additive loss function we can formulate the proposition (2.2) as fol-
lows.

Proposition 2.3 (Dynamic programming for additive loss function)
Let us consider additive loss function dependent only on the innovations
and decisions. Then the optimal strategy

{
Ro

t : P ∗
a∗t
→ a∗t

}
t∈t∗

acting on non-

decreasing sequence of experience {Pa∗t }{t∈t∗} and minimizing the expected
additive loss function

E
[∑t̂

t=1 z(∆(t), a(t))
]

can be constructed value-wise. For all t ∈ t∗ and to each Pa∗t ∈ P ∗
a∗t

, a

minimizing argument ao(Pa∗t ) = Ro
t (Pa∗t ) in

ν(Pa∗t ) = min
at∈a∗t

E[z(∆(t), a(t)) + ν(Pa∗t+1
) | at, Pa∗t ], t ∈ t∗ (2.6)

is assigned. The recursion (2.6) is performed in backward manner against
the course given by the increasing experience, starting from

ν(Pa∗
t̂+1

) ≡ 0.

the reached minimum has the value

E[ν(Pa∗1)] = min{
Rt:P ∗a∗

t
→a∗t

}
t∈t∗

E[Z(Pa∗
t̂+1

)].

Proof : Can be seen in Kárný (2006).

These two propositions give us the formal instruction how to find the op-
timal decision. However, for using the propositions we need to evaluate the
expectation

E[ν(Pa∗t+1
) | at, Pa∗t ] =

∫

∆∗t
ν(Pa∗t , at, ∆t)f(∆t | at, Pa∗t )d∆t,∀t ∈ t∗. (2.7)

The innovation ∆t contains the quantities that can not be used for choosing
at, those quantities belong to Pa∗t+1

.
As we can see from equation (2.7) we need to know f(∆t | at, Pa∗t ) in every
time t ∈ t∗, but that is rarely satisfied. So we try to estimate these pdfs using
data we have from past, this process is called learning and is described in
next section. The system of pdfs {f(∆t | at, Pa∗t )}t∈t∗ is called outer model
of the system.
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2.3 Learning

In this part we describe how to get outer model of the system we need for
optimal decision-making. Let us prepare one technical proposition.

Proposition 2.4 (Bayes rule) For random quantities a, b, c it holds

f(a | b, c) =
f(b | a, c)f(a | c)

f(b | c) =
f(b | a, c)f(a | c)∫
f(b | a, c)f(a | c)da

(2.8)

Proof : From the definition of conditional pdf we get

f(a | b, c) = f(a,b|c)
f(b|c) = f(a,b|c)∫

f(a,b|c)da

Now we rewrite it using f(a, b | c) = f(b | a, c)f(a | c).

First we will present the general case when the outer model relies on learning
of time variant and directly unobservable quantities. This process is called
Bayesian filtering. We will assume that

• the innovations ∆t are related to experience Pa∗t and decisions at

through the observation model

{f(∆t | at, Pa∗t , Θt)}t∈t∗ (2.9)

that is given up to unknown directly unobservable quantities
Θt ∈ Θ∗

t ⊂ Fa∗τ , ∀τ ∈ t∗.

• the evolution of the quantities Θ(t̂) ∈ Θ∗(t̂) is described by a known
collection of pdfs

{f(Θt | at, Pa∗t , Θt−1)}t∈t∗ . (2.10)

• the quantities Θ(t̂) are unknown to the strategies considered. Formally
we can express it as independency of at and Θt when conditioned on
Pa∗t

f(at | Pa∗t , Θt) = f(at | Pa∗t ) ⇔︸︷︷︸
(2.8)

f(Θt | at, Pa∗t ) = f(Θt | Pa∗t ) (2.11)
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• the initial values of Θ0, Pa∗1 add nothing new to the prior information
so that the prior pdf

f(Θ1) ≡ f(Θ1 | a1, Pa∗1 , Θ0) = f(Θ1 | a1, Pa∗1) = f(Θ1 | Pa∗1)

is the first term in the sequence of the pdfs (2.10).

Now we can write the main proposition for filtering.

Proposition 2.5 (Generalized Bayesian filtering) The outer model of
the system {f(∆t | at, Pa∗t )}t∈t∗ is given by formula

f(∆t | at, Pa∗t ) =
∫

Θ∗t
f(∆t | at, Pa∗t , Θt)f(Θt | Pa∗t )dΘt. (2.12)

The evolution of the pdfs f(Θt | Pa∗t ) is described by the following recursion
that starts from the prior pdf f(Θ1):

• Data updating

f(Θt | Pa∗t ) =
f(∆t | at, Pa∗t , Θt)f(Θt | Pa∗t )

f(∆t | at, Pa∗t )
(2.13)

that incorporates the innovation ∆t and the decision at, and

• Time updating

f(Θt+1 | Pa∗t+1
) =

∫

Θ∗t
f(Θt+1 | at+1, Pa∗t+1

, Θt)f(Θt | Pa∗t+1
)dΘt (2.14)

that reflects the time evolution Θt → Θt+1.

Proof : Can be seen in Kárný (2006).

A special version of Bayesian filtering, for the case the internal quantities
Θt are time invariant: Θt = Θ,∀t ∈ t∗, is called Bayesian estimation and we
call the common value Θ parameter. The observation model (2.9) has the
form

{f(∆t | at, Pa∗t , Θ)}t∈t∗ .
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The proposition (2.3) can be rewritten for estimation as follows.

Proposition 2.6 (Generalized Bayesian estimation) The outer model
of the system {f(∆t | at, Pa∗t )}t∈t∗ is given by formula

f(∆t | at, Pa∗t ) =
∫

Θ∗
f(∆t | at, Pa∗t , Θ)f(Θ | Pa∗t )dΘ. (2.15)

The evolution of the pdf f(Θ | Pa∗t ) is described by the recursion identical
with data updating (2.13):

f(Θ | Pa∗t ) =
f(∆t | at, Pa∗t , Θ)f(Θ | Pa∗t )

f(∆t | at, Pa∗t )
(2.16)

It starts from the prior pdf f(Θ) ≡ f(Θ | Pa∗1 , a1) = f(Θ | Pa∗1).

Proof : Can be seen in Kárný (2006).

Now we know how to evaluate the expectation (2.7) and with that how to
use the propositions (2.2) and (2.3).

2.4 Asymptotic of the dynamic programming

The asymptotic of the dynamic programming is realized for t̂ →∞. In this
section we assume that

• loss function is additive

• loss function depends only on the innovations and on the decisions

• there is a finite-dimensional information state, i.e. Pa∗ ≡ xt−1 ≡ a
finite-dimensional vector

• the partial loss depends only on xt and at, z(∆(t), a(t)) = z(xt, at)

Agreement 2.1 (Stabilizing strategy) Let us consider sequence of decision-
making problems with the growing horizon t̂ →∞.
The strategy

{
Rt : P ∗

a∗t
→ a∗t

}
t∈t∗≡{1,...,t̂} ∀t̂ ∈ {1, 2, ...} is called stabilizing

strategy if there is a finite constant c such that

E[z(xt, at) | at, Pa∗t ] ≤ c < ∞, t ∈ {1, 2, ...}. (2.17)
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Proposition 2.7 Let a stabilizing strategy exist. Then there is an optimal,
stationary strategy, formed by a repetitive use of the same rule, for t̂ →∞
whose decisions are minimizing arguments in the formal analogy of (2.6)

ν∞(xt−1) + κ = min
at∈a∗t

E[z(xt, at) + ν∞(xt) | at, xt−1] (2.18)

with a constant κ ≤ c and a time invariant Bellman function ν∞.

Proof : Can be seen in Kárný (2006).

It is obvious that the ideal planning goes through all our time horizon, but
that can be very difficult. The simplest way how to make our decision-making
easier is shortening of time horizon. First thought could be to reduce the
horizon only to one step forward. However, in dynamic decision-making the
effects and consequences of our decision become clear in longer time after the
application of decision, so the decision appearing the best now can become
wrong in longer perspective.
These facts lead us to a compromise; to the method called running horizon.
We consider shorter time horizon (let us denote it t̃) and in this horizon
we create the optimal strategy. But because the shorter horizon brings us
only an approximation of ideal planning, we use only first decision from the
strategy. After applying the decision we move in time about one time unit
and get new data, we again create optimal strategy and again use only first
decision of the strategy.

2.5 Iteration spread in time

Having t̂ → ∞, we can set the running horizon t̃ to appropriate length.
According to proposition (2.7) the optimal decision is minimizing argument
in

ν∞(xt−1) + κ = minat∈a∗t E[z(xt, at) + ν∞(xt) | at, xt−1].

This equation can be seen as an optimization of additive loss function
z(xt, at) enlarged by stationary Bellman function ν∞(xt) in one-step for-
ward. As we know the Bellman function is time invariant, so this dynamic
programming can be also seen as an iterative searching for its accurate form.
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We use the Bellman function from time t− 1 to get better estimation of the
Bellman function in time t and with this more accurate Bellman function we
go on with the method of running horizon. This method is called Iteration
spread in time and we can describe the algorithm of this method as follows:

1. Appoint the starting form of the Bellman function.

2. For t ∈ t∗ = {1, 2..., t̂} repeat:

a) Find decision rules Rt, ..., Rt+t̃ minimizing

E




t+t̃∑

τ=t

z(xτ , aτ ) + νt−1(xt+t̃) | xt−1


 (2.19)

for all forms of information state xt−1 with usage of the entire system
model.

b) Take the final form of the Bellman function νt(x) as better approxi-
mation of the Bellman function.

c) Apply the decision at = Rt(xt−1) for given specific state xt−1.

d) Upgrade our experience with at and ∆t.

With the theory of method Iteration spread in time we ended the first tech-
nical part of this work. In next chapters, we will pay more attention to a
practical use and we will show why we use the approximation presented in
last two sections.
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Chapter 3

Futures dealing with using of
dynamic programming

In this chapter we will apprise of what the futures contracts are and how the
decision-making theory can help us with futures dealing. We will present an
easy example to show why the approximation and estimation are needed.
Starting this chapter we use some ideas presented in Kárný and Zeman
(2008).
First of all let us explain the basics of futures dealing.

3.1 Futures dealing

The futures contract is an agreement between a seller and a buyer to make
(as seller) and take (as buyer) delivery of a standardised quantity of a specific
commodity or asset of standardized quality on particular date at a specified
price. A futures contract gives the holder the obligation to make or take
delivery under the terms of the contract.
The futures dealing takes place only on organized markets (like stock mar-
ket), where the price of commodity is taken from the encountering of demand
and supply. Through the futures contracts we can invest in many commodi-
ties like metals, energy, rope, grain etc. or in many financial instruments
like currency, stock index, stocks and bond etc. All futures dealing can be
summed up into short motto: ”Buy cheap, sell expensive.”
For better view into futures dealing we present a short example, that took
place in USA in 1972: On the 5th July 1972 there was a chance to buy a
contracts for buying 5000 bushels of wheat in September for 1,5 USD/bushel
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(means 7500 USD/1 contract). The investor thought that the price of wheat
would grow up, so he bought 200 contracts. On the 3rd August the price of
wheat dramatically grew up to 1,72 USD/bushel, so the investor realize a
profit 0,22 USD/bushel (means 1100 USD/1 contract). With 200 contracts
the final profit is 220 000 USD.
In futures dealing the investors use their sense of business to find the optimal
trading strategy. Moreover, they can - using right mathematical formulation
of problem - use the theory we presented in chapter 2. In such case they will
try to estimate the evolution of future prices of commodities and get the
optimal strategy by using dynamic programming.

For applying the theory on futures dealing, we need few more notions and
we need to make clear what exactly our previous notation means in this
particular case.

t is time counted in days.

yt is the price of the commodity in time t.

st denotes the number of units of the commodity we hold or owe in time
t ∈ t∗. Obviously there are some restrictions for the amount of units
we hold/owe, let us denote them sd, su, st ∈ [sd, su].

at is action we can do in time t ∈ t∗. We buy or sell at units of the
commodity for the price Cyt where scaling factor C is given. For at it
obviously holds:

at = st − st−1 (3.1)

Which gives us:

st = s0 +
t∑

k=1

ak (3.2)

We denote the optimal action in time t as ao
t .

Kt is the capital we have in time t ∈ t∗. For Kt we get:

Kt = Kt−1 − Cytat − c|at| (3.3)

Where c means the fee for trading.
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gt means the gain in time t ∈ t∗. Obviously the gain is the negative value
of loss function: gt = −zt. So we will maximize instead of minimize.
Let us specify the form of gt. The gain consists of two parts: money
(the difference between capital we had and capital we have now) and
value of the units of commodity (the difference between the price of
the units of commodity we held/owned and the price of the units of
commodity we hold/own now):

gt = Kt −K0 + Cytst − Cy0s0 (3.4)

When we use the expressions (3.3) and (3.4) we get:

gt = −
t∑

k=1

(C(yk − yt)ak + c|ak|)− C(y0 − yt)s0 (3.5)

If we express gt−1 exactly the same way and compare it, we get the
recursion:

gt = gt−1 −
t−1∑

k=1

C(yt−1 − yt)ak − c|at| − C(yt−1 − yt)s0 (3.6)

= gt−1 − C(yt−1 − yt)st−1 − c|at|

Let us define the initial gain g0 = 0. Then with recursion (3.6) and
with expression (3.1) of at it holds:

gt = −
t∑

k=1

(C(yk−1 − yk)sk−1 + c|ak|) (3.7)

As in section (2.4), we assume that the gain function is additive and that it
depends on finite-dimensional information vector d(t) = (d1, . . . , dt), t ∈ t∗,
where di = (yi, ai), i ∈ {1, . . . , t}.
Our main aim is to find optimal strategy which consists of rules Rt acting on
the information state Pt ≡ (yt, d(t− 1)), Rt : Pt → at and which maximizes
the expected value of the gain

E[gt] =
∑t

k=1 z(d(k))

where z(d(k)) ≡ −C(yk−1 − yk)sk−1 − c|ak|, k ∈ {1, . . . , t} are partial gains.

19



3.2 Motivation example

We present following simple example as a motivation for using the approxi-
mations in dynamic programming. This example shows us that the Bellman
function is getting so difficult we are unable to evaluate it exactly.
We assume that the actual price yt depends only on two previous values yt−1

and yt−2 and does not depend on our decisions. Let us make classic linear
regression model and assume that the parameters in the model are known.
Then we get

yt = β1yt−1 + β2yt−2 + εt (3.8)

We also assume that we can buy or sell only one unit of commodity at time,
that gives us following representation of at.

at =





1 if we buy the commodity in time t
0 if we do nothing in time t

−1 if we sell the commodity in time t

At last we assume: the starting amount of held or owed units s0 as well as
ending amount st̂ are zero; s0 = 0, st̂ = 0.
We will make our strategy two steps forward, we proceed according to the
proposition (2.3) with the recursion (2.6):

ν(Pa∗t ) = max
at∈a∗t

E[z(d(t)) + ν(Pa∗t+1
) | at, Pa∗t ] (3.9)

starting with

ν(Pa∗
to+1

) = 0.

Thanks to the relation (3.1), we can rewrite the Bellman function with st

and yt.
The recursion starts:
1st step

ν(s1, s2, s3, y1, y2, y3) = 0

2nd step

ν(s1, s2, y1, y2) = maxa3∈a∗3 E[z(d(3)) + 0 | a3, y2, s2, y1, s1]

With the definition of partial gain z(d(t)) in time t we get
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ν(s1, s2, y1, y2) =
maxa3∈a∗3 E[−C(y2 − (β1y2 + β2y1 + ε3))s2 + c|a3|+ 0 | a3, y2, s2, y1, s1]

From a3 = s3 − s2, s3 = 0 and E[ε3 | a3, y2, s2] = 0 we get

a3 = −s2

ν(s1, s2, y1, y2) = −C(y2 − (β1y2 + β2y1))s2 + c|s2|
3rd step

ν(s1, y1) = maxa2∈a∗2 E[z(d(2)) + ν(s1, s2, y1, y2) | a2, y1, s1]

As in the second step we can write
ν(s1, y1) = maxa2∈a∗2 E[−C(y1−(β1y1+β2y0+ε2))s1−c|a2|−C((1−β1)(β1y1+
β2y0 + ε2)− β2y1)(a2 + s1) + c|a2 + s1| | a2, y1, s1]
Let us mark the conditioned form as θ and divide the cases that can occur
according to the values of s1. According to our assumption s0 = 0, so s1 ∈
{−1, 0, 1}

a) s1 = −1

Then the admissible actions and related values of θ are:
a2 = −1 : θ = C(y1−(β1y1+β2y0))+c+2C((1−β1)(β1y1+β2y0)−β2y1)
a2 = 0 : θ = C(y1−(β1y1+β2y0+))+C((1−β1)(β1y1+β2y0)−β2y1)+c
a2 = 1 : θ = C(y1 − (β1y1 + β2y0))− c

b) s1 = 0

Then the admissible actions and related values of θ are:
a2 = −1 : θ = C((1− β1)(β1y1 + β2y0)− β2y1)
a2 = 0 : θ = 0
a2 = 1 : θ = −C((1− β1)(β1y1 + β2y0)− β2y1)

c) s1 = 1

Then the admissible actions and related values of θ are:
a2 = −1 : θ = −C(y1 − (β1y1 + β2y0 + ε2)) + c
a2 = 0 : θ = −C(y1−(β1y1+β2y0))−C((1−β1)(β1y1+β2y0)−β2y1)+c
a2 = 1 : θ = −C(y1−(β1y1+β2y0))−2C((1−β1)(β1y1+β2y0)−β2y1)+c
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Even though we made many assumptions and restrictions the Bellman func-
tion ν(s1, y1) is quite difficult. If we made our strategy for more steps, we
would get into trouble with evaluating the expected value. That is why the
approximation is needed, especially when we are dealing with problems from
the real world which are obviously much more difficult than presented ex-
ample.
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Chapter 4

Proposal of improving the
method ”Iteration spread in
time”

In this chapter we will use the notations from chapter 3, we will deal with
the form of the Bellman function, present the method of its approximation,
which is already tested on real data, together with our proposal of approxi-
mation.

4.1 Form of the Bellman function

First and very important step is to choose the right form of the Bellman
function. As we said before and as the motivation example showed it is
rarely possible to exactly evaluate the Bellman function. We present here a
sensible choice of a finitely parameterized class of function where we search
for approximation of the Bellman function.
Let us assume that from our observation of the system we got the linear
autoregression model

yt = βT ψt−1 + εt,

where ψt−1 = (yt−1, . . . , yt−m)T , T means transposition, regression coeffi-
cients β and the finite variance σ of εt vary slowly with time.
The expression (3.5) shows that the action ak increases the gain if

−C(yk − yt)ak > c|ak|.
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So the action ak can positively contribute to the gain only if

sign(ak) = −sign(yk − yt),

the contribution is the higher the higher is the value |yk − yt| and it is an
increasing function of |ak|. So the optimal action ao

k should be chosen so that
sk reaches one of the bounds sd or su.
From this simple considerations we get very important conclusion: The max-
imum of the gain over all action sequences coincides with the maximum of
the gain over sequences that have non-zero actions at most at turning points
at which the commodity price exhibit local extremes. The maximizing ac-
tions make the elements of sequence {st}t∈t∗ pendulate between the bounds
sd and su.
We denote the turning points tk, 1 ≤ tk−1 ≤ tk ≤ t̂, k ∈ k∗ ≡ {1, . . . , k̂},
they are defined as follows:

tk = t if (yt−1 < yt ∧ yt > yt+1) ∨ (yt−1 > yt ∧ yt < yt+1).

Even if we knew y(t) ≡ (yt, yt−1, . . . , y0) we could not certainly say that t
is turning point. We treat the turnings points as random. Without a loss
of generality, we can take the first and the last time moments as turning
points. Then the other turning points are specified by specifying increments
nk:

nk = tk − tk−1, nk ∈ {1, . . . , n̂}, n̂ < ∞
Let us denote Nk a random quantity determining the increments nk and
p(Nk = n) the probability that Nk equals to n. The experiments show that
the quantities in sequence {Nk}nk∈{1,...,n̂} are independent.

The actions in time moments different form tk, k ∈ k∗ are equaled to zero,
aτ = 0, τ ∈ t∗ \ {tk}k∈k∗ . With this notation we can rewrite the expression
(3.7) of gain gt, t ∈ t∗ as follows:

gt = −
k̂∑

k=1

(C(ytk−1
− ytk)stk−1

+ c|atk |), (4.1)

where tk̂ is the last turning point, tk̂ = t.

Our next assumption is that we know all optimal actions ao
t , t ∈ t∗. The final

information state is
P o

t = Pt ∪ {Θ} ∪ {ao
t}t∈t∗ , (4.2)
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where Θ consists of regression coefficients β, variance σ and the probabilities
p(Nk = n) for all n ∈ {1, 2, . . . , n̂}, k ∈ {1, 2, . . . , k̂}.

Let us denote Φtk+1
≡ (ytk+1

, ytk+1−1, . . . , ytk+1−η+1, 1)T , where η = max{m, n̂},
and assume that the information content in {ao

t}t≤tk does not influence the
expected value of Φtk+1

. Then for tk+1 = tk + n we have

E[Φtk+n | y(tk), a
o(tk), Θ, n] ≈ E[Φtk+n | y(tk), Θ, n] = W (Θ, n)ψtk (4.3)

where weighting matrix W depends on regression coefficients β and explic-
itly on n.

Proposition 4.1 (Parametric form of the Bellman function) Let us
consider the information state (4.2) and the independence of expected value
of Φtk+n on ao(tk). Then the Bellman function ν(P o

tk
) corresponding to the

maximized gain (3.7) has the fixed functional form

ν(P o
tk

) = KT (Θ, so
tk−1

)Φtk . (4.4)

The known values ao(tk−1) uniquely determine so(tk−1). The real (η + 1)-
dimensional vectors P (Θ, s), s ∈ {sd, su} parameterize the Bellman function.

Proof : We prove this proposition for the recursion (2.6) with maximum:

ν(P o
tk

) = max
atk

∈{sd−stk−1
,su−stk−1

}
E[z(d(tk)) + ν(P o

tk+1
) | atk , P

o
tk

] (4.5)

We take t = t̂ as the last turning point. At this time the Bellman function
is equal to zero and that can be written as K(Θ, s) = 0. To proof a generic
induction step we take the form (4.4) and insert it into right-hand side of
(4.5). By inserting the parametric form we already performed the maximiza-
tion, because the optimal decisions are a priori known. On the right-hand
side we get

−C(ytk−1
− ytk)s

o
tk−1

− c|ao
tk
| (4.6)

+KT (Θ, so
tk

)
∑
n

E[Φtk+n | y(tk), Θ, n]p(Nk+1 = n)

=︸︷︷︸
(4.3)

−C(ytk−1
− ytk)s

o
tk−1

− c|ao
tk
|

+KT (Θ, so
tk

)
∑
n

W (Θ, n)p(Nk+1 = n)ψtk
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The last member in the equation KT (Θ, so
tk

)
∑

n W (Θ, n)p(Nk+1 = n)ψtk is
a linear function of ψtk . The maximization over ao

tk
leaves this expression

linear function of ψtk with weights depending on Θ and so
tk

. The expression
of partial gain can be added to the weights to the known positions corre-
sponding to ytk and ytk−1

, so we get weighting matrix W̃ . Then the equation
(4.5) looks as follows:

ν(P o
tk

) = KT (Θ, so
tk

)
∑
n

W̃ (Θ, n)p(N = n)ψtk (4.7)

Obviously ψtk can be treated as sub-vector of Φtk , so by adding zero to
appropriate place in Φtk we get K̃T (Θ, so

tk
)Φtk as linear function of Φtk .

The dependence on so
tk

can be express as dependence on so
tk−1

because we
know that the value of so

tk−1
is on the other boundary of [sd, su] than so

tk
. So

finally we get
ν(P o

tk
) = K̃T (Θ, so

tk−1
)Φtk . (4.8)

The assumptions of prior information about the good guess of past optimal
values so(t) ≡ {so

t , s
o
t−1, . . .} as well as about times of turning points tk allow

us to estimate directly the weighting vectors P (Θ, s), s ∈ {sd, su}.
Let us consider fixed Θo ∈ Θ∗ for which the parametric form of the Bellman
function is closest to the correct one. This permits us to suppress Θ as the
argument of the weighting vectors K(s) ≡ K(Θo, s).
Now when we know the form of Bellman function, we will pay attention to
the methods of approximation of K(s) themselves. Let us present the meth-
ods without the turning points. We do this because the way of implementing
the methods together with modeling of turning points is not clear yet and
formally there is not any big difference (we only suppress second index k).

4.2 Approximation by least squares

This method is fully described in Křivánek (2008). We present here only
brief description with one difference from the way it is written in Křivánek
(2008), namely we will use our assumption that the optimal decisions are a
priori known.
We start with following equation:

ν(Pt) = max
st

E[z(d(t)) + ν(Pt+1) | Pt, st]. (4.9)
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Then we take the parametric form of the Bellman function (4.4) and make
the approximation

ν(Pt) = KT (st−1)Φt (4.10)

where Φt = [yt, . . . , yt−η+1, 1]T and KT (st−1) = [k1(st−1), . . . , kη(st−1), kη+1(st−1)]
with ki as functions of st−1, only two values of st−1 make sense,
st−1 ∈ {sd, su}.
We are now in time t̃ and we work with time moments t ∈ {1, 2 . . . , t̃}, so
we have good guesses of optimal actions ao

t and optimal values so
t . We can

insert these actions into (4.9), thus we already performed maximization step
and there is no need to write expected value, because we already have the
exact values.
So it holds:

K(so
t−1)Φt + εt = z(d(t)) + K(so

t )Φt+1, (4.11)

where εt denotes the deviation we did by taking parametric form of the
Bellman function and by assuming the Bellman function is time-invariant.
For each t ∈ {1, 2, . . . , t̃} we can express εt as follows:

εt = z(d(t)) + K(so
t )Φt+1 −K(so

t−1)Φt. (4.12)

We are searching for K(so
t−1) that would minimize

LS =
t̂∑

t=1

ε2
t . (4.13)

By minimizing (4.13) we get Ko(so
t−1) and insert it into (4.10). This gives

us the approximation of time-invariant Bellman function which we use for
finding the best decision in time t̃ + 1.

27



4.3 Extended iteration spread in time

We will proceed the same way as in previous section, we take the stationary
Bellman equation

ν(Pt) + κ = max
at

E[z(d(t)) + ν(Pt+1) | at, Pt] (4.14)

and insert into it the parametric form of the Bellman function (4.4). We get

KT (so
t−1)Φt + κ + C(yt−1 − yt)s

o
t−1 + c|ao

t |︸ ︷︷ ︸
κ̃

+εt+1 = KT (so
t )Φt+1 (4.15)

where innovations εt denotes the deviation we did by taking parametric form
of the Bellman function.
The innovations εt have finite variances ρt varying slowly in time, so from
now we will deal with its (approximately) common value ρ. The innovation
in time t < t̃ obviously depends on K, y(t), so

t , s
o
t−1 and ρ, but it also depends

on previous εt+1, because that influenced K(so
t ) and similarly we can go on

until t̃. For evaluation the optimal values so
t , t < t̃ we needed all prices y(t̃),

that gives us the dependency of εt+1 on y(t̃). In our following ideas and
operations we will neglect this dependency assuming it is not significant,
plus we will assume that they have normal distribution Nεt+1(0, ρ). The
construction of εt gives us its zero expected value:

E[εt | K, y(t), ρ, so(t̃)] ≈ E[εt | K, y(t), ρ, so(t)] ≈ E[εt | K, y(t), ρ] = 0.

Again we can express εt+1:

εt+1 = KT (so
t )Φt+1 −KT (so

t−1)Φt − κ̃. (4.16)

We can look at (4.16) as at the regression model: KT (so
t ), K

T (so
t−1) and κ̃

are coefficients and Φt+1 with Φt express regressors. In approximation by
least square we were trying to minimize εt+1, now we will try to find most
probably value of εt+1 by finding most probably value of K(s), s ∈ {sd, su}.
We will use the method of maximum likelihood.
We can split both columns of K(s) as follows

KT (sd) = [αd, pd], K
T (su) = [αu, pu],

where αd, αs are scalars. The equation (4.14) imply that if a function ν̃ solves
the equation than even ν̃+arbitrary constant does. That gives us a freedom
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to shift the value of the Bellman function by an arbitrary constant, so we
can assume that αd > 0, αu > 0.
yt+1 is the only price that is included in Φt+1 and is not included in Φt, so
we can transport the distribution of εt+1 on distribution of yt+1. That gives
us the model parameterized by the weights K of the Bellman function and
by the variance ρ:

f(yt+1 | K, ρ, so
t , Φt) (4.17)

=

√√√√ |αu|2δ(su,so
t )|αd|2δ(sd,so

t )

2πρ
exp

{
−([αu, pu, αd, pd, κ̃]T ζt+1)

2

2ρ

}

where
ζt+1 ≡ [δ(su, s

o
t )Φ

T
t+1 − δ(su, s

o
t−1)Φ

T
t , δ(sd, s

o
t )Φ

T
t+1 − δ(sd, s

o
t−1)Φ

T
t ,−1],

δ(s, s̃) =

{
1 if s = s̃
0 otherwise

Now we construct the likelihood function Lt(K, ρ) for (4.17):

Lt(αu, pu, αd, pd, κ̃, ρ) = |αu|υut|αd|υdtρ−
1
2
(υut+υdt)(2π)−

1
2
(υut+υdt)

× exp

{
−([αu, pu, αd, pd, κ̃]T At[αu, pu, αd, pd, κ̃]

2ρ

}

(4.18)

where
At = At−1 + ζT

t ζt, starting by A0 = 0
υut = υu(t−1) + δ(su, s

o
t ), starting by υu0 = 0

υdt = υd(t−1) + δ(sd, s
o
t ), starting by υd0 = 0.

Let us fix the time moment t and simplify the notation:
A = At, υu = υut, υd = υdt, υ = υu + υd

µ ≡ [αu, pu, αd, pd, κ̃]T ,
bu ≡ [1, 0, . . . , 0]T is (2η + 3)-dimensional vector with scalar 1
at the position of αu,
bd ≡ [0, . . . , 0, 1, 0, . . . , 0]T is (2η + 3)-dimensional vector with scalar 1
at the position of αd.

From the likelihood function (4.18) we make the logarithmical likelihood
function and get
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µ̂, ρ̂ ∈ arg minµ,ρ

[
υu ln(bT

u µ) + υd ln(bT
d µ)− 1

2
υ ln(ρ)− µT Aµ

2ρ

]

︸ ︷︷ ︸
h(µ,ρ)

We are searching for the minimum of the function h(µ, ρ), the necessary
condition for extremes tells us, that the partial derivation of h(µ, ρ) are
equal to zero. From this condition we get

υu
bu

bT
u µ̂

+ υd
bd

bT
d µ̂

=
Aµ̂

ρ̂
, ρ̂ =

µ̂T Aµ̂

υ
(4.19)

If we try to express one of unknown quantities µ̂ or ρ̂ we find out that one
equation is a different version of the second one. So we take ρ̂ as a parameter
and we will work with the first equation from (4.19).
Introducing

Bu ≡ A−1bu, Bd ≡ A−1bd,

ωu ≡ BT
u ABu = bT

u A−1bu, ωd ≡ BT
d ABd = bT

d A−1bd,

ψ ≡ BT
u ABd = bT

u A−1bd,

we search for the solution of (4.19) in following form

µ̂ = βuBu + βdBd,

where βu, βd are scalars.
We insert this form into (4.19) and then confront the coefficients of bd and
bu from both sides of the equation. We get:

υu

βuωu + βdψ
=

βu

ρ̂
,

υd

βdωd + βuψ
=

βd

ρ̂
(4.20)

It has the solution

βd =

√√√√L + sign(N)
√

(L)2 + 4MN

2N
(4.21)

βu =
1

ψ
(
ρ̂υd

βd

− βdωd) (4.22)
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where

L = ρ̂(
ψ2

ωu

(υu − υd) + 2υdωd) (4.23)

M = (ρ̂υd)
2

N = ψ2 ωd

ωu

− ω2
d

The final solution can be constructed by a simple iterations initialized by
counter j = 1 and a guess ρ̂(j−1) of ρ̂.

• Appoint ρ̂0.

• Evaluate guess βdj inserting ρ̂(j−1) into (4.21) and then insert βdj into
(4.22) and evaluate βuj.

• Define ρ̂j according to (4.19) with the guess of µ̂j = βdjBd + βujBu

• Increase counter j and repeat the algorithm till (expected) conver-
gence.

Let us now shortly confront the approximation by least squares and our
method. In both cases we used the parametric form of the Bellman func-
tion, in first presented method we joined the deviation done by taking time-
invariant Bellman function (κ) and the deviation done by inserting the para-
metric form. In second method we split these two deviations. On the other
hand we do not need an assumption about normality in the approximation
by least squares. But the biggest difference is, as we said before, that the
approximation by least squares is trying to find K(s) that would minimize
the deviation, the method extended iteration spread in time is trying the
most probably value of K(s).

4.4 Experiments

In this section we first present the results of the approximation by least
squares without insertion of optimal values. This method has been tested
on real data for quite a long time, so its results are predicated.
The method was tested on 5 markets: with cocoa (CC), petroleum-crude oil
light (CL), 5-year U.S. treasury note (FV2), Japanese yen (JY) and wheat
(W). The results are in following table.
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Market Net profit
(USD)

Trades Winnig
trades

Losing
trades

Transaction
cost (USD)

CC -101510 1147 159 988 -13920
CL -102310 829 181 648 -10740
FV2 -21961.25 337 57 280 -3680
JY -305712.5 1563 246 1317 -19600
W -85355 612 102 510 -7380

There are only few performed experiments of the approximation by least
squares with the optimal decisions yet, but in these few experiment the usage
of the optimal decisions and of the parametric Bellman function showed good
results. We present here the table of results, even though we can not confront
them directly with previous method due to small number of realized trades.

Market Net profit
(USD)

Trades Winnig
trades

Losing
trades

Transaction
cost (USD)

CC -6300 19 7 12 -220
CL -33430 91 25 66 -1180
FV2 12949.375 15 6 9 -160
JY -72427.5 32 5 27 -340
W -11175 17 4 13 -200

Based on the results of experiments, even though we are still in minus num-
bers, we do expect big improvement.
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Chapter 5

Conclusions

In this work we were able not only to explain the usage of the theory of
dynamic programming and its approximations on the futures dealing, but
we were also able to follow with longtime running research by proposing the
new approach to solve the optimization task of futures dealing.
We proved that the best approximation of the form of the Bellman function
is the parametric one K(Θ, s) and that we should do the decision only on
time moments which are turning points. Next contribution of this work is
the proposal of new method Extended iteration spread in time even though
we were not able to directly confront the results of this method with the
results of The approximation by least squares. But based on theoretical con-
frontation we do expect good results of our method.
As we said in the introduction, this work must be treated as small part of
the research. We will have to test the method Extended iteration spread in
time on real data and also we will have to find a way how to model the
appearance of the turning points. During the construction of the parametric
form of the Bellman function as well as during proposal itself we made a
lot of assumptions, in the future we should examine if all assumptions are
needed or how to reduce the influence of the assumptions.
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