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Chapter 1

Introduction

In past century, the study of conflicting situation, a collision of interest, received a consid-
erable scientific interest. Although some game-theoretical results can be traced to the 18th
century, the first rigorous results were developed in the 1920s by Borel and von Neumann.
The establishment of game theory as a scientific field is usually related to the publication
of [50] in 1944. Since then, a great variety of scientific disciplines, like economics, biology,
sociology and politics, become interested in study of conflicting situations.

An individual facing a decision takes into account different outcomes. However, he or
she may not be the only decision-making person and the resulting outcome often depends
on multi-person decision. In this case, optimality is not a well defined concept and instead,
we speak of equilibria.

There is a great variety of different equilibrium concepts. Among the two widely used
belongs a solution to a noncooperative game, where, roughly speaking, each player can
not improve his or her outcome by altering his or her decision unilaterally. This concept,
named Nash equilibrium concept, was introduced in the early 1950s in [34]. A different
situation arises when cooperation is present. We then speak of a Pareto optimal solution
when there is no other joint decision such that the performance of at least one player can
be improved without degrading the performance of the others.

Probably the first study of a hierarchical model of conflicting situations is due to
Stackelberg [51]. Nowadays, a Stackelberg (or sometimes termed also single-leader-follower)
game is used to model an economic situation when on the market the dominant firm
(e.g., due to some temporal advantage), called the market leader (or upper-level player),
maximizes its profits under the assumption that all other firms present on the market, called
followers (or lower-level players), play a noncooperative strategy. Mathematically, this
situation is modeled via bilevel optimization problems (namely when only one follower is
present on the market) and mathematical programs with equilibrium constraints (MPECs).
The MPEC class of optimization problems was introduced in 1970s motivated by other
applications to mechanics and network design. In past decade MPECs received an extensive
interest of mathematicians. Following the progress in computational power of computers,
there is now a wide range of algorithmic approaches to MPECs. We refer the reader to
monographs [25], [39] and [30, Chapter 5] on MPECs, and [12] on bilevel programming,.
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Our main interest in this thesis, however, is focused on the conflicting situations leading
to problems which in a sense lie in between Nash and Stackelberg games, to the so-called
multi-leader-follower games. This situation occurs, as the name suggests, when more than
one player is in a dominant position and hence has to take into account not just the reaction
of players on the lower level but also of the remaining leaders.

Concerning the behavior of the leaders, one can again distinguish two situations: the
decision making of the leaders forms a Nash equilibrium on the upper level, or all leaders
cooperate in order to achieve an upper-level Pareto optimal strategy. To express mathe-
matically the former situation one can use the novel paradigm of equilibrium problems with
equilibrium constraints (EPECs). This class of hierarchical decision making models was
probably directly addressed for the first time in [47]. The latter situation leads to a differ-
ent class of hierarchical problems, nowadays called multiobjective problems with equilibrium
constraints (MOPECs).

The aim is, of course, to find (local) solutions to the mentioned problems. For this
purpose, various stationarity concepts have been introduced. To verify that a given point
is stationary is in general easier then to check that it is a local solution. However, for a
local solution to be stationary, certain constraint qualification must hold true. One can
observe two approaches to the study of MPECs: to restrict the attention to problems
constrained by a nonlinear complementarity problem and to study the Lagrange function
and behavior of the corresponding multipliers; or to impose a rather strict assumption that
the lower problem attains (locally) a unique solution. The latter restriction enables us to
apply successfully the so-called implicit programming approach.

In this thesis, we investigate stationarity concepts tailored to MPECs and EPECs and
the connection between the various stationarity concepts. Due to the structural dependence
of EPECs on MPECs, we naturally build upon known results about MPECs. We pay
the main attention to a subclass of MPECs constrained by a nonlinear complementarity
problem since this is the case of currently known applications of EPECs.

One of the main aims was to construct a bridge between stationarity conditions resulting
from the above mentioned approaches. To this end we use many results from [45], [39]
and [36]. However, the structure of our considered problem is slightly different, hence
we decided to present most of the results with full proofs. This is done in Chapter 2.
The main attention is paid to the so-called Clarke stationarity and C-stationarity, both
based on application of Clarke generalized calculus. These two stationarity concepts are
of particular importance to EPECs.

In Chapter 3 we give mathematical formulation of EPEC. Interestingly, the study of this
class of problems was boosted by modeling of conflicting behavior of agents in deregulated
electricity markets; we devote a separate section to several source problems which are
currently of high scientific interest. We aim to address the question of existence of Clarke
and C-stationary points and also of solutions to EPECs in mixed strategies.

Chapter 4 is devoted to MOPECs. We derive necessary optimality conditions and using
the novel subdifferential calculus for set-valued mappings by Mordukhovich we establish
existence of solutions to these problems.

In the last chapter, Chapter 5, several numerical methods are presented. All known



algorithms to find solution to EPEC depend directly on techniques to solve MPECs nu-
merically, in some cases due to very strong assumptions imposed on the data of EPEC.
For this reason we attempt to derive an alternative algorithm based on the homotopy
method tailored specifically to a special subclass of EPECs. Finally, an effective numerical
technique to solve MOPECs is developed.

Parts of the original work which could be found in this thesis have already appeared
in separate publications [8], [9] and [31] and working papers [10] and [11], some previous
results by the author have been completely reworked and generalized to fit the structure
of this thesis or complemented with additional results. Other sources have been also
used throughout the thesis when appropriate or necessary. In each case, this is carefully
documented.
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Chapter 2

Mathematical Program with
Equilibrium Constraints (MPEC)

In this chapter we investigate MPECs and associated first order necessary optimality con-
ditions. In the center of focus of this chapter are stationarity concepts for MPECs with
equilibrium constraints in the form of a nonlinear complementarity problem. We discuss
the relations between stationarity concepts, in particular, of those based on Clarke gener-
alized calculus. Also, we discuss the qualification conditions which are essential in deriving
necessary optimality conditions for MPECs of the considered structure.

2.1 Mathematical formulation

An MPEC is an optimization problem with two sets of players; one leader trying to solve
an upper-level minimization problem and one or more lower-level players, followers, trying
to reach a parameterized (by the upper-level decision variable) Nash equilibrium by solving
a lower-level equilibrium problem among themselves.

More precisely, this problem is defined as follows. Let (x,y) denote the multistrategy
composed from the strategies x € R% of the leader and multistrategy y € R™2 of m
followers. Suppose that ¢ : Ri+t™2 — R is the objective function of the leader and
k C R4+ ig 4 nonempty and closed set of constraints. For the feasible strategy z, let
the set of solutions to the lower-level equilibrium problem, denoted by S(x), be closed.

Definition 2.1. (solution to abstract MPEC)
An admissible multistrategy vector (Z,7y) € Ri*t™z js g solution to an abstract MPEC if
(Z,9) is a solution to the following optimization problem

minimize @(x,y)
x7y
subject to y € S(x), (2.1)
(z,y) € k.



6 Mathematical Program with Equilibrium Constraints (MPEC)

The solution to the lower problem represents an equilibrium condition and S(x) specifies
the set of such equilibria. This is the reason for the term “equilibrium constraints” in
MPEC.

Note that the minimization in mathematical program (2.1) is considered in both vari-
ables, x and y, and hence we implicitly assume the so-called optimistic (or weak) formu-
lation of MPEC. By the term optimistic we mean that whenever the lower problem has
multiple solutions for a given x, the lower-level players choose one of the “best” in the sense
that it minimizes the upper-level objective for a fixed x. We can explicitly express this in
the reformulation of (2.1) to

rninixrnize ©°(x), (2.2)
where
¢’(x) :=inf {o(z,y) |y € S(2), (z,y) € K} (2.3)

In a similar way we can obtain a pessimistic (or strong) formulation, assuming that the
lower-level players choose one of the “worst” multistrategies with respect to the upper-level
objective when multiple options are possible. Replacing “inf” by “sup” in (2.3) hence results
in a “min-max” formulation of MPEC.

Observe that we can equivalently rewrite the constraints in (2.1) in a compact form

(x,y) € kN Gph S.

The set £ N Gph S is hence called the feasible region of MPEC (2.1).

Since the mathematical program (2.1) is generally nonconvex due to its hierarchical
structure, in order to guarantee the existence of its solution we need to impose additional
restrictions on the data.

Theorem 2.2. Let o be lower semicontinuous, Gph S be closed and there exist a constant
c € R such that the set

Ee={(z,y) € kN Gph S | p(z,y) < c}
is nonempty and bounded. Then MPEC (2.1) possesses a solution.

Proof. The existence of solution is due to the classical Bolzano-Weierstrass theorem. For
details, see |39, Proposition 1.1]. O

Let kK = U x R™2 where U is a closed set of feasible strategies of the leader and
let V1, ..., V™ C R2 denote closed convex sets of admissible strategies of followers. Let
f7 o Rbtmz2 5 R 5 = 1,....m, denote the individual objective of the jth follower and
assume that for each j = 1,...,m, the objectives f/ are continuously differentiable on an
open set containing U x (), where {2 := X;nzl V7. Finally, define

vylfl(xa y)
F(.T,y) =
vymfm(x> y)
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Then we can replace the equilibrium constraint y € S(x) in (2.1) by the equivalent gener-

alized equation
0€ F(z,y) + N(y; ). (2.4)

Thus an admissible multistrategy vector (z,7) € RT™2 ig a solution to MPEC if (z, ) is
a solution to the following optimization problem
minimize ¢(x,y),
I,y

subject to 0 € F(x,y) + N(y; ), (2.5)
zeU.

This particular problem belongs to a broad subclass of problems of MPECs (2.1) with the
solution map in the form

S(z) ={y e R™|0 € f(z,y) + Q(z,y)}

with function f : Rtz — R™2 and multifunction @ : Rhit™2 — R™2 Mathematical
program

minimize ¢(z,y)
x7y

subject to 0 € f(z,y) + Q(x,y), (2.6)
(z,y) €K
covers optimization problems constrained by classical variational inequalities and comple-

mentarity problems. In this thesis we are particularly interested in the latter, i.e., the
subclass of MPECs given by the mathematical programs

minimize ¢(x,y)
T,y
subject to 0 < F'(z,y) L F*(x,y) >0, (2.7)
reU,

with functions F'!, F? : Riitmiz _ R™2 continuously differentiable on an open set contain-
ing U x R™2, To emphasize the presence of complementarity constraints, we refer to (2.7)
as to the mathematical program with complementarity constraints (MPCC).

For a deeper insight to the analysis of MPECs and MPCCs, we refer the readers to the
monographs [25], [39] and [30].

Another class of hierarchical problems with one upper-level player are bilevel programs.
These problems are characterized by the lower problem in the form of optimization problem

minimize f(z,vy)
v (2.8)
subject to y € V()

with the solution map

S(z) = argmin f(x,y).
yeV(z)
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Note that bilevel programs constitute a subclass of MPECs in the sense of Definition
2.1. Thus just like in the case of an abstract MPEC, if the solution to the lower-level
problem is not unique, the upper-level objective function is not well determined and hence
the problem is ill-possed. The optimistic reformulation is the usual way how to overcome
this ill-possedness.

On the other hand, MPEC (2.6) can be understood as the generalization of a bilevel
program only when the lower problem is replaced by its necessary and sufficient optimal-
ity conditions, either represented by the generalized equation, variational inequality or
Karush-Kuhn-Tucker (KKT) conditions in the form of complementarity problem, entering
the upper problem as constraints. Note, that this is possible if the problem (2.8) is convex
and also some constraint qualification, e.g, Slater constraint qualification, is satisfied. Oth-
erwise, one can detect stationary points which are not even feasible in the original bilevel
program.

A bilevel program is in turn a special case of a hierarchical mathematical program
which possesses multiple levels of optimization. Such multilevel mathematical programs are
useful in modeling of hierarchical decision making processes and optimization of engineering
designs, see |25, Chapter 1.2] and references therein.

Though on the first glance it might look appealing, the equivalent reformulation of
(2.8) to the form

z € V(z),

[z, 2) <inf {f(z,y) |y € V(2)}

does not ease the investigation of the bilevel problems. This is due to the fact that the
second constraint in (2.9) does not satisfy any constraint qualification. For more on this
subject, see early work [35], a recent paper [14] and the references therein. For other
relations between bilevel programs or MPECs and other well-known optimization problems,
solution algorithms and applications, see [13] and the references therein.

(2.9)

2.2 Necessary optimality conditions via nonlinear pro-
gramming

Some MPECs can be converted to the following form

minimize ¢(x,y)

subject to y = S(z), (2.10)
xeU.

Assume that ¢ : Ri+™2 — R and S : R — R™2 are locally Lipschitz continuous functions
and that U C R" is a closed set. Then, if we set h(z) := ¢ o ®(z) with
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the MPEC (2.10) turns out to be a nonlinear program (NLP)

minimize h(x)
f‘ (2.11)
subject to x € U,

where h : R — R is locally Lipschitz continuous function. If Z is a local minimizer of
(2.11), then one has
0 € Oh(z) + N(z; U). (2.12)

Using the formula for upper approximation of limiting subdifferential of composite
function, the necessary optimality conditions for MPEC (2.10) are as follows.

Theorem 2.3. Let (Z,y) be a local minimizer of (2.10). Then there exist vectors (u*,v*) €
dp(x,y) such that
0€u*+D*S(Z)(v*)+ N(z; U). (2.13)

Proof. For proof see |38, Theorem 1.6]. O

From now on, assume ¢ to be continuously differentiable. Thus the generalized equation
(2.13) attains the form

0 € Vap(7,9) + D*S(2)(Vyp(2,9)) + N(7; U). (2.14)

In MPECs, the set U has frequently implicit structure and hence to obtain necessary
conditions in terms of the original data of the problem one needs to use the chain rule to
compute upper approximation of N(Z;U) under suitable constraint qualification.

In accordance with nonlinear programming, the generalized equation (2.14) defines a
natural stationary concept. However, in most cases we may not be able to compute the
coderivative D*S(z)(V,¢(z,y)) exactly. Then we have to confine ourself with its upper
approximation and thus weaker stationarity conditions.

For S locally single-valued around Z and locally Lipschitz, one such possible upper
approximation can be (95(z)"V,¢(, ) or even its upper approximation. Clearly, this
leads to still weaker stationarity conditions.

2.3 Mathematical program with complementarity con-
straints

Let us take a closer look at the mathematical program (2.7). Note that for a special case
when F2(z,y) := y, MPCC attains the form of (2.5) with Q = R since

S(x) ={y e R™2|0 < F'(x,y) L F?(x,y) >0} (2.15)
= {y e R™|0 € F'(z,y) + N(F*(z,y); RT?)}. (2.16)
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There are also other ways how to express the solution map S which assigns z € R the
solution set of the nonlinear complementarity problem (NCP)

find y

2.17
such that 0 < F'(z,y) L F?(x,y) >0, (2.17)
e.g., via the so-called Pang NCP function
S(z) = {y € R™2|0 = min{F'(x,y), F*(z,9)}, i =1,...,mly}, (2.18)
or using the graph of normal cone mapping
_ m F*(z,y) o
S(a:)—{yER |0 e ( Pz, y) € GphN(;RY) . (2.19)

Another possibility is to work with an enhanced version of the solution map, S¢, in which
we introduce extra variable v = F!(z,y) and obtain

S¢(x) = {(y, V) € R™ x R™|0 € < F}é’(i/)y; v ) + N(y, v;R™ x ]RT)} . (2:20)

The multifunction S¢ is related to the the solution map S by the following relationship

0= (o )

2.3.1 Stationarity conditions for MPCCs

We can look at the MPCC (2.7) as a special constrained mathematical program having
additionally to a general constraint set U also finitely many functional constraints of in-
equality and equality types. From this perspective we can work with a whole class of
stationary concepts for MPCCs which are centered around Lagrange function. For obvious
reasons these are sometimes called KKT-type stationarity concepts.

First, let us introduce the sets of indices related to activities of constraints in comple-
mentarity problem (2.17) at (Z,7)

I'"(z,9) ={i € {1,...,ml}|F'(z,9) > 0, F}(z,9) = 0},
L(z,9) = {i € {1,....ml}|F}(z,5) = 0, F}(z,7) > 0},
I°(z, ) ={i € {1,...,ml}|F(z,y) = 0, F}(z,y) = 0}.

IS
4

If there is no doubt about the reference point, we write only I+, L and I°. The index set
1Y is usually called the index set of biactive inequality constraints. For brevity, we denote
a* = |I"(z,y)| and a® = |I°(z, 9)|.
Consider the following auxiliary nonlinear program
minimize (x,y)
x7y
subject to F'(x,y) >0, F*(x,y) >0, (2.21)
x e U,
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which results from the MPCC (2.7) by ignoring the complementarity structure of con-
straints. The first order optimality conditions of the NLP (2.21) are as follows:
There exist multipliers (A\'; A\?) and a vector £ € N(x;) such that

mla mla

0=Vap(z,y) = Y NV F Nz, y) = Y NV F(2,y) +¢,
=1 =1

mla mlz

0= Vyp(z,y) — Z)\VF x,y) Z/\2V F2(z,y), (2.22)

0< F'(x,y) L\ 2 o,
0 < F%(x,y)L)\* >0,
£e N(z;U).

Set G(x,y) = (F'(x,y))" F*(z,y). Then similarly to the conditions above, the first order
optimality conditions of the MPCC (2.7) are given by:
There exist multipliers (A', A2, \%) and a vector ¢ € N(x;Q) such that

mla mla
0=Vop(z,y) = > NVF (z,y) = Y NV Fl(x,y) - \9V,G(x,y) +¢,
=1 =1
mla mla
0= Vyp(z,y) Z/\ V,Fl(z,y) Z/\2V F(z,y) — \°V,G(z,y),
G(z,y) =0 (2.23)

FLIUIO(xay) =0, F11+(957?J) >0,
Fiigp(z,y) =0, Fi(z,y) >0,
Ae =0, Ajo >0,

A =0, M\, >0,

£e N(z;U).

Now, since

(VG(z,y)" = F'(z,y) VF*(z,y) + F*(z,y) ' VF'(z,y),

let us rearrange conditions (2.23), setting

A=A+ X (2, y), ML=+ AL (2,y), (2.24)

)‘I+UIO )‘}”ruIO’ )\LUIO )\iUIO‘ (2-25)

Due to the nature of index sets I*, L and I, this yields the following representation of the
first order optimality conditions:
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There exist multipliers (A", \¥*) and a vector &€ € N(z; ) such that

0= V.p(z,y) — Z )\FV F (z,y) — Z )\FVFZ(.T y)+¢&,

i€ LUIO ieI+ulo
0=V,p(x,y) — Z )\FVFl(xy Z )\FVFQ(.T Y), (2.26)
i€ LUIO i€I+UI0 '
Ao >0, MY >0,

£e N(z;U).

Following the terminology coined in [45], the conditions (2.26) are called strong sta-
tionarity conditions. The investigation of MPCCs gave rise to a whole series of stationary
concepts tailored to MPCCs. Their respective conditions differ only in requirements im-
posed on vectors /\%1 and )\IFOQ. In this respect, the weakest stationarity concept involves
no restrictions on biactive multipliers.

Definition 2.4. (weakly, C-, M- and strongly stationary point)
Let (Z,y) be feasible for the MPCC (2.7). Then we call the point (Z,7)

i) weakly stationary (or critical) if there exist multipliers ()\Fl, )\FQ) and a normal § €
N(z;U) such that the conditions

0=Vop(@.9)— > MN'V.ENZ,5) — > NV FA3,9) +¢,

i€ LUIO 1 ieI+UuI0 ] (2.27)
0=V,o(z.9) — Y MN'V,Flzg) - Y MNV,F(z7),

i€ LUIO eI t+ulo

are satisfied.

ii) C-stationary if it is a weakly stationary point and, additionally, )\ZFl )\ZFQ > 0 for all
i€l

iii) M-stationary if it is a weakly stationary point and, additionally, either )\ZFI > 0 and
AP >0, or AFPAF? =0 for all i € I°.

iv) strongly stationary if it is a weakly stationary point and, additionally, )\fol > 0,
M S > 0.

In the above definition, “M” and “C” stands for Mordukhovich and Clarke, respectively.
Note that if 19 = (), i.e., in the (lower-level) strict complementarity case, strong, M-, C-
and weak stationarity concepts coincide. Also, the restrictions imposed upon biactive
multipliers directly result in the following chain of implications

strong stationarity = M-stationarity = C-stationarity = weak stationarity.

Clearly, Slater constraint qualification can never hold at any feasible point of (2.7).
It is well known that at any feasible point, also linear independence constraint qualifi-
cation (LICQ) or Mangasarian-Fromowitz constraint qualification (MFCQ) are violated.
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This phenomenon is closely related to the geometry of the complementarity structure of
constraints and results in the unbounded set of Lagrangian multipliers. This leaves the
conventional numerical optimization methods with a possibility of failure of convergence
to a solution.

In [45] one can find suitable variants of both LICQ and MFCQ for MPCCs with ge-
ometric constraints given by finitely many functional constraints of the inequality and
equality types. Then we say that the MPCC (2.7) satisfies the MPEC' linear independence
constraint qualification (MPEC-LICQ) and the MPEC Mangasarian-Fromowitz constraint
qualification (MPEC-MFCQ) at a feasible point (Z,y) if the auxiliary nonlinear program

minimize ¢(x,y)
T,y
subject to FLlufo(IB,y) =0, Fji(z,y)

F12+U10(37,y) =0, Fg(aj’y)
relU

) (2.28)

satisfies LICQ and MFCQ at (Z,y), respectively. The feasible region of the NLP (2.28) is a
subset of the feasible region of the MPCC (2.7) locally around (Z, y). So, every minimizer
of the MPCC is also a local minimizer of the corresponding NLP (2.28). This is the
reason why this program is called tightened nonlinear program (TNLP). Note that there is
a whole list of constraint qualifications tailored specifically to MPCCs, with MPEC-LICQ
and MPEC-MFCQ among the strongest ones, cf. [18].

However, unlike in [45] or [18], we do not impose at this point any structural require-
ments on the set U of geometric constraints, thus we need to work with generalized versions
of the respective constraint qualifications.

Definition 2.5. (MPEC generalized LICQ and MFCQ)
The MPCC (2.7) is said to satisfy

i) the MPEC generalized LICQ (MPEC-GLICQ) at a feasible point (z,y) if the relation

(Efi G )(2)(7707) e

with (i, ) € R+ 5 R™2=9" jmplies (i, 7) = 0.

(%

ii) the MPEC generalized MFCQ (MPEC-GMFCQ) at a feasible point (Z,y) if the re-
lation (2.29) with (@, 7) € R* " x R™2=9" syuch, that for each i € I° either t;0; = 0
or u; < 0 and v; < 0, implies (a,0) = 0.

Note that 0 € N(Z;U), hence (2.29) implies in particular
(VFIaUIO (7,9) i+ VEF o(z,5) 70 =0, (@,7)€ R+ x le2—a*) = (@,7) = 0.

This is, however, true only if all the gradient vectors VF}(z,7), VF(Z,7),1 € It U
1° 5 € LU I° are linearly independent. Thus MPEC-GLICQ is a proper generalization of
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linear independence constraint qualification for MPCCs. Clearly, MPEC-GLICQ implies
MPEC-GMFCQ), since the latter restricts the values of (a, v).

It turns out that MPEC-GMFCQ is just strong enough for M-stationarity conditions
to be necessary optimality conditions. The following theorem is a modified version of |36,
Theorem 3.1] where the statement is proved for the MPEC (2.5) with Q = R,

Theorem 2.6. Let (Z,y) be a local minimizer of the MPCC (2.7). If MPEC-GMFCQ
holds at (Z,7) then there exist multipliers \¥" ,\F" and € € N(&;U) such that (2.27) hold
and either A\I' > 0 and \* > 0, or \E'XF® = 0 for all i € I°. In particular, (Z,7) is
M-stationary.

Proof. When MPEC-GMFCQ holds we can compute an upper approximation of the normal
cone to the feasible region

{(x,y) € U x R™2| < _F;E?xy;) ) € Gph N(.;]RTI?)}.

Recalling the first order necessary optimality conditions for nonlinear programs, (z,¢) thus
satisfies conditions

0€Vp(z,g)+
(V.F2z,5)7 —(V.F'z,5)" o .
" ( (VyF2(z,9)" —(V,F'(z,9)" )N (F*(z,9), —F'(z,9); Gph N(-,R}"™))

+ N(z:U) x {0},

Take into account that

mla

N(FQ(;E,Q), _Fl(j7g); Gph N(7RTZ2)) = z>=<1 N(F?(j?y)v _El(jvg); Gph N(vR-i-))

{0} x R, 1€ L,
N(FQ(E7Q)7 _Fil(j7g);Gph N(7R+)) = R x {0}, 1 € ]Jr,
{0} xR)UR x {0}) U(R_ xRy), i€l

Now, consider arbitrary (u,v) € N(F2(Z,7), —F(Z,7); Gph N(-,R7)) and set \I" := v
and M := —u. Then we arrive exactly at M-stationarity conditions. This completes the
proof. O

The M-stationarity conditions are clearly the proper counterpart of Mordukhovich sta-
tionarity known from nonlinear programming, hence the choice for the name of the sta-
tionarity concept.

To prove directly that under MPEC-GLICQ local minimizers of (2.7) are C-stationary,
one just needs to properly modify [45, Lemma 1|, although this statement follows from
Theorem 2.6. We present here the respective modification because we will use partial
results from the proof later in the text.
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Theorem 2.7. Let (Z,y) be a local minimizer of the MPCC (2.7). If MPEC-GLICQ holds
at (Z,7) then there exist multipliers X'\ \*° and € € N(z;U) such that conditions (2.27)
hold and /\fw1 AP >0 for alli € I°. In particular, (Z,7) is C-stationary.

Proof. Let us rewrite the MPCC (2.7) as

minimize ¢(x,y)
subject to 0 = min{F} (z,y), F:(z,y)}, i=1,...,mly,
x el

From |30, Theorem 5.19 (ii)|] and |29, Theorem 3.36] we get the following version of Fritz
John conditions. There exist multipliers r > 0, A" ¢ = 1,... ml,y, not all zero, and
¢ € N(z;U) such that

mlo
0=rVop(z,9)+ Y A"+,
=t (2.30)

mla

0=rVye(z,9) + > AMd;,

=1
with
VF!\z,7), ieL,

(Ciadi) € 5m1n{le(x,y),Ff(x,y)} = COHV{VFil(f>g)7 VF’zZ(jag)}7 [ € 107
VF(z,9). iert

For every i € I° there is «; € [0, 1] such that

C; = aiVIFl(:E, Q) + (1 - Qi)vxFQ(j? g)?
di - Odival(fZ',g) + (1 - Qi)vaZ(f>g)'
Set
r_)\?lin7 1€ L7
A= —amn el
0, ielt,
(0, i€ L,
AP = (1= a)Amn, e 0
\_)\?11117 = I-i—.

Then, since a; € [0,1], we have A AP = a;(1 — o) (M) > 0 for each i € I°.
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This results in the following conditions which differ from C-stationarity conditions only
in the presence of a nonnegative multiplier 7.

0=rVop(Z,9)— > AN V.E(@.9)— Y, M V.FZ,9) +¢,

1€LUIO 1eI+uro
0=rVypo(z,5)— Y ANV, FNz,9)— Y M V,F(z.9),
2.31
1€LUIO ieI+uro ( 3 )
AN >0, iel
&€ N(z;U).
Assume now, that » = 0. Then the first two lines of (2.31) may be written as
—t=— Y MN'V.E(z.g) - Y MNV.FAz,p),
i€ LUIO ieI+uro
1 _ 2 _
0=— > N'V,F'(z,9- > MNV,Fz7).
i€ LUIO ieItuIo
Setting @ = —A7 0 and & = =\ o, from MPEC-GLICQ we get Ay, = A\, = 0.
This implies also A" = 0 for all i = 1,...,ml,. The latter is, of course, a contradiction to
the statement that multipliers r > 0, A" j = 1,... ml,, are not all simultaneously zero.
Hence, r # 0 and scaling yields » = 1. This completes the proof. O

It turns out that to prove the above statement directly, MPEC-GMFCQ is insufficient
to prevent the case of vanishing multiplier ». Nevertheless, recall that M-stationarity
implies C-stationarity, hence MPEC-GMFCQ implies C-stationarity of local minimizers.
This is the statement of the following corollary.

Corollary 2.8. Let (z,y) be local minimizer of MPEC (2.7). If MPEC-GMFCQ holds
at (Z,7) then there exist multipliers \¥' N\ and € € N(z;U) such that (2.27) hold and
/\fw1 /\fw2 >0 for alli € I°. In particular, (Z,y) is C-stationary.

Note also that MPEC-GLICQ does not provide uniqueness of multipliers if U # (). The
following example shows that MPEC-GLIC(Q can be satisfied and yet there may be at least
two different sets of multipliers satisfying C-stationarity conditions.

Example 2.9. Consider an MPCC

minimize 2x; + 25 +y
z1,22,Y

subject to 0 <xy —x9 —y Ly >0,
xy, w9 2> 0.
at the feasible point (z1, Za,y) = (0,0,0). Then conditions
u >0,
—u >0,
—u—+v =0,
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imply v = v = 0 and hence MPEC-GLICQ holds. On the other hand one can easily check
that there are multiple sets of vectors (A", AF* &1, &) with (&1,&) € R2 satisfying the
conditions (2.27), e.g., (1,2,-1, -3) or (2,3,0, -4).

Clearly, our reference point is even strongly stationary. In fact, it is the unique global
minimizer of our MPCC. A

2.3.2 Implicit programming approach and Clarke stationarity

In this section we consider an alternative approach to MPECs. We are particularly in-

terested in various criteria under which the lower-level complementarity problem locally

defines an implicit function. Most of the results in this section follow directly from [39],

although, for slightly different structure of an MPCC. Using the combination of the cal-

culus of Mordukhovich and of Clarke, however, we derive stronger optimality conditions

then in [39]. Only when we believe it is appropriate, we present the the full proof.
Consider the generalized equation (2.4) with the solution map

S(a) = {y € R™[0 € F(z,y) + N(y: )}

In what follows we work with the following condition of Robinson [43] concerning the
multivalued map ¥ : R™2 = R™2 generated by partial linearization of F(Z,%) in (2.4).

Definition 2.10. (Strong regularity condition)
Let j € S(Z). Suppose that there exist neighborhoods V of 4 and O of 0 € R™2 such that
the map & — 3(&) NV is single-valued and Lipschitz continuous on O, where

5(¢) = {y €R™[¢ € F(7,9) + V, F(Z,5)(y — §) + N(y; Q}-

Then we say that the generalized equation (2.4) is strongly regular at (z,y) or that at this
point the generalized equation (2.4) satisfies the strong regularity condition (SRC).

The strong regularity condition plays an important role in implicit programming mainly
due to the following result.

Theorem 2.11. Let the generalized equation (2.4) be strongly regular (z,y). Then there
is a neighborhood U of T and V of y such that the map o(x) = S(x) NV is single-valued
and locally Lipschitz continuous on U.

Proof. For proof see [43]. O

For € being a convex polyhedral set we get a useful characterization of the strong
regularity condition.

Theorem 2.12. Let Q) be a convex polyhedron. Then the following statements are equiva-
lent.

i) The generalized equation (2.4) is strongly regqular at (Z,7y).
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ii) The generalized equation
§ €V F(z,y)n+ Nn: K(y — F(2,9),9)) (2.32)

is single-valued on R™2.
Proof. See, e.g., [39, Theorem 5.3|. O

We can apply Theorem 2.12 also to to the underlying generalized equation in (2.20).
This enables us to derive rather simple linear algebraic criteria for single-valuedness and
Lipschitz behavior of the map o around z. Note that the third argument 7 of the general-
ized equation in (2.20) is uniquely determined by 7 and j via relation ¥ = F(z, 7). Thus
we can refer just to the point (z, 7).

If SRC holds at (Z, y), then there exist neighborhoods U of z and V of i and a Lipschitz
continuous map o : U — R™ x R™ such that

o(z) = (y, F'(z,y)) and o(x) = S(x) N (V x F'(x,V)) forall z € U.

The map o can be split into two Lipschitz operators o, and o, which correspond,
locally around Z, to the y— and v—component of the solution to the underlying generalized
equation in (2.20). Moreover, it suffices to analyze just the operator o, since

o,(z) = F'(z,0,(z)) forallz € U.

The criterion of SRC for the generalized equation in (2.20) is stated in the following
theorem.

Theorem 2.13. Denote by Z(z,y) an (mly + a™ + a°) x (mly + a™ + a°) matriz given by

V,F'(z,y) —E], —Ep
Z(x,y) = | VyFii(z,y) 0 0
vV, Fh(z,y) 0 0

Then the generalized equation in (2.20) is strongly reqular at (z,y) if and only if the
generalized equation
0
¢ € Z(z,5)n + N R™" x RY)

possesses a unique solution n for all & € Rmiata’+a®,

Proof. In this case, the generalized equation (2.32) attains the form

Yz ) —
e (Ve T ) NE)

with

K = {(u,v) € R™ x R™2|y; 0 > 0} N {(u,v) € R™2 x R™2|y;, = 0}
= {(u,v) € R™ x R™2|p;0 > 0,0y, = 0}.
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Hence for (u,v) € K we have
N(u,v; K) = {n* = (u*,v*) € R™2 x R™2|y* = 0,0} = 0,0 < —v}o L vpo >0}

Now observe that the columns of matrix
—-F
0
corresponding to inactive inequality constraints of F'? can be removed because the compo-
nents v; vanish for ¢ € L. The same columns of

( F*(z,9), 0)

can be omitted since the components v;,i € L, are free and these rows do not restrict
variable 7.
This completes the proof. O

The application of |39, Lemma 5.6] to the statement of Theorem 2.13 yields a linear
algebraic characterization of the strong regularity of the generalized equation in (2.20) at
(Z,9y). Recall that a square matrix A is called a P-matriz if all its principal subdeterminants
are positive.

Theorem 2.14. The following statements are equivalent:
i) The generalized equation in (2.20) is strongly regular at (z,7).
ii) The matriz
( Vi (z,5) —Ef )
Vy-F[2+ (jv g) O
is nonsingular and its Schur complement in Z(Z,y) is a P-matriz.

Proof. The claim follows from [39, Lemma 5.6]. O

Since SRC ensures local single-valuedness of the solution map, we are able to character-
ize the local properties of S by the generalized Jacobian of o, at the reference point, or at
least by its upper approximation. Provided that locally around Z, the Lipschitz operator
o, is a PC* function, the computation of an upper approximation of 5% is rather simple.

The continuity of o, around z provides us with the stability of index sets of active
constraints.

Lemma 2.15. Let SRC hold at (z,y). Then there is a neighborhood U of T such that
I'(z,9) c I (x,0,(z)) and L(z,y) C L(z,0,(z)), Yz €U.

Proof. The proof immediately follows from the continuity of o,. O
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Hence, in the neighborhood U of x for each point x € U there is a subset M of index
set 1% such that

Flz,y) >0, F}(z,y)=0 forieI"UM,

2.33
Fl(z,y) =0, F(z,y) >0 foriec LU(I°\ M). (2.33)
Ignoring the inequalities in (2.33) results in system of nonlinear equations
Flz,y)=0 forie LU\ M),
(o) (1°\ M) o

F?(x,y) =0 foriec ITUM.

To this system we can apply the classical implicit function theorem, provided the matrix

< VyF oo (,9) )
VyF[2+UM(f>g)

is nonsingular. However, this is implied by SRC.
Denote the elements of the family P(I°(z, y)) of all subsets of I°(z, ) by M;(z, i) where
indices 7 run in a suitable index set K(z, ).

Lemma 2.16. Let SRC hold at (z,y). Then

i) for every i € K(z,y) the matriz

: V,F} (Z,7)
Di(% ) — vt Luo\m) \ T
(#.9) ( V2 (2,5)

1s reqular and

ii) either
det D'(z,%) > 0 for all i € K(z,%)

or
det D'(z,%) < 0 for all i € K(,7).

Proof. From Theorem 2.14 we have

vV, F'(z,y) —EJ,
w0y o )*o

Clearly, the application of the Laplace’s formula for computation of determinants yields

- V., FL o o(Z,7) )
det DY(z,7) := det Yo LYIo\™ ¢ 0,
(#9) ( V() )7

where M, (z,7) =0 € P(I°(z,7)).
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From Theorem 2.14 we also know that the matrix
o V Fl(i’ J) —EL\'/ ET
\v4 2 y ’ It 10
( Z/F[O(x>y> 0 ) ( vaI2+ (f,?j) 0 0 (235)

is a P-matrix, i.e., each of its 2¢" — 1 major submatrices (including itself) has a positive
determinant. However, for every i € K(z,y) \ {1} there is a major submatrix of (2.35)
such that its determinant can be expressed as

det D'(z,7)
det DY (z,9)

Hence, the sign of determinants det D*(Z,y) for all i € K(z,%) \ {1} is determined by the
sign of det D!(z, 7). This proves both parts of the lemma. O

As a corollary of Lemma 2.16 i) we have that locally around z, o, is a PC' function.
Denote by 03,7 € K(7,7) the implicit functions specified by systems of equations (2.34).
An upper approximation of do, then takes the form

do,(7) C conv{Vo;(z)|i € K(z,9)},
cf. |46, Proposition A.4.1]. We summarize this in the following theorem.
Theorem 2.17. Assume that SRC holds at (z,y). Then
da,(z) C conv{B'(z,9)|i € K(z,%)} (2.36)

where B(Z,y),1 € K(Z,%), is a unique solution of the system of equations in 11

- V. F; (z,9)
DZ ,f‘, — H — _ x LU(IO\Mi)_ i )
(z.9) ( Vo F2 o (2, 7)

Proof. See [39, Theorem 6.17] O

In order to obtain precise formula for the generalized Jacobian and to replace inclusions
with equalities, additional assumptions are needed.

Lemma 2.18. Let the assumptions of Theorem 2.17 be fulfilled. Assume that 1, > a° and
that every collection of at most Iy + mly rows of the matrix

is linearly independent. Then for each i € K(Z,7)
Bi(7,7) € 00,(7).

Proof. See [39, Proposition 6.19]. O
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Note that the linear independence condition in the above lemma is implied by MPEC-
GLICQ.

For the formulation of the stationary conditions below we use the technique of the
so-called adjoint equations. This technique works as follows. Consider a vector ¢ € R™,
matrix A € R”™ x R™ and matrices P, B € R™ x R" with AP = B. If p solves the adjoint
equation

ATp=q,

then
P'¢g=B'p.

Definition 2.19. (Clarke stationarity conditions)
Let (z,y) be a feasible point for the MPCC (2.7) and let SRC hold at (Z,y). Then we call
(z,y) Clarke stationary if it satisfies

v, F! 9\ . .
0 € V,o(Z,7) — conv O LO(IOAM;) ) ) (z,9)i € K(Z,7) y + Nz, U), (2.37
o2, {( ™I ) il Ky + M), (257)

where p'(Z,7y) are the unique solutions of

-
VyEL o (T ) ) _

A =V,0(Z,79). 2.38
( VyF]%ruMi (I‘, y) p y@( y) ( )

In the next theorem we show that the strong regularity condition is sufficient for Clarke
stationarity conditions (2.37) and (2.38) to be necessary first order optimality conditions.

Theorem 2.20. Let (Z,y) be a local solution of the MPCC (2.7). Let SRC hold at (Z,7)
and for alli € K(z,y) the vectors p'(Z,y) be the unique solutions of (2.38). Then conditions
(2.87) are fulfilled. In particular, the point (z,y) is Clarke stationary.

Proof. The considered MPCC can be on the neighborhood U of x reduced to
minimize ¢(x,y)

subject to y = o, (z),
reUNU.

From Theorem 2.17 one has
do,(z) C conv{B'(z,7)|i € K(z,7)},

where B'(z,7),7 € K(Z,y), is a unique solution of linear matrix equation in II

D' (z,j)ll = — ( VIFLIU(IO\MZ-)(@??) ) ‘
, VIF]?+UMZ (j? g)
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From [30, Proposition 5.3|, the relation between the limiting and the Clarke subdifferentials
and generalized Jacobian chain rule |7, Theorem 2.6.6] we get

0 € Vop(z,7) + conv {(B'(z,7)) " V,0(7.7)|i € K(Z,5)} + N(%;U).
The application of the technique of adjoint equations completes the proof. O

Let us turn our attention briefly to the MPEC (2.5) with Q = R7*. As mentioned
above, this MPEC can be reformulated as an MPCC

minimize (x,y)
x7y
subject to 0 < F(z,y) Ly >0, (2.39)
rxeU.
Recall that

I'(z,9) = {i € {1,... . mbL}Fy(z,9) > 0},
L(z, ) = {i € {1,...,mla}[y: > O}, (2.40)
IO(‘T7§) = {Z S {]-7 s ,thE(i‘,y) =Y = 0}

For the generalized equation
0 € F(x,y) + N(y; R7™), (2.41)
the counterpart to Theorem 2.14 attains the following form.
Theorem 2.21. The following statements are equivalent
i) The generalized equation (2.41) is strongly reqular at (Z,y).
i) The matriz V, Fy, 1(Z,y) is nonsingular and its Schur complement in the matriz

( VyFL,L(fa g) vaL,IO (f> g) )
VyFo(Z,9) VyFoo(T,y)

15 a P-matriz.
Proof. See [39, Theorem 5.9]. O
Clarke stationarity conditions for the MPCC (2.39) under SRC reduce to
0 € Vaop(7,9) — conv { (Vo Fruuoa (2, 9) (2, 9)|i € K(z,9)} + N(z;U),  (2.42)
where p'(z, %) are the unique solutions of

(VyFrogoas), rogoa) (T, 7)) 0 = Vyoroaoan (T, 7). (2.43)
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2.3.3 Equivalence of Clarke and C-stationarity

In this section we will closely investigate the relation between above defined concepts of
Clarke stationarity and C-stationarity. Note that these concepts are not defined for the
same class of MPCCs. We are not able to work with Clarke stationarity without the
assumption of strong regularity. This condition is, unfortunately, insufficient for both
concepts to coincide; MPEC-GLICQ needs to be fulfilled as well.

First, notice that MPEC-GLICQ and SRC, both implying extra requirements on the
data of complementarity constraints, are generally unrelated conditions even for U = R,
We show this by means of simple examples.

Example 2.22. Consider for some objective function ¢(x1, 2, 41, y2) the following pair of
complementarity constraints

0 < —x +2y1 —y2 L +u1
0 < —xo—3y1 +2y2 L -1 —x9 +Y2

0,
0

IV IV

and a reference point (x1, z2,y1,y2) = (0,0,0,0).

The matrix
2 —1
-3 2

(01)(52) (o 1)

is a P-matrix. Hence, due to Lemma 2.18, the strong regularity condition holds at (0,0,0,0).
On the other hand, the vectors

is regular and

—1 0 0 -1
0 -1 0 -1
=2 1’1 =3\’ 1| 0
—1 2 0 1
are linearly dependent and hence MPEC-GLICQ is violated. A

Example 2.23. Consider for some objective function ¢(x1, 2, 41, y2) the following pair of
complementarity constraints

—I +y1 2y L+
—ry —2y1  +y2 L +Y2

and a reference point (21, z2,y1,92) = (0,0,0,0). MPEC-GLICQ is clearly satisfied and

(47)
;e

is not P-matrix and hence SRC is violated at (0,0,0,0). A

0 0,
0 0

IAINA
AV

is a regular matrix. However,
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Recall, that the conditions for Clarke stationarity involve an upper approximation of
do,(z). If we are able to compute this object precisely (see Lemma 2.18), the computation
is invariant to the concrete representation of the solution mapping. If this is not the case,
we may end up with different upper approximations.

Assume that the SRC condition is satisfied at (z,y) and let us compute an upper
approximation of the generalized Jacobian 0o (Z) where o is given by (2.18). This time we
will apply the calculus of generalized differentiation to (2.18).

Denote by ®(z,y) the vector mapping such that ®;(z,y) = min{F}(z,y), F*(z,y)},i =
1,...,mly. To apply [29, Theorem 4.32d| we need to guarantee validity of the following
constraint qualification

0€ DBz, )(y") = v =0,

or equivalently, since ® is Lipschitz continuous for F'!, F'? continuously differentiable, using
the scalarization formula |29, Theorem 3.28|,

0€d(y", ®(z,y) =y =0. (2.44)
Then
Do(z,9)(y") C |J {"|(@",—y") € D*®(z,9)(u)} =
u€R™2
= U 1@, —y) € d(u.2(z,9)} =
u€R™2
mla
u€R™2 i=1
mlo
c U {x*\(x*, —y*) e Z@(uicbi(x,y))} : (2.45)
u€R™l2 i=1
where the last inclusion is due to [29, Theorem 3.36]. Denote for every i = 1,...,mls,

Li(z,y) = {j € {1,2}|F!(z,9) = ®:(z,9)},
Ai(2,5) = {(ALA]) € REIA + M) = LN (F/(z,9) — ®:(z,9)) = 0,5 € {1,2}}.

177

Then from [29, Theorem 3.36] we have

U()\Zl,)\f)EAi(g’c,g) {Zje[i(g’c,g) )\fuiVFg(:Y:, Q)} u; <0,
Ujeli(g’c,g){uiv}?ij (z,9)} u; > 0.

From (2.46), clearly, MPEC-GLICQ implies the constraint qualification (2.44).

Using the above upper approximation (2.45) together with (2.46), we can now show
that under SRC and MPEC-GLICQ, Clarke stationarity conditions imply C-stationarity
conditions.

o ®i(z,9)) = { (2.46)
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Theorem 2.24. Let (z,y) be a feasible point for the MPCC (2.7) such that SRC and
MPEC-GLICQ are satisfied. Then, if (Z,y) is a Clarke stationary point of the MPCC,
there exist Lagrange multipliers \'' ¥ and a normal vector & € N(z;U) such that
(Z, 5, \F' LN €) satisfies C-stationarity conditions of the MPCC.

Proof. MPEC-GLICQ imply the linear independence assumption from Lemma 2.18. Hence
under SRC we have B 4
Jdo,(7) = conv{B'|i € K(z,y},

where B are the unique solutions to the matrix equation in variable II

( VyFLIU(IO\MZ)(i'ag) ) H _ _ ( VIFII/U(IO\M,L)('%‘?g) ) ‘
Vo F e on, (2, 9) Vo F7o0 (7, 9)

Since we can compute the generalized Jacobian to o, at  precisely, the Clarke station-
ary conditions are equivalent to

0 € Vop(2,9) + 00 (%) Vo (T, 9) + N(z; U). (2.47)

Using the relation between coderivatives and Clarke generalized Jacobians for single-
valued mappings, which amounts to

(0o())y* = convD*o(:)(y*) for all y* € R™2,
together with (2.45) and (2.46), we get

(Do(2)) "y C

ml mla
c U X Y wVFHEpp=y+Y Y wV,F @)
ueR™2 =1 jel;(2,9) i=1 jeI;(z,9)

(ALA2)er(z,y)

(2.48)

Taking y* = V,p(Z,y) and inserting (2.48) to (2.47), we get for some u € R™?2
(A}, A2) € A(x, g) =1,...,mly, and £ € N(z;U)
mla
0=V.0(Z,7) + > > wNV.F(z,9)+¢
i=1 jel,(z.,9)

mla

Now, for each i = 1,...,miy, set N/ := —u; X for j € I;(Z,7) and A" := 0 otherwise.
If I;(%,y) = {1,2}, which corresponds to i € I°(Z, %), we observe that
AN = () AN >0

since (A}, \?) € Ay(Z,7y). Hence, we arrived at C-stationarity conditions. In particular,

(z,y) is a C-stationary point to MPCC. O
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Now, we show that also the opposite implication holds. The proof involves computation
of a solution to a system of linear equations derived from the C-stationarity conditions and
rearranging the terms to obtain Clarke stationary conditions. To be able to compute the
solution of the system of linear equations, we first need the following auxiliary linear
algebraic result about rows of adjunct matrices and determinants.

Consider 2k vectors 7 € R¥ i = 1,...k,j = 1,2 such that for each i there is j that
% # 0 (in other words, for each i either 2! or z"? is a nonzero vector) and such that
every collection of at most k nonzero vectors x7 is linearly independent. Denote by A a
k x 2k matrix with columns composed of all vectors 2%7,i =1,...,k,j = 1, 2.

Suppose also that we are given 2k nonzero constants v/ € R. Denote by A7 a k x k
matrix which ith column is given by Ailghl 4 442252 and by s € R a vector composed of
1’s and 2’s such that S$i =17 only if 27J £ 0fori=1,...,k j=1,2. Then there is 2*" such
vectors, s',...,s%" , where a® = k — Hi=1,. k|ﬂj % =0}

Cons1der the operation * such that (A x s) is a matrix with the ith column given by
x" for s; = j.

Lemma 2.25. For eacht1=1,... k, the following relation holds for the ith row of adjunct
matriz Adj AY

2a’  / k
1 l
Adj A7), = — A 755 | Adj (A * s');.

w20 =1 \j=1

Moreowver,
det A7 = Z <H7 ) det (A x s').

Proof. Both parts of the statement follow directly from the basic rules for computation of
determinants:
i) if A is an n x n matrix with one of the columns z = z! + 22, where z', z? € R", then

det A= det A"+ det A>.

The matrices A and A? in the above formula are obtained from matrix A by replacing its
column x by vectors z! and 22, respectively;

i1) if we multiply a column (or row) of matrix A by a constant ¢, then the determinant of
such matrix is equal to c(det A).

Without loss of generalization let k =2, a° =1, st = (1,1)7, s> = (1,2) " and

1,1 1,1 2,1 2,1 2,2 2,2

A7 — yorxy yorxy oyt
,_)/111,11 7213:214_,_)/22%22 .



28 Mathematical Program with Equilibrium Constraints (MPEC)

The first row of adjunct matrix is composed of (Adj A7)y, and (Adj A7)qo. Clearly,
(Ad!]A’Y) 21 21—}-’}/22$§2—
ﬁnl DA (A )+ A (A s )
(Adj A)yp = —>lal! — 22 =

1 _ 1 _
=T =77 A (Ax stz + $vl 1 22(Adj (A s7))2

Similarly,
(Adj A7) = =My’ =
1 ) 1 .
= myl 1'}/2 1(Ad!] (A * 81))21 + m’yl’l’y2’2(Adj (A * 82))217

(AdJ A'y) ,_)/1 1.T11

1 ) 1 .
= W,}/l 1,7/2 1(Adj (A* 31))22 + m,}/l 1,}/2 Q(Adj (A* 82))22

Finally,

1,1,.1,1 2,1,.2,1 1,1,.1,1 22, 22
yorx yorx v r 7
det A" = det <V11$il Vglxél)‘i‘ det (Vllfil N2y 22 ) =
= yby2l det (A s1) 4+ 41922 det (A x s?).

The computations above for the general case are analogous and yield the desired formulas.
O

Theorem 2.26. Let (Z,y) be a feasible point for the MPCC (2.7) such that both SRC
and MPEC-GLICQ are satisfied. Then, if there exist Lagrange multipliers MNYNE? and a
normal & € N(z;U) such that (z,7, )\FI,)\F2,§) satisfies C-stationarity conditions of the
MPCC, then (z,y) is also a Clarke stationary point of the MPCC.

Proof. Since (z,7, M )\FQ,S) satisfies C-stationarity conditions, from the proof of The-
orem 2.7 it follows that for each i = 1,... mly, there exist 3; € [0,1] and (; € R such
that

A= B¢, ie LUl (2.49)
MP=(1-p)G, ieltul’, (2.50)
and
0€ V(@ 9)— Y BVFE 06— D (BVE(®9) + (1 - B)VFZ,9))G—
€L i€]0 (2 51)

— Y (1= B)VE&,9)G + N(@U) X {0, }-

ielt
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The last mly rows of (2.51) form a system of mlsy linear equations in mly variables
C1y- -, Cmiy- 1ts system matrix is regular due to MPEC-GLICQ), hence, there is a unique
solution ¢ = ({1, ..., Gms, ). Using the above auxiliary algebraic results to compute the lines
of the inverse to the system matrix we derive the formulas for each component of (.

We can apply Lemma 2.25 with k& = mly,a® = |[I°),4"' = 5;,7v"* = (1 — ;),1 =
1,...,mly, and

f&z{vﬁﬂim,iELuﬂ,

0, 1€ I+,
2 _ ) VyF (@), e Itul’,
0, i€ L.
Hence the ith component of the solution, (;,i = 1,...,mls, is given by
G = ——(Adj A7),V,0(7,7)
i i x7 —
det A, vl Y

7 (T 7 ) Adj (A 1),V ,(2, §)

<7i’1][ieLUIO] + Vi’Ql[ieI+uI°}) 12;1 <H;nl21 v ) det (A s')

(2.52)

Note that due to SRC and Lemma 2.16, each (;,i = 1,...,ml, is well defined.

Next we rearrange the terms in (2.52) to recover simple formulas for ¢ in terms of
the coefficients of convex combination from relation (2.37) and coordinates of vectors
P(z,7),7=1,...,2% which solve (2.38). Setting

(I 77) det (A s7) :
Y L i=1,...,27, (2.53)
1 (HZ 2 s ) det (A st)

Q=

a0
we have a; > 0 for each j and 23:1 a; = 1. Recalling that

1

= W(Ad} (A*s7)iVe(z,7), (2.54)

application of (2.52), (2.53) and (2.54) to the first [; rows of (2.51) results in

20.

0€ Vup(Z,y) — Za]B*s]p]—i-N( U) (2.55)
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due to relations

2(1
(1-3)G Zagp“ ielt, (2.57)
61(2 - Z ajpz7 1€ ]Oa (258)
jisti=1
1=B8)a= Y apl, i€l (2.59)
s” 2

where B can be derived from A by replacing each V,F/(z, ) with V,F}(z,7).
Clearly, (2.54) and (2.55) are Clarke stationarity conditions to the MPCC. In particular,
(z,y) is Clarke stationary. O

To illustrate the importance of each of the assumptions, SRC and MPEC-GLICQ, we
present two examples. Strong regularity is a key ingredient in the definition of Clarke
stationarity. If SRC is violated, the adjoint equation may not have a solution or, on the
other hand, may have multiple solutions.

To emphasize the need for verification of SRC, the first of two examples shows that
Clarke stationarity conditions can indeed be satisfied even if SRC is violated. This, of
course, does not mean that the corresponding point is Clarke stationary. Also, in the
absence of strong regularity, C-stationarity conditions are satisfied independently of validity
of the Clarke stationarity conditions.

Example 2.27. Consider the following MPCC:

minimize — x; — To — 2y; — 2o

subject to
0 < —m +y1 —2y2 L +u > 0,
0 < —ZT2—2y1  +y2 L +y2 = 0

From Example 2.23 we already know that SRC is violated at (0,0,0,0), while MPEC-GLICQ
is satisfied. Nevertheless, we can still compute vectors p',i = 1,...,4,

P (2) () o= (2) - (2)

and Clarke stationarity conditions
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are satisfied for « = (0,1/2,1/2,0). However, with respect to Definition 2.19, (0,0,0,0) is
not Clarke stationary.

Clearly, C-stationarity conditions are violated since the corresponding (unique) mul-
tipliers are )\fl = 1,)\51 = 1,)\f2 = —1 and )\52 = —1. Replacing the objective with
x1 + xy — 2y1 — 2ys, (0,0,0,0) becomes C-stationary with multipliers (-1, -1, -3, -3) while
Clarke stationarity conditions are again satisfied despite of violation of SRC, this time for
a=(0,1/2,1/2,0). A

The second example shows that MPEC-GLICQ plays important role for the validity
of multiplier-sign conditions. In absence of MPEC-GLICQ), Clarke stationarity generally
implies only weak stationarity.

Example 2.28. Consider the following MPCC:

minimize 0
subject to

0
0

— 2y oy L +1
—T2—3y1 2y L —x1 —xy +y2

0,
0.

IAINA
(VA

SRC holds at (0,0,0,0), while MPEC-GLICQ is violated, c¢f. Example 2.22. Note that
in this case the MPEC multipliers are not uniquely determined and the point (0,0,0,0) is
critical with multipliers (A\F" X' AF? AE*) = (X A\, X, —\), where A is an arbitrary real
constant. Clearly, for any set of MPEC multipliers, C-stationarity conditions about the
common signs of biactive multipliers are violated. Hence the point (0,0,0,0) is just weakly
stationary.

All p',i =1,...,4, are equal to and Clarke stationarity conditions are trivially

0
0
satisfied. Hence, the point (0,0,0,0) is Clarke stationary.

Note, that the relations (2.56)-(2.59) are violated. A
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Chapter 3

Equilibrium Problem with Equilibrium
Constraints (EPEC)

As a natural generalization of an MPEC we can introduce an equilibrium concept also
to the upper level. For that we need to increase the number of leaders and change the
structure of the problem accordingly. In this way one obtains the so-called equilibrium
problem with equilibrium constraints consisting of several, mutually coupled MPECs. The
term “equilibrium problem” in EPEC refers to the fact that this problem is no longer a
single minimization problem under equilibrium constraints.

In this chapter we present four source problems to illustrate the application of EPECs.
Further we discuss the question of existence of solutions to EPECs in mixed strategies and,
based on the results of the previous chapter, also the existence of Clarke and C-stationary
points. The cooperative behavior of leaders will be discussed in the following chapter
devoted to multiobjective problems with equilibrium constraints.

3.1 Mathematical formulation

Assume that we have to do with n leaders and m followers. Analogously to MPECs,
multistrategy y € R™2 consists from all followers’ strategies. Let z° denote the strategy of
the ¢th leader. Again, to distinguish the strategies, objective functions, feasible sets, etc.,

of each player we use the upper indices.

The multistrategy z := (z!,22,...,2") contains the strategies of all leaders. Suppose

that the behavior of the leaders is described by their individual objectives ! : Rriitmiz
R,i=1,...,n. Let the nonequilibrium constraints in the problem of each leader ¢ concern
the strategies of all players, i.e., k! C R+ miz 4 =1 . n.

Definition 3.1. (Solution to abstract noncooperative EPEC)
A wvector of admissible strategies (Z,7y) € R™*™2 js g solution to an abstract EPEC if



34 Equilibrium Problem with Equilibrium Constraints (EPEC)

(Z,7) solves simultaneously abstract MPECSs

minimize @'(x', 27", y)
zhy

subject to y € S(z",777), i1=1,...,n, (3.1)
(2,77, y) € &',

where the solution mapping S depends on strategies of all leaders.

In other words, (Z, %) solves the abstract EPEC if for each i = 1,...,n, (Z',7) belongs
to the set of local solutions to ith abstract MPEC in (3.1) in variables (x,y).

Note that each z¢ acts simultaneously as a decision variable in the MPEC of the ith
leader and as a parameter in the remaining ones. It is obvious, that since we define the
EPEC as a series of n MPECs linked together via upper-level and lower-level variables, all
problematic features of MPECs discussed in the previous section are inevitably inherited
to EPECs as well.

Define for each i = 1,...,n, and a fixed admissible multistrategy ¢ the multifunction

Sy-i(x') = S(a', 77,

Note that z¢ enters the lower-level problem as a fixed parameter as well. Thus, MPECs in
(3.1) share the same equilibrium constraints. However, due to the fact that Gph S may
not be consistent with each set of nonequilibrium constraints x¢, even the existence of a
feasible point to EPEC might be uncertain.

From now on, we consider only EPECs in which separation of the nonequilibrium
constraints is possible, including the constraints on multistrategy y into the lower-level
problem and considering the nonequilibrium constraints only on strategies 2¢,i = 1,..., n.
Le., k' = U' x RVl R™2 where U’ C R is the individual feasible set of leader 1.

Note that even then, the lower-level strategy y in the EPEC (3.1) is shared across
all MPECs. If S is not single-valued, the formulation of EPEC (3.1) could be called
multioptimistic. However, such EPECs are in many cases ill-possed. We explain this on
the following EPEC composed of only two MPECs.

Let the MPEC of the first and the second leader be given by

inf  inf (2!, 72, y), 3.2
o e ) @2
inf  inf (2!, 2% y), (3.3)

z2cU? yeS(zt,22)

respectively. Formulated in this form, clearly, the EPEC is ill-possed if S is not single-
valued. The argmin sets

arg min @1(f1>572ay)a

yeS(zt,z2)

argmin ©*(z', 2, y)
yeSs(z1,22)
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may not have a common element, inevitably resulting in nonexistence of a solution to the
EPEC. On the other hand, this does not cause any problem if the solution to the lower
problem has single-valued and multi-valued components and the upper-level objectives
depend only on the single-valued part of the solution of the lower problem.

As an alternative, we can consider optimistic (or pessimistic) formulations with respect
to one particular leader. We analyze this possibility in detail in Section 3.3.

As in the MPEC case consider y to be feasible, provided its components belong to
the sets V/ C R2,5 = 1,...,m, and let the followers act according to their objectives
fIoRrAmE SR =1 ... m.

In what follows, we presume that assumption (A0) below holds.

(A0) Let each objective f7,j = 1,...,m, be continuously differentiable on an open set
containing X,_, U? x Q and let  be closed.

Denote by w := X?Zl U? C R™ the set of feasible leaders’ strategies. Then, for a given
vector T € w and given strategies =7/, the optimal strategy of the jth follower amounts to
a solution of the optimization problem

minimize f7(z,y’,577)
jpive @y 5.4
subject to y’ € V7.

A solution map
S(z):={y e R™ |0 € F(z,y) + N(y; )},

where

Vi fH(z,y)
F(x,y) = :
vym fm(x7 y)

is then a multifunction that maps a feasible z € w to Nash equilibria of problems (3.4) for
7=1....,m.

This allows us to modify the definition of the solution to the abstract EPEC accordingly:
a vector of admissible strategies (z,y) € R™*™™2 is a solution to EPEC if for each i =
1,...,n, (z%,y) belongs to the set of local solutions to the MPEC

minimize ¢'(2', 77", y)
'y
subject to 0 € F(z',27" y) + N(y;Q), (3.5)

e UL

Similarly to the MPEC case, when equilibrium constraints of an EPEC are in the
form of a nonlinear complementarity problem we call such problem an equilibrium problem
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with complementarity constraints (EPCC). In particular, a vector of admissible strategies
(z,7) € Rt g a solution to an EPCC if (Z,7) solves simultaneously n MPCCs

minimize ¢'(2', 77", y)
'y
subject to 0 < F'(z", 27", y) L F*(2",27",y) > 0, i1=1,...,n, (3.6)

e U

with functions F'', F? : R*1+miz _ R continuously differentiable on an open set containing
w x R™2,

One of the possible ways how to further simplify the MPEC structure and hence in
our case also the structure of EPEC is to consider assumptions under which the solution
map becomes single-valued. This enables us to invoke the implicit programming approach.
Hence we impose the following essential assumption.

(A1) For each i = 1,...,n, and for all admissible multistrategies =%, the map S;-: is
single-valued and locally Lipschitz continuous on an open set containing U°.

Under assumption (A1) one can rewrite every problem (3.5) for i = 1,...,n, to the

form o A
minimize 6'(z',z77")
o o (3.7)
subject to z' € U’

where functions €' : w — R are defined by

0'(z) = ¢'(2, S(x)).

We may refer to functions 6°,i = 1,...,n, as to loss functions of the reduced game only
among leaders, keeping the consistency of terminology from non-hierarchical games.

The problem (3.7) is now without any hierarchical structure and one can apply the
theory of noncooperative Nash games, to compute local Nash equilibria which form nonco-
operative solutions to EPEC. Since verification of assumption (A1) requires checking the
properties of n multivalued mappings, we work with its modified version.

(A1’) S is single-valued and locally Lipschitz continuous on an open set containing w.

The latter assumption now involves only one multifunction. Note that (A1l’) implies
assumption (Al).

3.2 Source problems

It is a very important question whether EPECs can actually be used in modeling of prob-
lems with real-world applications. From the survey of available works on EPECs it may
appear that the problem of deregulated electricity markets, which primarily motivated
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the introduction of EPEC as a new class of hierarchical problems, is the only discussed
application. This was one of the reasons why we decided to include this section to the
thesis, despite the fact it does not contain any mathematical results of the author and the
reader can easily skip it and proceed directly to the next section with exception of the
oligopolistic market model which arises in numerical study presented in Section 5.3.

On the other hand, this section might serve as an inspiration to researches interested
in EPECs. This is especially true in the case of the last problem presented in this section
(traffic equilibrium problem with private toll roads). Also, note that the list of source
problems presented here is definitely not exhaustive.

The notation in this section differs from the rest of the thesis. We present each problem
using the notation of the source references.

3.2.1 Oligopolistic market problem

Consider an oligopolistic market model with n+m firms producing a homogeneous product
and attempting to maximize their profits; see, e.g., [32] and [39]. Let 2' € R, i = 1,2,...,n,
denote the production of the ith leader and let y/ € R, j = 1,2,...,m, be the production
of the jth follower.

Assume that the multistrategy vector = of the leaders’ productions belongs to some
closed subset w of R". Let
n m
S W
i=1 j=1

denote the overall production on the market, and let p : int R, — int R, be the so-called
inverse demand curve that assigns 1" the price at which consumers are willing to purchase.
The objectives of leaders can now be written in the form

o'z, y) = c(2") —2'p(T), i =1,2,...,n,

and similarly the objectives of followers attain the form

fj(x>y) = CnJrj(yj) - yjp(T)a .7 = 1727 cee, My

where the functions ¢* : R, — R,k =1,...,n + m, represent the production costs.
Concerning the data of the problem, suppose that

A2 i) the functions ¢"*7,j = 1,2, ..., m, are convex and twice continuously differen-
J y
tiable;
ii) p is twice continuously differentiable and strictly convex on int R ;
y y +
(iii) Ip(19) is a concave function of J;

(iv) w does not contain the zero vector.



38 Equilibrium Problem with Equilibrium Constraints (EPEC)

When all parts of assumption (A2) are fulfilled, then for all j = 1,2,..., m, the objective
function of the jth follower is convex with respect to y’; cf. [32]. Thus we have

Vet (yt) = p(T) — y'Vp(T)
F(z,y) = : (3.8)
Vet (y™) — p(T) — y™Vp(T)

and, as proved in [39, Lemma 12.2|, the corresponding partial Jacobian V,F(z,y) is posi-
tive definite at each feasible pair (x,y). This implies that the Robinson strong regularity
condition is fulfilled and assumption (A1’) holds true at each feasible pair (x,y).

Note that this model comprises both EPECs and multiobjective equilibrium problems
with equilibrium constraints, see Chapter 4, based on the behavior leaders. Later in Chap-
ter 5 we present numerical results for this oligopolistic market problem with cooperative
leaders.

3.2.2 Forward-spot market model

In [49, Chapter 4] one can find a two-period forward market model where each player solves
a nonconvex MPEC, and the whole problem can be formulated as an EPEC. In fact it is
another possibility how to modify the Cournot-Nash model to get the EPEC structure,
this time introducing the second period to the game instead of the second level to the
hierarchy of the game. In two-period model, each player is trying to maximize his or her
profits in both periods, deciding about his or her production which is available only in the
first period, about a forward position, a part of his production which he or she will sell
in the second period according to a contract made in the first period and thus also about
spot sales in the second period.

Let us denote by f = (f1,..., fn) the forward position vector. For fixed forward posi-
tions f and fixed production quantities T_;(f) of the other n — 1 producers, the producers
face a Cournot-Nash game (in production quantities) in the second period. Thus, the ith
producer chooses his or her production quantity x; in order to maximize his or her profits
in the second period. Hence, 7;(f) is the solution to the following maximization problem
in variable z;

maximize p ( Y @(f)) (v = £)) - eilas), (3.9)

foz ];él

where p(+) is the spot price (inverse demand function) in the second period and ¢;(-) is the
cost function of the ith producer.

In the first period, the producers are playing a Cournot-Nash game in forward quan-
tities. Thus, assuming the forward positions of the other producers f_; are fixed, the ith
producer chooses his forward position so as to maximize his overall profit function which
is given as a sum of revenue of sales of forwards for the forward price in the first period
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and optimal payoff in the second period. Under perfect foresight this results in solving
maximize p <Z1 z;(fi, f—i)) zi(fi, f-i) — ci(wi(fi, f-i))- (3.10)
]:
Let us propose the following assumption:

(A3) Let the inverse demand function be linear
p(z) =a—"bz, a,b>0 for z>0
and for 2 = 1,...,n, the production cost functions of the ¢th producer be in the form

ci(z) = ¢z, ¢ > 0.

Then under (A3) one can reformulate the above problem given by (3.9) and (3.10) for each
i=1,...,n, as a system of coupled MPCCs in variables (f;, s, 6;)

maximize (0; — ¢;)(fi + ;)

subject to 9i:a—b<fi+zsj+2fj>> (3.11)

j=1 j#i
0<slc—60e+bs>0,
fi Z 07
where s = (s1,...,5y),s; denoting the spot sales of the ith producer in the second period,
¢ = (¢,...,c,) and e denotes the vector of all ones. Now we can clearly see an EPEC

structure of the whole two-period forward-spot market model. In the forward market,
every producer is leader, while in the spot market, every producer is in the role of follower
already with the knowledge of the every producer’s forward position in the first period.

3.2.3 Deregulated electricity market model

An important issue in all derequlated electricity markets is the market power of participants
such as generators, large utilities, or providers of ancillary services. The transportation
of power from a generation node (source) to a consumption node (sink) is governed by
the Kirkhoff laws. Laically speaking, power flows along the paths of the least resistance.
So, transmission of power is different from the transportation of the ordinary commodity
in a spatial market. The location and quantity of any injection or withdrawal of power
determines the actual transmission capacity of any link in electric network. As a result,
the key issue in the overall design is how a network (grid) operator dispatches electricity.

In this section, which is based on [22], we show how we can model via EPECs the
so-called pool-type market problems as operated in Australia, New Zealand and some parts
of United States, where the independent system operator (ISO) dispatches electricity from
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generators to consumers by maximizing “social welfare” (minimizing “social cost”) based
on the cost/utility functions that are bid by generators/consumers.

Suppose an electric network with N + 1 nodes labeled 0,..., N, and a set L of links,
where the link between node ¢ and j is written ij. For the sake of simplicity, assume that
there is a single generator or consumer at any node i. Bidders (generators and retailers)
have complete information about the network, the ISO’s operation procedure and all other
participants’ cost/utility functions. The ISO, taking account of the network, solves a social
cost minimization problem assuming the bids are truthful, announcing a dispatch for each
bidder and possibly distinct prices at each node. Consumers pay generators according to
the scheduled dispatch and nodal prices. The market is then cleared according to each
player’s binding bid.

Each player’s actual cost or utility function is a quadratic function in quantity g¢;, either
cost, A;q;+ Biq? (¢; > 0), or utility, —A;q; — Biq? (¢; < 0), where each A; and B; is assumed
to be positive. A consumer at node i is dispatched a quantity in the range [0, QA—Bii] where his
or her actual utility function is increasing. We can hence let the generators (consumers)
bid their supply (demand) functions to the ISO in the form of a pair of coefficients (a;, b;).
Their bids, a;q; + b;g? (¢ > 0), or —a;q; — biq? (¢; < 0), then may naturally differ from the
actual cost or utility function of bidder 7.

The ISO solves the following problem of minimizing the social cost, over all N + 1
nodes:

N
. 9
miinize. 3 ot + b
subject to g9+ q1+---+ gy =0, (3.12)
N
— Oij < Z¢Zj’qu < Cija 1< j, Z] € L, (313)
k=0
q; > 0, i: generator, ¢; <0, 7¢: consumer, (3.14)

where C;; denotes the transmission limit on the link 5 and ¢;;, (distribution factor)
denotes the contribution of injection (withdrawal) at node & to the link 5. The distribution
factors are determined by the network’s physical properties. The optimal solution to this
problem is denoted by ¢ = (¢go(a,b), ..., qn(a,b)).

Let us denote the Lagrange multipliers corresponding to the optimal solution such that
A, 150 g and v; are the multiplier corresponding to (3.12), (3.13) (left hand side and right
hand side inequality) and (3.14), respectively. The optimal quantities g, commit the ISO to
paying (charging) the kth player a price that is consistent with their bid supply (demand)
function:

Pr = A + 2brqy.

Additionally, if ¢x # 0, the ISO in effect sets py equal to

i<jijEL
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as it comes from the ISO’s KKT conditions. Note that when binding transmission quan-
tities are missing, p equals the shadow price (—\) of the requirement that electricity
generated equals electricity consumed.

Let us now consider the behavior of profit-maximizing player on the market described
above. Given that bidder i’s price is a; + 2b;q;, then the profit maximization problem is:

maximize (a; + 2bi¢;)q; — (Aigi + Biq?)

a;,b;
subject to A, < a; < A;
B; <b; <B; (3.15)
¢; such that ¢ = (qo, ..., qn) solves the ISO’s minimization

problem given the other participants’ bids (a_;, b_;).
The constants Ai,zi and Qi,EZ-, assumed to satisfy

are lower and upper bounds for a; and b; that are based on industry knowledge and are
imposed by the [SO.

The problem (3.15) is a bilevel programming problem, where the lower-level problem
is that ¢ must solve the optimal power flow problem of the ISO.

Since the ISO’s problem is a strictly convex quadratic problem, one can replace the
constraints in (3.15) with the KKT conditions of the ISO’s problem, that is, to reformulate
the bilevel problem for the ith bidder as an MPEC. Hence, a dispatch ¢(a,b) solves the
problem if and only if there exist multipliers corresponding to the constraints that satisfy
the usual KKT conditions at g(a,b). Given the other participants’ bids (a_;, b_;), bidder
1’s problem becomes

maximize (a; + 2b;¢;)q — (Aiq; + Biq?)
@i;bi @, v

subject to A, < a; < A;
B, <b; < B,
(Where, for each 7 =0,..., N, and mn € L with m <n:
aj +2bjq; + A+ Zi<k,ik€L Dikj (Far, — Eik) —v;=0
Go+--+agv=0

0 S Omn - ngv:() ¢mn,ka il ﬁmn Z 0
0<g; Lv; >0 if bidder j is a generator

\O > q; L v; <0 if bidder j is a consumer.
(3.16)

The game based on all the participants’ problems (3.16), for ¢ = 0,... N, gives rise to
an EPCC.
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3.2.4 Traffic equilibrium problem with private toll roads

Recently, a lot of effort is being put into investigation of models of a road system which is
partially provided also by a private sector. The private sector would build and maintain
roads and cover its costs by charging toll. Primarily motivated by profitability, private
investors are believed to be more efficient; they build and operate facilities at less cost
then a public sector. There is a steadily growing discussion on this topic, see, e.g., [52]
and references therein.

To formulate the model mathematically, we use the standard notation used in traffic
equilibrium models.

Consider a transportation network G which is given by a pair of sets N, the set of
nodes, and A, the set of arcs (links between ordered pairs od distinct nodes) and we write
G = (N, A).

Denote by W the set of origin-destination (OD) pairs in G. For every w € W, let R,
denote the set of all paths connecting OD pair w € W. The set of all routes is then given
as R = |J,ew Rw- Naturally, we assume that our network is connected, i.e., for each pair
of nodes there is a route between them.

Denote by F, the flow on route r € R and let v, denote the flow on link a € A.
Introducing the incidence matrix A with elements

5 {1 if path r uses link a,

0 otherwise,

then
va =Y Ok, (3.17)
reR
or, using the vectors v of all link flows and F' of all path flows, v = AF.

The traffic on a transportation network G = (N, .A) is in equilibrium if the so-called
Wardrop user equilibrium principle holds. This principle states that for each OD pair
w € W, every user of the network GG will choose the route between OD pair w which has
the minimal costs. Moreover, routes with costs higher that the minimum will have no
flows.

Denote by C. the costs experienced by a persons using route » € R which is a function
of the flow on r and by D,, traffic demand between OD pair w € W which is a function of
the minimum OD travel costs

fy = min C,., w € W.

T‘GRw

Then the Wardrop principle can be written as

0<C(F)— iy L F. >0, Vr € R,,weW, (3.18)
> F,=Dy(p), YweW, (3.19)
T‘GRw

fw >0, YweW (3.20)



3.2 Source problems 43

with p being a vector with components i, w € W.

Suppose for simplicity that each firm provides single toll road (single link on the net-
work), and denote by J the subset of A corresponding to the set of toll roads on the
network. For every link a € J, the corresponding private subject can choose a level of
capacity y, on the link a and toll charge u,. The remaining links a € A, a ¢ J are free of
charge to use and have fixed capacity y, = C,,.

Consider, for further simplicity, additivity assumption on costs: the costs on route r
are simply the sum of the costs of each arc a comprising the route r. In our setting, the
costs C, are of the following form

C, = Z arta(Va, Ya) + Z Ogrllq, (3.21)

acA acJ

where « is the value of time which transfers time into monetary units and t,(v,, y,) denotes
a travel time on arc a subject to the flow v, and capacity y,. With respect to (3.17) the
above defined costs truly depend on route flows and we add also natural dependence on
the transportation capacity of the arcs.

However, this formulation is questionable since each individual values time in a different
way. This can be partially remedied by use of the nonadditive travel costs, see, e.g., [1].
Here, we will suffice with the additive formula (3.21).

The decision problem of each firm a € J is to maximize its profits, given as the difference
toll revenues and building and maintenance costs by choosing an appropriate level of
capacity and toll charge on the link it operates. Let the costs of firm a € J be given by
114(ya), where parameter 7 is common to each toll firm and for simplicity the unit period
project costs do not include variable costs of road use.

Putting all parts of the model together, the traffic equilibrium model with private toll
roads is given as a system of maximization problems for a € J

maximize Z Oar Frttg — Wfa(ya)

Ua,Y
@ reR

subject to 0 < ZozéaTta((AF)a,ya) + Zémua — ly L F. >0, Vre R,,weW,

acA aceJ
ZFr:Dw(,U); V’LUEVV,
T‘ERw

(3.22)
Each such problem (3.22) is clearly of an MPCC structure and all of them are linked
together via upper-level decision variables and a solution to (3.18)-(3.20). Hence they
constitute an EPCC.
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3.3 Existence of solutions

The reformulation (3.7) plays an important role in application of the implicit programming
approach to EPECs. This technique to reduce a bilevel program to the upper-level opti-
mization problem under assumption (A1’) is widely used for MPECs, see [39]. In terms of
EPECs, we reduce our problem via implicit programming to a generally nonconvex Nash
game. This enables us to use existence results developed for Nash games. Let us recall the
concept of mixed strategies (or mixed solutions).

Definition 3.2. (mized strategy)
A mixed strategy for a player with a set of admissible strategies U is a probability measure
W in the set U, i.e., it is a nonnegative and o-additive measure on U with u(U) = 1.

The set U is usually called a set of pure strategies (or an action space). In the case
when this probability measure degenerates to a Dirac measure, a probability measure that
assigns a singleton the measure 1, we arrive at the pure strategy.

A mixed strategy is usually interpreted on the concept of repeated games. The player
then no longer plays each time only one particular strategy but he or she plays all strategies
from his or her action space U and the frequencies with which pure strategies are played
will converge to the probability distribution generated by his or her mixed strategy. In
what follows, we allow only leaders to play mixed strategies.

Let us consider the following two assumptions concerning the admissible sets U* i =
1,...,n, of leaders

(A4) for each i = 1,...,n, the set U’ is compact;

(A5) for each i =1,...,n, the set U’ is convex;

and two assumptions imposed on their cost functions

(A6) for each ¢ = 1,...,n, function ¢’ : w — R is continuous on an open set containing w;

(A7) for each ¢ = 1,...,n, function #° : w — R is strictly convex in variable z* for all
values of 2% € U* k # i.

Now let us recall the Nash theorem [2, Theorem 2.12| which states the existence of a
solution to a non-hierarchical n-person Nash game under assumptions (A4)-(A7). We have
already mentioned that the hierarchical structure causes loss of the convezity of the cost
function of the upper-level player. Thus, the assumption (A7) is generally not satisfied for
EPECs. If this was the case, an MPEC could have multiple local optima, the existence of
which could be guaranteed, e.g., by Theorem 2.2. However, violation of assumption (A7)
may result in non-existence of any (pure strategy) solution of an EPEC, cf. Example 3.1
below.

On the other hand, mixed strategy concept of solutions appears well justified for EPECs
with implicit structure because the existence of a mixed solution to Nash equilibrium game
can be achieved under validity of much weaker assumptions.
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Theorem 3.3. Let the assumptions (A4) and (A6) hold. Then the n-person game specified

by mathematical programs (3.7), 1 =1, ..., n, admits at least one equilibrium point in mized
strategies.
Proof. For proof see [41]. O

Before we provide a similar existence theorem for EPEC composed of mathematical
programs (3.5), we present an example of EPEC with two leaders and one follower. This
example shows how easily the solution in pure strategies may not exist even in the case when
convexity assumptions appear to be satisfied. It also vindicates the need to investigate
conditions ensuring the existence of a solution in mixed strategies.

Example 3.4. Consider the following three-person game on [0,2]* x [—2,2] with cost
functions

(' — 2?)? — 2! + 2% + 27,
(:El o I2)2 o 2(:[‘3)2,

(2%)? — 22'2® + 22727,

o' (z', 2%, %)

O (x', 2%, %)

©(x', 2%, 2?)

As a three person Nash game, assumptions (A4)-(A7) are satisfied and consequently
there is a solution in pure strategies.

Consider now the situation when player 1 and player 2 become the leaders. The game
can be reduced to a game only among the leaders with cost functions

91(:151,:52) — (.%1 _ .T2)2,

0t a?) = — (o — ),
with the solution map of the follower specified by
S(zt, 2% = 2t — 27, (2!, 2%) € [0, 2]

Even if the cost function of the second player is now non-convex, according to Theorem
3.3, a solution in mixed strategies exists. Based on the results in [6], the solution of this
EPEC is
1 with probability 1,
22 0 with probability 1/2,
2 with probability 1/2,
73 = 7zt — 72 with probability 1.

We purposely write the solution of the third player in the above form to emphasize that
he or she always plays a pure strategy, although actually it is 1 with probability % and —1
with probability %

Clearly, since this is the only solution in mixed strategies, the considered EPEC does
not have any pure strategy solution. A
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It is apparent that existence theory of n-person Nash games can be easily applied to
EPECs when assumption (A1’) holds and we do not allow followers to play mixed strategies.
We state the existence result for mixed solutions to EPECs in the following theorem.

Theorem 3.5. Let the assumptions (A1’) and (A4) hold and let for all i = 1,...,n,
functions ©* be continuous on an open set containing w X R™2. Then the EPEC (3.5)
possesses at least one solution in mized strategies.

Proof. Assumption (A1’) together with continuity of functions ¢*,7 = 1,...,n, guarantee
validity of assumption (A6). It remains to apply Theorem 3.3. O

The assumption (A1’) plays a crucial role in the above theorem and the existence of
solutions to the EPEC can be guaranteed via rather lenient conditions. It turns out that
in the absence of (A1’), the situation gets much more complicated, as explained next.

Consider that (A1) does not hold simply because S(x) is not single valued for some
x € w. Let us consider first the case when this is true for strategies of just one follower.
Without loss of generality we can omit the remaining followers and analyze a multi-leader-
single-follower game.

When the lower problem is not uniquely solvable, we may apply the optimistic hypoth-
esis, this time, however, only with respect to one of the leaders. l.e, we may replace the

loss function of the kth leader for a chosen k = 1,...,n, by the marginal function
M) = inf F(a,y). (3.23)
y€S(w)

We can associate to this marginal function the so-called marginal map

Mi(x) = {u € S(x)|¢"(z,u) = inf ¢ (z,y)}.

y€S(z)

This marginal function reflects an expectation of leader k that the follower will try to help
him or her to achieve the best outcome. Similarly, using

F(z) = sup ¢*(z,y),
y€S(x)

one speaks of the pessimistic formulation with respect to leader k. The corresponding
marginal map
My (x) = {u € S(x)|¢"(z,u) = sup *(z,y)}
yeS(z)

expresses a reasonable expectation of the kth leader that the follower, if there is a chance
to choose from several strategies leading to the same (optimal) outcome, will try to harm
leader £ as much as possible.

The optimistic position can be expected, e.g., in the case when the follower participates
in profits of the kth leader. Compared to the realistically applicable pessimistic position,
the optimistic position may violate legislative constraints (in some cases the cooperation
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is forbidden by legislation) or natural constraints (cooperation is not possible, e.g., in
so-called games against the nature), for the discussion see [12].

Let us first investigate a situation when the kth leader is able to persuade the follower
to select an optimal solution which accommodates his purposes best. Due to the presence
of other leaders we need to investigate the behavior of the suggested couple of players
carefully.

To ensure continuity of marginal function (3.23) of the kth leaders, it is sufficient to
ensure existence of the so-called continuous selection of S. This is guaranteed if S is a
continuous multifunction.

It is known that ensuring lower semicontinuity of S without single-valuedness may be
problematic or quite restrictive. The possible lack of lower semicontinuity of the solution
mapping may lead to a very unstable solution, cf. [12].

One of the suitable ways to test both lower and upper semicontinuity is the use of the
powerful Mordukhovich criterion

D*S(z,y)(0) = {0} (3.24)

which ensures the Aubin property of multifunction S around a point (z,y). Expressing
(3.24) in terms of the initial data of our problem (3.5), together with the qualification
condition from [27, Theorem 6.10] we obtain the condition

0€ (V,F(x,y)) w+ D*N(y, —F(z,); Q) (w) = w = 0. (3.25)

Unfortunately, this condition forces S to be single-valued and locally Lipschitz continuous
whenever () is polyhedral, see [15]. If V,F is not surjective, we can avoid this drawback
by replacing the condition (3.25) with the condition on calmness of multifunction

P(q) = {(x,y) | (y, —F(x,y)) + ¢ € Gph N(;Q)},

see |21, Theorem 6] and related results therein.

Similarly to S, the marginal map need not be single-valued for some values of z. On
the other hand, no matter what y € M?(z) is chosen by the follower, the value of the
marginal function remains the same. However, this is no longer true for the cost functions
of other leaders; their values may be, of course, influenced by the choice of a marginal
selection of(x) from MP(z).

The objectives of the remaining leaders can be expressed in the form

W(x) = @' (x,08(x)), i # k.

To ensure the continuity of all ¢)*,7 # k, the existence of a continuous selection of M?
is not sufficient. Even if such a selection exists, the follower may have no intention to play
it and nor can any leader force him or her to do so. Hence we need to impose additional
assumptions under which the marginal map is single-valued. This is the main difference
from the analysis of the optimistic formulation of an MPEC.

The respective sufficient conditions are stated in the lemma below.
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Lemma 3.6. Let o(x,y) be continuous and strictly convez function in y for all x and let
S be continuous, convex- and compact-valued multifunction. Then function

M?(z) = arg min p(z, )
y€S(x)

18 single-valued and continuous.

Proof. The single-valuedness of M? is clear from the assumptions.

Assume that by contradiction there is a sequence x; — T with § = M°(z) C S(7)
and y; = M°(x;) such that y; — y° # y. The condition y; = M°(x;) is equivalent to
(yi € S(x;), 0(x5,y;) = inf.ecg@,) ¢(xi,2)). According to 3, Theorem 1.4.16], under our
assumptions the marginal function inf, g, o(z;, z) is continuous and hence for z; — Z
converges to inf,cg) ¢(Z, z) which equals to ¢(z,y°) with y® € S(z). This means that
y" = M°(z) which is in contradiction with 7 # y°. O

Note that, in fact, we analyze the problem as a hierarchical three-level game where on
the new, middle level the follower selects from the solution map strategies that belong to
the single-velued marginal map.

We can now state the conditions ensuring the existence of a solution to the optimistic
formulation of EPEC with respect to the kth leader.

Theorem 3.7. Let assumption (A4) hold, S be convex- and compact-valued, functions
0 i=1,...,n, be continuous on an open set containing w x R™2, oF be strictly convex in
y for all values of x € w. Further, assume that for all (z,y) € Gph S the multifunction P
is calm at (0,Z,y) and let the condition

0€ (V,F(7,9)"w+ D*N(7, —F(z,9); Q) (w) = w € Ker(V,F(z,7))" (3.26)

hold. Then the EPEC composed of problems (3.7), i = 1,...,n, with functions 6° replaced
by ¢ admits a solution in mized strategies.

Proof. According to Theorem 3.3, we need to ensure that functions 6,7 = 1,....,n are
continuous on w.

To this end we first invoke the result |3, Theorem 1.4.16| stating that the marginal
function #* is continuous if ©* is continuous and S is compact-valued and continuous.
For continuity of S we apply the results from [21, Theorem 6 and formula (39)] to
h(z,y) = (y,—F(z,y)),A = Gph N(;Q),0 = R™ and v = (u, —w) which ensures the
Aubin property of S around each point from GphS.

Applying Lemma 3.6 we get My = o}, single-valued and continuous. This implies that
the cost functions 1%, # k, are continuous which completes the proof. O

Compact-valuedness of S can be obtained, e.g., by requiring the set {2 to be compact
and function F'(x,y) to be continuous. To ensure the convex-valuedness of S, we need )
to be a convex set and F'(z,y) monotone in y for all admissible values of z, i.e.,

(F(z,y") — Fz,y*),y"' —y*) >0, Wy',y* € Q.
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It is clear from the proof of Theorem 3.7 that the continuity of the marginal function is
not sensitive to whether we consider optimistic or pessimistic formulation of the problem
with respect to the kth leader. However, where needed, convexity of ©*(x,y) has to be
replaced by concavity.

Lemma 3.8. Let ¢(x,y) be continuous and strictly concave function in y for all values
of x and let S be continuous and convezr- and compact-valued multifunction. Then the
function
MP(z) = argmax p(z,y)
y€S(w)
18 single-valued and continuous.

Proof. The proof is analogous to the proof of Lemma 3.6. U

Similarly to optimistic bilevel problem, the objectives of the remaining leaders are in
the form

O'(x) = ¢'(z,0}(x)), i #k,

where o} is a marginal selection from M?. Now, we can obtain results corresponding to
Theorem 3.7.

Theorem 3.9. Let the assumption (A4) hold, S be conver- and compact-valued, functions
0 i=1,...,n, be continuous on an open set containing w x R™2_ o be strictly concave
in y for all x. Further, assume that for all (z,y) € Gph S the multifunction P is calm at
(0,z,9) and let the condition

0€ (V,F(z,79) w+ D*N(y,—F(z,7); Q) (w) = w € Ker(V,F(7,7))"

hold. Then the EPEC composed of problems (3.7), i = 1,...,n, with functions 0" replaced
by ® admits a solution in mized strategies.

Proof. The proof is analogous to the proof of Theorem 3.7. O

One can easily find examples to see that the continuity of the solution map is not
necessary for continuity of the marginal selection. On the other hand, the Aubin property
seems too restrictive for ensuring lower semicontinuity. It would be worth investigating
more precise criteria to achieve the results of Theorems 3.7 and 3.9.

Let us now briefly discuss the general case with multiple followers and with the multi-
valued lower level solution mapping. Without loss of generality assume just the game with
two followers, both able to respond to the leaders’ strategies by playing more than just one
optimal reaction. Naturally, each follower in question behaves independently and influences
the range of multiple rational reactions of the other one. This makes the treatment of a
general situation extremely difficult, e.g., when one follower aims to harm one particular
leader and the second follower tries to do the same to another leader.

We may avoid the above mentioned complications if the decision to select the common
strategy is not taken by the followers themselves, e.g., this could be the role of an inde-
pendent entity on separate middle level in the hierarchy of decision making. We aim to
address these issues in detail in our future analysis of particular situations.
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3.4 Stationarity concepts and existence of stationary
points

In this section we present conditions associated with suitable stationarity concepts for
EPECs. These conditions are connected to the respective necessary optimality conditions
for MPECs due to the structural dependence of EPECs on MPECs.

First, take a look at the EPEC for which each of n MPECs can be formulated as
the mathematical program (3.7). For this EPEC we can derive stationarity conditions
analogous to conditions (2.14).

Theorem 3.10. Let (T',... 7" %) be a solution of the EPEC composed of n MPECs (3.7).
Then for each i = 1,...,n, there exists a vector & € N(z';U?) such that

0 € Vaud' (&, 27,9) + D™ Some (B) (V' (&, 27, 9)) + ' (3.27)
Proof. 1t suffices to apply Theorem 2.13 to each MPEC (3.7). O

The system of conditions (3.27) amounts to a natural stationary concept for EPECs.
As we emphasized in the previous chapter, in most cases we are unable to compute
the coderivative term in (3.27) precisely, and consider weaker conditions, replacing the
coderivative term with suitable upper approximation.

Let us now focus on the case when the lower-level solution map S'is given by the NCP
(2.17), i.e., on the EPCC (3.6).

To proceed to the EPCC counterparts of MPCC stationarities, we will make use of the
EPEC versions of the MPEC generalized Mangasarian-Fromowitz constraint qualification
and MPEC generalized linear independence constraint qualification.

Definition 3.11. (EPEC generalized MFCQ and LICQ)
We say that the EPCC (3.6) satisfies

i) EPEC generalized MFCQ (EPEC-GMFCQ) at a feasible point (z*,...,Z",4) if for
eachi=1,...,n, the MPCC in (3.6) satisfies MPEC-GMFCQ at (Z',77", 7).

i) EPEC generalized LICQ (EPEC-GLICQ) at a feasible point (T, ... 2", ) if for each
i=1,...,n, the MPCC in (5.6) satisfies MPEC-GLICQ at (Z',77", ).

Clearly, as it was true for the MPEC versions of the respective constraint qualifications,
EPEC-GLICQ implies EPEC-GMFCQ.

Analogously, one can define KKT-type stationarity conditions for EPCCs by those for
MPCCs.

Definition 3.12. (strongly, M-, C- and weakly stationary point for EPCC)

Let (z',...,7" %) be feasible for the EPCC (3.6). Then we call (z',...,z", ¥) strongly (M-
, C- and weakly) stationary point for the EPCC (3.6) if for each i =1,...,n, (z°, 27, %)
is strongly (M-, C- and weakly) stationary point for the MPCC in (3.6).
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Also for EPCCs we have the chain of implications
strong stationarity = M-stationarity = C-stationarity = weak stationarity.

Following the same arguments used in the proof of Theorem 2.6 we get the following
results.

Theorem 3.13. Let (z',...,2",7) be a solution of the EPCC (3.6). If EPEC-GMFCQ
holds at (z',...,x" 4) then it is M-stationary point for the EPCC and thus also C-
stationary point for the EPCC.

Proof. Tt suffices to apply Theorem 2.6 to MPCC in (3.6), for each i = 1,... n. O

The complementarity constraints of each MPCC in (3.6), i = 1,...,n, can be equiva-
lently reformulated as the generalized equation

Fl(xi7 jii? y) - Vi i, ml2 m12
0€ ( P2t 70 y) + N(y,v"; R™2 x R?). (3.28)
Whenever for every i = 1,...,n, the generalized equation (3.28) is strongly regular at

(7', 9), we can apply Theorem 2.17 and the technique of adjoint equations to derive the
Clarke stationary conditions for EPCC.

Definition 3.14. (Clarke stationarity conditions to EPCC)

Let (z',...,2", ) be a feasible point for the EPCC (5.6) and let each generalized equa-
tion (8.28) be strongly reqular at (¥',y),1 = 1,...,n. Then we call (z',...,7" y) Clarke
stationary for the EPCC if for each i = 1,...,n, the following conditions

0 c v i(f 7) inF]%U(IO\M.)(_a?j) ! ij(f ,)‘ . c K(, ,) + N(,Z UZ)
P (X,y) — conv v x, z, T ,
7 Y inF[2+UM]-(x>y> b v Y

(3.29)
are satisfied, where p” (T, ) are the unique solutions of the adjoint equations
VyF Lo (T 9) :
Y U . ) /= —
Voo = V,0'(Z,79). 3.30
va12+UMj (.T, y) p y(P ( y) ( )

Theorem 3.15. Let (z',...,7",9) be a solution of the EPCC (3.6). Let each generalized
equation (5.28) be strongly stationary at (Z',z7%,9) and for all j € K(z,y) the vectors
p(z,y) be the unique solutions of (3.30). Then for each i = 1,...,n, conditions (3.29)
are fulfilled. In particular, the point (Z,7y) is Clarke stationary for the EPCC.

Proof. The statement follows from Theorem 2.20 applied separately to each MPCC in
(3.6). O
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As a consequence of Theorems 2.24 and 2.26, under SRC for each of n generalized
equations (3.28) and EPEC-GLICQ satisfied, we verify also the equivalence of Clarke and
C-stationarity for EPCCs. This is the statement of the following theorem.

Theorem 3.16. Let (z',...,2",4) be a feasible point for the EPCC (3.6). Let EPEC-
GLICQ hold at (Zy,...,%n,y) and for each i = 1,...,n, let SRC hold for the generalized
equation (3.28) at (z',z7%,y). Then the point (T',...,z", ) is Clarke stationary for the
EPCC if and only if it is C-stationary for the EPCC.

Note that the assumption of the strong regularity of each generalized equation (3.28)
at the reference point can be replaced by stronger assumption of the strong regularity of
the generalized equation

Fl(xlu"'axn7y)_y . Rml2 mlz
Oe( F2(x1?"'>xn>y) +N(y7V,R XRJF )

at the reference point.
In [37] one can find an ezistence theorem for Clarke stationary points for EPECs. This
theorem can be reformulated for EPCCs as follows.

Theorem 3.17. Let assumptions (A1°), (A4) and (A5) be fulfilled and suppose that for
each i = 1,...,n the multifunctions T* : x = S~ (") are upper semicontinuous on w.
Then the EPCC (3.6) possesses a Clarke stationary point.

Proof. To prove that there is a Clarke stationary point for the EPCC it is sufficient to
show that the generalized equation

0€C(x)+ N(z;w) (3.31)
with the multifunction
Varp! (2, S(x)) I (x)" Vyp'(z,5(x))
C(z) = : + : f
Vn@"(x, S(x)) I V" (z, S(x))
has a solution. For details see [37, Theorem 3.3|. O

To our knowledge, Theorem 3.17 provided up to now the only result derived for EPECs
concerning the existence of (at least) stationary points. As a corollary of Theorems 3.16
and 3.17 we can present the following existence result.

Corollary 3.18. Let assumptions (A4) and (A5) be fulfilled and for each i =1,... n, the
generalized equation (3.28) be strongly regular and MPEC-GLICQ hold at every feasible
point of the MPCC' in (3.6). Further, let the solution map of each generalized equation
(3.28),i=1,...,n, be single-valued and multifunctions T'* be upper semicontinuous on w.
Then the EPCC (3.6) possesses a C-stationary point.
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Recall that even though the respective generalized equations are assumed to be strongly
regular at each feasible point, the solution map may not be single-valued. Strong regularity
implies single-valuedness only locally on the neighborhood of the point from the graph of
S. For global unicity of the solution to the generalized equation one can suppose, e.g.,
strict monotonicity of the single-valued part of the generalized equation, see [39, Theorem
4.4].

Note that, e.g., when the complementarity constraints are in the form of a linear
complementarity problem, the assumption of upper semicontinuity of the multifunctions
I, i =1,...,n, is automatically satisfied since the solution maps S,—: do not depend on
Tt

We can modify the conditions in the above theorem and corollary by weakening the
compactness assumptions, for in many applications the sets U’,i = 1,...,n, (and thus
also the set w) are unbounded. To this end, we present the following two modifications
of Theorem 3.17. Before we proceed with the statement and its proof, recall that a set
V C R" is said to be contractible, if there is a point 2° € V and a continuous function
g:V x[0,1] — V, such that

g(x,0) =2 and g(z,1) = 2° for each z € V.

Theorem 3.19. Let assumptions (A1) and (A5) be fulfilled. Further, suppose that there
15 a conver set E with nonempty interior such that

i) the set wN E is nonempty and compact;
i) multifunctions T i =1,...,n, restricted to w N E are upper semicontinuous;
i) for each x € wNbdry(E) there is an 2° € w Nint(E) such that

(y,x =2y >0 forallye Clz).

Then the EPCC (3.6) possesses a Clarke stationary point.

Proof. To prove the existence of a Clarke stationary point to EPCC (3.6) it suffices to
apply [17, Theorem 3.2| to the generalized equation (3.31). All but assumptions (iii)(b)
and (iii)(c) of |17, Theorem 3.2| follow directly from the statement of the theorem.
Clearly, the multifunction C' is nonempty-, convex- and compact-valued. Further, C'(x)
is contractible for each z € wN E, since C'(z) is a convex set. Thus condition (iii)(c) of [17,
Theorem 3.2] is satisfied. The condition ii) implies upper semicontinuity of C' restricted to
w N E and hence also assumption (iii)(b) of [17, Theorem 3.2| holds. This completes the
proof. O

The second modification involves generalization of coercivity for set-valued maps.
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Theorem 3.20. Let the sets U;,i = 1,...,n, be closed and convex (possibly unbounded)
and let assumption (A1°) be fulfilled. Further, suppose that multifunctions T' i =1,... n,
are upper semicontinuous on w and that there is an x° € w such that

.0
lim (inf M) = 400

lel—+o0 \yeC@) || |
Then the EPCC (3.6) possesses a Clarke stationary point.

Proof. Analogously to Theorem 3.19, it suffices to apply [17, Corollary 3.1 to the gener-
alized equation (3.31). O

Similarly to Corollary 3.18, on the basis of Theorems 3.19 and 3.20 we can derive
existence results also for C-stationary points to EPCC using Theorem 3.16.



Chapter 4

Multiobjective Problem with
Equilibrium Constraints (MOPEC)

In the previous chapter we have focused on EPECs in which the upper problem admits a
structure of a Nash game, i.e., when leaders act noncooperatively. We can investigate also
the opposite sort of “extreme” situation when leaders cooperate by solving a multiobjective
optimization problem. This brings us to the study of a class of multiobjective problems
with equilibrium constraints.

In this chapter the main attention is paid to MOPECs with equilibrium constraints in
the form of mized complementarity problem (MCP). We discuss the existence of solutions
to this problem and derive its necessary optimality conditions.

4.1 Mathematical formulation

Following the notation introduced in previous chapters, suppose yet again that our prob-
lem involves n leaders and m followers. In the multiobjective problem with equilibrium
constraints, the behavior of leaders is not only described by their individual objectives
o Rrbtmiz R G =1,2, ... n, but this time also by a closed convex cone K C R™ that
specifies an ordering of R™ in the standard way:

F =2 e -l eK (4.1)

When discussing solutions to multiobjective problems, we speak of Pareto optimal points.
As it is common in standard optimization literature, we distinguish two notions of (gen-
eralized) Pareto optimality. Denote by ¢ the map from R"™1+™2 to R such that ¢ :=
(0 02, ..., 0")". Then for the (unconstrained) multiobjective problem

minimize p(z,y)

with respect to partial ordering induced by a cone K, a multistrategy (z,y) is called
strongly Pareto optimal if there is no multistrategy (z,y) such that (z,y) # (z,y) and

QO(ZE’,@) - go(x,y) € K.
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However, to our purposes, a weaker notion of Pareto optimality proves to be more suitable.
A multistrategy (z, %) is called weakly Pareto optimal if there is no multistrategy (z,y)
such that

o(Z,y) — p(z,y) € rint K.
Note that for K = R} we arrive at the standard notions of Pareto optimality.
Now we are able to define a weak Pareto solution of an abstract MOPEC.

Definition 4.1. (weak Pareto solution of abstract MOPEC)
A multistrategy (Z,7) € R™ x R™2 js g weak Pareto solution of an abstract MOPEC

min%'(mize o(z,y)
subject to y € S(x), (4.2)
(x,y) € K,

if y € S(Z) and there is a neighborhood U of (z,y) such that for all (z,y) € U N Kk with
y € S(x) we have

o(Z,y) — p(z,y) ¢ rint K. (4.3)

Here again, S denotes the solution map to the lower problem for given multistrategy
of all leaders and x denotes the set of nonequilibrium constraints.

Also in this case, we implicitly assume the optimistic formulation of the problem. If the
multifunction S is not single-valued, it is clear from the above definition that the problem
(4.2) is still well-defined, contrary to the EPEC case.

As before, S(z) can be, e.g., a solution set to the equilibrium problem in the form of
generalized equation

0€ F(z,y) + Q(x,y) (4.4)

with single-valued function F' and multifunction ) which in many practical cases is a
normal cone mapping.

Now, let us specify the behavior of players on the lower level, just as we did when
discussing EPECs, but with a slight modification in the structure of followers’ feasible
sets. Let the multistrategies y € R™2 be feasible provided that all of its components
y?,7=1,...,m, belong to given boxes (intervals) I C R,

Let the followers act according to their objectives f/ : Rritmz L R 5 =12, ... m.
Hence, for a given multistrategies € w and 7~ the strategy of the jth follower amounts
to a solution of the optimization problem

minimize f7(z,9’,5 )
v o (4.5)
subject to y’ € I’.

Recall that we assume that the assumption (A0) from page 35 is fulfilled. Given Z, a
corresponding multistrategy ¥ amounts this time to a solution of the mized complementarity
problem defined by

0€ F(z,y)+ N(y; 1), (4.6)
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where

Now, the solution map S is given by
S(x) :=={y e R™|0 € F(z,y) + N(y; I)}.

Thus we arrive at a special MOPEC, where the behavior of the followers is described by
an MCP of the type above. According to the accepted terminology, we therefore speak of
a multiobjective problem with complementarity constraints, abbreviated to MOPCC.
n
Let again k = w x R™2, where w amounts to X U’ with U? C R being the set of

=1

feasible strategies of leader 1.

Definition 4.2. (weak Pareto solution of MOPCC)
A multistrategy pair (Z,7) € w x I is declared to be a weak Pareto solution of an MOPCC

if
0 € F(z,5)+ N30,

and there is a neighborhood U of (Z,y) such that for all (x,y) € U N (w x 1) for which
0€ F(z,y) + N(y; 1)
we have
o(z,y) — p(x,y) ¢ rintK. (4.7)
We can summarize the corresponding multiobjective optimization problem as follows:
min}(mize o(x,y)

subject to 0 € F(x,y) + N(y;1), (4.8)

T € w.

Note that in [28], [30], and [53] one can find results for substantially more general
concepts of multiobjective optimization.

4.2 Existence of weak Pareto solutions

In this section we pay attention to conditions ensuring the existence of optimal solutions
to MOPECs (4.8). For this we apply recent results involving subdifferential calculus for
set-valued mappings and new conditions of coercivity and Palais-Smale type each of which
ensures the existence of optimal solutions to set-valued optimization problems with non-
compact feasible sets |4, 5|. Multiobjective (or vector-valued) optimization problems can
be viewed as a special case of the set-valued optimization.
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First, we need to introduce some important extensions of the notion of subdifferential
to set-valued mappings, developed in [4, 5.

Consider a set-valued mapping H : R” = R and the partial ordering on R™ specified
by a nonempty closed cone K C R™. Using (4.1) we can define the generalized epigraph of
H with respect to the partial ordering by

epiH = {(z,y) e R"" x R"|y € H(z) + K}. (4.9)

Note that epiH = GphH if K = {0}. Otherwise we have the strict inclusion GphH C
epiH.

By means of the generalized epigraph (4.9) we can associate with H and K the epi-
graphical multifunction g : R™ = R™ given by

En(z) ={y e R"|ly € H(z) + K}.

The limiting and singular subdifferentials of multivalued mapping H are generated by the
coderivative of its epigraphical multifunction.

Definition 4.3. (limiting and singular subdifferentials of a multifunction)

Let a multifunction H map R™ into R™ with partial ordering on R™ induced by a cone K
and let (Z,y) € epiH. Then the limiting subdifferential of the multifunction H at (Z,y) is
defined by

OxH(z,y) .= {a* € D*Ey(z,7)(2")| — 2* € N(0O; K), ||z*|| = 1} (4.10)
and the singular subdifferential of H at (Z,y) is defined by
ORH(7,5) = D"En(7,7)(0). (4.11)

Note that in case of extended real valued functions on R™ the subdifferentials (4.10) and
(4.11) reduce to the classical limiting and singular subdifferentials, respectively, provided
K =RT*, i.e., with the standard order on R.

Let us now define the set-valued counterpart of coercivity condition.

Definition 4.4. (coercivity of set-valued mappings)
We say that the multifunction H : R™ = R™ satisfies the coercivity condition if there is a
compact set © C R™ such that

reR"\ O

y e Hx) }:>E|(u,v)€Gth with w e © and v <y. (4.12)

For the definition of set-valued counterpart of Palais-Smale condition we need to intro-
duce a generalization of boudedness from below.



4.2 Ernistence of weak Pareto solutions 59

Definition 4.5. (quasiboudedness from below)
For a set-valued mapping H : R™ = R™ and a set = C R™, we say that F' is quasibounded
from below with respect to = if there is a bounded set M such that

H(E)C M + K,

where K is the cone specifying the generalized order optimality and H(Z) = |,z H(z).
A set A C R™ is quasibounded from below if the constant mapping H(x) = A has this
property.

Definition 4.6. (subdifferential Palais-Smale condition)
A set-valued mapping H : R™ = R™ satisfies the subdifferential Palais-Smale condition if
any sequence {x®} C R™ such that there are

y® e H(z®) and 2% € 0g H(z™,y ™)) with [|2®*|| — 0 for k — oo
contains a convergent subsequence provided that {y®} is quasibounded from below.

Recall the classical Palais-Smale condition for differentiable real-valued function ¢ :
R" — R. Let {x(®} C R™ be a sequence such that {¢(2*)} is bounded from below and
Vi (z®)|| — 0 as k — co. Then {(*} contains a convergent subsequence.

It is known, that the Palais-Smale condition implies coercivity for C! functions and
locally Lipschitz functions. In [4] the authors presented an existence result for the con-
strained set-valued optimization problem

minimize H(z)
K (4.13)
subject to x € =,

first under coercivity condition imposed on H and later under a corresponding version of
the subdifferential Palais-Smale condition.

Whenever the constraint set = of the set-valued optimization problem (4.13) involves
also equilibrium constraints, we arrive at a class of problems called set-valued optimization
problems with equilibrium constraints (SOPECs). These problems are formally defined as

min}(mize H(z)
subject to 0 € G(z) + Q(x), (4.14)

T € R,

where H, G and @) are generally set-valued mappings. Note that for H and G single-valued
we get an MOPEC.
Let us denote by Min H(x) the collection of minimal points of the set H(x) defined by

Min H(z) ={y € H(z)|y —y ¢ K whenever y € H(z) \ {y}}.

Similarly, replacing K with rint K # () we obtain the collection of weakly minimal points.
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To obtain a version of subdifferential Palais-Smale condition for the constraint case
(4.13), it suffices to consider Definition 4.6 with a restriction of H to =

HE(x) = H(%) + A(I, E) with A($7 E) -

0cR™ ifzeE,
1] otherwise.

The following proposition taken from [4] and [5] states the conditions for the existence
of weak minimizers to the problem (4.13).

Proposition 4.7. Let H : R" = R™ be quasibounded from below with respect to = and
have a closed epigraph. Let the sets = and Min H(x) for x € = be closed and let

for every x € Z and y € H(x) there is § € Min H(x) with g < y. (4.15)

Then the set-valued optimization problem (4.13) admits a weak minimizer in each of the
following cases:

i) Let the constraint set = be compact.
ii) Let the multifunction H satisfy the coercivity condition.

iii) Let the following version of the subdifferential Palais-Smale condition hold:
Any sequence {z®} C = such that there are

y® e H(z™) and 2%* € 9 H(2zW,y®) + N(2®): 2) with | %] — 0 for k — oo

contains a convergent subsequence provided that {y("’)} s quastbounded from below.

—_

In addition, assume that for every (x,y) € Gph H with x € Z the qualification
condition

O H(x,y) N (=N(z;2)) = {0} (4.16)
15 satisfied.

Proof. The first and the second assertion follow from [4, Theorem 4.1| and the third state-
ment is a finite-dimensional counterpart of [5, Theorem 3.2]. O

Let us now apply the previous proposition to the MOPCC (4.8). This enables us to
state the following the conditions ensuring the existence of weak Pareto solutions to the
considered MOPCC.

Theorem 4.8. Let ¢ be lower-semicontinuous and let the mapping @(x,y, z) := o(x,y) be
quastbounded from below with respect to

Gph (=F) N (R™ x Gph N(51)) N (w x R™2 x R™2),

F be a continuous function and w and I be closed sets. Then the MOPCC (4.8) admits a
weak Pareto solution in each of the following cases:
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i) The sets w and 1 are compact.
ii) The function ¢ is coercive.

iii) Let the following version of the subdifferential Palais-Smale condition be satisfied:
any sequence {(z® y"N} C w x R™2 such that there are ) = —F(z®) y*)) ¢
N(y®:1), y® e R™2, (|20 — 0 with

(k)= € Oz (k) ( )) + D*F(x (k) ( )7 —z(k))(y(k)*) + {0} x D*N(y(k)’z(k);ﬂ)(y(k)*)

+N(@®:w) x {0}
(4.17)
contains a convergent subsequence provided that {z(k)} s quasitbounded from below.

In addition, whenever x € w,z = —F(x,y) € N(y;1) and y* € R™2_ let the following
qualification conditions be fulfilled:

—0gw(z,y) N (D" F(z,y, —2)(y") + {0} x D*N(y, z;I)(y*) + N(x;w) x {0}) = {0},

(4.18)
o™ € D*F(z,y, —2)(y")
z?* € {0} x D*N(y, 2, I)(y* =0
x> € N(x;w) x {0} =" =27 =0

0= Z‘l* +Z‘2* +ZE3*
Proof. Clearly, for the MOPCC (4.8) it suffices to set H := ¢ and
Z:= Gph (=F)N (R x Gph N(;I)) N (w x R™2 x R™2),

Observe that for F' continuous, w and I compact, the set = is also compact. Also, for single-
valued functions the condition (4.15) is trivially satisfied. This proves the first statement.
The second statement follows immediately from the proposition above.
It remains to prove the third statement. Taking into account the relationship

and applying the intersection rule for limiting normal cones [29, Corollary 3.37|, we get
the inclusion

N(z,y,2,=2) C
- N(xuyaza Gph (_F)) + N(xvyvz;Rnll X Gph N(aH)) + N(x,y,z;w X lez X RMZQ)

provided the qualification condition (4.19) holds, where we set z = —F(z,y) € N(y;I) and
applied the definition of coderivative.
Observe that

O P(z,y,2) = O ¢(x,y) x {0}.
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Also, the inclusion (z*,0) € N(z,y, z; Z) implies
at € D'F(x,y,—2)(y") + {0} x D"N(y, z D)(y") + N(z;w) x {0}

with some y* € R™2,
This also implies the qualification condition (4.18) from (4.16) and the version of sub-
differential Palais-Smale condition with (4.17) which completes the proof. O

4.3 Necessary optimality conditions

In the recent book by Mordukhovich [30], the whole section 5.3.5 is devoted to necessary
optimality conditions for MOPECs with equilibrium constraints given by the generalized
equation (4.4) on infinite-dimensional spaces. Hence we kindly refer the reader to [30] and
present here only the specification of these necessary optimality conditions to the MOPCC
(4.8).

Let (Z,y) be a weak Pareto solution of the MOPCC (4.8) and assume that ¢ is locally
Lipschitz continuous around (z, 7). Further suppose that

I' = [a*, ']

and that a} <0 forall j = 1,...,l5, and i = 1,...,m. Similarly to previous cases when
we were dealing with complementarity constraints, let k := (i — 1)l + 7,0 < j < Iy, and
let us employ the following index sets:

L(y) :=={k € {1,...mis}|a} < yp < b},
I (x,y) ={k € {1,...mix}|Fx(z,y) > 0},
I (x,y) ={k € {1,...mlx}|Fx(z,y) < 0}, (4.20)
Dz, y) :={kc{l,...mh}y. = aé, Fi(z,y) =0},
Bz, y) :={kc{l,...ml}y. = b;-, Fi(z,y) =0}

related to the constraint y € I. As before, the arguments z,y will be omitted whenever it
cannot lead to a confusion. To simplify the notation, put

() = I (2,y) UL (z,y), I°(2,y) = I} (2,y) U L (z,y).

The following optimality conditions represent a modification of [53, Theorem 5.29|. Note
that we do not need to assume the single-valuedness of S in this statement.

Theorem 4.9. Let (Z,y) be a weak Pareto solution of MOPCC.

i) Then there exist vectors z € K~,u,v € R™2 not simultaneously equal to zero, such
that the following hold:
up = 0 and Vr+ = 0,
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for k € IY(z, 1) either uyvy = 0 or uy, < 0 and v > 0,
for k € ID(z,y) either uxvy = 0 or ty > 0 and vy <0,

and one has the inclusion
/a _

0 € D*o(z,9)(—2) + ( _(VxF(E”’

y)) '+ N(7;w)
D e T ) . (4.21)

ii) Assume further that either F' is affine and w is convez polyhedral, or the constraint

qualification
— (VoF(2,9) v € =N(z,w), ‘
U= (va(f>g))T’U = 07
ur, = 0,v+ =0, =v=0 (4.22)

for k € IV(z,7) either upvy =0 or u, < 0 and vy, > 0,
for k € I)(z,7) either upvy =0 or uy, > 0 and vy, < 0, |

is fulfilled. Then z # 0.

Proof. To justify the first statement, we rewrite our MCP
0€ F(x,y)+ N(y; I) (4.23)

to the form
d(z,y) € A,

where ®(z,y) = ( —Fglx ) ) and A = Gph N(-;I). To proceed, we first apply to problem

(4.8) the general results on multiobjective optimization involving weak Pareto optimality,
see |28] and [30, Theorem 5.80], and then use a calculus rule to compute the basic normal
cone to the constraint set defined by

M = {(:U,y) € R"Fm | (g, y) € A};

see, e.g., [27, Theorem 6.10]. This allows us, by taking into account the special structure
of the mapping ® and the set A, to reduce calculations to computing the normal cone
N(y, —F(z,y);A) of the graphical set A = Gph N(-;I). The latter has been done in |36,
Lemma 2.2|. To complete the proof of the first part of the theorem, it remains to observe
that N(0; K) = K.

To derive the second part of the theorem, the “qualified” form of the necessary opti-
mality conditions with Z # 0, we invoke the result from [28, Theorem 3.2|. This gives us
a vector z € N(0; K) \ {0} satisfying

0 € D*p(z,9)(—2) + N(z,9; A),
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where A = {(z,y) € w x R™2 | ®(x,y) € A}. Assuming now the constraint qualification
(4.22) imposed in the theorem, we conclude by [27, Theorem 6.10] that the normal cone
N(z,y; A) is included into the set given as the second term on the right-hand side of (4.21).

If, as an alternative to the constraint qualification (4.22), F' is affine and w is convex
polyhedral, we observe that the map

M(p) = {(z,y) € v x R™ [ ®(z,y) +p € A}

happens to be calm at (0, Z, 7). Since we clearly have A = M(0), the desired representation
of N(z,y;A) is now provided by |20, Theorem 4.1]. This completes the proof of the
theorem. O

Note that the constraint qualification (4.22) imposed in Theorem 4.9 is exactly the
respective MPEC-GMFCQ).
Let us localize the assumption (A1’) from page 36 as follows:

(A1”) S is single-valued and locally Lipschitz continuous on a neighborhood of z.

The latter enables us to derive the following qualified form of necessary optimality
conditions for the MOPCC under consideration.

Theorem 4.10. Let (z,7) be a weak Pareto solution of MOPCC. Suppose that assumption
(A17) is fulfilled and that the modified constraint qualification

- (VIF(J@Q))TU =0 )
u— (V,F(7,5) v =0
ur, = 0,v;+ =0 =v=0 (4.24)

for k € I)(2,7) either upvy =0 or up < 0 and vy, > 0
for k € I3(z,y) either uguy, =0 or uy, > 0 and vy <0

holds true. Then there exists a nonzero vector z € K~ and multipliers u, v € R™2 satisfying
the relationships
Uy = 0 and Vp+ = 0,

for k € IY(z, ) either uyvxy =0 or ux < 0 and vy > 0,
for k € IY(z, ) either uyvy =0 or ax > 0 and vy, < 0,
as well as the inclusion (4.21).
Proof. Our problem can be rewritten to the form of the multiobjective program
min}(rnize O(x)

(4.25)
subject to = € w,
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where O(z) := p(z,S(x)). By virtue of (A1”), the map O is locally Lipschitz continuous
around z. It follows from [28, Theorem 3.2] the existence of a nonzero vector z € K~
satisfying

0€ D'O(x)(—%2) + N(T;w).

It remains therefore to compute the coderivative of the map ©. From [27, Theorem 5.1]
we have the inclusion

DO (z)(w") C {a+ D*S(z)(b)[(a,b) € D*¢(z, y)(w")}

for all w* € R™ due to the assumptions imposed on ¢ and S. To compute the coderivative
of S, we rewrite our MCP to the form (4.23) and employ again [27, Theorem 6.10]. It
follows from this result that under the constraint qualification (4.24) we have the inclusion

D*S(j)(y*) - {_(VCEF(f?g))T/U‘ - y* =Uu-— (VCEF(f?g))T/UauL = 07/01“' = Oa
for k € IY(z, y) either ugvy =0 or ux < 0 and v > 0
and for k € I3(z,y) either uivy, = 0 or uy > 0 and vy < 0}

for all y* € R™2. The latter allows us to conclude that
D*0(2)(2) C {a — (V.F(2,9)) 0|0 =b+u— (V,F(z,9) v, (a,b) € D*p(z,7)(2)},

that ur, = 0 and v+ = 0, that either uzvy = 0 or ugx < 0 and v > 0 for k € I?(7,¥), and
that either uivy = 0 or up, > 0 and v, < 0 for k € IS(@, y). This is exactly what we need,
whence the proof is complete. O

We conclude this section with several remarks.

It follows from the proof of Theorem 4.10 that the modified constraint qualification
(4.24) is needed only for the computation of D*S(Z) in terms of F. If F is affine, we do
not need any constraint qualification at all; c¢f. |21, Theorem 6]. The modified constraint
qualification (4.24) from Theorem 4.10 is less restrictive than the constraint qualification
(4.22) from Theorem 4.9. The reason is that the MCP under consideration is not coupled
with the constraint z € w.

To ensure the localized assumption (A1”), it is sufficient to suppose that the MCP
satisfies the strong regularity condition at (z,y). However, SRC ensures simultaneously
the constraint qualification (4.22) of Theorem 4.9, cf. [36, Proposition 2.6].
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Chapter 5

Solution Methods for EPECs and
MOPECs

The previous chapters have focused on theoretical aspects of MPECs, EPECs and MOPECs.
In this final chapter we discuss numerical methods to obtain solutions to EPECs and
MOPECs. We first give a brief overview of existing approaches. The main part of this
chapter is devoted to the generalization of a homotopy method to search for C-stationary
points of EPCCs with simple structure. Final section concerns the solution method for
MOPECs which invokes implicit programming approach.

5.1 Overview

5.1.1 Diagonalization methods

The first approaches used by researches to solve problems from the EPEC class are the
diagonalization type methods based on algorithms developed specifically for MPECs. The
main idea is to solve one MPEC at a time and repeat this procedure cyclically for every
MPEC. The computed solutions are then used to update the multistrategy vector of leaders
until a fixed point of this operation is found.

In [49] one can find a detailed description of the nonlinear Jacobi and the nonlinear
Gauss-Seidel diagonalization methods. The former one works as follows:

1) Choose a feasible starting multistrategy (z(?,5®) of the EPEC, maximum number
of iterations J € N and accuracy tolerance € > 0 and set k = 1;

2) For each i =1,...,n, fix z7%*~1 and solve the MPEC of the ith leader. Denote the
solutions for leaders of these problems as z%®*)

Y

3) Check the accuracy tolerance, i.e., if ||z5®*) —2»*=D|| < ¢ for each i = 1,...,n, then
STOP and declare (a:(k), y(k)) as the solution, else go to step 4;
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4) If k < J, then increase k by one and go to step 2 else report that the procedure failed
to find a solution.

The Gauss-Seidel method improves the Jacobi method since the “updated information”
about the vector of leaders’ multistrategies is used immediately after solving each MPEC
and not just after completed cycle. Hence Gauss-Seidel method works as follows:

1) Choose a feasible starting multistrategy (z(?,5®) of the EPEC, maximum number
of iterations J € N and accuracy tolerance € > 0 and set k£ = 1;

2) For each i = 1,...,n, fix (aV® g=bk) prtbkE=1)"pnk=1)) and solve the
MPEC for the ith leader. Denote the solution of this problem as z®).

3) Check the accuracy tolerance, i.e., if ||z"®*) —2%*=D|| < ¢ for each i = 1,...,n, then
STOP and declare (x*), y(k)) as the solution, else go to step 4;

4) If k < J, then increase k by one and go to step 2 else report that the procedure failed
to find a solution.

For details on these methods, see [22] or [49].

5.1.2 Sequential nonlinear complementarity method

The algorithms based on the diagonalization method can be generally used for EPEC with
the equilibrium constraints in arbitrary form. A sequential NCP method, introduced in
[49], was designed for EPCCs with the equilibrium constraint governed by the NCP (2.17).

After a reqularization of the complementarity condition, these constraints amount to

FHa' 77" y)
Pz, 77" y)

Fl(' 27" y)F (e, 27" y)

IN IV IV

0,
0, (5.1)
t, j: 1,...,ml2,
where t > 0. Replacing the complementarity constraints by (5.1), we transform the MPCC
into a regularized nonlinear program. This is done simultaneously for each MPCC. The se-
quential NCP method then can be described as solving, under assumption of EPEC-LICQ),
a sequence of mixed complementarity problems for ¢ N\, 0. These mixed complementarity
problems correspond to collection of first-order KKT systems of each regularized NLP.

A detailed comparison of the numerical performance of the above mentioned methods

on randomly generated EPECs in the form of EPCCs with quadratic objectives and linear
complementarity constraints, can be found in [49].
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5.1.3 Price-consistent NCP method

In [24] another special type of EPEC is considered. The equilibrium constraints represent
the first order conditions of the following optimization problems of the followers

minimize f7(z,9’,57)
y]

subject to ¢ (z,y’,577) >0, (5.2)
y > 0.

Again, using the solution mapping S of the lower problem, the ith leader is trying to solve
the MPEC in the form
minimize ©'(z', 77", y)

by
subject to d'(z',27",y) >0, (5.3)
z' >0,
ye S z).

Note that in [24]| the upper-level objectives as well as the constraints are allowed to
depend also on multipliers of the constraints ¢/(x,y) > 0. Here, to be consistent with the
previous parts of the thesis, we restrict ourselves to the above considered case.

To achieve a price consistent restriction of the EPEC composed of MPECs (5.3), the
following assumptions are considered.

(A8) For each ¢ = 1,...,n, the nonequilibrium constraints of the ith leader consist of a
set of constraints of the form d’(z%) > 0 and a set of constraints d(x,y) > 0 common
for all leaders;

(A9) For each i = 1,...,n, the objective function of the ith leader includes a term depen-
dent on x only and a term common for all leaders, i.e., the objective is of the form

@' (r,y) = ¢ () + oz, y);

If we strengthen the assumption (A9) such that each upper-level objective is of the
form

o (z,y) = o' (z") + o(z,y),

then we say that the EPEC composed of MPECs (5.3) is completely separable.

Generally, this problem entails three sets of players; the leaders, the followers and
the markets. The markets decide about the multipliers (shadow prices) of the (resource)
constraints. When considering the so-called price-consistent problem, the multipliers asso-
ciated with the common constraints are set to be the same. This allows us to eliminate a
large number of multipliers and to reduce significantly the size of the problem.



70 Solution Methods for EPECs and MOPECSs

Under assumptions (A8) and (A9), we can reduce the price-consistent EPEC to the
following problem

7' e { argmin  ¢'(¢',777) + (2,77, y) —d(2", 77, g) T A = (h(a', 77,9, 2) = 5)

z>0,d*(z%)>0
1=1,...,n,

(5.7.5) € { argmin o(2,y) — (e, ) A — (h(@y,2) — ) i+ oly" >} ,

y=>0,2>0,5>0

A>0,p,020

(A, fi,0) € { argmin d(7,9) X+ (WzZ,79,2) —5) ' u—o(y', zT)s} :
(5.4)

where
Vi 1 (a,y) — Ve (a,y)2!

Vymfm(xa y) - vymcm(xv y)zm

h(.T,y,Z) = cl(x,y)

™ (x,y)
Assume in addition the complete separability. Then the following result relates the price
consistent restriction (5.4) to a special MPEC.

Proposition 5.1. Assume that the EPEC (5.3) is completely separable. Then the first

order optimality conditions of (5.4) are equivalent to the strong stationarity conditions of
the following MPEC:

minimize Z o (2") + o, y)
i=1
subject to d'(z") >0, i=1,...,n,
h(z,y,z) —s=0,

og(y>¢szo.
ya

Proof. For proof see |24, Proposition 5.1]. O

The problem above can be interpreted as finding one particular solution to a multiob-
jective optimization problem. Since price consistency is a restriction, any solution to (5.4)
or (5.5) is a solution to the original problem. Clearly, in this way one may not be able to
find a solution even in the case when it exists.

For detailed comparison of the diagonalization methods, sequential nonlinear comple-

mentarity method and a numerical solution method of the price consistent restriction of
EPEC, see [24, Section 6.
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5.2 Homotopy method for computation of C-stationary
points to EPCCs

None of the above methods is without a significant drawback. The sequence of points
produced by diagonalization methods may not converge. Moreover, even if there is a limit
to this sequence and the lower problem is not uniquely solvable, the limit point may not
be a solution of EPEC. The sequential nonlinear complementarity method leads to solving
a sequence of large and complex complementarity problems. The price-consistent method
depends on highly restrictive assumptions on the structure of the problem, which in some
applications could not be justified.

In this section we intend to design the first numerical method tailored specifically to
the structure of the EPCC. However, even we could not avoid to impose some restrictive
assumptions. The most crucial restriction concerns the dimension of the lower problem;
this helps us to slightly simplify the description of the proposed algorithm.

Let us turn our attention to the simplest form of EPCC (3.6) with convex-quadratic ob-
jective functions ¢° constrained only by the lower problem in the form of a one-dimensional
linear complementarity problem

for a given vector z find y € R

5.6
such that 0 < Az +by+a Ly>0 (5.6)

with a row vector A € R™™ and real constants a, b.

Further we assume that b > 0, which is sufficient for the linear complementarity problem
(5.6) to be uniquely solvable, [33]. This problem corresponds to the necessary and sufficient
first order optimality conditions of the convex-quadratic parametric optimization problem

1
minimize §by2 + (Az+a)y
v

(5.7)
subject to y > 0.

Hence, in this section we aim to analyze and propose a numerical method for the class of
EPCCs associated with n convex-quadratic MPCCs, where the ¢th mathematical program,
1 =1,...,n, has the form

minimize %(:J,y)@i ( y ) () ( ) )

zty Y
subject to 0 < Az +by+a Ly>0

(5.8)

with the symmetric matrix Q¢ € R™+!1 x R™i+l and the vector ¢/ € R™*!. Further we
assume that the square submatrix which results from @Q° by deletion of rows and columns
with indices corresponding to parameters 7 is positive definite.

In [42], the authors introduced two versions of a piecewise affine homotopy method
which search for C-stationary points of convex-quadratic mathematical programs with lin-
ear complementarity constraints. The methods performed surprisingly well and its elegant
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geometric interpretation inspired us to consider modification of the homotopy method I,
[42], tailored to the EPCC above.

We admit that EPCCs with only one follower with scalar decision variable seem too
restrictive. Also, in the view of restrictions we impose upon the data, cf. the next section,
nontrivial description of the algorithm and the fact that the proposed numerical method
may not find any C-stationary point even if there is one, the practical use our modified
homotopy method is questionable.

On the other hand, during the process we gained a detailed, previously unknown infor-
mation about the structure of the sets of stationary points and solutions to the considered
class of problems.

5.2.1 Parameter-free problem

Analogously to the general case (2.40), we can define the index sets I7(z,y), L(Z,y) and
I°(z,y) associated with problem (5.6), setting F(z,y) = Az + by + a.

For the ith MPCC (5.8), 7 = 1,...,n, and a feasible point (Z, y) we can explicitly write
down MPEC-LIC(Q) as the following condition: The (I; + 1) x 2 matrix

( (Afup)ei Oreupo )

bruro Lr+uro

has the full column rank. The EPEC-LICQ is then said to hold at (z,y), if MPEC-LICQ
holds at (z,y) for each MPCC (5.8), i =1,...,n.

Denote by A" and g the multipliers of the ith mathematical program (5.8) correspond-
ing to the constraints Ax + by +a > 0 and y > 0, respectively. Let us write

i i
Q= ( zz Xy )
3 X3 °
yr yy
Then the stationarity conditions for the program (5.8), cf. Definition 2.4, consist of con-
ditions (2.27) in form of a system of linear equations

7 T —_ —]_ + 0 g CZ
0= yx yy Lur® Irul . + Y , 5.9
Apuro brupo 0 0 Luro arugo (5.9)
0 Lr+uro 0 0 /121+U[0 0

and, additionally, the respective conditions on multipliers Ao and fijo.

If MPEC-LICQ holds true, strong stationarity conditions and hence also all other types
of stationarity conditions are the first order necessary optimality conditions [45, Theorem
7(1)]-

The collection of conditions (5.9) for each i = 1,...,n, together into one system pro-
duces a non-square system of linear equations. Recall that we assume b > 0 and thus the
variable y is uniquely determined by the vector x. We can therefore treat the variable y
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in each MPCC separately, denoting it by y*. This allows us to work with the following

square system of linear equations where, implicitly, variables y* for all i = 1,...,n attain
the same value:
Qa:a: Q;By _ALUIO 0 x Cy
T T ~
0 — _an: ~ny —Brop —Eriup Y % (5.10)
ALUIO BLUIO 0 0 )\LUIO ay ’
0  Erupo 0 0 Rr+uro 0
where ) .
( xx)ﬂﬁl yzx
ng _ c Rnlxnl’ ny — c ]Rnxnl7
Quy = diag((Qh,)o1, - - - (QF))an) € R, Qy, = diag(Q,,, ..., Q},) € RV,
ALUIO
ALUIO = € R(l—a+)n><nl7 ALUIO - diag((AIUIO)LBla R (A—LI—UIO);Bn) S Rnlx(l_a+)n7
ALUIO
BLUIO = diag(wao, Ceey bLUIO) ~ R(lfa+)n><n7 EI+UIO = diag(lﬁulo, ey 1I+UIO) - R(aJrJraO)an’
—1 31 —1
Y R ALuro N Hy+ygo L
g=| ¢+ |eR A= ¢ | eRUT o= | 1 | eRETHOR
gn TJEUIO ﬂ?JruIO
Cél C@l, aruro
=1 : | eR" ¢,=| : | eR"and ap 0 = : e RO-a"n,
chn Cy aruro

To understand better the structure of the system (5.10) see the next example.

Example 5.2. Consider the EPCC consisting of the following two MPCCs with parameters

a, B el
1 2 11 ! !
minimize ~(z', 2% y) [ 1 2 1 22 | +(1,0,a)" | 2?
zleR! yeRl 2
111 y y
subject to 0 < 2z'+22* +y—2 1y >0,
1 3 21 ! x!
minimize —(z', 2% y)" | 2 3 2 22 | +0,1,8)" | 2?
z2eR! yeRl 2
1 2 3 Y Y
subject to 0 < 22" +22° +y —2 1Ly >0,
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E.g., at the feasible point (z', 7%, ) = (1,0, 0) both constraints are active, hence I° = {1}
and the system (5.10) becomes

2110-2 0 0 0) /2 1
2302 0-2 0 0]]a 1
1110-1 0-1 0]]# o
1203 01 0 1| 8

=l2210 0 0o o of|x|T] -2 (5.11)
2201 0 0 0 o] 2
0010 0 0 0 of]|a 0
0001 0 0 0 0)\z@ 0

A

Recall the definition of the KKT-type stationarity concepts for EPCCs: Let (Z,y) be
a feasible point for the EPCC associated with the MPCCs (5.8). Then we call (z,79)

i) weakly stationary if there exist Lagrange multipliers A, ji such that (Z,9, A, i) satisfies
conditions (5.10);

ii) C-stationary, if there exist Lagrange multipliers A, i such that (7,7, \, i) satisfies
conditions (5.10) and, additionally, Nofite > 0,7 =1,...,n;

iii) M-stationary, if there exist Lagrange multipliers A, [i such that (z,7, A, fi) satisfies
conditions (5.10) and, additionally, either A%, > 0 and g}, > 0 or A, fite = 0,7 =
1,...,m;

iv) strongly stationary, if there exist Lagrange multipliers A, it such that (Z,9, \, i) sat-
isfies conditions (5.10) and, additionally, X}, > 0 and g%, > 0,i=1,...,n.

The following proposition shows that under EPEC-LICQ the set of strongly stationary
points of EPCC coincide with the set of solutions to EPCC.

Proposition 5.3. Let (Z,y) be a local equilibrium point of EPCC. If EPEC-LICQ holds
at (Z,7), then it a strongly stationary point with unique multipliers. Conversely, a strongly
stationary point (z,y) is a local equilibrium point of EPCC.

Proof. The first statement of the proposition follows from [45, Theorem 7(1)| applied to
each 1th MPCC, ¢ = 1,...,n. Since Lagrangian of each MPCC is strictly convex, the
second statement is implied by |45, Theorem 7(2)|. O

The following two assumptions imposed on the data of the EPCC are crucial for the
homotopy method to execute each step in a “regular” way.

(A10) The EPEC-LICQ holds at each feasible point of EPCC.
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(A11) Consider two matrices

Qa:a: Qa:y _%L ch me 0
ny ny —BZ ) Qyw ny _E;
A, Bp 0 0 E+ 0

and all matrices .
Q;B;B Qa:y _(4?0)? 0
@yw ny _(BIO)IT _(EIO)}
(Ap)1 (Bp); 0 0 ’
0 Ero 0 0

where the index sets index sets I C {1,...,n} and J C {1,...,n} fulfill |I| + |J| =
n + 1. Then we suppose that all these matrices are nonsingular.

When we say that some condition imposed upon data or some property of data holds
in generic sense, we mean that it holds for all data in an open and dense subset of the
data space. This notion of “typical data” is particularly attractive if the data space is
endowed with a topology. One of the possibilities how to prove that some condition
holds in a generic sense is to show that data which do not satisfy such condition or data
with undesired property lie in the union of finitely many smooth manifolds of positive
codimensions.

Alternatively, if the data space is endowed with a measure, the property holds in a
generic sense whenever it holds for almost all data with respect to this measure, cf. [48].

Although the above assumptions on data of the EPCC might appear too restrictive,
both hold in generic sense.

Proposition 5.4. Assumption (A10) holds for all (A,b,a) from some open and dense
subset M* of the set M = {(A,b,a) € R>*MFHD x R x R},

Proof. The validity of EPEC-LICQ in generic sense is an immediate consequence of 48,
Theorem 3(1)], which states that MPEC-LICQ holds true in generic sense. O

Proposition 5.5. Assumption (A2) holds for all (Q, A,b,a) from some open and dense
subset N of the set N = {(Q, A, b, a) € RMFDx(i+L) o RIx(ni+1) 5 RL » R1Y,

Proof. The statement follows from the fact that the set of all matrices M € R™*" of rank
r < min{m,n} is a smooth manifold of codimension (m — r)(n — r) in R™*" cf. [23].
Thus, each square matrix is nonsingular in generic sense. This completes the proof. O

In view of Propositions 5.4 and 5.5, we presume that from now on assumptions (A10)
and (A11) hold.
Similarly to [42] we can define a nondegenerate C-stationary point of EPCC as follows.

Definition 5.6. Let (Z,9) be a C-stationary point of the EPCC with multipliers X and fi.
Then we call (Z,y) nondegenerate if for each i = 1...,n, and j € I° the sign conditions
imposed on multipliers are satisfied with strict inequality, i.e., Aé-ué- > 0.
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The above condition is usually called the upper-level strict complementarity. Now, for
a nondegenerate C-stationary point, we can introduce the following generalization of the
concept of a C-index from [42].

Definition 5.7. The C-index of a nondegenerate C-stationary point (z,y) is the sum of
negative components of the vector A (or, equivalently, fi).

Clearly, a nondegenerate C-stationary point is strongly stationary if and only if its
C-index vanishes.

5.2.2 A oneparametric problem

Let us modify our EPCC in such a way that it will include a onedimesional real-valued pa-
rameter . The parametric problem EPCC(t) will then consist of n oneparametric MPCCs,
where the ith MPCC(t), i = 1,...,n, is defined by

(5.12)
subject to 0 < Az + By+a 1Ly >0,

where di(t) := d' + t(c¢* — d'),i = 1,...,n, for some vectors d’ € R"'*! and ¢t € R. Later

we will describe how the vectors d° = d*(0),7 = 1,...,n, are constructed.
The C-stationarity conditions of the EPCC(t) consist of
Qxx Qxy _A{lLUIO 0 X dgc (t)
0 — _Qyw Quy —Bjp By Y + fly(t) , (5.13)
ALUIO BLUIO 0 0 )\LUIO aryro
0 Er+upo 0 0 Kr+uro 0
0< Noopho, i=1,...,n, (5.14)
where the vectors d,(t) and d,(t) are composed of components of vectors d'(t),...,d"(t)

in the following way
(d'(t))ar (d'(t))y
d.(t) = : and d,(t) = :
(d"(t))an (d"(t))y
Note that, by choosing ¢ = 1, we arrive at the original EPCC and its corresponding
C-stationarity conditions.
Let us introduce the following sets:
Yoot = {(t,z,y) € R x R™ x R'|(2, ) is a solution to EPCC(t)}
Nsstar = {(t,2,7) € R x R™ x RY|(x,y) is a strongly stationary point of EPCC(t)}
Yo_sta = {(t,2,y) € R x R™ x RY|(z,y) is a C-stationary point of EPCC(t)}
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As mentioned above, we have the relation X, C Xg_gat C Xo—star and due to assump-
tion (A10), the first inclusion becomes equality.

For oneparametric as well as nonparametric EPCCs, it does not hold that all C-
stationary points are nondegenerate in generic sense, see Figure 5.1 below. In our analysis,
we are particularly interested in the following class of singular points.

Definition 5.8. Fort € R a C-stationary point (z,%) of EPCC(t) with multipliers X, i is
called the codimension n singularity (co-n-singularity) if the following conditions hold:

i) Evactly n entries of the vector (Ao, fipo) vanish.

i) If I C {1,....n} and J C {1,...,n} are index sets such that \; # 0,ji; # 0 and
|I| + |J| = n, then the matriz

Ce — dm Qxx Qxy _({I}—O)}r 0

cy — dy @yw ny —(Bp); —(Ep);
0 (Ap) (Bp) 0 0
0 0 Ero 0 0

15 nonsingular.
Further, we call the co-n-singular C-stationary point (T,y)
i) O-singularity, if I #0,J # 0 and I NJ = 0;
ii) i-singularity, if [I N J| = q;
i) exit point, if either [ =0 or J = 0.

Note that each co-n-singularity falls to exactly one of the above mentioned categories.

The homotopy method traces the set ¢ _ g4, searching for C-stationary points of the
original problem. In order to design such algorithm, we have to understand the structure of
the set Yo _gar, in particular its local structure around co-n-singularities. In the following
we show that around each type of co-n singularity, Y¢_g. admits different structure.

0-singularity

Fix a t € [0,1] and consider first the 0-singular C-stationary point (Z,7) of EPCC(%).
If I c {1,...,n} and J C {1,...,n} are index sets uniquely defined by conditions A\; #
0,y # 0 and |I| + |J| = n, let I¢ and J¢ denote the complement of I and J in {1,...,n},
respectively.

Then Y _gq can be locally around (z, ) described by means of the following n systems
of equations

0=HY (t,z,y, /\zu{j},MJ) =

Qxx Qxy - (*’ii}r() )}ru{]} 0 x d;r (t)
— @yw ny _(BIO)ITu{j} _(EIO)} y + fly(t)
(AIO)I (B]O)l 0 0 )\IU{j} aru{s}

0 Epo 0 0 5 0
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for each j € I° and

0= H"(t, 2,9, A1, laog) =

Q;B;B Q:By - (4?0 )}F 0 x dw (t>
— Qye Qyy —(Bp){ _(EIO)—JFU{j} y + dy(t)
(/_1[0)1 (B]O)l 0 0 )\I &I ’
0 Ero 0 0 HJuis) 0

for each 7 € J°.

Clearly, for j € I° we have H%(,Z,9, A\jujy.fis) = 0 and for j € J° we have
H" (t, 7,7, )\[,/,Lju{J}) = 0. Moreover, each system matrix in nonsingular due to the as-
sumption (A11).

Hence, locally around ¢ there exist for each j € I¢ locally unique linear functions
(2% (t), 5™ (t), M (t), u? (t)) such that

E) y (E) )‘)\ (E) :U 3) (j:’@ XIU{j};ﬁJ)

and
N (1,2 (8), ™ (8), M (1), 52 (1)) = 0. (5.15)
Analogously there exist locally unique linear functions (z#s (t), y*i (t), A (t), u* (t)) for each
jeJe
Around the 0-singularity (¢, Z, %), only a part of the set

SV = {2V (), gV ()|t — T € (—€,€)}

for some € > 0 belongs to the set ¥¢_,:. This is that part of ¥, denoted by Ei‘rj, where

the sign of multiplier )\;‘j (t) is the same the sign of multiplier ,u;‘j (t). Analogously, the part
the sets

2= {(t e (1) (D)~ T € (—e, )},

which belongs to Y¢_ s is denoted by /7.

Theorem 5.9. At a 0-singular C-stationary point (Z,y) of the EPCC(t) with multipliers
A, i, for each j € I the linear function (z (t), y™ (t), NN (t), p (t)) intersects transversally
at (£, 2,9, \, 1) with each linear function (x™ (1), y™(t), M (t), u*(t)),k € I\ {j} and
(@ (2), y!e (2), A (2), s (2)), b € .

Also for each j € J the linear function (x5 (t), y*i (), N (t), u"i (t)) intersects transver-
sally at (£,7,9, A, ji) with each linear function (2™ (t),y*(t), \**(t), p™(t)),k € I and
(# (2), yte (2), A (L), i (2)), k€ T\ {5}

Proof. 1t is sufficient to show that /.\j (1) == 4N (f) # 0. Since A¥(t) =0,k eI\ {j}and

)\5’“ (t) = 0,k € J, this would mean that the linear function (z » (t), v (£), NN (t), phi(t))
does not point into the same direction as any of the other linear functions.
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Take derivatives with respect to ¢ in (5.15). This yields

Qe Qu  —(AP)uy 0 9 (t) Cp — dy

0 — Qyw ny _(BIO)}—U{]'} ~(Ep); %)\] (t) +| & dy
(Ap)1 (B 0 0 At () 0
0 Epo 0 0 [y (1) 0

This system of linear equations can be equivalently rewritten to

Cx — dy Qa:a: Q:By _(%}—())}I—U{j} 0 1 0
Cy — dy ny ny _(BIO)}I—U{]'} _(EI())}— %i] (E) 0
0= 0 (Ap) (Bp)h 0 0 14 N X ’
0 0 Epo 0 0 A () 0
00 0 @y, 0 iy () 0

where ¢/ denotes the jth unit vector of basis in R™.
By Laplace formula applied to the last row, the latter system matrix is nonsingular,
since the matrix

Cp — dy (@ Q;By - (A}—O )T 0

Ap0)1
cy — dy @yw ny —(Bp); —(Ep);
0 (Ap)1 (Bp) 0 0
0 0 Epo 0 0

is nonsingular for a co-n-singularity. Hence, )\;\J (t) cannot vanish. This proves the first
part.
The proof of the second statement is analogous. O

Theorem 5.10. On a neighborhood of a 0-singular C-stationary point (T, y) of the EPCC(t)

with multipliers A, i, the set Yo ga coincides with convex hull of the sets Zi‘rj,j e I° and
E‘f,j € J¢. Moreover, all interior points of such convexr hull share the same value of the
C-indez.

Proof. Without loss of generality, it suffices to show that for j, k& € J the convex hull of
Z:\Lj and Z;\L’“ belongs to Yo _star-

Take o € (0,1) and points (¢, 21, yM)) € Zj\rj, (ty, 2, y@) € B}*. Then we need to
show that also

(ton xa’ ya) = a(tb .T(l), y(1)> + (1 - O‘)(t% [L'(Q), y(2)) € ZC’*stat'

The point (¢, 21, y®, AD | 1M solves (5.13), where multipliers A, 4| uniquely de-
termined by nonvanishing entries given by )‘%{ j}(t1), wy (t1), respectively, satisfy condi-

tions (5.14). Analogously, the point (t5, 2, y® A2 4?) solves (5.13), where multipliers
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A® 1 uniquely determined by nonvanishing entries given by A}, oy (12), 1) (t2), respec-
tively, satisfy conditions (5.14).

Then, clearly, conditions (5.14) are satisfied for A* = aA® + (1 — a)A® and p* =
ap® + (1 —a)p@. It remains to show that also (t,, z%,y%, A%, u®) solves (5.13). To prove
the latter statement, it suffices now to recall that d,(¢) and d,(t) is linear in ¢.

Taking any « ¢ [0, 1], conditions (5.14) are violated for A* = aA® + (1 — a)A®?).

This finishes the proof of both parts of the theorem. O

i-singularity

At the i-singularity, let k& be an index such that A, = fiz = 0. Then locally around
(t, 7, y) the whole sets ¥ and X belong to Y¢_ . This is due to the fact that ,uz’“ (t)=0
and A\*(t) = 0 for each t € (—e,€) and the respective kth sign condition on biactive
multipliers is thus satisfied regardless of the signs of A}*(¢) and ut*(t), respectively.

Theorem 5.9 clearly holds also for i-singularity. Then convex hull of the sets Z:\Lj ] €
I\{k}, B, 5 € JA{RY At 2™ 1),y (1) [t—t € [0, €)} and {(t, 27 (t), (1)) [t—t € [0, )}
as well as convex hull of the sets £, j € I°\{k}, S j € Jo\{k}, {(t, 2 (), (t))|t—1 €
(—€,0]} and {(¢,x"*(t), y" (t))|t — t € (—¢,0]} belongs to the set Lo _gq. We summarize
this in the following theorem.

Theorem 5.11. On a neighborhood of an i-singular C-stationary point (Z,y) of the
EPCC(t) with multipliers M, [i, the set Yo_ga coincides with a union of 2° convex hulls of
parts of sets YN, j € I¢ and Y, € J¢ specified above. Moreover, all interior points of
each such convex hull share the same value of the C-index.

Proof. The proof follows from the same arguments used in the proof of Theorem 5.10 and
the observations above. O

Exit point

Note that there are only two possible exit points (¢, 7, 7). At the first one with A = 0,

all sets Zj\rj,j =1,...,n, belong to the set Xc_sas-
Moreover, the same is true for the feasible part of the set

S = {2 (). " @)t -T € (=)}

for some € > 0, where the locally unique linear function (x'" (t),y"" (¢),0, u'" (t)) is defined
by the regular system of equations

0= an: ny _E[T+ Yy + d
0 E I+ 0 M1+ 0

Analogously, at the other exit point with 1 = 0, the sets %7, j = 1,...,n, and feasible
part of the set ©* belong to the set Y gar.
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Theorem 5.12. At an exit point (Z,7) of the EPCC(t) with multipliers X, i, the statement
of Theorem 5.9 holds true. Moreover, either the linear function (z' (t),y* (t),0, ' (t)) in-
tersects at (L, 7,7, \, fi) transversally with the linear functions (x9 (t), y (), M (t), p?i (t)),
j=1,...,n or the linear function (z"(t),y*(t), \*(t),0)) intersects at (t,, 7, \, i) trans-
versally with (x#i (t), y*i (t), N (t), p"i(t)), 7 =1,...,n.

Proof. Using the arguments from the proof of Theorem 5.9, we can prove that at the exit
point with A = 0, for each j = 1,...n, the derivative )\?j (t) # 0 while )\JI-+ = 0. Similarly,
at the second exit point for each j = 1,...n, the derivative /i (t) # 0 while ¥ = 0. O

Theorem 5.13. On a neighborhood of the exit point (Z,7y) of the EPCC(t) with multipliers
A=0and i # 0, the set So_ya coincides with a union of the feasible part of X" and
convex hull of the sets Ej‘rj,j =1,...,n.

On a neighborhood of the exit point (z,%) of the EPCC(t) with multipliers A\ # 0 and
ji =0, the set Yo_gar coincides with a union of the feasible part of ¥ and the convex hull
of the sets ¥, 5 =1,...,n.

Proof. The proof follows from the same arguments used in the proof of Theorem 5.10 and
observations above. 0

Clearly, the C-index of nondegenerate C-stationary points can change only at co-n-
singularities which are not 0-singular. We show the change of C-index on the EPCC from
Example 5.1 with one particular setting of parameters «, 3.

Example 5.2. (continued) Consider the EPCC from Example 5.1 with o = 3/2 and
8 =1/2 and suppose that d,(t) = (—6,—10)" and d,(t) = (-3,-5)".

Then one can find exactly six co-2-singularities of the EPCC(¢): two exit points, (1/3,
2/3,0) at t = 2/3 and (1, 0, 0) at ¢ = 0 with multipliers (X, 1) equal (0,0,1, 1/3) and (-2,
-4, 0, 0), respectively; two O-singularities, (25/9, -16/9, 0) at ¢t = 8/9 and (1,0,0) at t = 4/7
with multipliers (2,0,0,-8/9) and (0,-6/7,4/7,0), respectively; and two 1-singularities, (1, 0,
0) at t = 8/11 and (17/9, -8/9, 0) at ¢t = 4/9 with multipliers (6/11, 0, 8/11, 0) and (0,-2,
0, -4/9), respectively.

All co-2-singularities are depicted on Figure 5.1 in multiplier spaces; exit points as red
bullets, 0-singularities as black bullets and 1-singularities as green bullets. The shaded
area is the set of all possible biactive multipliers of C-stationary points to EPCC(t).

The interior points of the bounded piece correspond to multipliers of C-stationary
points with C-index 1. The 1-singularity (1, 0, 0) at ¢ = 8/11 connects this piece with the
one with interior points with vanishing C-index. The other 1-singularity connects it with
the piece with interior points with C-index 2. The latter two pieces are connected to the
parts of the set Y4 of points with vanishing C-index by exit points.

Note on Figure 5.1 that slight shifts of the dashed lines corresponding to small per-
turbations to the data eliminate neither the co-2-singularities nor the remaining singular
C-stationary points on the border of the shaded area. A
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N
N

Figure 5.1: Co-2-singularities of the EPCC(t)

5.2.3 Homotopy method

The basic idea of the homotopy method we are about to describe in detail is to formulate
an artificial EPCC by modifying (jointly) objective functions of all MPCCs (5.8) such that
a chosen feasible point (z,§) becomes strongly stationary. The parameter ¢ then creates a
connection between the original and the artificial problem.

Let (7,7) be a feasible point of EPCC and L, ™ and I° be the associated index sets.
Based on the structure of the index sets we construct the vector d(0) = (d,.(0)",d,(0)")".

If L = {1}, then we set /i := 0 and choose a vector A with arbitrary strictly positive
components. If /T = {1}, then we set A\ := 0 and j with arbitrary strictly positive
components. If I° = {1}, we set either i := 0 and choose a multiplier vector jz with
arbitrary strictly positive components or vice versa. In either case, we use the following
formula to compute the vector d(0).

N Qa:a: Q;By r %Luﬂ) N 0 _
ao == (g ) () (g ) (g ) e

Then (Z,y) is a solution of EPCC(0). To obtain vector d(t), we set

= )= (o )+ ((2) (5 ))- oo

The homotopy method traces the set Yo g4 starting at ¢ = 0. Note that if for the
initial feasible point the complementarity constraint is biactive, the method starts at one
of the two exit points.

Overview of the homotopy method I for MPCCs

8

Before we proceed to the homotopy method in detail, let us summarize the homotopy
method I from [42] which searches for C-stationary points of convex-quadratic mathemat-
ical programs with linear complementarity constraints.
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The program (5.8) can be converted to the following convex-quadratic MPCC in vari-

ablez:(xz)
)

c e . TA _T
minimize —z Yz + ¢ 2

ey - (5.18)
subject to 0 < Az+4+a 1L Bz4+b>0,

Q _ ( $Zza:l ﬂgiy ) , c= ( Cxii ) +2 ( Qﬁ@ié )j_i7
yat yy Cy Qy,l”l
A= (Ay,b), B=(0,1), a=(A_)'z7"+a, b=0.

For the purposes of this summary of the homotopy method I, consider the general
problem (5.18) with matrices A, B € Rmx(hmiz),

Let MPEC-LICQ hold at each feasible point of (5.18). Given a feasible point z of the
MPCC (5.18), put A;+ = 0, iy, = 0 and

where

d=—Qz + Aj Ao + Bl pofirturo

with some strictly positive values of components of vectors Az o, fiy+uso.
Then Z is a local minimizer of the program
1 T =y - =
minimize —z'Qz + (d+t(¢ — d))' =
2 C% ( _( - ) (5.19)
subject to 0 < Az+4+a 1L Bz4+b>0

for t = 0. Locally around the point (¢, z, A\, ), C-stationary points of MPCC(¢ + 7) and
their corresponding multipliers are given by the path

2(7) z z
A7) = AN |+7| A
() f I
with B B B ' B
_Q _A—lL—UIO _B;-UIO Z c—d
flLUIO 0 0 A — 0
Broo 0 0 i 0

At the start, ¢ is set to zero and the method traces the homotopy path in the direction
of increasing t. The steplength is then determined as the minimal positive value of 7 for
which one of the following inequalities vanishes

Aiz(t)+a; >0,iel",
Biz(t)+b;>0,j €L,
Ni(T) #0,i€ I
pi(T) # 0,5 €I
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This value can be easily determined using the ratios

A; a;
qi:_z—i—}jaa Ze[Jra
)\i . 0
4 = —7, ZEI?

Ai

sz—f‘l_)j .
=10 e,
J B;% J
rp=—t jel

Hj

Then, if moving forward in ¢, the method takes the steplength
F=min({¢;N (0,1 —¢),i € ITUI%r;N(0,1—t),j € LUI"Y).

If this minimum is taken over the empty set, the value t = 1 can be reached directly
and the method terminates with a C-stationary point of the MPCC.

If the minimum is attained at some ¢;,7 € I°, then \;(¢ + 7) vanishes and biactivity of
constraint ¢ is dropped (i.e., we put the index i to the set I1). The sign of u;(t + 7) then
decides about the direction in ¢ for the next step: if p;(t + 7) < 0, the direction changes.
If the minimum is attained at some ¢;,7 € I, then we add the biactivity of the constraint
i (i.e., we put index 7 to the set I°) and the sign of multiplier y;(t + 7) determines the
direction of the next step. For ratios r; we proceed analogously.

If the method currently proceeds in ¢t backwards, the next step is the maximal negative
value of the ratios

7 =max({g N (—00,0),i € ITUI’r;N(—00,0),5 € LUI}).

If this maximum is taken over the empty set, an infinite step could be taken to ¢ \, —oo
and the method thus terminates without a solution. Else, analogous changes in activities
are performed.

The method described above depends on the knowledge of initial feasible point z of
MPCC. The following Phase I.a approach uses the homotopy method itself to provide a
feasible point.

Consider the following auxiliary problem in variables z € Ri*+™2 and s € R

o1y
minimize -s

. ] i N (5.20)
subject to 0 < (A, u—&)(s)—i-aJ_(B, v—b)<s>—|—b20

for some chosen vectors u,v € R™2 with 0 < u L v > 0. Note that the point (z,s) = (0,1)
is always feasible. Hence we can try to apply the homotopy method I to (5.20). If a
solution point (z,0) is found, z is a feasible point for MPCC.
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If I} +1 < mly, the first l; + mly + 1 components of (u',v") are set to zero and
the remaining components are set to one. However, the Hessian of the objective is only
positive semidefinite and thus the method may not succeed in some cases. Then, Phase [.b
approach is guaranteed to provide either a feasible point or verification of inconsistency.

In Phase LI.b, sometimes called the disjunctive approach |25], we check, using the Phase
I of the simplex method, all 2™ polyhedral pieces of the feasible region. Each such piece

is determined by an index set [ C {1,...,mly} and conditions
Ajz4+a; =0, Apez+ape >0, (5.21)
Brez +bre =0, Brz+br > 0. (5.22)

If all polyhedral pieces are inconsistent, then the considered MPCC is also inconsistent.
Now, we modify this homotopy method I to the EPCC composed of MPCCs (5.8),
using the knowledge about the structure of the set X¢_ 44 around co-n-singular points.

Phase I for EPCC

Analogously to Phase I procedure for MPCCs, we can compute an initial feasible point
of the EPCC either via application of the homotopy method I for MPCCs to an auxiliary
program or via checking each polyhedral piece of the feasible region of EPCC.

The problem (5.20) now takes the form of an MPCC in variables z,y and s

T
minimize —s
2
x x (5.23)
subject to 0 < (A, b,u—a) | v | +aLl(0,1,v)[ vy | >0
s s

for some chosen scalars u,v € R with 0 <« L v > 0. Again, the point (z,y,s) = (0,0, 1) is
always feasible. Hence, we can try to apply the homotopy method I to (5.23). If a solution
point (Z,y,0) is found, (z,y) is feasible point of the EPCC.

Similarly, if Phase I.a fails to provide a feasible point, we can apply Phase I.b. In our
case it is enough to check, using the Phase I of the simplex method, just 2 polyhedral
pieces of the feasible region. The first one is determined by conditions

Ar+by+a=0, y>0,
while the second one by conditions
Az +by+a >0, y=0.

Overview of the algorithm

From the analysis of the structure of the set ¥¢_ 4, around co-n-singularities, it is clear
that the set ¢ _ g consists of finitely many convex polyhedral pieces: (one-dimensional)
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halflines corresponding to index sets I™ and L and m-dimensional polyhedral sets cor-
responding to index set I°. It is thus sufficient to design an algorithm which traces all
one-dimensional faces of each such convex polyhedral piece; such procedure would give us
full information about the set Y¢_ 4, see Example 5.1.

The description of the algorithm to trace the biactive part of the set X _ 4 is signifi-
cantly more complicated then in the homotopy method I for MPCCs. We make use of the
following lists of points or vectors:

“untreated exit points™ the list of visited exit points for which the corresponding

set Ei or Zf was not yet traced

“multiplier signs”: the list of vectors of signs of biactive multipliers, uniquely
determining each convex polyhedral piece of biactive part
of the set Xo_gtar

“co-n-singularities” the list of visited co-n-singularities

“1-singularities” the list of visited i-singularities

“biactive C-stationary points™ the list of found C-stationary points in the biactive part
of the set Yo _gpar

“new directions™: the list of directions in which the next step can be made
from the current iterate

“new multiplier signs”: the list of vectors of signs of biactive multipliers, uniquely
determining polyhedral pieces connected by ¢-singularity

to previously traced polyhedral piece of the set Yo _gar

At the start of the method, all lists above are empty.

First, we describe the steps of the method based on the initial structure of the index
sets.

Starting the method at (z,y) and t = 0 with L = {1} or /™ = {1}, the method traces
the set ZfL or Ef in the direction of increasing ¢ up to the respective exit point. In the
former case, we compute the ratio

oy
r=—-—-=
Y
with R
ch Qxy _4L x Cy — d:v(o)
Quz Qyy —Bj gyl =1 c—dy(0)
A, Bp 0 A 0

For r < 0 or r > 1 we then make a step into ¢ = 1 and terminate with the solution, else
take a step into ¢ = r and add activity of the constraint y > 0. In latter case we compute

the ratio
Az 4+ by +a

=" Ai vy
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Que Qyy _E; ¥y | = & —dy0)
0 E+ 0 i 0

For ¢ < 0 or » > 1 then make a step into ¢ = 1 and terminate with the solution, else take
a step into ¢ = ¢ and add activity of the constraint Az + by + a > 0.

Starting the method at (Z,7) and ¢ = 0 with I° = {1}, we add the point (Z,7) to the
list “untreated exit points”, otherwise proceed in the same way as if we got to one of the
exit points by a step described above. The reason for this is that the method traces the
set ZfL or Ef at the end of the procedure unless it was already traced the the step above.

Each step of the algorithm in the biactive case proceeds by tracing line segments be-
tween two neighboring co-n-singularities or half lines emanating from each co-n-singularity.
Each such line can be generated by fixing n — 1 vanishing multipliers. In the former case
these fixed vanishing multipliers are common to both co-n-singularities. If index sets of
free multipliers are I and J, cf. assumption (A1l), and we are moving in ¢ forward, the
method takes the steplength

N by
?:min({—;ﬂ((),l—t),j € [,—;ﬂ((),l—t),j eJ}),

where the vectors \; and 17 are given by the solution of

Qrz Q;By _({l}ro)}r 0 z Co — dg;(O)
Que  Qyy —(Bp); —(Ep); Ul 2| e d(0) (5.24)
(Ap)1 (B 0 0 A1 0 ' |
0 Ero 0 0 iy 0

If the minimum is taken over the empty set, t = 1 can be reached directly.
If we are moving in ¢ backwards, the steplength is determined by

by N
T = max({—; N (—00,0),5 € 1, v N (—00,0),5 € J}).

Now we describe how the algorithm proceeds in the biactive case. First, we add the
vector of signs of the nonzero multiplier vector to the list “multiplier signs”. We label the
exit point to be the “starting point” and initiate the following recursive procedure called
“SearchStep”™

1) If the current iterate is already in the list “co-n-singularities”, terminate “SearchStep”,
else add the iterate to the list.

2) If t = 1, and the iterate for the current vector of multiplier signs is not on the list
“biactive C-stationary points”, add it to the list with information about the multiplier
signs and terminate “SearchStep”.
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3)

If the current iterate is an i-singularity, and not in the list “i-singularities”, add it to
the list.

If the current iterate is an exit point not in the list “untreated exit points” and is not
labeled as “starting point”, add it to the list.

Put all possible n directions, determined by the index sets I and .J, from the current
iterate to the list “new directions”. As long as the list is nonempty, execute step 6).

For the first direction in the list, determine the direction of the step in ¢ by the sign
of the derivative in variable ¢ of that free multiplier which is vanishing at the current
iterate and the corresponding component of the vector of sings of multipliers. If they
coincide, the method proceeds with the step forward in ¢, else we proceed backward
in ¢. Find the steplength. If the next step has a finite length, initiate the procedure
“SearchStep” for the new iterate. Delete the first entry from the list “new directions”.

When the first call of “SearchStep” terminates, we have successfully finished the analysis
of the first convex polyhedral patch of the set ¥¢_ 4. Then, until the list “i-singularities”
is empty, repeat the following steps:

1)
2)

3)

Determine the list “new multiplier signs”.

Until the list “new multiplier signs” is empty, repeat the following. If its first entry
is not in the list “multiplier signs”, add it to the list “multiplier signs”, label the
first entry in the list “i-singularities” to be the “starting point”, empty the list “co-
n-singularities” and initiate “SearchStep”. Delete the first entry in the list “new
multiplier signs”.

Delete the first entry in the list “i-singularities”.

Now, if the list “untreated exit points” is nonempty, it suffices to check Zi and Ef not
yet investigated .

Following the set of rules above, the algorithm clearly never traces the same convex
polyhedral piece of the set X¢_ 44 twice. However, it either terminates after one step at a
nonbiactive C-stationary point or traces only polyhedral pieces of the set ¢ _ 4q¢ connected
by i-singular and exit points with ¢ < 1.

Theorem 5.14. Let the data of the EPCC associated with n MPCCs (5.8) satisfy both
assumptions (A1) and (A2). Then the following assertions hold:

i) The algorithm terminates after finitely many steps.

i) If the list “biactive C-stationary points” is nonempty, the set of all detected biac-

tive C-stationary points consists of the union of convex hulls of points from the list
“biactive C-stationary points” with the same corresponding vector of signs of multi-
pliers. Moreover, interior points of each such convex hull consist of nondegenerate
C-stationary points with the same C-indez.
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Proof. The statement of part i) follows due to the rules described above. There are only
finitely many co-n-singularities and each convex polyhedral piece of the set Y _ 44, is traced
at most once.

The second statement follows from Theorems 5.10, 5.11 and 5.13. O

Example 5.2. (continued) Let us choose the initial feasible point (z', 22, 7, A\', A, i, 1%)
= (2,2,0,0,0,1,1). Then the computation of d(0) according to (5.16) yields (-6, -10, -3,
-5)T. The application of the homotopy method described above results in the following
three C-stationary points (z', 2% y): within the biactive case the algorithm finds points
(-2, 3, 0) and (1, 0, 0) with multipliers (A!, A2, u', p?) equal to (0,3, 5/2, 3/2) and (3/2,
3/2, 1, 0), respectively, and a nondegenerate C-stationary point (10/3, -8/3, 2/3) with the
multiplier vector (17/6, 1/2, 0, 0).

The set of C-stationary points then consists of the union of the point (10/3, -8/3, 2/3)
and convex hull of points (-2, 3, 0) and (1, 0, 0). Note that since each point is even strongly
stationary, the set of C-stationary points coincides with the set of solutions of the EPCC.

On Figure 5.1, the blue bullets and all points on the blue line correspond to multipliers
of C-stationary points of the EPCC within the biactive case. A

5.2.4 Numerical results

We have tested the performance of the homotopy method for EPCCs associated with
n=2,...,7 MPCCs with convex-quadratic objective functions and with one linear com-
plementarity constraint. For each such problem we considered [y = 1,10 and 50 variables
on on the upper-level. For each combination of (n,l;) we run the method on hundred
randomly generated test problems. The algorithm was implemented in Matlab 6.5 and
tests were performed on a 2.8GHz PC with 1GB RAM. The results are summarized in
Table 5.1.
The columns in Table 5.1 denote the following:

La: number of problems, for which Phase [.a succeeded

C: number of problems, for which at least one C-stationary point was found
M: number of problems, for which at least one M-stationary point was found
S: number of problems, for which at least one solution was found

biac: number of problems, for which the method entered the biactive case
#C-s: total number of detected C-stationary points

#M-s: total number of detected M-stationary points

#S-s: total number of detected solutions

#n-biact: total number of detected nonbiactive stationary points
(cpu: average CPU-time for solved problems in seconds

biac C-s: average number of computed C-stationary points in the biactive case
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Table 5.1: Numerical results for homotopy method

n Ia| C | M| S |biac | #C-s | #M-s | #S-s | #n-biac (cpu (biac C-s
2 18 | 62|60 |50 ]| 53 93 83 59 44 0.065 0.925
2110 8 | 56 | 56 |43 | 51 94 79 51 31 0.075 1.235
21501 78 [ 63| 62|46 | 52 105 89 61 29 0.158 1.462

3 1 76|66 |64 | 53| 52 197 141 83 45 0.116 2.923
31101 8 [67]63]|40| 59 292 177 75 28 0.151 4.475
31501 8 (71|67 |45 | 65 320 191 82 30 0.528 4.462
4 1 8 | 65|61 |44 | 57 551 298 83 38 0.309 9.000
41101 80 |87 |84 |5 | 76 1191 596 163 39 0.732 15.158
4 150 | 81|83 |80 |47 | 74 1369 580 96 38 4.722 17.987
5 181 |76 |72]53]| 70 1718 817 117 48 0.949 23.857
51101 8 |8 |83 39| 79 3657 1277 106 35 5.331 45.848
51501 82 [93]92 |54 | 82 5601 1849 187 44 20.018 67.7683
6 18 |80 | 73 |49 | 68 7937 1920 138 43 6.136 116.088
6 |10 | 78 | 92|89 | 55| 81 15962 | 4818 182 49 30.147 196.457
6 |50 1] 92 97|96 |55 | 91 26650 6478 370 43 130.664 292.385
7 1 81 |8 |84 | 52| 82 57354 | 9112 533 43 109.848 698.915
7110 || 8 | 98 | 97 | 48 | 91 111419 | 17564 | 493 41 353.154 | 1223.934
7150 89 |98 | 98 | 56 | 94 | 178385 | 23136 | 727 46 1196.385 | 1897.223

We conclude this section with several remarks.

For each tested problem we applied first the phase I.a. If it failed to produce a feasible
point of EPCC, the first polyhedral piece in phase L.b yielded a starting point for our
homotopy method. The first piece corresponds in our case to that part of feasible set for
which the constraint y > 0 is active. We could have, of course, started immediately with
phase I.b, since for m = 1 this procedure involves checking only 2 pieces and is thus not
that costly as in case of a high number of complementarity constraints.

With higher values of n, the method is more likely to find a C-stationary point. More-
over, only for a very small number of test problems for which a C-stationary point was found
the method failed to find also an M-stationary point. The strongly stationary points, in
our case already the solutions to EPCCs, were found for each tested combination of (n, ;)
roughly for 50 percent of randomly generated test problems.

The obtained results indicate an interesting fact that EPCCs may posses huge number
of solutions. This brings up several important issues. The most serious one is the impact
of this large cardinality of the solution set on concrete decision making processes and
interpretation of these solutions with respect to the input data. Also, recall the numerical
methods from previous part of this chapter. In the view of our analysis, the question arises,
to which specific solution these methods converge?
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5.3 Numerical method for MOPCCs

In this section we propose and describe a numerical method to solve the MOPCCs consid-
ered in Chapter 4 based on the implicit programming approach, cf. [25]. The reformulation
(4.25) of our MOPCC plays a crucial role in this approach.

Note that the optimality conditions (4.21) can be used for numerical purposes only in
the case when the index sets (4.20) at the solution can be guessed or well estimated. Alter-
natively, one can employ a nonsmooth multiobjective optimization method, e.g., the online
multiobjective optimization software WWW-NIMBUS 4.1. For details about NIMBUS we
refer to [26] and to the web page http://nimbus.mit.jyu.fi.

The implicit programming approach has been developed in connection with the Stack-
elberg situation in [40], [39] with the usage of a standard bundle method in nonsmooth
optimization. In this section we describe a variant of this approach, which can be used for
the numerical solution of the class of MOPCCs under consideration. As a test problem we
take an example from [40], see below.

Under the assumption (A1’) we readily observe that (Z,7) € w x I is a weak Pareto
solution of MOPCC whenever

y=5(T)
and there is a neighborhood U of (z, S(z)) such that (with ©(z) = ¢(z, S(x))) the relation

O(z) — O(z) € rint K,

does not hold for any (x, S(z)) € U N (w x I). We face a new game only among the leaders
without any hierarchical structure in form of a multiobjective optimization problem.

In order to use NIMBUS for calculations, one has to provide an oracle which is able to
compute the function values of each leader’s objective and the matrix of subgradients

(&...&),

where € is an arbitrary element from the Clarke subdifferential 00%(z), i = 1,...,n.
Assume that all objectives ¢, © = 1,...,n, are continuously differentiable. Using the
technique of adjoint equations, £ is then computed by the formula

£ =V, (z,y) — (Ve Froaoan(@,y) "7,

where 7 is the unique solution of the adjoint equation

0 = (VyFroaoan, coaoan (T, 9) ' m — V@' (2, y) rogowan,

and where M is an arbitrary subset of I°(z,y) = I} (x,y) U I3(z,y), see the development
in Section 2.3.2 leading to (2.42) and (2.43).

The followers’ strategies for the given leaders’ strategies can be computed by any exist-
ing method for the solution of MCP; we used the method proposed by Fukushima in [19]
based on the sequential quadratic programming code NLPQL due to Schittkowski.



92 Solution Methods for EPECs and MOPECSs

Table 5.2: Parameter specification for the production costs

Firm 1 Firm 2 Firm 3
b; 15 12 2

WWW-NIMBUS 4.1 works as follows. The user must specify the starting point of the
procedure. Each time we have used NIMBUS, the starting point was set as the production
quantities from the Stackelberg game. NIMBUS then computes a solution to the considered
MOPCC which we call initial. This point is a projection of the starting point onto the
set of effective points. Since this initial solution is rarely satisfactory, the user is asked to
“guide the solver to a desired direction”. In NIMBUS, this process is called “classification”.
The user can choose which of the function values should be decreased from the current
level and which of the functions are less important. After submitting a new classification,
NIMBUS provides a new optimal solution.

Consider now again an oligopolistic market model from Section 3.2.1 and further assume
in the respective model that the leaders act cooperatively and that followers face production
limitations given by I C R’}:b. Then this model belongs to the family of MOPCCs discussed
in Chapter 4.

Recall that whenever assumption (A2) is satisfied then at each feasible multistrategy
(x,y) the assumption (A1”) and, moreover, also the constraint qualification (4.24) holds
true. Thus, given an optimal strategy pair (Z, ), the necessary optimality conditions from
Theorem 4.10 are satisfied.

If the function F' (3.8) happens to be affine and w is convex polyhedral, we get the
optimality conditions from Theorem 4.9 without any constraint qualification, and so we
do not need to impose conditions (i)-(iv) of assumption (A2). This situation occurs in the
following illustrative example.

Example 5.15. Consider an example of three firms supplying some homogeneous product
on the market with the linear demand function

p(T)=20-T
and assume that each firm has a linear production cost function in the form
") = ax’ + by, i =1,2,3,
with the coefficients given by Table 5.2.
Each firm aims to minimize its loss functions ¢*(z!, 2%, 23), i = 1,2, 3, given by
ol (a2 %) = 22 + 15 — 21 (20 — 2! — 2 — 2?),
O*(at 2? %) = 327 + 12 — (20 — 2t — 2 — 2P),

(a2 %) = 52’ + 2 — 23(20 — 2! — 2 — 2?%).
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Table 5.3: Productions and profits - Cournot and Stackelberg games

Firm 1 Firm 2 Firm 3

Cournot Production  5.500  4.500  2.500
equilibrium Profit 15.250  8.250  4.250
Stackelberg Production 11.000  2.667  0.667
equilibrium Profit 25.333 -4.889 -1.556
MOPCC Production  5.000  4.953  2.524
stationary point Profit 12.619 10.404  4.369

When Firm 1 and Firm 2 become the market leaders who act cooperatively, the resulting
problem can be written in the form (4.8) with y = 2®. In this simple case we can even
compute stationary points satisfying the necessary conditions (4.21). Assuming that the
follower (Firm 3) produces z® > 0, we arrive at the system of four equations with six
variables:

0=2"(-18 + 2z' + 2° + 2°) + 2°2* — v,
0=za' +22(=17+ 2" +22° + 2°) — v,
0=z2'z' + 2%2% — 20,
0=—15+z"+2° +22°.

If we fix the value of the multiplier z' (e.g., 2! = 1), then for different settings of z*
we get solutions to the system above. However, since the optimality conditions (4.21) are
only necessary, an additional analysis is needed to verify that the obtained solution is a
weak Pareto solution to the given MOPCC.

In Table 5.3 we present the comparison of the production quantities and profits of
each firm when they play the Cournot game, the Stackelberg game with Firm 1 as the
leader, and the MOPCC with Firm 1 and Firm 2 as the leaders; for brevity we present the
comparison only for one possible stationary point. The optimal market prices for Cournot,
Stackelberg, and MOPCC games are 7.5, 5.667 and 7.524, respectively. A

Next we consider a more realistic example of the oligopolistic market modeling and
apply to its solution the numerical algorithm and computer codes described above.

Example 5.16. Let all the production cost functions be in the form

i . . ﬁz —% . 1485
c(z") = bx* + K. "i(2")7hi
where b;, K; and 3;, t = 1,...,n + m, are given positive parameters. Further, let

p(T) = 5000777,
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Table 5.4: Parameter specification for the production costs

Firm1l Firm2 Firm3 Firm4 Firm b

b; 2 8 6 4 2
K; 5 5 5 5 5
B 1.2 1.1 1.0 0.9 0.8

Table 5.5: Productions and profits - Stackelberg game

Stackelberg Firm 1 Firm 2 Firm 3 Firm 4 Firm 5
Production 99.5329  44.3804  45.8893  44.2806  40.2357
Profit 958.6347 284.6830 350.5039 393.2799 410.5319

p(T) = 18.2270

with a positive parameter v termed demand elasticity.

Each production cost function is convex and twice continuously differentiable on some
open set containing the feasible set of strategies of a corresponding player. The inverse
demand curve is twice continuously differentiable on int R, strictly decreasing, and convex.
Observe that the so-called industry revenue curve

Tp(T) = 5000575

is concave on int Ry for v > 1. We assume that at least one leader on the market is
producing some positive production quantity. Hence all the above assumptions (i)—(iv) are
fulfilled, and assumption (A1)’ is fulfilled as well.

The data are taken from [40| and [39], where numerical tests are performed for n+m =
5, v € [1,2] and the parameters of the production cost function given by Table 5.4. For
these data, Table 5.5 shows the productions and profits of all the firms for v = 1.0 in the
Stackelberg case, when Firm 1 is the only leader; clearly, Firm 1 dominates the market.

Consider next the MOPCC case, when Firm 5 (the second strongest producer) becomes
the second leader. The results are displayed in Table 5.6. The first section corresponds
to the initial solution given by NIMBUS, the second one describes the situation under a
contract that is beneficial for both leaders. In the third section we show the initial solution
given by NIMBUS in the case when a uniform upper bound was imposed on the productions
of the followers. We have set the upper production bound to 49 to demonstrate the effect
of presence of the active upper bounds.

Due to a great difference between the market power of Firm 1 and Firm 5 (see Table
5.5), the stronger leader Firm 1 has to sacrifice a part of its profit to the benefit of Firm 5.
One can expect that the bigger the power difference between both leaders, the more the
stronger leader has to sacrifice. Observe that also the remaining three firms significantly
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Table 5.6: Productions and profits - Firm 1 and Firm 5 leaders

MOPCC, v =1.0 Firm 1 Firm 2 Firm 3 Firm4  Firm 5
no upper production bound

Production 62.8288  49.1867  49.7383  47.2930  42.4805
Profit 840.8600 378.3762 442.9064 478.9642 485.6284

p(T) = 19.8786

no upper production bound

Production 88.8892  46.7669  47.7940  45.7640  33.7368
Profit 978.8980 328.1489 393.6102 433.3945 410.9734
p(T) = 19.0150

upper production bound 49

Production 52.7198  49.0000  49.0000 48.7618  41.2945
Profit 784.5941 421.1413 483.4428 527.4281 517.9824
p(T) = 20.7662

Table 5.7: Productions and profits - Stackelberg game, b; = 10

Stackelberg Firm 1 Firm 2 Firm 3 Firm 4 Firm 5
v=1.0

Production 55.5483 50.1342  50.5040  47.8997  42.9768
Profit 343.3453 400.008 463.9979 498.3845 502.6867

p(T) = 20.2378

increased their profits. We could see this phenomenon already in Example 5.2. This
improvement is even more noticeable in the case when their productions are limited.

We finish our analysis by modifying the input data. We alter the parameter specifi-
cations from Table 5.4 and set b; = 10 (instead of 2) to show the results of the situation
when not necessarily the strongest producers pretend to become cooperative leaders. The
elasticity parameter v remains 1.0. For the Stackelberg situation with Firm 1 as the leader,
the productions and profits of all the firms are shown in Table 5.7.

In Table 5.8 we present then the results for the MOPCC case when Firm 2 becomes the
second leader. The first section of this table presents the respective initial solution given by
NIMBUS. The second and the third sections represent situations when the contract between
both leaders is more beneficial for Firm 1 and Firm 2, respectively. The last section of
the table displays one acceptable solution in the case when the followers’ productions are
subject to a certain upper bound (namely, 50).

We can observe that with an agreement more beneficial for the stronger leader, the
market price decreases but still exceeds the market price in the Stackelberg game.
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Table 5.8: Productions and profits - games with two Leaders, b; = 10

MOPCC, v =1.0 Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

Production 152558 425467 52.6768 49.6384  44.3219
Profit 357.8634 410.9407 529.9167 558.8654 555.3318
p(T) = 21.3275

Production 50.8043  33.9370 53.0478 49.9381  44.5561
Profit 394.2186 357.6356 542.1837 570.0930 565.0856
p(T) = 21.5254

Production 36.5470 50.1959 52.8052  49.7420  44.4028
Profit 311.8783 458.3726 534.1281 562.7208 558.6816

p(T) = 21.3956
upper bound 50
Production 42.6431  39.8824  50.0000  50.0000  45.0693
Profit 371.6054 419.1422 548.4432 592.5498 582.1324
p(T) = 21.9689

Note that all the conclusions stated in connection with the previous set of data can be
applied here as well. AN



Conclusion

In this thesis we have discussed several models with hierarchical structure in which an
equilibrium problem arises either only on lower level or both levels.

In the chapter dedicated to MPECs, we presented the most important subclasses; with
the main focus on MPCCs. Our main aim was to build a bridge between KKT-type
stationarity concepts coined in [45] and optimality conditions derived in [39]. It was found
that Clarke and C-stationarity conditions coincide if the underlying generalized equation of
the respective (lower-level) solution map is strongly regular and MPEC-GLICQ holds true.
The latter is a modified version of linear independence constraint qualification specifically
tailored to the MPCC structure.

We have used this bridge to derive the existence conditions for C-stationary points
of EPCCs. We realize that even if implicit programming approach can be applied, the
resulting problem admits a structure of a nonconvex Nash game. We have therefore focused
our attention on a generalized concept of solutions and investigated sufficient conditions
for existence of solutions in mixed strategies.

Motivated by the oligopolistic market model, we investigated also the case of cooper-
ative behavior of the upper-level players. Using the advanced subdifferential calculus for
set-valued mappings and subdifferential Palais-Smale type condition, we obtained existence
of solutions to MOPCCs.

Finally, we have focused our attention on approaches to solve EPECs and MOPECs
numerically. The proposed generalization of the homotopy method I from [42], despite
the strong limitation on the structure of considered problem, revealed rather complex
structure of the sets stationarity points of EPCCs. This indicates that in general case
the set of solutions (if non-empty) is composed not only of isolated points. We plan
to analyze whether this phenomenon occurs solely due to linear-quadratic structure of
considered problems and to test the numerical performance of the method for the EPCC
with a greater number of complementarity constraints. Another important question is the
sensitivity analysis of stationary points in EPCCs with respect to perturbations of the
data. We intend to investigate these topics in future research.
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Appendix A

Variational Analysis

Throughout the thesis we used many term and results we believed unnecessary to include
directly in the text, assuming that the reader may be already familiar with the theory of
nonlinear optimization, MPECs and generalized calculus of Mordukhovich. In this and the
following appendices we intend to present the definitions and results which were required
for our analysis.

A.1 Multifunctions

For maps F' which assign subsets of R™ to points from R", denoted by F' : R® = R™,
we use the term set-valued mapping or simply multifunction. Both terms can be used
interchangeably.

Definition A.1. (domain and graph of a multifunction)
For a set-valued map F : R™ = R™, we call the sets

Dom F := {x € R"|F(x) # 0}, (A.1)
Gph F :={(z,y) e R" x R™|y € F(x)}, (A.2)
the domain of F' and the graph of F', respectively.

Definition A.2. (basic properties of a multifunction)
Let x € R". A multifunction F : R™ = R™ is called

a) closed at z if the following implication holds:

(4) Dom F
X E—

y D e F(zW) p =y € F(x).
y =y

b) upper semicontinuous at = if for any neighborhood U of F(x) there is n > 0 such
that for all ' € nB(zx), F(z") C U.
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¢) lower semicontinuous at z if for any y € F(x) and for any sequence of elements ™ €
Dom F converging to x, there is a sequence of elements y™ € F(x™) converging to

Y.

d) continuous at x if it is both upper and lower semicontinuous at x.
e) continuous if it is continuous at every point v € R".

f) convex-valued if for each x € Dom F the set F'(z) is convex.

g) closed-valued if for each x € Dom F the set F(x) is closed.

Local Lipschitz continuity of single-valued functions can be naturally extended to mul-
tifunctions.

Definition A.3. A set-valued mapping F : R™ = R™ has the Aubin property around
(z,y) €Gph F if there are neighborhoods V of & and W of y and a constant k > 0 such
that

F(@YNW C F(x) + k|2 — z||B for all z,2" € V.

Note that if I is not lower semicontinuous at = then there exist y € F(Z) such that
Aubin property does not hold around (z, ).

Definition A.4. A set-valued map F : R" = R™ is said to be calm at (z,y) € Gph F
with modulus A > 0 if there are neighborhoods V' of x and W of u such that

Fx)NnW C F(z)+ M|z —Z||B for allx € V.

Obviously, if F' has the Aubin property around some point of its graph, it is also calm
at this reference point .

A.2 Generalized differentiation

Definition A.5. (limiting normal cone)
Given Q C R™ and = € cl §, the limiting (or basic) normal cone to ) at T is defined by

N(z;€) = Lim sup [cone (z — II(x;Q)]. (A.3)

T—T

By convention, we set N(z;Q) := 0 if z ¢ cl Q.
The Euclidean projector onto cl €2 is given by

M(x; Q) :={wecd Q|| z—wl|=dist (z;Q)}.

In (A.3), the symbol “Lim sup” stands for the Painlevé-Kuratowski upper (or outer) limit
that is defined for a set-valued mapping F': R® = R™ at a point = by

Lim sup F(z) := {y € R"|32* — 2,3y — y with y» € F(zV)}.

T—T
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The limiting normal cone (A.3) is generally nonconvezr. For a convex set ), however,
it reduces to the normal cone in the sense of convex analysis. The normal cone can be
equivalently represented as

N(z;9Q) = Lim sup N(z:;Q),

Q
r—7z

where the Fréchet normal (or prenormal) cone N(-;Q) is defined by

{z* € R"| limsup <T|;’f;|f> <0} for z € clQ,
N(z;Q) = P
0 otherwise.

Note that the prenormal cone is the negative polar cone to the Bouligand-Severi contingent
cone Oz
-
T(z;) = Lim sup
t\0
The limiting normal cone (A.3) cannot be dual to any tangent cone due to its noncon-
vexity: polar cones are always convex.

By the critical cone of 2 with respect to y and x — y we understand the set

K(z,y;,Q) =T(y; ) n{z -y}

Definition A.6. (Clarke tangent and normal cones)
Given Q2 CR™ and x € cl ), the Clarke tangent cone to Q) at T is defined by

0 a
Te(7;Q) = Lim inf ———
$£>;i

t\0

and the Clarke normal cone N¢(7; Q) is its negative polar cone.

For an arbitrary set it obviously holds that

N(z:Q) C N(z:9Q) C Ne(z;9Q),
where the inclusions can be replaced by equalities for convex set 2.
For details on normal cones, we refer the reader to [44], [29] and [30].
The limiting and Clarke subdifferentials can be defined in terms of the respective normal
cones.

Definition A.7. (limiting and Clarke subdifferentials)
Let f: R™ — R be locally Lipschitz continuous. Then the limiting subdifferential of f in
x € R™ is given by
Of(z) == {&l(&, —1) € N(z, f(z);epi f)}
and the Clarke subdifferential of f in T € R" is given by

0f(z) == {€|(& —1) € Ne(, f(z);epi f)}.
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It immediately follows that
Of(x) C Of(x),

and if f is a convex function the inclusion becomes equality.

For details on the calculus of Clarke and limiting subdifferentials, we refer the reader
to [7], [29] and [30].

The extension of the Clarke subdifferential to locally Lipschitz continuous function
f:R™ — R™ is the generalized Jacobian.

Definition A.8. (generalized Jacobian)
Let f : R™ — R™ be locally Lipschitz continuous. Then the generalized Jacobian of f at x
is the subset of R™*"™ given by

Of (z) = conv {lim Vf(z®)|z® — z, 2@ # Qr},

where
Qp = {z|Vf(z) does not exist}.

For locally Lipschitz continuous functions, the set {2y has Lebesgue measure zero. If
m = 1, the generalized Jacobian coincides with the transpose of the Clarke subdifferential.
It is however common in literature to denote both objects by the same symbol.

Among the main derivative-like constructions for multifunctions are coderivatives. They
provide a pointwise approximation of a set-valued mappings using elements of dual spaces.

Definition A.9. (coderivative)
Given a set-valued mapping F : R™ = R™ and a point (z,y) from its graph the coderivative
D*F(z,y) : R™ = R"™ of F' at (Z,7) is a set-valued map defined by

D F(z,9)(y") == {2" € R"|(2", —y") € N(z,7; Gph F)}, (A.4)
where § in the notation D*F(Z,y) is omitted if F' is single-valued at T.

In general, D*F(z,y)(-) is a positively homogeneous closed multifunction at all points
z €Dom F,y € F(z) and it reduces to the adjoint Jacobian

D*F(z)(y") ={VF(2)'y'},y" €R™,

when F' is single-valued and strictly differentiable at z.

A.3 Variational inequality and complementarity prob-
lem

The following definitions are taken from [16].
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Definition A.10. (variational inequality)
For a convex set 2 C R™ and a map f : ) — R™ the variational inequality is a problem
to find a point x € Q) such that

(y—xz)" f(z) >0 Yy € Q. (A.5)

If 2 is closed and f continuous on an open set containing (), the set of solutions
to variational inequality (A.5) is closed, possibly empty. Equivalently, the variational
inequality can be written down using the normal cone in the form of generalized equation:

0 € f(z) + N(z; Q).

When (2 is a cone, the variational inequality can be expressed in an equivalent form of
a complementarity problem.

Definition A.11. (complementarity problem)
For a conver cone  and a map f : 2 — R™, the complementarity problem is to find a
point x € R™ such that the conditions

Qo2 L f(x) € QF,
where 2 is the dual (positive polar) cone of Q.

Consider the following special case. When (2 is the nonnegative orthant of R™ the com-
plementarity problem is referred to as the (classical) nonlinear complementarity problem.

Definition A.12. (nonlinear complementarity problem)
Given a map f : RT' — R™, the nonlinear complementarity problem is to find a point
x € R™ such that

0<zl f(x)>0.

This model can be easily extended to a generalized complementarity problem involving
two (or possibly more) functions F!, F?: R" — R™:

0< F'(z) L F*(x) > 0.

Consider now a cone 2 C R™ x R”,m; + my = m. We can formulate the following
generalization of NCP.

Definition A.13. (Mized complementarity problem)
Let g and h be two mappings from R™ x R into R™ and R, respectively. The mixed
complementarity problem is to find a pair (u,v) € R™ x R™2 such that

g(u,v) =0,
0<v L h(u,v) >0.
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An important special case of the variational inequality (A.5) is the one with the set
given by
Q={zreRa; <z; <b,i=1,...,m},

with real constants a; and b; satisfying
—o00 < a; < b; <00, Vi

If all a; and b; are finite, we refer to it as to a box constrained variational inequality. With
a and b the vectors with components a; and b; respectively, this variational inequality can
be equivalently written down as

fl@)+yt =y =0,
0<y"™ Lz—a>0,
0<y Lx—0>0.

Clearly, a box constrained variational inequality attains the form of MCP.

Definition A.14. (C-function)
A function U : R? — R is called a C-function (complementarity function), if for any pair
(a,b) € R?

®(a,b) =0 < [(a,b) > 0,ab = 0].

Given any C-function ®, the NCP can be equivalently reformulated to the equation

form:
é(ajla fl (.T))
0= :
(2, frn())
The simplest C-function is the minimum function ®(a,b) := min{a,b}, (a,b) € R? in
connection with NCP also called Pang NCP function. So, x solves the generalized NCP if
and only if min{F'(z), F?(x)} = 0.
We conclude this section with the definition of a face of a nonempty convex polyhedral
set C.

Definition A.15. (face of a convez polyhedral set)
A subset C" of a conver polyhedral set C C R™ is called a face of C, if it is convezr and if
for each line segment [x,y] C C with (z,y) N C" # O one has z,y € C".



Appendix B

LICQ and MFCQ of Standard
Nonlinear Program

Consider the (classical) nonlinear programming problem

minimize f(x)
g(z) <0, (B.1)
h(z) =0,

with continuously differentiable functions f : R" — R, g : R® — R™ and h : R" — RP.

We introduce only the constraint qualifications which play role in our analysis of MPECs
and EPECs, namely, the linear independence and Mangasarian-Fromowitz constraint qual-
ifications.

Definition B.1. (LICQ and MFCQ for nonlinear programs)
Let T be a feasible point of the program (B.1). We say that

a) the linear independence constraint qualification holds at T if the gradients

ng(f), Vi € Ig,
th(i’), VJ = 1, .o, Py

are linearly independent, with the set of the active inequality constraints constraints
Iy = {ilgi(z) = 0}.
b) the Mangasarian-Fromowitz constraint qualification holds at T if the gradients
Vhi(z), Yj=1,...,p,
are linearly independent and there erists a vector d € R™ such that

Vagi(z)'d <0, Viel,
Vhi(@)'d=0, Vj=1,...,p,
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We can reformulate the LICQ into into equivalent form:

pi =0, ie[m
v;=0, 7=1,...,p.

i€l

The Mangasarian-Fromowitz constraint qualification can be equivalently stated in the
form:

p
D uiVgi(@) + Y v Vhi(E) =0 pi=0, iel,
i€T, j=1 = B .
v;=0, 7=1,...,p.
i Z 07 (&S ]g

Hence, in the Fritz John type of necessary optimality conditions for the nonlinear pro-
gram (B.1), LICQ and MFCQ prevent the existence of the so-called abnormal (degenerate)
multiplier.

Clearly,
LICQ = MFCQ.



Appendix C

Noncooperative Nash (Games

Let us have n players and assume that each player 7,2 = 1,...,n may choose to play a
strategy x' from his or her action space U. In infinite games, the action space for at least
one of the players has infinitely many elements. We may simply assume that U? C R
Denote the feasible set of multistrategies z := (x',... ") by

Let us also denote for the ith player by 2% an element of w_; := X,_; U7, where 2~ stands
for the strategies of the other players, over which he or she has no control in the absence
of cooperation.

Definition C.1. (decision rule)
A decision rule of the ith player is a multifunction C* : w_; = U" which assigns to the
multistrategies v € w_; determined by the other players, a strategy set C'(z~%) C U".

From the previous definition an obvious question arises. Once each player has been
identified with its own decision rule, under what assumptions there is a common multi-
strategy, the so called consistent multistrateqy x € w, such that

' eCx"), Yi=1,...,N.

Theorem C.2. Let all n strateqy sets U',i = 1,...,n, be convex and compact and all n
decision rules C* be upper semicontinuous multifunctions with nonempty, closed and convex
values. Then there exists a consistent multistrategy.

Proof. See [2, Theorem 12.1]. O

Let us now suppose that the decision rules are determined by loss functions ¢' : w — R.
The associated decision rules, the so called canonical decision rules are defined by

a1 = {x € Uilgi(at, ) = i.nf_wi(yi,a:‘i)} .

yz ceyU?

This leads us to the definition of Nash equilibria.
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Definition C.3. (Nash equilibrium)
A multistrateqy T € w which is consistent for the canonical decision rules is called a
noncooperative Nash equilibrium.

Theorem C.4. The following assertions are equivalent:
a) T is a noncooperative equilibrium;
b) o' (27 < (2,77 Vi=1,...,n, Va'e U
¢) (T 777) — @' (af,77)) <0 Vo € w.
Proof. See |2, Proposition 12.1]. O]

One can often find the definition of Nash equilibria in terms of part b) of the Theorem
C.4 which, in words, states that no individual deviation from the equilibrium strategy
decreases the value of loss function of a player in question.

The following theorem provides a set of sufficient conditions under which a Nash equi-
librium exists. This theorem is also known as Nash theorem.

Theorem C.5. Let for each i = 1,...,n, the sets U’ be conver and compact and the
functions @' be continuous and convex in x* for every x™* € w_;. Then there exists a
noncooperative equilibrium.

Proof. The theorem follows from the Ky Fan’s theorem. For more details on the proof see
[2, Theorem 12.2]. O

Assume that for i = 1,...,n, the loss functions ¢’ are continuously differentiable. If
there is a Nash equilibrium z € w, one observes that it is a solution of the generalized
equation

0€ F(z)+ N(z;w), (C.1)
where F'(x) denotes the vector composed of the partial gradients of V¢ (z)

vxl 901 (.CE)
F(z) = :

To gain more details, we refer, e.g., to [2].
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