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x NotationNotationSpaces and Orthants
R the real numbers
R− the left half line
R+ the right half line
R

n the n-dimensional real vector space
R

n
− the nonpositive orthant in R

n

R
n
+ the nonnegative orthant in R

nSets
∅ empty set
{x} the set consisting of the vector x
{x}⊥ the orthogonal complement of vector x
(a, b) an open interval in R

[a, b] a closed interval in Rconv S convex hull of the set Scone S conic hull of the set Scl S closure of the set Sint S interior of the set Srint S relative interior of the set Sbdry S boundary of the set S
S1 ⊂ S2 S1 is a subset of S2

|I| cardinality of a �nite set I
P(I) the set of all subsets of a �nite set I
S1 × S2 Carthesian product of sets S1 and S2Xn

i=1 Si Carthesian product of sets Si, i = 1, . . . , n
arg minx∈Ω f(x) the set of points where the minimum of the real-valuedfunction f on the set Ω is attained
arg maxx∈Ω f(x) the set of points where the maximum of the real-valuedfunction f on the set Ω is attained
B the closed unit ball
B(x) the closed unit ball around xCones
T (x; Ω) the Bouligand-Severi contingent cone to Ω at x
TC(x; Ω) the Clarke tangent cone to Ω at x
N(x; Ω) the limiting normal cone to Ω at x
NC(x; Ω) the Clarke normal cone to Ω at x
N̂(x; Ω) the Fréchet normal cone to Ω at x
K(x, y; Ω) the critical cone of Ω with respect to x and x− y
K∗ the polar cone to K
K− the negative polar cone to K



Notation xiVectors
x ∈ R

n column vector in R
n

x> transpose of vector x
(x, y) column vector (x>, y>)>

xi ith component of vector x
x−i the vector in R

n−1 consisting of components xj , j 6= i
xI the vector in R

|I| consisting of components xi, i ∈ I
x−i the vector (x1, . . . , xi−1, xi+1, . . . , xm) with xj ∈ R

n, j = 1, . . . , m
x ≥ y componentwise comparison xi ≥ yi, i = 1, . . . , n
x > y componentwise strict comparison xi > yi, i = 1, . . . , n
〈x, y〉 := x>y the standard inner product of vectors in R

n

||x|| the Euclidean norm of a vector x ∈ R
nmin{x, y} the vector whose ith component is min {xi, yi}

x⊥y orthogonality of vectors x and y in R
nFunctions and Multifunction

f : R
n → R

m a function that maps R
n to R

m

fi : R
n → R the ith component function of f

F : R
n

⇒ R
m a multifunction that maps R

n to subsets of R
mepi f the epigraph of function fepi F the generalized epigraph of multifunction F

EF the epigraphical multifunction of multifunction FDom F the domain of multifunction FGph F the graph of multifunction FKer F the kernel of operator F
∇f(x) the Jacobian of f : R

n → R
m (the gradient of f : R

n → R)
∇xf(x) the partial Jacobian of f : R

n → R
m (the partialgradient of f : R

n → R) with respect to x
∇fI(x) the submatrix of the m× n matrix ∇f(x) with rowsindexed by i ∈ I ⊂ {1, . . . , m}
∇fI,J(x) the submatrix of the m× n matrix ∇f(x) with rowsindexed by i ∈ I ⊂ {1, . . . , m} and columns by j ∈ J ⊂ {1, . . . , n}
∂f(x) limiting subdi�erential of f at x
∂̄f(x) generalized Jacobian (Clarke subdi�erential) of f at x
∂KF (x, y) limiting subdi�erential of multifunction F at (x, y) ∈ epi Fwith respect to a cone K
∂∞K F (x, y) singular subdi�erential of multifunction F at (x, y) ∈ epi Fwith respect to a cone K
D∗F (x, y) coderivative of a multifunction F at (x, y) ∈ Gph F
Π(x; Ω) the Euclidean projector of x onto the closure of Ωdist (x; Ω) Euclidean distance between x and Ω
F ◦G composition of mappings F and G



xii NotationMatrices
E the identity matrix of appropriate order
A> transpose of a matrix A
Aj the jth row of a matrix A
AI the submatrix of a matrix A with rows Aj , j ∈ J
A>

I transpose of the submatrix of a matrix A with rows Aj , j ∈ J
Axi the submatrix of a matrix A with rows of A which correspondto components of vector xi in the product Ax, x = (x1, . . . , xn)
Qxi,xi the square submatrix of a square matrix Q with rowsand columns of Q which correspond to components of vector xiin the product Qx, x = (x1, . . . , xn)det A determinant of a matrix AAdj A adjunct matrix of a matrix A
A−1 inverse matrix of a matrix Adiag (A1, . . . , An) block diagonal matrix with the ith blockequal to matrix AiSequences
{x(k)} a sequence in R

n

x→ x̄ x converges to x̄
x

Ω
−→ x̄ x converges to x̄ with x ∈ Ω

x↘ x̄ x converges to x̄ with x > x̄liminf lower limit for real numberslimsup upper limit for real numbersLim inf lower/inner limit for multifunctionsLim sup upper/outer limit for multifunctionsOligopolistic market problem
xi ∈ R production of the ith leader
yj ∈ R production of the jth follower
ω ⊂ R

n the set of geometric constraints of leaders
T overall production quantity on the market
p inverse demand function/market price
ϕi objective function of the ith leader
f j objective function of the jthe follower
ci cost function of the ith producerForward-spot market model
x production vector
s spot sales vector
f forward position vector
p inverse demand function/spot price
ci cost function of the ith producer



Notation xiiiDeregulated electricity market model
L set of links
qi injection/withdrawal at node i
Cij transmission limit on the link ij
φij,k contribution of injection/withdrawal at node k to the link ij
pi price at node iTra�c equilibrium problem
G transportation network
N set of nodes
A set of arcs
W set of OD pairs in G
Rw set of all paths connecting OD pair w ∈W
R set of all routes
Fr �ow on route r ∈ R
va �ow on arc a ∈ A
∆ incidence matrix with elements δar

Cr costs of using route r ∈ R
Dw tra�c demand between OD pair w ∈W
µw minimum travel costs between OD pair w ∈W
ya capacity on arc a ∈ A
α the value of time
ta travel time on arc a ∈ A
ηIa costs of �rm providing arc a ∈ A
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Chapter 1IntroductionIn past century, the study of con�icting situation, a collision of interest, received a consid-erable scienti�c interest. Although some game-theoretical results can be traced to the 18thcentury, the �rst rigorous results were developed in the 1920s by Borel and von Neumann.The establishment of game theory as a scienti�c �eld is usually related to the publicationof [50] in 1944. Since then, a great variety of scienti�c disciplines, like economics, biology,sociology and politics, become interested in study of con�icting situations.An individual facing a decision takes into account di�erent outcomes. However, he orshe may not be the only decision-making person and the resulting outcome often dependson multi-person decision. In this case, optimality is not a well de�ned concept and instead,we speak of equilibria.There is a great variety of di�erent equilibrium concepts. Among the two widely usedbelongs a solution to a noncooperative game, where, roughly speaking, each player cannot improve his or her outcome by altering his or her decision unilaterally. This concept,named Nash equilibrium concept, was introduced in the early 1950s in [34]. A di�erentsituation arises when cooperation is present. We then speak of a Pareto optimal solutionwhen there is no other joint decision such that the performance of at least one player canbe improved without degrading the performance of the others.Probably the �rst study of a hierarchical model of con�icting situations is due toStackelberg [51]. Nowadays, a Stackelberg (or sometimes termed also single-leader-follower)game is used to model an economic situation when on the market the dominant �rm(e.g., due to some temporal advantage), called the market leader (or upper-level player),maximizes its pro�ts under the assumption that all other �rms present on the market, calledfollowers (or lower-level players), play a noncooperative strategy. Mathematically, thissituation is modeled via bilevel optimization problems (namely when only one follower ispresent on the market) and mathematical programs with equilibrium constraints (MPECs).The MPEC class of optimization problems was introduced in 1970s motivated by otherapplications to mechanics and network design. In past decade MPECs received an extensiveinterest of mathematicians. Following the progress in computational power of computers,there is now a wide range of algorithmic approaches to MPECs. We refer the reader tomonographs [25], [39] and [30, Chapter 5] on MPECs, and [12] on bilevel programming.



2 IntroductionOur main interest in this thesis, however, is focused on the con�icting situations leadingto problems which in a sense lie in between Nash and Stackelberg games, to the so-calledmulti-leader-follower games. This situation occurs, as the name suggests, when more thanone player is in a dominant position and hence has to take into account not just the reactionof players on the lower level but also of the remaining leaders.Concerning the behavior of the leaders, one can again distinguish two situations: thedecision making of the leaders forms a Nash equilibrium on the upper level, or all leaderscooperate in order to achieve an upper-level Pareto optimal strategy. To express mathe-matically the former situation one can use the novel paradigm of equilibrium problems withequilibrium constraints (EPECs). This class of hierarchical decision making models wasprobably directly addressed for the �rst time in [47]. The latter situation leads to a di�er-ent class of hierarchical problems, nowadays called multiobjective problems with equilibriumconstraints (MOPECs).The aim is, of course, to �nd (local) solutions to the mentioned problems. For thispurpose, various stationarity concepts have been introduced. To verify that a given pointis stationary is in general easier then to check that it is a local solution. However, for alocal solution to be stationary, certain constraint quali�cation must hold true. One canobserve two approaches to the study of MPECs: to restrict the attention to problemsconstrained by a nonlinear complementarity problem and to study the Lagrange functionand behavior of the corresponding multipliers; or to impose a rather strict assumption thatthe lower problem attains (locally) a unique solution. The latter restriction enables us toapply successfully the so-called implicit programming approach.In this thesis, we investigate stationarity concepts tailored to MPECs and EPECs andthe connection between the various stationarity concepts. Due to the structural dependenceof EPECs on MPECs, we naturally build upon known results about MPECs. We paythe main attention to a subclass of MPECs constrained by a nonlinear complementarityproblem since this is the case of currently known applications of EPECs.One of the main aims was to construct a bridge between stationarity conditions resultingfrom the above mentioned approaches. To this end we use many results from [45], [39]and [36]. However, the structure of our considered problem is slightly di�erent, hencewe decided to present most of the results with full proofs. This is done in Chapter 2.The main attention is paid to the so-called Clarke stationarity and C-stationarity, bothbased on application of Clarke generalized calculus. These two stationarity concepts areof particular importance to EPECs.In Chapter 3 we give mathematical formulation of EPEC. Interestingly, the study of thisclass of problems was boosted by modeling of con�icting behavior of agents in deregulatedelectricity markets; we devote a separate section to several source problems which arecurrently of high scienti�c interest. We aim to address the question of existence of Clarkeand C-stationary points and also of solutions to EPECs in mixed strategies.Chapter 4 is devoted to MOPECs. We derive necessary optimality conditions and usingthe novel subdi�erential calculus for set-valued mappings by Mordukhovich we establishexistence of solutions to these problems.In the last chapter, Chapter 5, several numerical methods are presented. All known



3algorithms to �nd solution to EPEC depend directly on techniques to solve MPECs nu-merically, in some cases due to very strong assumptions imposed on the data of EPEC.For this reason we attempt to derive an alternative algorithm based on the homotopymethod tailored speci�cally to a special subclass of EPECs. Finally, an e�ective numericaltechnique to solve MOPECs is developed.Parts of the original work which could be found in this thesis have already appearedin separate publications [8], [9] and [31] and working papers [10] and [11], some previousresults by the author have been completely reworked and generalized to �t the structureof this thesis or complemented with additional results. Other sources have been alsoused throughout the thesis when appropriate or necessary. In each case, this is carefullydocumented.



4 Introduction



Chapter 2Mathematical Program withEquilibrium Constraints (MPEC)In this chapter we investigate MPECs and associated �rst order necessary optimality con-ditions. In the center of focus of this chapter are stationarity concepts for MPECs withequilibrium constraints in the form of a nonlinear complementarity problem. We discussthe relations between stationarity concepts, in particular, of those based on Clarke gener-alized calculus. Also, we discuss the quali�cation conditions which are essential in derivingnecessary optimality conditions for MPECs of the considered structure.2.1 Mathematical formulationAn MPEC is an optimization problem with two sets of players; one leader trying to solvean upper-level minimization problem and one or more lower-level players, followers, tryingto reach a parameterized (by the upper-level decision variable) Nash equilibrium by solvinga lower-level equilibrium problem among themselves.More precisely, this problem is de�ned as follows. Let (x, y) denote the multistrategycomposed from the strategies x ∈ R
l1 of the leader and multistrategy y ∈ R

ml2 of mfollowers. Suppose that ϕ : R
l1+ml2 → R is the objective function of the leader and

κ ⊂ R
l1+ml2 is a nonempty and closed set of constraints. For the feasible strategy x, letthe set of solutions to the lower-level equilibrium problem, denoted by S(x), be closed.De�nition 2.1. (solution to abstract MPEC)An admissible multistrategy vector (x̄, ȳ) ∈ R

l1+ml2 is a solution to an abstract MPEC if
(x̄, ȳ) is a solution to the following optimization problemminimize

x,y
ϕ(x, y)subject to y ∈ S(x),

(x, y) ∈ κ.

(2.1)



6 Mathematical Program with Equilibrium Constraints (MPEC)The solution to the lower problem represents an equilibrium condition and S(x) speci�esthe set of such equilibria. This is the reason for the term �equilibrium constraints� inMPEC.Note that the minimization in mathematical program (2.1) is considered in both vari-ables, x and y, and hence we implicitly assume the so-called optimistic (or weak) formu-lation of MPEC. By the term optimistic we mean that whenever the lower problem hasmultiple solutions for a given x, the lower-level players choose one of the �best� in the sensethat it minimizes the upper-level objective for a �xed x. We can explicitly express this inthe reformulation of (2.1) to minimize
x

ϕo(x), (2.2)where
ϕo(x) := inf {ϕ(x, y) | y ∈ S(x), (x, y) ∈ κ}. (2.3)In a similar way we can obtain a pessimistic (or strong) formulation, assuming that thelower-level players choose one of the �worst� multistrategies with respect to the upper-levelobjective when multiple options are possible. Replacing �inf� by �sup� in (2.3) hence resultsin a �min-max� formulation of MPEC.Observe that we can equivalently rewrite the constraints in (2.1) in a compact form

(x, y) ∈ κ ∩Gph S.The set κ ∩Gph S is hence called the feasible region of MPEC (2.1).Since the mathematical program (2.1) is generally nonconvex due to its hierarchicalstructure, in order to guarantee the existence of its solution we need to impose additionalrestrictions on the data.Theorem 2.2. Let ϕ be lower semicontinuous, Gph S be closed and there exist a constant
c ∈ R such that the set

Ξc = {(x, y) ∈ κ ∩Gph S | ϕ(x, y) ≤ c}is nonempty and bounded. Then MPEC (2.1) possesses a solution.Proof. The existence of solution is due to the classical Bolzano-Weierstrass theorem. Fordetails, see [39, Proposition 1.1].Let κ = U × R
ml2 , where U is a closed set of feasible strategies of the leader andlet V 1, . . . , V m ⊂ R
l2 denote closed convex sets of admissible strategies of followers. Let

f j : R
l1+ml2 → R, j = 1, . . . , m, denote the individual objective of the jth follower andassume that for each j = 1, . . . , m, the objectives f j are continuously di�erentiable on anopen set containing U × Ω, where Ω := Xm

j=1 V
j. Finally, de�ne

F (x, y) :=







∇y1f 1(x, y)...
∇ymfm(x, y)






.



2.1 Mathematical formulation 7Then we can replace the equilibrium constraint y ∈ S(x) in (2.1) by the equivalent gener-alized equation
0 ∈ F (x, y) +N(y; Ω). (2.4)Thus an admissible multistrategy vector (x̄, ȳ) ∈ R

l1+ml2 is a solution to MPEC if (x̄, ȳ) isa solution to the following optimization problemminimize
x,y

ϕ(x, y),subject to 0 ∈ F (x, y) +N(y; Ω),

x ∈ U.

(2.5)This particular problem belongs to a broad subclass of problems of MPECs (2.1) with thesolution map in the form
S(x) = {y ∈ R

ml2 |0 ∈ f(x, y) +Q(x, y)}with function f : R
l1+ml2 → R

ml2 and multifunction Q : R
l1+ml2 ⇒ R

ml2 . Mathematicalprogram minimize
x,y

ϕ(x, y)subject to 0 ∈ f(x, y) +Q(x, y),

(x, y) ∈ κ

(2.6)covers optimization problems constrained by classical variational inequalities and comple-mentarity problems. In this thesis we are particularly interested in the latter, i.e., thesubclass of MPECs given by the mathematical programsminimize
x,y

ϕ(x, y)subject to 0 ≤ F 1(x, y) ⊥ F 2(x, y) ≥ 0,

x ∈ U,

(2.7)with functions F 1, F 2 : R
l1+ml2 → R

ml2 continuously di�erentiable on an open set contain-ing U ×R
ml2 . To emphasize the presence of complementarity constraints, we refer to (2.7)as to the mathematical program with complementarity constraints (MPCC).For a deeper insight to the analysis of MPECs and MPCCs, we refer the readers to themonographs [25], [39] and [30].Another class of hierarchical problems with one upper-level player are bilevel programs.These problems are characterized by the lower problem in the form of optimization problemminimize

y
f(x, y)subject to y ∈ V (x)

(2.8)with the solution map
S(x) = arg min

y∈V (x)

f(x, y).



8 Mathematical Program with Equilibrium Constraints (MPEC)Note that bilevel programs constitute a subclass of MPECs in the sense of De�nition2.1. Thus just like in the case of an abstract MPEC, if the solution to the lower-levelproblem is not unique, the upper-level objective function is not well determined and hencethe problem is ill-possed. The optimistic reformulation is the usual way how to overcomethis ill-possedness.On the other hand, MPEC (2.6) can be understood as the generalization of a bilevelprogram only when the lower problem is replaced by its necessary and su�cient optimal-ity conditions, either represented by the generalized equation, variational inequality orKarush-Kuhn-Tucker (KKT) conditions in the form of complementarity problem, enteringthe upper problem as constraints. Note, that this is possible if the problem (2.8) is convexand also some constraint quali�cation, e.g, Slater constraint quali�cation, is satis�ed. Oth-erwise, one can detect stationary points which are not even feasible in the original bilevelprogram.A bilevel program is in turn a special case of a hierarchical mathematical programwhich possesses multiple levels of optimization. Such multilevel mathematical programs areuseful in modeling of hierarchical decision making processes and optimization of engineeringdesigns, see [25, Chapter 1.2] and references therein.Though on the �rst glance it might look appealing, the equivalent reformulation of(2.8) to the form
z ∈ V (x),

f(x, z) ≤ inf {f(x, y) | y ∈ V (x)}
(2.9)does not ease the investigation of the bilevel problems. This is due to the fact that thesecond constraint in (2.9) does not satisfy any constraint quali�cation. For more on thissubject, see early work [35], a recent paper [14] and the references therein. For otherrelations between bilevel programs or MPECs and other well-known optimization problems,solution algorithms and applications, see [13] and the references therein.2.2 Necessary optimality conditions via nonlinear pro-grammingSome MPECs can be converted to the following formminimize

x
ϕ(x, y)subject to y = S(x),

x ∈ U.

(2.10)Assume that ϕ : R
l1+ml2 → R and S : R

l1 → R
ml2 are locally Lipschitz continuous functionsand that U ⊂ R

l1 is a closed set. Then, if we set h(x) := ϕ ◦ Φ(x) with
Φ(x) :=

(

x
S(x)

)

,



2.3 Mathematical program with complementarity constraints 9the MPEC (2.10) turns out to be a nonlinear program (NLP)minimize
x

h(x)subject to x ∈ U,
(2.11)where h : R

l1 → R is locally Lipschitz continuous function. If x̄ is a local minimizer of(2.11), then one has
0 ∈ ∂h(x̄) +N(x̄;U). (2.12)Using the formula for upper approximation of limiting subdi�erential of compositefunction, the necessary optimality conditions for MPEC (2.10) are as follows.Theorem 2.3. Let (x̄, ȳ) be a local minimizer of (2.10). Then there exist vectors (u∗, v∗) ∈

∂ϕ(x, y) such that
0 ∈ u∗ +D∗S(x̄)(v∗) +N(x̄;U). (2.13)Proof. For proof see [38, Theorem 1.6].From now on, assume ϕ to be continuously di�erentiable. Thus the generalized equation(2.13) attains the form

0 ∈ ∇xϕ(x̄, ȳ) +D∗S(x̄)(∇yϕ(x̄, ȳ)) +N(x̄;U). (2.14)In MPECs, the set U has frequently implicit structure and hence to obtain necessaryconditions in terms of the original data of the problem one needs to use the chain rule tocompute upper approximation of N(x̄;U) under suitable constraint quali�cation.In accordance with nonlinear programming, the generalized equation (2.14) de�nes anatural stationary concept. However, in most cases we may not be able to compute thecoderivative D∗S(x̄)(∇yϕ(x̄, ȳ)) exactly. Then we have to con�ne ourself with its upperapproximation and thus weaker stationarity conditions.For S locally single-valued around x̄ and locally Lipschitz, one such possible upperapproximation can be (∂̄S(x̄)>∇yϕ(x̄, ȳ) or even its upper approximation. Clearly, thisleads to still weaker stationarity conditions.2.3 Mathematical program with complementarity con-straintsLet us take a closer look at the mathematical program (2.7). Note that for a special casewhen F 2(x, y) := y, MPCC attains the form of (2.5) with Ω = R
ml2
+ since

S(x) = {y ∈ R
ml2 |0 ≤ F 1(x, y) ⊥ F 2(x, y) ≥ 0} (2.15)

= {y ∈ R
ml2 |0 ∈ F 1(x, y) +N(F 2(x, y); Rml2

+ )}. (2.16)



10 Mathematical Program with Equilibrium Constraints (MPEC)There are also other ways how to express the solution map S which assigns x ∈ R
l1 thesolution set of the nonlinear complementarity problem (NCP)�nd ysuch that 0 ≤ F 1(x, y) ⊥ F 2(x, y) ≥ 0,
(2.17)e.g., via the so-called Pang NCP function

S(x) = {y ∈ R
ml2 |0 = min{F 1

i (x, y), F 2
i (x, y)}, i = 1, . . . , ml2}, (2.18)or using the graph of normal cone mapping

S(x) =

{

y ∈ R
m|0 ∈

(

F 2(x, y)
−F 1(x, y)

)

∈ GphN(·; Rm
+)

}

. (2.19)Another possibility is to work with an enhanced version of the solution map, Se, in whichwe introduce extra variable ν = F 1(x, y) and obtain
Se(x) =

{

(y, ν) ∈ R
m × R

m|0 ∈

(

F 1(x, y) − ν
F 2(x, y)

)

+N(y, ν; Rm × R
m
+ )

}

. (2.20)The multifunction Se is related to the the solution map S by the following relationship
Se(x) =

(

S(x)
F 1(x, S(x))

)

.2.3.1 Stationarity conditions for MPCCsWe can look at the MPCC (2.7) as a special constrained mathematical program havingadditionally to a general constraint set U also �nitely many functional constraints of in-equality and equality types. From this perspective we can work with a whole class ofstationary concepts for MPCCs which are centered around Lagrange function. For obviousreasons these are sometimes called KKT-type stationarity concepts.First, let us introduce the sets of indices related to activities of constraints in comple-mentarity problem (2.17) at (x̄, ȳ)

I+(x̄, ȳ) = {i ∈ {1, . . . , ml2}|F
1
i (x̄, ȳ) > 0, F 2

i (x̄, ȳ) = 0},

L(x̄, ȳ) = {i ∈ {1, . . . , ml2}|F
1
i (x̄, ȳ) = 0, F 2

i (x̄, ȳ) > 0},

I0(x̄, ȳ) = {i ∈ {1, . . . , ml2}|F
1
i (x̄, ȳ) = 0, F 2

i (x̄, ȳ) = 0}.If there is no doubt about the reference point, we write only I+, L and I0. The index set
I0 is usually called the index set of biactive inequality constraints. For brevity, we denote
a+ = |I+(x̄, ȳ)| and a0 = |I0(x̄, ȳ)|.Consider the following auxiliary nonlinear programminimize

x,y
ϕ(x, y)subject to F 1(x, y) ≥ 0, F 2(x, y) ≥ 0,

x ∈ U,

(2.21)



2.3 Mathematical program with complementarity constraints 11which results from the MPCC (2.7) by ignoring the complementarity structure of con-straints. The �rst order optimality conditions of the NLP (2.21) are as follows:There exist multipliers (λ1, λ2) and a vector ξ ∈ N(x; Ω) such that
0 = ∇xϕ(x, y) −

ml2
∑

i=1

λ1
i∇xF

1
i (x, y) −

ml2
∑

i=1

λ2
i∇xF

2
i (x, y) + ξ,

0 = ∇yϕ(x, y) −
ml2
∑

i=1

λ1
i∇yF

1
i (x, y) −

ml2
∑

i=1

λ2
i∇yF

2
i (x, y),

0 ≤ F 1(x, y)⊥λ1 ≥ 0,

0 ≤ F 2(x, y)⊥λ2 ≥ 0,

ξ ∈ N(x;U).

(2.22)
Set G(x, y) = (F 1(x, y))>F 2(x, y). Then similarly to the conditions above, the �rst orderoptimality conditions of the MPCC (2.7) are given by:There exist multipliers (λ1, λ2, λG) and a vector ξ ∈ N(x; Ω) such that

0 = ∇xϕ(x, y) −
ml2
∑

i=1

λ1
i∇xF

1
i (x, y) −

ml2
∑

i=1

λ2
i∇xF

2
i (x, y) − λG∇xG(x, y) + ξ,

0 = ∇yϕ(x, y) −
ml2
∑

i=1

λ1
i∇yF

1
i (x, y) −

ml2
∑

i=1

λ2
i∇yF

2
i (x, y) − λG∇yG(x, y),

G(x, y) = 0

F 1
L∪I0(x, y) = 0, F 1

I+(x, y) > 0,

F 2
I+∪I0(x, y) = 0, F 2

L(x, y) > 0,

λ1
I+ = 0, λ1

I0 ≥ 0,

λ2
L = 0, λ2

I0 ≥ 0,

ξ ∈ N(x;U).

(2.23)
Now, since

(∇G(x, y))> = F 1(x, y)>∇F 2(x, y) + F 2(x, y)>∇F 1(x, y),let us rearrange conditions (2.23), setting
λF 1

L = λ1
L + λGF 2

L(x, y), λF 2

I+ = λ2
I+ + λGF 1

I+(x, y), (2.24)
λF 1

I+∪I0 = λ1
I+∪I0 , λF 2

L∪I0 = λ2
L∪I0. (2.25)Due to the nature of index sets I+, L and I0, this yields the following representation of the�rst order optimality conditions:



12 Mathematical Program with Equilibrium Constraints (MPEC)There exist multipliers (λF 1

, λF 2

) and a vector ξ ∈ N(x; Ω) such that
0 = ∇xϕ(x, y) −

∑

i∈L∪I0

λF 1

i ∇xF
1
i (x, y) −

∑

i∈I+∪I0

λF 2

i ∇xF
2
i (x, y) + ξ,

0 = ∇yϕ(x, y) −
∑

i∈L∪I0

λF 1

i ∇yF
1
i (x, y) −

∑

i∈I+∪I0

λF 2

i ∇yF
2
i (x, y),

λF 1

I0 ≥ 0, λF 2

I0 ≥ 0,

ξ ∈ N(x;U).

(2.26)
Following the terminology coined in [45], the conditions (2.26) are called strong sta-tionarity conditions. The investigation of MPCCs gave rise to a whole series of stationaryconcepts tailored to MPCCs. Their respective conditions di�er only in requirements im-posed on vectors λF 1

I0 and λF 2

I0 . In this respect, the weakest stationarity concept involvesno restrictions on biactive multipliers.De�nition 2.4. (weakly, C-, M- and strongly stationary point)Let (x̄, ȳ) be feasible for the MPCC (2.7). Then we call the point (x̄, ȳ)i) weakly stationary (or critical) if there exist multipliers (λF 1

, λF 2

) and a normal ξ ∈
N(x;U) such that the conditions

0 = ∇xϕ(x̄, ȳ) −
∑

i∈L∪I0

λF 1

i ∇xF
1
i (x̄, ȳ) −

∑

i∈I+∪I0

λF 2

i ∇xF
2
i (x̄, ȳ) + ξ,

0 = ∇yϕ(x̄, ȳ) −
∑

i∈L∪I0

λF 1

i ∇yF
1
i (x̄, ȳ) −

∑

i∈I+∪I0

λF 2

i ∇yF
2
i (x̄, ȳ),

(2.27)are satis�ed.ii) C-stationary if it is a weakly stationary point and, additionally, λF 1

i λF 2

i ≥ 0 for all
i ∈ I0.iii) M-stationary if it is a weakly stationary point and, additionally, either λF 1

i > 0 and
λF 2

i > 0, or λF 1

i λF 2

i = 0 for all i ∈ I0.iv) strongly stationary if it is a weakly stationary point and, additionally, λF 1

I0 ≥ 0,
λF 2

I0 ≥ 0.In the above de�nition, �M� and �C� stands for Mordukhovich and Clarke, respectively.Note that if I0 = ∅, i.e., in the (lower-level) strict complementarity case, strong, M-, C-and weak stationarity concepts coincide. Also, the restrictions imposed upon biactivemultipliers directly result in the following chain of implicationsstrong stationarity ⇒ M-stationarity ⇒ C-stationarity ⇒ weak stationarity.Clearly, Slater constraint quali�cation can never hold at any feasible point of (2.7).It is well known that at any feasible point, also linear independence constraint quali�-cation (LICQ) or Mangasarian-Fromowitz constraint quali�cation (MFCQ) are violated.



2.3 Mathematical program with complementarity constraints 13This phenomenon is closely related to the geometry of the complementarity structure ofconstraints and results in the unbounded set of Lagrangian multipliers. This leaves theconventional numerical optimization methods with a possibility of failure of convergenceto a solution.In [45] one can �nd suitable variants of both LICQ and MFCQ for MPCCs with ge-ometric constraints given by �nitely many functional constraints of the inequality andequality types. Then we say that the MPCC (2.7) satis�es the MPEC linear independenceconstraint quali�cation (MPEC-LICQ) and the MPEC Mangasarian-Fromowitz constraintquali�cation (MPEC-MFCQ) at a feasible point (x̄, ȳ) if the auxiliary nonlinear programminimize
x,y

ϕ(x, y)subject to F 1
L∪I0(x, y) = 0, F 1

I+(x, y) ≥ 0,

F 2
I+∪I0(x, y) = 0, F 2

L(x, y) ≥ 0,

x ∈ U

(2.28)satis�es LICQ and MFCQ at (x̄, ȳ), respectively. The feasible region of the NLP (2.28) is asubset of the feasible region of the MPCC (2.7) locally around (x̄, ȳ). So, every minimizerof the MPCC is also a local minimizer of the corresponding NLP (2.28). This is thereason why this program is called tightened nonlinear program (TNLP). Note that there isa whole list of constraint quali�cations tailored speci�cally to MPCCs, with MPEC-LICQand MPEC-MFCQ among the strongest ones, cf. [18].However, unlike in [45] or [18], we do not impose at this point any structural require-ments on the set U of geometric constraints, thus we need to work with generalized versionsof the respective constraint quali�cations.De�nition 2.5. (MPEC generalized LICQ and MFCQ)The MPCC (2.7) is said to satisfyi) the MPEC generalized LICQ (MPEC-GLICQ) at a feasible point (x̄, ȳ) if the relation
(

(∇xF
2
I+∪I0(x̄, ȳ))> (∇xF

1
L∪I0(x̄, ȳ))>

(∇yF
2
I+∪I0(x̄, ȳ))> (∇yF

1
L∪I0(x̄, ȳ))>

)(

ũ
ṽ

)

∈

(

−N(x̄;U)
0

) (2.29)with (ũ, ṽ) ∈ R
a++a0

× R
ml2−a+ implies (ũ, ṽ) = 0.ii) the MPEC generalized MFCQ (MPEC-GMFCQ) at a feasible point (x̄, ȳ) if the re-lation (2.29) with (ũ, ṽ) ∈ R

a++a0

×R
ml2−a+ such that for each i ∈ I0 either ũiṽi = 0or ũi < 0 and ṽi < 0, implies (ũ, ṽ) = 0.Note that 0 ∈ N(x̄;U), hence (2.29) implies in particular

(

∇F 2
I+∪I0(x̄, ȳ))>ũ+ ∇F 1

L∪I0(x̄, ȳ))>ṽ = 0, (ũ, ṽ) ∈ R
a++a0

× R
ml2−a+

)

⇒ (ũ, ṽ) = 0.This is, however, true only if all the gradient vectors ∇F 1
i (x̄, ȳ),∇F 2

j (x̄, ȳ), i ∈ I+ ∪
I0, j ∈ L ∪ I0 are linearly independent. Thus MPEC-GLICQ is a proper generalization of



14 Mathematical Program with Equilibrium Constraints (MPEC)linear independence constraint quali�cation for MPCCs. Clearly, MPEC-GLICQ impliesMPEC-GMFCQ, since the latter restricts the values of (ũ, ṽ).It turns out that MPEC-GMFCQ is just strong enough for M-stationarity conditionsto be necessary optimality conditions. The following theorem is a modi�ed version of [36,Theorem 3.1] where the statement is proved for the MPEC (2.5) with Ω = R
ml2
+ .Theorem 2.6. Let (x̄, ȳ) be a local minimizer of the MPCC (2.7). If MPEC-GMFCQholds at (x̄, ȳ) then there exist multipliers λF 1

, λF 2 and ξ ∈ N(x̄;U) such that (2.27) holdand either λF 1

i > 0 and λF 2

i > 0, or λF 1

i λF 2

i = 0 for all i ∈ I0. In particular, (x̄, ȳ) isM-stationary.Proof. When MPEC-GMFCQ holds we can compute an upper approximation of the normalcone to the feasible region
{

(x, y) ∈ U × R
ml2 |

(

F 2(x, y)
−F 1(x, y)

)

∈ Gph N(·; Rml2
+ )

}

.Recalling the �rst order necessary optimality conditions for nonlinear programs, (x̄, ȳ) thussatis�es conditions
0 ∈∇ϕ(x̄, ȳ)+

+

(

(∇xF
2(x̄, ȳ)> −(∇xF

1(x̄, ȳ)>

(∇yF
2(x̄, ȳ)> −(∇yF

1(x̄, ȳ)>

)

N(F 2(x̄, ȳ),−F 1(x̄, ȳ);Gph N(·,Rml2
+ ))

+N(x̄;U) × {0}.Take into account that
N(F 2(x̄, ȳ),−F 1(x̄, ȳ);Gph N(·,Rml2

+ )) =
ml2X
i=1

N(F 2
i (x̄, ȳ),−F 1

i (x̄, ȳ);Gph N(·,R+))and that
N(F 2

i (x̄, ȳ),−F 1
i (x̄, ȳ);Gph N(·,R+)) =











{0} × R, i ∈ L,

R × {0}, i ∈ I+,

({0} × R) ∪ (R × {0}) ∪ (R− × R+), i ∈ I0.Now, consider arbitrary (u, v) ∈ N(F 2(x̄, ȳ),−F 1(x̄, ȳ);Gph N(·,Rml2
+ )) and set λF 1

:= vand λF 2

:= −u. Then we arrive exactly at M-stationarity conditions. This completes theproof.The M-stationarity conditions are clearly the proper counterpart of Mordukhovich sta-tionarity known from nonlinear programming, hence the choice for the name of the sta-tionarity concept.To prove directly that under MPEC-GLICQ local minimizers of (2.7) are C-stationary,one just needs to properly modify [45, Lemma 1], although this statement follows fromTheorem 2.6. We present here the respective modi�cation because we will use partialresults from the proof later in the text.



2.3 Mathematical program with complementarity constraints 15Theorem 2.7. Let (x̄, ȳ) be a local minimizer of the MPCC (2.7). If MPEC-GLICQ holdsat (x̄, ȳ) then there exist multipliers λF 1

, λF 2 and ξ ∈ N(x̄;U) such that conditions (2.27)hold and λF 1

i λF 2

i ≥ 0 for all i ∈ I0. In particular, (x̄, ȳ) is C-stationary.Proof. Let us rewrite the MPCC (2.7) asminimize ϕ(x, y)subject to 0 = min{F 1
i (x, y), F 2

i (x, y)}, i = 1, . . . , ml2,

x ∈ U.From [30, Theorem 5.19 (ii)] and [29, Theorem 3.36] we get the following version of FritzJohn conditions. There exist multipliers r ≥ 0, λmin
i , i = 1, . . . , ml2, not all zero, and

ξ ∈ N(x̄;U) such that
0 = r∇xϕ(x̄, ȳ) +

ml2
∑

i=1

λmin
i ci + ξ,

0 = r∇yϕ(x̄, ȳ) +

ml2
∑

i=1

λmin
i di,

(2.30)with
(ci, di) ∈ ∂̄min{F 1

i (x, y), F 2
i (x, y)} =











∇F 1
i (x̄, ȳ), i ∈ L,conv{∇F 1

i (x̄, ȳ),∇F 2
i (x̄, ȳ)}, i ∈ I0,

∇F 2
i (x̄, ȳ), i ∈ I+.For every i ∈ I0 there is αi ∈ [0, 1] such that

ci = αi∇xF
1(x̄, ȳ) + (1 − αi)∇xF

2(x̄, ȳ),

di = αi∇yF
1(x̄, ȳ) + (1 − αi)∇yF

2(x̄, ȳ).Set
λF 1

i =











−λmin
i , i ∈ L,

−αiλ
min
i , i ∈ I0,

0, i ∈ I+,

λF 2

i =











0, i ∈ L,

(1 − αi)λ
min
i , i ∈ I0,

−λmin
i , i ∈ I+.Then, since αi ∈ [0, 1], we have λF 1

i λF 2

i = αi(1 − αi)(λ
min
i )2 ≥ 0 for each i ∈ I0.



16 Mathematical Program with Equilibrium Constraints (MPEC)This results in the following conditions which di�er from C-stationarity conditions onlyin the presence of a nonnegative multiplier r.
0 = r∇xϕ(x̄, ȳ) −

∑

i∈L∪I0

λF 1

i ∇xF
1
i (x̄, ȳ) −

∑

i∈I+∪I0

λF 2

i ∇xF
2
i (x̄, ȳ) + ξ,

0 = r∇yϕ(x̄, ȳ) −
∑

i∈L∪I0

λF 1

i ∇yF
1
i (x̄, ȳ) −

∑

i∈I+∪I0

λF 2

i ∇yF
2
i (x̄, ȳ),

λF 1

i λF 2

i ≥ 0, i ∈ I0,

ξ ∈ N(x̄;U).

(2.31)
Assume now, that r = 0. Then the �rst two lines of (2.31) may be written as

−ξ = −
∑

i∈L∪I0

λF 1

i ∇xF
1
i (x̄, ȳ) −

∑

i∈I+∪I0

λF 2

i ∇xF
2
i (x̄, ȳ),

0 = −
∑

i∈L∪I0

λF 1

i ∇yF
1
i (x̄, ȳ) −

∑

i∈I+∪I0

λF 2

i ∇yF
2
i (x̄, ȳ).Setting ũ = −λF 2

I+∪I0 and ṽ = −λF 1

L∪I0 , from MPEC-GLICQ we get λF 2

I+∪I0 = λF 1

L∪I0 = 0.This implies also λmin
i = 0 for all i = 1, . . . , ml2. The latter is, of course, a contradiction tothe statement that multipliers r ≥ 0, λmin

i , i = 1, . . . , ml2, are not all simultaneously zero.Hence, r 6= 0 and scaling yields r = 1. This completes the proof.It turns out that to prove the above statement directly, MPEC-GMFCQ is insu�cientto prevent the case of vanishing multiplier r. Nevertheless, recall that M-stationarityimplies C-stationarity, hence MPEC-GMFCQ implies C-stationarity of local minimizers.This is the statement of the following corollary.Corollary 2.8. Let (x̄, ȳ) be local minimizer of MPEC (2.7). If MPEC-GMFCQ holdsat (x̄, ȳ) then there exist multipliers λF 1

, λF 2 and ξ ∈ N(x̄;U) such that (2.27) hold and
λF 1

i λF 2

i ≥ 0 for all i ∈ I0. In particular, (x̄, ȳ) is C-stationary.Note also that MPEC-GLICQ does not provide uniqueness of multipliers if U 6= ∅. Thefollowing example shows that MPEC-GLICQ can be satis�ed and yet there may be at leasttwo di�erent sets of multipliers satisfying C-stationarity conditions.Example 2.9. Consider an MPCCminimize
x1,x2,y

2x1 + 2x2 + ysubject to 0 ≤ x1 − x2 − y ⊥ y ≥ 0,

x1, x2 ≥ 0.at the feasible point (x̄1, x̄2, ȳ) = (0, 0, 0). Then conditions
u ≥ 0,

−u ≥ 0,

−u+ v = 0,



2.3 Mathematical program with complementarity constraints 17imply u = v = 0 and hence MPEC-GLICQ holds. On the other hand one can easily checkthat there are multiple sets of vectors (λF 1

, λF 2

, ξ1, ξ2) with (ξ1, ξ2) ∈ R
2
− satisfying theconditions (2.27), e.g., (1,2,-1, -3) or (2,3,0, -4).Clearly, our reference point is even strongly stationary. In fact, it is the unique globalminimizer of our MPCC. 42.3.2 Implicit programming approach and Clarke stationarityIn this section we consider an alternative approach to MPECs. We are particularly in-terested in various criteria under which the lower-level complementarity problem locallyde�nes an implicit function. Most of the results in this section follow directly from [39],although, for slightly di�erent structure of an MPCC. Using the combination of the cal-culus of Mordukhovich and of Clarke, however, we derive stronger optimality conditionsthen in [39]. Only when we believe it is appropriate, we present the the full proof.Consider the generalized equation (2.4) with the solution map

S(x) = {y ∈ R
ml2 |0 ∈ F (x, y) +N(y; Ω)}.In what follows we work with the following condition of Robinson [43] concerning themultivalued map Σ : R

ml2 ⇒ R
ml2 generated by partial linearization of F (x̄, ȳ) in (2.4).De�nition 2.10. (Strong regularity condition)Let ȳ ∈ S(x̄). Suppose that there exist neighborhoods V of ȳ and O of 0 ∈ R

ml2 such thatthe map ξ → Σ(ξ) ∩ V is single-valued and Lipschitz continuous on O, where
Σ(ξ) = {y ∈ R

ml2 |ξ ∈ F (x̄, ȳ) + ∇yF (x̄, ȳ)(y − ȳ) +N(y; Ω)}.Then we say that the generalized equation (2.4) is strongly regular at (x̄, ȳ) or that at thispoint the generalized equation (2.4) satis�es the strong regularity condition (SRC).The strong regularity condition plays an important role in implicit programming mainlydue to the following result.Theorem 2.11. Let the generalized equation (2.4) be strongly regular (x̄, ȳ). Then thereis a neighborhood U of x̄ and V of ȳ such that the map σ(x) = S(x) ∩ V is single-valuedand locally Lipschitz continuous on U .Proof. For proof see [43].For Ω being a convex polyhedral set we get a useful characterization of the strongregularity condition.Theorem 2.12. Let Ω be a convex polyhedron. Then the following statements are equiva-lent.i) The generalized equation (2.4) is strongly regular at (x̄, ȳ).



18 Mathematical Program with Equilibrium Constraints (MPEC)ii) The generalized equation
ξ ∈ ∇yF (x̄, ȳ)η +N(η;K(ȳ − F (x̄, ȳ), ȳ)) (2.32)is single-valued on R
ml2.Proof. See, e.g., [39, Theorem 5.3].We can apply Theorem 2.12 also to to the underlying generalized equation in (2.20).This enables us to derive rather simple linear algebraic criteria for single-valuedness andLipschitz behavior of the map σ around x̄. Note that the third argument ν̄ of the general-ized equation in (2.20) is uniquely determined by x̄ and ȳ via relation ν̄ = F 1(x̄, ȳ). Thuswe can refer just to the point (x̄, ȳ).If SRC holds at (x̄, ȳ), then there exist neighborhoods U of x̄ and V of ȳ and a Lipschitzcontinuous map σ : U → R
m × R

m such that
σ(x̄) = (ȳ, F 1(x̄, ȳ)) and σ(x) = Se(x) ∩ (V × F 1(x,V)) for all x ∈ U .The map σ can be split into two Lipschitz operators σy and σν which correspond,locally around x̄, to the y− and ν−component of the solution to the underlying generalizedequation in (2.20). Moreover, it su�ces to analyze just the operator σy since

σν(x) = F 1(x, σy(x)) for all x ∈ U .The criterion of SRC for the generalized equation in (2.20) is stated in the followingtheorem.Theorem 2.13. Denote by Z(x, y) an (ml2 + a+ + a0) × (ml2 + a+ + a0) matrix given by
Z(x, y) =





∇yF
1(x, y) −E>

I+ −E>
I0

∇yF
2
I+(x, y) 0 0

∇yF
2
I0(x, y) 0 0



 .Then the generalized equation in (2.20) is strongly regular at (x̄, ȳ) if and only if thegeneralized equation
ξ ∈ Z(x̄, ȳ)η +N(η; Rml2+a+

× R
a0

+ )possesses a unique solution η for all ξ ∈ R
ml2+a++a0.Proof. In this case, the generalized equation (2.32) attains the form

ξ ∈

(

∇yF
1(x̄, ȳ) −E

∇yF
2(x̄, ȳ) 0

)

η +N(η;K)with
K = {(u, v) ∈ R

ml2 × R
ml2 |vL∪I0 ≥ 0} ∩ {(u, v) ∈ R

ml2 × R
ml2 |vL = 0}

= {(u, v) ∈ R
ml2 × R

ml2 |vI0 ≥ 0, vL = 0}.



2.3 Mathematical program with complementarity constraints 19Hence for (u, v) ∈ K we have
N(u, v;K) = {η∗ = (u∗, v∗) ∈ R

ml2 × R
ml2 |u∗ = 0, v∗I+ = 0, 0 ≤ −v∗I0 ⊥ vI0 ≥ 0}.Now observe that the columns of matrix

(

−E
0

)corresponding to inactive inequality constraints of F 2 can be removed because the compo-nents vi vanish for i ∈ L. The same columns of
(

F 2(x̄, ȳ), 0
)can be omitted since the components v∗i , i ∈ L, are free and these rows do not restrictvariable η.This completes the proof.The application of [39, Lemma 5.6] to the statement of Theorem 2.13 yields a linearalgebraic characterization of the strong regularity of the generalized equation in (2.20) at

(x̄, ȳ). Recall that a square matrix A is called a P-matrix if all its principal subdeterminantsare positive.Theorem 2.14. The following statements are equivalent:i) The generalized equation in (2.20) is strongly regular at (x̄, ȳ).ii) The matrix
(

∇yF
1(x̄, ȳ) −E>

I+

∇yF
2
I+(x̄, ȳ) 0

)is nonsingular and its Schur complement in Z(x̄, ȳ) is a P-matrix.Proof. The claim follows from [39, Lemma 5.6].Since SRC ensures local single-valuedness of the solution map, we are able to character-ize the local properties of S by the generalized Jacobian of σy at the reference point, or atleast by its upper approximation. Provided that locally around x̄, the Lipschitz operator
σy is a PC 1 function, the computation of an upper approximation of ∂̄σy is rather simple.The continuity of σy around x̄ provides us with the stability of index sets of activeconstraints.Lemma 2.15. Let SRC hold at (x̄, ȳ). Then there is a neighborhood U of x̄ such that

I+(x̄, ȳ) ⊂ I+(x, σy(x)) and L(x̄, ȳ) ⊂ L(x, σy(x)), ∀x ∈ U .Proof. The proof immediately follows from the continuity of σy.



20 Mathematical Program with Equilibrium Constraints (MPEC)Hence, in the neighborhood U of x̄ for each point x ∈ U there is a subset M of indexset I0 such that
F 1

i (x, y) ≥ 0, F 2
i (x, y) = 0 for i ∈ I+ ∪M,

F 1
i (x, y) = 0, F 2

i (x, y) ≥ 0 for i ∈ L ∪ (I0 \M).
(2.33)Ignoring the inequalities in (2.33) results in system of nonlinear equations

F 1
i (x, y) = 0 for i ∈ L ∪ (I0 \M),

F 2
i (x, y) = 0 for i ∈ I+ ∪M.

(2.34)To this system we can apply the classical implicit function theorem, provided the matrix
(

∇yF
1
L∪(I0\M)(x̄, ȳ)

∇yF
2
I+∪M (x̄, ȳ)

)is nonsingular. However, this is implied by SRC.Denote the elements of the family P(I0(x̄, ȳ)) of all subsets of I0(x̄, ȳ) byMi(x̄, ȳ) whereindices i run in a suitable index set K(x̄, ȳ).Lemma 2.16. Let SRC hold at (x̄, ȳ). Theni) for every i ∈ K(x̄, ȳ) the matrix
Di(x̄, ȳ) =

(

∇yF
1
L∪(I0\Mi)

(x̄, ȳ)

∇yF
2
I+∪Mi

(x̄, ȳ)

)is regular andii) either det Di(x̄, ȳ) > 0 for all i ∈ K(x̄, ȳ)or det Di(x̄, ȳ) < 0 for all i ∈ K(x̄, ȳ).Proof. From Theorem 2.14 we havedet( ∇yF
1(x̄, ȳ) −E>

I+

∇yF
2
I+(x̄, ȳ) 0

)

6= 0.Clearly, the application of the Laplace's formula for computation of determinants yieldsdet D1(x̄, ȳ) := det( ∇yF
1
L∪I0(x̄, ȳ)

∇yF
2
I+(x̄, ȳ)

)

6= 0,where M1(x̄, ȳ) := ∅ ∈ P(I0(x̄, ȳ)).



2.3 Mathematical program with complementarity constraints 21From Theorem 2.14 we also know that the matrix
(

∇yF
2
I0(x̄, ȳ) 0

)

(

∇yF
1(x̄, ȳ) −E>

I+

∇yF
2
I+(x̄, ȳ) 0

)−1(
E>

I0

0

) (2.35)is a P-matrix, i.e., each of its 2a0

− 1 major submatrices (including itself) has a positivedeterminant. However, for every i ∈ K(x̄, ȳ) \ {1} there is a major submatrix of (2.35)such that its determinant can be expressed asdet Di(x̄, ȳ)det D1(x̄, ȳ)
.Hence, the sign of determinants det Di(x̄, ȳ) for all i ∈ K(x̄, ȳ) \ {1} is determined by thesign of det D1(x̄, ȳ). This proves both parts of the lemma.As a corollary of Lemma 2.16 i) we have that locally around x̄, σy is a PC1 function.Denote by σi, i ∈ K(x̄, ȳ) the implicit functions speci�ed by systems of equations (2.34).An upper approximation of ∂̄σy then takes the form

∂̄σy(x̄) ⊂ conv{∇σi(x̄)|i ∈ K(x̄, ȳ)},cf. [46, Proposition A.4.1]. We summarize this in the following theorem.Theorem 2.17. Assume that SRC holds at (x̄, ȳ). Then
∂̄σy(x̄) ⊂ conv{Bi(x̄, ȳ)|i ∈ K(x̄, ȳ)} (2.36)where Bi(x̄, ȳ), i ∈ K(x̄, ȳ), is a unique solution of the system of equations in Π

Di(x̄, ȳ)Π = −

(

∇xF
1
L∪(I0\Mi)

(x̄, ȳ)

∇xF
2
I+∪Mi

(x̄, ȳ)

)

.Proof. See [39, Theorem 6.17]In order to obtain precise formula for the generalized Jacobian and to replace inclusionswith equalities, additional assumptions are needed.Lemma 2.18. Let the assumptions of Theorem 2.17 be ful�lled. Assume that l1 ≥ a0 andthat every collection of at most l1 +ml2 rows of the matrix
(

∇F 1
L∪I0(x̄, ȳ)

∇F 2
I+∪I0(x̄, ȳ)

)is linearly independent. Then for each i ∈ K(x̄, ȳ)

Bi(x̄, ȳ) ∈ ∂̄σy(x̄).Proof. See [39, Proposition 6.19].



22 Mathematical Program with Equilibrium Constraints (MPEC)Note that the linear independence condition in the above lemma is implied by MPEC-GLICQ.For the formulation of the stationary conditions below we use the technique of theso-called adjoint equations. This technique works as follows. Consider a vector q ∈ R
m,matrix A ∈ R

m × R
m and matrices P,B ∈ R

m × R
n with AP = B. If p̄ solves the adjointequation

A>p = q,then
P>q = B>p̄.De�nition 2.19. (Clarke stationarity conditions)Let (x̄, ȳ) be a feasible point for the MPCC (2.7) and let SRC hold at (x̄, ȳ). Then we call

(x̄, ȳ) Clarke stationary if it satis�es
0 ∈ ∇xϕ(x̄, ȳ) − conv{( ∇xF

1
L∪(I0\Mi)

(x̄, ȳ)

∇xF
2
I+∪Mi

(x̄, ȳ)

)>

pi(x̄, ȳ)|i ∈ K(x̄, ȳ)

}

+N(x̄;U), (2.37)where pi(x̄, ȳ) are the unique solutions of
(

∇yF
1
L∪(I0\Mi)

(x̄, ȳ)

∇yF
2
I+∪Mi

(x̄, ȳ)

)>

p = ∇yϕ(x̄, ȳ). (2.38)In the next theorem we show that the strong regularity condition is su�cient for Clarkestationarity conditions (2.37) and (2.38) to be necessary �rst order optimality conditions.Theorem 2.20. Let (x̄, ȳ) be a local solution of the MPCC (2.7). Let SRC hold at (x̄, ȳ)and for all i ∈ K(x̄, ȳ) the vectors pi(x̄, ȳ) be the unique solutions of (2.38). Then conditions(2.37) are ful�lled. In particular, the point (x̄, ȳ) is Clarke stationary.Proof. The considered MPCC can be on the neighborhood U of x̄ reduced tominimize
x

ϕ(x, y)subject to y = σy(x),

x ∈ U ∩ U .From Theorem 2.17 one has̄
∂σy(x̄) ⊂ conv{Bi(x̄, ȳ)|i ∈ K(x̄, ȳ)},where Bi(x̄, ȳ), i ∈ K(x̄, ȳ), is a unique solution of linear matrix equation in Π

Di(x̄, ȳ)Π = −

(

∇xF
1
L∪(I0\Mi)

(x̄, ȳ)

∇xF
2
I+∪Mi

(x̄, ȳ)

)

.



2.3 Mathematical program with complementarity constraints 23From [30, Proposition 5.3], the relation between the limiting and the Clarke subdi�erentialsand generalized Jacobian chain rule [7, Theorem 2.6.6] we get
0 ∈ ∇xϕ(x̄, ȳ) + conv{(Bi(x̄, ȳ))>∇yϕ(x̄, ȳ)|i ∈ K(x̄, ȳ)

}

+N(x̄;U).The application of the technique of adjoint equations completes the proof.Let us turn our attention brie�y to the MPEC (2.5) with Ω = R
ml2
+ . As mentionedabove, this MPEC can be reformulated as an MPCCminimize

x,y
ϕ(x, y)subject to 0 ≤ F (x, y) ⊥ y ≥ 0,

x ∈ U.

(2.39)Recall that
I+(x̄, ȳ) = {i ∈ {1, . . . , ml2}|Fi(x̄, ȳ) > 0},

L(x̄, ȳ) = {i ∈ {1, . . . , ml2}|yi > 0},

I0(x̄, ȳ) = {i ∈ {1, . . . , ml2}|Fi(x̄, ȳ) = yi = 0}.

(2.40)For the generalized equation
0 ∈ F (x, y) +N(y; Rml2

+ ), (2.41)the counterpart to Theorem 2.14 attains the following form.Theorem 2.21. The following statements are equivalenti) The generalized equation (2.41) is strongly regular at (x̄, ȳ).ii) The matrix ∇yFL,L(x̄, ȳ) is nonsingular and its Schur complement in the matrix
(

∇yFL,L(x̄, ȳ) ∇yFL,I0(x̄, ȳ)
∇yFI0,L(x̄, ȳ) ∇yFI0,I0(x̄, ȳ)

)is a P-matrix.Proof. See [39, Theorem 5.9].Clarke stationarity conditions for the MPCC (2.39) under SRC reduce to
0 ∈ ∇xϕ(x̄, ȳ) − conv{(∇xFL∪(I0\Mi)(x̄, ȳ))

>pi(x̄, ȳ)|i ∈ K(x̄, ȳ)
}

+N(x̄;U), (2.42)where pi(x̄, ȳ) are the unique solutions of
(∇yFL∪(I0\Mi),L∪(I0\Mi)(x̄, ȳ))

>p = ∇yϕL∪(I0\Mi)(x̄, ȳ). (2.43)



24 Mathematical Program with Equilibrium Constraints (MPEC)2.3.3 Equivalence of Clarke and C-stationarityIn this section we will closely investigate the relation between above de�ned concepts ofClarke stationarity and C-stationarity. Note that these concepts are not de�ned for thesame class of MPCCs. We are not able to work with Clarke stationarity without theassumption of strong regularity. This condition is, unfortunately, insu�cient for bothconcepts to coincide; MPEC-GLICQ needs to be ful�lled as well.First, notice that MPEC-GLICQ and SRC, both implying extra requirements on thedata of complementarity constraints, are generally unrelated conditions even for U = R
l1 .We show this by means of simple examples.Example 2.22. Consider for some objective function ϕ(x1, x2, y1, y2) the following pair ofcomplementarity constraints

0 ≤ −x1 +2y1 −y2 ⊥ +y1 ≥ 0,
0 ≤ −x2 − 3y1 +2y2 ⊥ −x1 −x2 +y2 ≥ 0and a reference point (x1, x2, y1, y2) = (0, 0, 0, 0).The matrix

(

2 −1
−3 2

)is regular and
(

1 0
0 1

)(

2 1
3 2

)(

1 0
0 1

)is a P-matrix. Hence, due to Lemma 2.18, the strong regularity condition holds at (0,0,0,0).On the other hand, the vectors








−1
0

−2
−1









,









0
−1
−3

2









,









0
0
1
0









,









−1
−1

0
1







are linearly dependent and hence MPEC-GLICQ is violated. 4Example 2.23. Consider for some objective function ϕ(x1, x2, y1, y2) the following pair ofcomplementarity constraints
0 ≤ −x1 +y1 −2y2 ⊥ +y1 ≥ 0,
0 ≤ −x2 − 2y1 +y2 ⊥ +y2 ≥ 0and a reference point (x1, x2, y1, y2) = (0, 0, 0, 0). MPEC-GLICQ is clearly satis�ed and

(

1 −2
−2 1

)is a regular matrix. However,
−

1

3

(

1 2
2 1

)is not P-matrix and hence SRC is violated at (0,0,0,0). 4



2.3 Mathematical program with complementarity constraints 25Recall, that the conditions for Clarke stationarity involve an upper approximation of
∂̄σy(x). If we are able to compute this object precisely (see Lemma 2.18), the computationis invariant to the concrete representation of the solution mapping. If this is not the case,we may end up with di�erent upper approximations.Assume that the SRC condition is satis�ed at (x̄, ȳ) and let us compute an upperapproximation of the generalized Jacobian ∂̄σ(x̄) where σ is given by (2.18). This time wewill apply the calculus of generalized di�erentiation to (2.18).Denote by Φ(x, y) the vector mapping such that Φi(x, y) = min{F 1

i (x, y), F 2
i (x, y)}, i =

1, . . . , ml2. To apply [29, Theorem 4.32d] we need to guarantee validity of the followingconstraint quali�cation
0 ∈ D∗Φ(x̄, ȳ)(y∗) ⇒ y∗ = 0,or equivalently, since Φ is Lipschitz continuous for F 1, F 2 continuously di�erentiable, usingthe scalarization formula [29, Theorem 3.28],
0 ∈ ∂ 〈y∗,Φ(x̄, ȳ)〉 ⇒ y∗ = 0. (2.44)Then

D∗σ(x̄, ȳ)(y∗) ⊂
⋃

u∈Rml2

{x∗|(x∗,−y∗) ∈ D∗Φ(x̄, ȳ)(u)} =

=
⋃

u∈Rml2

{x∗|(x∗,−y∗) ∈ ∂ 〈u,Φ(x̄, ȳ〉} =

=
⋃

u∈Rml2

{

x∗|(x∗,−y∗) ∈ ∂

ml2
∑

i=1

uiΦi(x̄, ȳ)

}

⊂

⊂
⋃

u∈R
ml2

{

x∗|(x∗,−y∗) ∈
ml2
∑

i=1

∂(uiΦi(x̄, ȳ))

}

, (2.45)where the last inclusion is due to [29, Theorem 3.36]. Denote for every i = 1, . . . , ml2,
Ii(x̄, ȳ) = {j ∈ {1, 2}|F j

i (x̄, ȳ) = Φi(x̄, ȳ)},

Λi(x̄, ȳ) = {(λ1
i , λ

2
i ) ∈ R

2
+|λ

1
i + λ2

i = 1, λj
i (F

j
i (x̄, ȳ) − Φi(x̄, ȳ)) = 0, j ∈ {1, 2}}.Then from [29, Theorem 3.36] we have

∂(uiΦi(x̄, ȳ)) =

{

⋃

(λ1
i ,λ2

i )∈Λi(x̄,ȳ)

{

∑

j∈Ii(x̄,ȳ) λ
j
iui∇F

j
i (x̄, ȳ)

}

ui ≤ 0,
⋃

j∈Ii(x̄,ȳ){ui∇F
j
i (x̄, ȳ)} ui ≥ 0.

(2.46)From (2.46), clearly, MPEC-GLICQ implies the constraint quali�cation (2.44).Using the above upper approximation (2.45) together with (2.46), we can now showthat under SRC and MPEC-GLICQ, Clarke stationarity conditions imply C-stationarityconditions.



26 Mathematical Program with Equilibrium Constraints (MPEC)Theorem 2.24. Let (x̄, ȳ) be a feasible point for the MPCC (2.7) such that SRC andMPEC-GLICQ are satis�ed. Then, if (x̄, ȳ) is a Clarke stationary point of the MPCC,there exist Lagrange multipliers λF 1

, λF 2 and a normal vector ξ ∈ N(x̄;U) such that
(x̄, ȳ, λF 1

, λF 2

, ξ) satis�es C-stationarity conditions of the MPCC.Proof. MPEC-GLICQ imply the linear independence assumption from Lemma 2.18. Henceunder SRC we have
∂̄σy(x̄) = conv{Bi|i ∈ K(x̄, ȳ},where Bi are the unique solutions to the matrix equation in variable Π

(

∇yF
1
L∪(I0\Mi)

(x̄, ȳ)

∇yF
2
I+∪Mi

(x̄, ȳ)

)

Π = −

(

∇xF
1
L∪(I0\Mi)

(x̄, ȳ)

∇xF
2
I+∪Mi

(x̄, ȳ)

)

.Since we can compute the generalized Jacobian to σy at x̄ precisely, the Clarke station-ary conditions are equivalent to
0 ∈ ∇xϕ(x̄, ȳ) + ∂̄σ(x̄)>∇yϕ(x̄, ȳ) +N(x;U). (2.47)Using the relation between coderivatives and Clarke generalized Jacobians for single-valued mappings, which amounts to

(∂̄σ(·))>y∗ = convD∗σ(·)(y∗) for all y∗ ∈ R
ml2 ,together with (2.45) and (2.46), we get

(

∂̄σ(x̄)
)>
y∗ ⊂

⊂
⋃

u∈R
ml2

(λ1
i ,λ2

i )∈Λi(x̄,ȳ)
i=1,...,ml2







ml2
∑

i=1

∑

j∈Ii(x̄,ȳ)

uiλ
j
i∇xF

j
i (x̄, ȳ)

∣

∣

∣
0 = y∗ +

ml2
∑

i=1

∑

j∈Ii(x̄,ȳ)

uiλ
j
i∇yF

j
i (x̄, ȳ)







.(2.48)Taking y∗ = ∇yϕ(x̄, ȳ) and inserting (2.48) to (2.47), we get for some u ∈ R
ml2 ,

(λ1
i , λ

2
i ) ∈ Λi(x̄, ȳ), i = 1, . . . , ml2, and ξ ∈ N(x̄;U)

0 =∇xϕ(x̄, ȳ) +

ml2
∑

i=1

∑

j∈Ii(x̄,ȳ)

uiλ
j
i∇xF

j
i (x̄, ȳ) + ξ,

0 =∇yϕ(x̄, ȳ) +

ml2
∑

i=1

∑

j∈Ii(x̄,ȳ)

uiλ
j
i∇yF

j
i (x̄, ȳ).Now, for each i = 1, . . . , ml2, set λF j

i := −uiλ
j
i for j ∈ Ii(x̄, ȳ) and λF j

i := 0 otherwise.If Ii(x̄, ȳ) = {1, 2}, which corresponds to i ∈ I0(x̄, ȳ), we observe that
λF 1

i λF 2

i = (ui)
2λ1

iλ
2
i ≥ 0since (λ1

i , λ
2
i ) ∈ Λi(x̄, ȳ). Hence, we arrived at C-stationarity conditions. In particular,

(x̄, ȳ) is a C-stationary point to MPCC.



2.3 Mathematical program with complementarity constraints 27Now, we show that also the opposite implication holds. The proof involves computationof a solution to a system of linear equations derived from the C-stationarity conditions andrearranging the terms to obtain Clarke stationary conditions. To be able to compute thesolution of the system of linear equations, we �rst need the following auxiliary linearalgebraic result about rows of adjunct matrices and determinants.Consider 2k vectors xi,j ∈ R
k, i = 1, . . . k, j = 1, 2 such that for each i there is j that

xi,j 6= 0 (in other words, for each i either xi,1 or xi,2 is a nonzero vector) and such thatevery collection of at most k nonzero vectors xi,j is linearly independent. Denote by A a
k × 2k matrix with columns composed of all vectors xi,j , i = 1, . . . , k, j = 1, 2.Suppose also that we are given 2k nonzero constants γi,j ∈ R. Denote by Aγ a k × kmatrix which ith column is given by γi,1xi,1 + γi,2xi,2 and by s ∈ R

k a vector composed of1's and 2's such that si = j only if xi,j 6= 0 for i = 1, . . . , k, j = 1, 2. Then there is 2a0 suchvectors, s1, . . . , s2a0 , where a0 = k − |{i = 1, . . . , k|∃j : xi,j = 0}|.Consider the operation ∗ such that (A ∗ s) is a matrix with the ith column given by
xi,j for si = j.Lemma 2.25. For each i = 1, . . . , k, the following relation holds for the ith row of adjunctmatrix Adj Aγ

(Adj Aγ)i =
1

γi,1I[xi,1 6=0] + γi,2I[xi,2 6=0]

2a0

∑

l=1

(

k
∏

j=1

γj,sl
j

)Adj (A ∗ sl)i.Moreover, det Aγ =

2a0

∑

l=1

(

k
∏

i=1

γi,sl
i

) det (A ∗ sl).Proof. Both parts of the statement follow directly from the basic rules for computation ofdeterminants:
i) if A is an n× n matrix with one of the columns x = x1 + x2, where x1, x2 ∈ R

n, thendet A = det A1 + det A2.The matrices A1 and A2 in the above formula are obtained from matrix A by replacing itscolumn x by vectors x1 and x2, respectively;
ii) if we multiply a column (or row) of matrix A by a constant c, then the determinant ofsuch matrix is equal to c(det A).Without loss of generalization let k = 2, a0 = 1, s1 = (1, 1)>, s2 = (1, 2)> and

Aγ =

(

γ1,1x1,1
1 γ2,1x2,1

1 + γ2,2x2,2
1

γ1,1x1,1
2 γ2,1x2,1

2 + γ2,2x2,2
2

)

.



28 Mathematical Program with Equilibrium Constraints (MPEC)The �rst row of adjunct matrix is composed of (Adj Aγ)11 and (Adj Aγ)12. Clearly,
(Adj Aγ)11 = γ2,1x2,1

2 + γ2,2x2,2
2 =

=
1

γ1,1
γ1,1γ2,1(Adj (A ∗ s1))11 +

1

γ1,1
γ1,1γ2,2(Adj (A ∗ s2))11,

(Adj Aγ)12 = −γ2,1x2,1
1 − γ2,2x2,2

1 =

=
1

γ1,1
γ1,1γ2,1(Adj (A ∗ s1))12 +

1

γ1,1
γ1,1γ2,2(Adj (A ∗ s2))12.Similarly,

(Adj Aγ)21 = −γ1,1x1,1
2 =

=
1

γ2,1 + γ2,2
γ1,1γ2,1(Adj (A ∗ s1))21 +

1

γ2,1 + γ2,2
γ1,1γ2,2(Adj (A ∗ s2))21,

(Adj Aγ)22 = γ1,1x1,1
1 =

=
1

γ2,1 + γ2,2
γ1,1γ2,1(Adj (A ∗ s1))22 +

1

γ2,1 + γ2,2
γ1,1γ2,2(Adj (A ∗ s2))22.Finally, det Aγ = det ( γ1,1x1,1

1 γ2,1x2,1
1

γ1,1x1,1
2 γ2,1x2,1

2

)

+ det ( γ1,1x1,1
1 γ2,2x2,2

1

γ1,1x1,1
2 γ2,2x2,2

2

)

=

= γ1,1γ2,1 det (A ∗ s1) + γ1,1γ2,2 det (A ∗ s2).The computations above for the general case are analogous and yield the desired formulas.Theorem 2.26. Let (x̄, ȳ) be a feasible point for the MPCC (2.7) such that both SRCand MPEC-GLICQ are satis�ed. Then, if there exist Lagrange multipliers λF 1

, λF 2 and anormal ξ ∈ N(x̄;U) such that (x̄, ȳ, λF 1

, λF 2

, ξ) satis�es C-stationarity conditions of theMPCC, then (x̄, ȳ) is also a Clarke stationary point of the MPCC.Proof. Since (x̄, ȳ, λF 1

, λF 2

, ξ) satis�es C-stationarity conditions, from the proof of The-orem 2.7 it follows that for each i = 1, . . . , ml2, there exist βi ∈ [0, 1] and ζi ∈ R suchthat
λF 1

i = βiζi, i ∈ L ∪ I0, (2.49)
λF 2

i = (1 − βi)ζi, i ∈ I+ ∪ I0, (2.50)and
0 ∈ ∇ϕ(x̄, ȳ) −

∑

i∈L

βi∇F
1
i (x̄, ȳ)ζi −

∑

i∈I0

(βi∇F
1
i (x̄, ȳ) + (1 − βi)∇F

2
i (x̄, ȳ))ζi−

−
∑

i∈I+

(1 − βi)∇F
2
i (x̄, ȳ)ζi +N(x̄;U) × {0ml2}.

(2.51)



2.3 Mathematical program with complementarity constraints 29The last ml2 rows of (2.51) form a system of ml2 linear equations in ml2 variables
ζ1, . . . , ζml2. Its system matrix is regular due to MPEC-GLICQ, hence, there is a uniquesolution ζ̄ = (ζ̄1, . . . , ζ̄ml2). Using the above auxiliary algebraic results to compute the linesof the inverse to the system matrix we derive the formulas for each component of ζ̄ .We can apply Lemma 2.25 with k = ml2, a

0 = |I0|, γi,1 = βi, γ
i,2 = (1 − βi), i =

1, . . . , ml2, and
xi,1 =

{

∇yF
1
i (x̄, ȳ), i ∈ L ∪ I0,

0, i ∈ I+,

xi,2 =

{

∇yF
2
i (x̄, ȳ), i ∈ I+ ∪ I0,

0, i ∈ L.Hence the ith component of the solution, ζ̄i, i = 1, . . . , ml2, is given by
ζ̄i =

1det Aγ

(Adj Aγ)i∇yϕ(x̄, ȳ) =

=

∑2a0

l=1

(

∏ml2
j=1 γ

j,sl
j

)Adj (A ∗ sl)i∇yϕ(x̄, ȳ)

(

γi,1I[i∈L∪I0] + γi,2I[i∈I+∪I0]

)
∑2a0

l=1

(

∏ml2
j=1 γ

j,sl
j

) det (A ∗ sl)
. (2.52)Note that due to SRC and Lemma 2.16, each ζ̄i, i = 1, . . . , ml2, is well de�ned.Next we rearrange the terms in (2.52) to recover simple formulas for ζ̄ in terms ofthe coe�cients of convex combination from relation (2.37) and coordinates of vectors

p̄j(x̄, ȳ), j = 1, . . . , 2a0

, which solve (2.38). Setting
αj =

(

∏ml2
i=1 γ

i,s
j
i

) det (A ∗ sj)

∑2a0

l=1

(

∏ml2
i=1 γ

i,sl
i

) det (A ∗ sl)
, j = 1, . . . , 2a0

, (2.53)we have αj ≥ 0 for each j and ∑2a0

j=1 αj = 1. Recalling that
p̄j

i =
1det (A ∗ sj)

(Adj (A ∗ sj))i∇ϕ(x̄, ȳ), (2.54)application of (2.52), (2.53) and (2.54) to the �rst l1 rows of (2.51) results in
0 ∈ ∇xϕ(x̄, ȳ) −

2a0

∑

j=1

αj(B ∗ sj)p̄j +N(x̄;U) (2.55)
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βiζ̄i =

2a0

∑

j=1

αj p̄
j
i , i ∈ L, (2.56)

(1 − βi)ζ̄i =

2a0

∑

j=1

αj p̄
j
i , i ∈ I+, (2.57)

βiζ̄i =
∑

j:si,j=1

αj p̄
j
i , i ∈ I0, (2.58)

(1 − βi)ζ̄i =
∑

j:si,j=2

αj p̄
j
i , i ∈ I0, (2.59)where B can be derived from A by replacing each ∇yF

j
i (x̄, ȳ) with ∇xF

j
i (x̄, ȳ).Clearly, (2.54) and (2.55) are Clarke stationarity conditions to the MPCC. In particular,

(x̄, ȳ) is Clarke stationary.To illustrate the importance of each of the assumptions, SRC and MPEC-GLICQ, wepresent two examples. Strong regularity is a key ingredient in the de�nition of Clarkestationarity. If SRC is violated, the adjoint equation may not have a solution or, on theother hand, may have multiple solutions.To emphasize the need for veri�cation of SRC, the �rst of two examples shows thatClarke stationarity conditions can indeed be satis�ed even if SRC is violated. This, ofcourse, does not mean that the corresponding point is Clarke stationary. Also, in theabsence of strong regularity, C-stationarity conditions are satis�ed independently of validityof the Clarke stationarity conditions.Example 2.27. Consider the following MPCC:minimize − x1 − x2 − 2y1 − 2y2subject to
0 ≤ −x1 +y1 −2y2 ⊥ +y1 ≥ 0,
0 ≤ −x2 − 2y1 +y2 ⊥ +y2 ≥ 0.From Example 2.23 we already know that SRC is violated at (0,0,0,0), while MPEC-GLICQis satis�ed. Nevertheless, we can still compute vectors p̄i, i = 1, . . . , 4,

p̄1 =

(

2
2

)

, p̄2 =

(

−6
−2

)

, p̄3 =

(

−2
6

)

, p̄4 =

(

−2
−2

)and Clarke stationarity conditions
0 =

(

−1
−1

)

− α1

(

−2
−2

)

− α2

(

0
2

)

− α3

(

2
0

)

− α4

(

0
0

)



2.3 Mathematical program with complementarity constraints 31are satis�ed for α = (0, 1/2, 1/2, 0). However, with respect to De�nition 2.19, (0,0,0,0) isnot Clarke stationary.Clearly, C-stationarity conditions are violated since the corresponding (unique) mul-tipliers are λF1

1 = 1, λF1

2 = 1, λF2

1 = −1 and λF2

2 = −1. Replacing the objective with
x1 + x2 − 2y1 − 2y2, (0,0,0,0) becomes C-stationary with multipliers (-1, -1, -3, -3) whileClarke stationarity conditions are again satis�ed despite of violation of SRC, this time for
α = (0, 1/2, 1/2, 0). 4The second example shows that MPEC-GLICQ plays important role for the validityof multiplier-sign conditions. In absence of MPEC-GLICQ, Clarke stationarity generallyimplies only weak stationarity.Example 2.28. Consider the following MPCC:minimize 0subject to

0 ≤ −x1 +2y1 y2 ⊥ +y1 ≥ 0,
0 ≤ −x2 − 3y1 +2y2 ⊥ −x1 −x2 +y2 ≥ 0.SRC holds at (0,0,0,0), while MPEC-GLICQ is violated, cf. Example 2.22. Note thatin this case the MPEC multipliers are not uniquely determined and the point (0,0,0,0) iscritical with multipliers (λF 1

1 , λF 1

2 , λF 2

1 , λF 2

2 ) = (λ, λ, λ,−λ), where λ is an arbitrary realconstant. Clearly, for any set of MPEC multipliers, C-stationarity conditions about thecommon signs of biactive multipliers are violated. Hence the point (0,0,0,0) is just weaklystationary.All p̄i, i = 1, . . . , 4, are equal to ( 0
0

) and Clarke stationarity conditions are triviallysatis�ed. Hence, the point (0,0,0,0) is Clarke stationary.Note, that the relations (2.56)-(2.59) are violated. 4
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Chapter 3Equilibrium Problem with EquilibriumConstraints (EPEC)As a natural generalization of an MPEC we can introduce an equilibrium concept alsoto the upper level. For that we need to increase the number of leaders and change thestructure of the problem accordingly. In this way one obtains the so-called equilibriumproblem with equilibrium constraints consisting of several, mutually coupled MPECs. Theterm �equilibrium problem� in EPEC refers to the fact that this problem is no longer asingle minimization problem under equilibrium constraints.In this chapter we present four source problems to illustrate the application of EPECs.Further we discuss the question of existence of solutions to EPECs in mixed strategies and,based on the results of the previous chapter, also the existence of Clarke and C-stationarypoints. The cooperative behavior of leaders will be discussed in the following chapterdevoted to multiobjective problems with equilibrium constraints.3.1 Mathematical formulationAssume that we have to do with n leaders and m followers. Analogously to MPECs,multistrategy y ∈ R
ml2 consists from all followers' strategies. Let xi denote the strategy ofthe ith leader. Again, to distinguish the strategies, objective functions, feasible sets, etc.,of each player we use the upper indices.The multistrategy x := (x1, x2, . . . , xn) contains the strategies of all leaders. Supposethat the behavior of the leaders is described by their individual objectives ϕi : R

nl1+ml2 →
R, i = 1, . . . , n. Let the nonequilibrium constraints in the problem of each leader i concernthe strategies of all players, i.e., κi ⊂ R

nl1+ml2 , i = 1, . . . , n.De�nition 3.1. (Solution to abstract noncooperative EPEC)A vector of admissible strategies (x̄, ȳ) ∈ R
nl1+ml2 is a solution to an abstract EPEC if



34 Equilibrium Problem with Equilibrium Constraints (EPEC)
(x̄, ȳ) solves simultaneously abstract MPECsminimize

xi,y
ϕi(xi, x̄−i, y)subject to y ∈ S(xi, x̄−i), i = 1, . . . , n, (3.1)
(xi, x̄−i, y) ∈ κi,where the solution mapping S depends on strategies of all leaders.In other words, (x̄, ȳ) solves the abstract EPEC if for each i = 1, . . . , n, (x̄i, ȳ) belongsto the set of local solutions to ith abstract MPEC in (3.1) in variables (xi, y).Note that each xi acts simultaneously as a decision variable in the MPEC of the ithleader and as a parameter in the remaining ones. It is obvious, that since we de�ne theEPEC as a series of n MPECs linked together via upper-level and lower-level variables, allproblematic features of MPECs discussed in the previous section are inevitably inheritedto EPECs as well.De�ne for each i = 1, . . . , n, and a �xed admissible multistrategy x̄−i the multifunction
Sx̄−i(xi) = S(xi, x̄−i).Note that xi enters the lower-level problem as a �xed parameter as well. Thus, MPECs in(3.1) share the same equilibrium constraints. However, due to the fact that Gph S maynot be consistent with each set of nonequilibrium constraints κi, even the existence of afeasible point to EPEC might be uncertain.From now on, we consider only EPECs in which separation of the nonequilibriumconstraints is possible, including the constraints on multistrategy y into the lower-levelproblem and considering the nonequilibrium constraints only on strategies xi, i = 1, . . . , n.I.e., κi = U i × R

(n−1)l1 × R
ml2 , where U i ⊂ R

l1 is the individual feasible set of leader i.Note that even then, the lower-level strategy y in the EPEC (3.1) is shared acrossall MPECs. If S is not single-valued, the formulation of EPEC (3.1) could be calledmultioptimistic. However, such EPECs are in many cases ill-possed. We explain this onthe following EPEC composed of only two MPECs.Let the MPEC of the �rst and the second leader be given by
inf

x1∈U1
inf

y∈S(x1,x̄2)
ϕ1(x1, x̄2, y), (3.2)

inf
x2∈U2

inf
y∈S(x̄1,x2)

ϕ2(x̄1, x2, y), (3.3)respectively. Formulated in this form, clearly, the EPEC is ill-possed if S is not single-valued. The argmin sets
arg min
y∈S(x̄1,x̄2)

ϕ1(x̄1, x̄2, y),

arg min
y∈S(x̄1,x̄2)

ϕ2(x̄1, x̄2, y)



3.1 Mathematical formulation 35may not have a common element, inevitably resulting in nonexistence of a solution to theEPEC. On the other hand, this does not cause any problem if the solution to the lowerproblem has single-valued and multi-valued components and the upper-level objectivesdepend only on the single-valued part of the solution of the lower problem.As an alternative, we can consider optimistic (or pessimistic) formulations with respectto one particular leader. We analyze this possibility in detail in Section 3.3.As in the MPEC case consider y to be feasible, provided its components belong tothe sets V j ⊂ R
l2 , j = 1, . . . , m, and let the followers act according to their objectives

f j : R
nl1+ml2 → R, j = 1, . . . , m.In what follows, we presume that assumption (A0) below holds.(A0) Let each objective f j, j = 1, . . . , m, be continuously di�erentiable on an open setcontaining Xn

i=1U
i × Ω and let Ω be closed.Denote by ω := Xn

i=1 U
i ⊂ R

nl1 the set of feasible leaders' strategies. Then, for a givenvector x̄ ∈ ω and given strategies y−j, the optimal strategy of the j th follower amounts toa solution of the optimization problemminimize
yj

f j(x̄, yj, ȳ−j)subject to yj ∈ V j .
(3.4)A solution map

S(x) := {y ∈ R
ml2 | 0 ∈ F (x, y) +N(y; Ω)},where

F (x, y) :=







∇y1f 1(x, y)...
∇ymfm(x, y)






,is then a multifunction that maps a feasible x ∈ ω to Nash equilibria of problems (3.4) for

j = 1, . . . , m.This allows us to modify the de�nition of the solution to the abstract EPEC accordingly:a vector of admissible strategies (x̄, ȳ) ∈ R
nl1+ml2 is a solution to EPEC if for each i =

1, . . . , n, (x̄i, ȳ) belongs to the set of local solutions to the MPECminimize
xi,y

ϕi(xi, x̄−i, y)subject to 0 ∈ F (xi, x̄−i, y) +N(y; Ω), (3.5)
xi ∈ U i.Similarly to the MPEC case, when equilibrium constraints of an EPEC are in theform of a nonlinear complementarity problem we call such problem an equilibrium problem



36 Equilibrium Problem with Equilibrium Constraints (EPEC)with complementarity constraints (EPCC). In particular, a vector of admissible strategies
(x̄, ȳ) ∈ R

nl1+ml2 is a solution to an EPCC if (x̄, ȳ) solves simultaneously n MPCCsminimize
xi,y

ϕi(xi, x̄−i, y)subject to 0 ≤ F 1(xi, x̄−i, y) ⊥ F 2(xi, x̄−i, y) ≥ 0, i = 1, . . . , n,

xi ∈ U i

(3.6)with functions F 1, F 2 : R
nl1+ml2 → R continuously di�erentiable on an open set containing

ω × R
ml2 .One of the possible ways how to further simplify the MPEC structure and hence inour case also the structure of EPEC is to consider assumptions under which the solutionmap becomes single-valued. This enables us to invoke the implicit programming approach.Hence we impose the following essential assumption.(A1) For each i = 1, . . . , n, and for all admissible multistrategies x̄−i, the map Sx̄−i issingle-valued and locally Lipschitz continuous on an open set containing U i.Under assumption (A1) one can rewrite every problem (3.5) for i = 1, . . . , n, to theform minimize

xi
θi(xi, x̄−i)subject to xi ∈ U i,

(3.7)where functions θi : ω → R are de�ned by
θi(x) = ϕi(x, S(x)).We may refer to functions θi, i = 1, . . . , n, as to loss functions of the reduced game onlyamong leaders, keeping the consistency of terminology from non-hierarchical games.The problem (3.7) is now without any hierarchical structure and one can apply thetheory of noncooperative Nash games, to compute local Nash equilibria which form nonco-operative solutions to EPEC. Since veri�cation of assumption (A1) requires checking theproperties of n multivalued mappings, we work with its modi�ed version.(A1') S is single-valued and locally Lipschitz continuous on an open set containing ω.The latter assumption now involves only one multifunction. Note that (A1') impliesassumption (A1).3.2 Source problemsIt is a very important question whether EPECs can actually be used in modeling of prob-lems with real-world applications. From the survey of available works on EPECs it mayappear that the problem of deregulated electricity markets, which primarily motivated



3.2 Source problems 37the introduction of EPEC as a new class of hierarchical problems, is the only discussedapplication. This was one of the reasons why we decided to include this section to thethesis, despite the fact it does not contain any mathematical results of the author and thereader can easily skip it and proceed directly to the next section with exception of theoligopolistic market model which arises in numerical study presented in Section 5.3.On the other hand, this section might serve as an inspiration to researches interestedin EPECs. This is especially true in the case of the last problem presented in this section(tra�c equilibrium problem with private toll roads). Also, note that the list of sourceproblems presented here is de�nitely not exhaustive.The notation in this section di�ers from the rest of the thesis. We present each problemusing the notation of the source references.3.2.1 Oligopolistic market problemConsider an oligopolistic market model with n+m �rms producing a homogeneous productand attempting to maximize their pro�ts; see, e.g., [32] and [39]. Let xi ∈ R, i = 1, 2, . . . , n,denote the production of the ith leader and let yj ∈ R, j = 1, 2, . . . , m, be the productionof the j th follower.Assume that the multistrategy vector x of the leaders' productions belongs to someclosed subset ω of R
n. Let

T =
n
∑

i=1

xi +
m
∑

j=1

yjdenote the overall production on the market, and let p : int R+ → int R+ be the so-calledinverse demand curve that assigns T the price at which consumers are willing to purchase.The objectives of leaders can now be written in the form
ϕi(x, y) := ci(xi) − xip(T ), i = 1, 2, . . . , n,and similarly the objectives of followers attain the form

f j(x, y) := cn+j(yj) − yjp(T ), j = 1, 2, . . . , m,where the functions ck : R+ → R+, k = 1, . . . , n+m, represent the production costs.Concerning the data of the problem, suppose that(A2) (i) the functions cn+j, j = 1, 2, . . . , m, are convex and twice continuously di�eren-tiable;(ii) p is twice continuously di�erentiable and strictly convex on int R+;(iii) ϑp(ϑ) is a concave function of ϑ;(iv) ω does not contain the zero vector.



38 Equilibrium Problem with Equilibrium Constraints (EPEC)When all parts of assumption (A2) are ful�lled, then for all j = 1, 2, . . . , m, the objectivefunction of the j th follower is convex with respect to yj; cf. [32]. Thus we have
F (x, y) =







∇cn+1(y1) − p(T ) − y1∇p(T )...
∇cn+m(ym) − p(T ) − ym∇p(T )






(3.8)and, as proved in [39, Lemma 12.2], the corresponding partial Jacobian ∇yF (x, y) is posi-tive de�nite at each feasible pair (x, y). This implies that the Robinson strong regularitycondition is ful�lled and assumption (A1') holds true at each feasible pair (x, y).Note that this model comprises both EPECs and multiobjective equilibrium problemswith equilibrium constraints, see Chapter 4, based on the behavior leaders. Later in Chap-ter 5 we present numerical results for this oligopolistic market problem with cooperativeleaders.3.2.2 Forward-spot market modelIn [49, Chapter 4] one can �nd a two-period forward market model where each player solvesa nonconvex MPEC, and the whole problem can be formulated as an EPEC. In fact it isanother possibility how to modify the Cournot-Nash model to get the EPEC structure,this time introducing the second period to the game instead of the second level to thehierarchy of the game. In two-period model, each player is trying to maximize his or herpro�ts in both periods, deciding about his or her production which is available only in the�rst period, about a forward position, a part of his production which he or she will sellin the second period according to a contract made in the �rst period and thus also aboutspot sales in the second period.Let us denote by f = (f1, . . . , fn) the forward position vector. For �xed forward posi-tions f̄ and �xed production quantities x̄−i(f̄) of the other n− 1 producers, the producersface a Cournot-Nash game (in production quantities) in the second period. Thus, the ithproducer chooses his or her production quantity xi in order to maximize his or her pro�tsin the second period. Hence, x̄i(f̄) is the solution to the following maximization problemin variable xi maximize

xi≥f̄i

p

(

xi +
∑

j 6=i

x̄j(f̄)

)

(xi − f̄i) − ci(xi), (3.9)where p(·) is the spot price (inverse demand function) in the second period and ci(·) is thecost function of the ith producer.In the �rst period, the producers are playing a Cournot-Nash game in forward quan-tities. Thus, assuming the forward positions of the other producers f̄−i are �xed, the ithproducer chooses his forward position so as to maximize his overall pro�t function whichis given as a sum of revenue of sales of forwards for the forward price in the �rst period



3.2 Source problems 39and optimal payo� in the second period. Under perfect foresight this results in solvingmaximize
fi≥0

p

(

n
∑

j=1

xj(fi, f̄−i)

)

xi(fi, f̄−i) − ci(xi(fi, f̄−i)). (3.10)Let us propose the following assumption:(A3) Let the inverse demand function be linear
p(z) = a− bz, a, b > 0 for z ≥ 0and for i = 1, . . . , n, the production cost functions of the ith producer be in the form

ci(z) = ciz, ci > 0.Then under (A3) one can reformulate the above problem given by (3.9) and (3.10) for each
i = 1, . . . , n, as a system of coupled MPCCs in variables (fi, s, θi)maximize (θi − ci)(fi + si)subject to θi = a− b

(

fi +

n
∑

j=1

sj +
∑

j 6=i

f̄j

)

,

0 ≤ s⊥ c− θie+ bs ≥ 0,

fi ≥ 0,

(3.11)
where s = (s1, . . . , sn), si denoting the spot sales of the ith producer in the second period,
c = (ci, . . . , cn) and e denotes the vector of all ones. Now we can clearly see an EPECstructure of the whole two-period forward-spot market model. In the forward market,every producer is leader, while in the spot market, every producer is in the role of followeralready with the knowledge of the every producer's forward position in the �rst period.3.2.3 Deregulated electricity market modelAn important issue in all deregulated electricity markets is the market power of participantssuch as generators, large utilities, or providers of ancillary services. The transportationof power from a generation node (source) to a consumption node (sink) is governed bythe Kirkho� laws. Laically speaking, power �ows along the paths of the least resistance.So, transmission of power is di�erent from the transportation of the ordinary commodityin a spatial market. The location and quantity of any injection or withdrawal of powerdetermines the actual transmission capacity of any link in electric network. As a result,the key issue in the overall design is how a network (grid) operator dispatches electricity.In this section, which is based on [22], we show how we can model via EPECs theso-called pool-type market problems as operated in Australia, New Zealand and some partsof United States, where the independent system operator (ISO) dispatches electricity from



40 Equilibrium Problem with Equilibrium Constraints (EPEC)generators to consumers by maximizing �social welfare� (minimizing �social cost�) basedon the cost/utility functions that are bid by generators/consumers.Suppose an electric network with N + 1 nodes labeled 0, . . . , N, and a set L of links,where the link between node i and j is written ij. For the sake of simplicity, assume thatthere is a single generator or consumer at any node i. Bidders (generators and retailers)have complete information about the network, the ISO's operation procedure and all otherparticipants' cost/utility functions. The ISO, taking account of the network, solves a socialcost minimization problem assuming the bids are truthful, announcing a dispatch for eachbidder and possibly distinct prices at each node. Consumers pay generators according tothe scheduled dispatch and nodal prices. The market is then cleared according to eachplayer's binding bid.Each player's actual cost or utility function is a quadratic function in quantity qi, eithercost, Aiqi +Biq
2
i (qi ≥ 0), or utility, −Aiqi−Biq

2
i (qi ≤ 0), where each Ai and Bi is assumedto be positive. A consumer at node i is dispatched a quantity in the range [0, Ai

2Bi
] where hisor her actual utility function is increasing. We can hence let the generators (consumers)bid their supply (demand) functions to the ISO in the form of a pair of coe�cients (ai, bi).Their bids, aiqi + biq

2
i (qi ≥ 0), or −aiqi − biq

2
i (qi ≤ 0), then may naturally di�er from theactual cost or utility function of bidder i.The ISO solves the following problem of minimizing the social cost, over all N + 1nodes: minimize

q0,...,qN

N
∑

i=0

(aiqi + biq
2
i )subject to q0 + q1 + · · ·+ qN = 0, (3.12)

− Cij ≤
N
∑

k=0

φij,kqk ≤ Cij, i < j, ij ∈ L, (3.13)
qi ≥ 0, i : generator, qi ≤ 0, i : consumer, (3.14)where Cij denotes the transmission limit on the link ij and φij,k (distribution factor)denotes the contribution of injection (withdrawal) at node k to the link ij. The distributionfactors are determined by the network's physical properties. The optimal solution to thisproblem is denoted by q = (q0(a, b), . . . , qN(a, b)).Let us denote the Lagrange multipliers corresponding to the optimal solution such that

λ, µ
ij
, µij and νi are the multiplier corresponding to (3.12), (3.13) (left hand side and righthand side inequality) and (3.14), respectively. The optimal quantities qk commit the ISO topaying (charging) the kth player a price that is consistent with their bid supply (demand)function:

pk = ak + 2bkqk.Additionally, if qk 6= 0, the ISO in e�ect sets pk equal to
pk = −λ−

∑

i<j,ij∈L

(µij − µ
ij
)φij,k,



3.2 Source problems 41as it comes from the ISO's KKT conditions. Note that when binding transmission quan-tities are missing, pk equals the shadow price (−λ) of the requirement that electricitygenerated equals electricity consumed.Let us now consider the behavior of pro�t-maximizing player on the market describedabove. Given that bidder i's price is ai + 2biqi, then the pro�t maximization problem is:maximize
ai,bi

(ai + 2biqi)qi − (Aiqi +Biq
2
i )subject to Ai ≤ ai ≤ Ai

Bi ≤ bi ≤ Bi (3.15)
qi such that q = (q0, . . . , qN ) solves the ISO's minimizationproblem given the other participants' bids (a−i, b−i).The constants Ai, Ai and Bi, Bi, assumed to satisfy

0 < Ai ≤ Ai ≤ Ai and 0 < Bi ≤ Bi ≤ Biare lower and upper bounds for ai and bi that are based on industry knowledge and areimposed by the ISO.The problem (3.15) is a bilevel programming problem, where the lower-level problemis that q must solve the optimal power �ow problem of the ISO.Since the ISO's problem is a strictly convex quadratic problem, one can replace theconstraints in (3.15) with the KKT conditions of the ISO's problem, that is, to reformulatethe bilevel problem for the ith bidder as an MPEC. Hence, a dispatch q(a, b) solves theproblem if and only if there exist multipliers corresponding to the constraints that satisfythe usual KKT conditions at q(a, b). Given the other participants' bids (a−i, b−i), bidder
i's problem becomesmaximize

ai,bi,q,λ,µ,µ,ν
(ai + 2biqi)qi − (Aiqi +Biq

2
i )subject to Ai ≤ ai ≤ Ai

Bi ≤ bi ≤ Bi

(ISO-KKT)
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where, for each j = 0, . . . , N, and mn ∈ L with m < n :

aj + 2bjqj + λ+
∑

i<k,ik∈L φik,j(µik − µ
ik

) − νj = 0

q0 + · · ·+ qN = 0

0 ≤ Cmn +
∑N

k=0 φmn,kqk ⊥ µ
mn

≥ 0

0 ≤ Cmn −
∑N

k=0 φmn,kqk ⊥ µmn ≥ 0

0 ≤ qj ⊥ νj ≥ 0 if bidder j is a generator
0 ≥ qj ⊥ νj ≤ 0 if bidder j is a consumer. (3.16)The game based on all the participants' problems (3.16), for i = 0, . . .N , gives rise toan EPCC.



42 Equilibrium Problem with Equilibrium Constraints (EPEC)3.2.4 Tra�c equilibrium problem with private toll roadsRecently, a lot of e�ort is being put into investigation of models of a road system which ispartially provided also by a private sector. The private sector would build and maintainroads and cover its costs by charging toll. Primarily motivated by pro�tability, privateinvestors are believed to be more e�cient; they build and operate facilities at less costthen a public sector. There is a steadily growing discussion on this topic, see, e.g., [52]and references therein.To formulate the model mathematically, we use the standard notation used in tra�cequilibrium models.Consider a transportation network G which is given by a pair of sets N , the set ofnodes, and A, the set of arcs (links between ordered pairs od distinct nodes) and we write
G = (N ,A).Denote by W the set of origin-destination (OD) pairs in G. For every w ∈ W , let Rwdenote the set of all paths connecting OD pair w ∈W . The set of all routes is then givenas R =

⋃

w∈W Rw. Naturally, we assume that our network is connected, i.e., for each pairof nodes there is a route between them.Denote by Fr the �ow on route r ∈ R and let va denote the �ow on link a ∈ A.Introducing the incidence matrix ∆ with elements
δar =

{

1 if path r uses link a,
0 otherwise,then
va =

∑

r∈R

δarFr, (3.17)or, using the vectors v of all link �ows and F of all path �ows, v = ∆F.The tra�c on a transportation network G = (N ,A) is in equilibrium if the so-calledWardrop user equilibrium principle holds. This principle states that for each OD pair
w ∈ W , every user of the network G will choose the route between OD pair w which hasthe minimal costs. Moreover, routes with costs higher that the minimum will have no�ows.Denote by Cr the costs experienced by a persons using route r ∈ R which is a functionof the �ow on r and by Dw tra�c demand between OD pair w ∈W which is a function ofthe minimum OD travel costs

µw = min
r∈Rw

Cr, w ∈W.Then the Wardrop principle can be written as
0 ≤ Cr(F ) − µw ⊥ Fr ≥ 0, ∀r ∈ Rw, w ∈ W, (3.18)

∑

r∈Rw

Fr = Dw(µ), ∀w ∈W, (3.19)
µw ≥ 0, ∀w ∈W (3.20)



3.2 Source problems 43with µ being a vector with components µw, w ∈W .Suppose for simplicity that each �rm provides single toll road (single link on the net-work), and denote by J the subset of A corresponding to the set of toll roads on thenetwork. For every link a ∈ J , the corresponding private subject can choose a level ofcapacity ya on the link a and toll charge ua. The remaining links a ∈ A, a /∈ J are free ofcharge to use and have �xed capacity ya = Ca.Consider, for further simplicity, additivity assumption on costs: the costs on route rare simply the sum of the costs of each arc a comprising the route r. In our setting, thecosts Cr are of the following form
Cr =

∑

a∈A

αδarta(va, ya) +
∑

a∈J

δarua, (3.21)where α is the value of time which transfers time into monetary units and ta(va, ya) denotesa travel time on arc a subject to the �ow va and capacity ya. With respect to (3.17) theabove de�ned costs truly depend on route �ows and we add also natural dependence onthe transportation capacity of the arcs.However, this formulation is questionable since each individual values time in a di�erentway. This can be partially remedied by use of the nonadditive travel costs, see, e.g., [1].Here, we will su�ce with the additive formula (3.21).The decision problem of each �rm a ∈ J is to maximize its pro�ts, given as the di�erencetoll revenues and building and maintenance costs by choosing an appropriate level ofcapacity and toll charge on the link it operates. Let the costs of �rm a ∈ J be given by
ηIa(ya), where parameter η is common to each toll �rm and for simplicity the unit periodproject costs do not include variable costs of road use.Putting all parts of the model together, the tra�c equilibrium model with private tollroads is given as a system of maximization problems for a ∈ Jmaximize

ua,ya

∑

r∈R

δarFrua − ηIa(ya)subject to 0 ≤
∑

a∈A

αδarta((∆F )a, ya) +
∑

a∈J

δarua − µw ⊥ Fr ≥ 0, ∀r ∈ Rw, w ∈W,

∑

r∈Rw

Fr = Dw(µ), ∀w ∈W,

µw ≥ 0, ∀w ∈W. (3.22)Each such problem (3.22) is clearly of an MPCC structure and all of them are linkedtogether via upper-level decision variables and a solution to (3.18)-(3.20). Hence theyconstitute an EPCC.



44 Equilibrium Problem with Equilibrium Constraints (EPEC)3.3 Existence of solutionsThe reformulation (3.7) plays an important role in application of the implicit programmingapproach to EPECs. This technique to reduce a bilevel program to the upper-level opti-mization problem under assumption (A1') is widely used for MPECs, see [39]. In terms ofEPECs, we reduce our problem via implicit programming to a generally nonconvex Nashgame. This enables us to use existence results developed for Nash games. Let us recall theconcept of mixed strategies (or mixed solutions).De�nition 3.2. (mixed strategy)A mixed strategy for a player with a set of admissible strategies U is a probability measure
µ in the set U , i.e., it is a nonnegative and σ-additive measure on U with µ(U) = 1.The set U is usually called a set of pure strategies (or an action space). In the casewhen this probability measure degenerates to a Dirac measure, a probability measure thatassigns a singleton the measure 1, we arrive at the pure strategy.A mixed strategy is usually interpreted on the concept of repeated games. The playerthen no longer plays each time only one particular strategy but he or she plays all strategiesfrom his or her action space U and the frequencies with which pure strategies are playedwill converge to the probability distribution generated by his or her mixed strategy. Inwhat follows, we allow only leaders to play mixed strategies.Let us consider the following two assumptions concerning the admissible sets U i, i =
1, . . . , n, of leaders(A4) for each i = 1, . . . , n, the set U i is compact;(A5) for each i = 1, . . . , n, the set U i is convex;and two assumptions imposed on their cost functions(A6) for each i = 1, . . . , n, function θi : ω → R is continuous on an open set containing ω;(A7) for each i = 1, . . . , n, function θi : ω → R is strictly convex in variable xi for allvalues of xk ∈ Uk, k 6= i.Now let us recall the Nash theorem [2, Theorem 2.12] which states the existence of asolution to a non-hierarchical n-person Nash game under assumptions (A4)-(A7). We havealready mentioned that the hierarchical structure causes loss of the convexity of the costfunction of the upper-level player. Thus, the assumption (A7) is generally not satis�ed forEPECs. If this was the case, an MPEC could have multiple local optima, the existence ofwhich could be guaranteed, e.g., by Theorem 2.2. However, violation of assumption (A7)may result in non-existence of any (pure strategy) solution of an EPEC, cf. Example 3.1below.On the other hand, mixed strategy concept of solutions appears well justi�ed for EPECswith implicit structure because the existence of a mixed solution to Nash equilibrium gamecan be achieved under validity of much weaker assumptions.



3.3 Existence of solutions 45Theorem 3.3. Let the assumptions (A4) and (A6) hold. Then the n-person game speci�edby mathematical programs (3.7), i = 1, . . . , n, admits at least one equilibrium point in mixedstrategies.Proof. For proof see [41].Before we provide a similar existence theorem for EPEC composed of mathematicalprograms (3.5), we present an example of EPEC with two leaders and one follower. Thisexample shows how easily the solution in pure strategies may not exist even in the case whenconvexity assumptions appear to be satis�ed. It also vindicates the need to investigateconditions ensuring the existence of a solution in mixed strategies.Example 3.4. Consider the following three-person game on [0, 2]2 × [−2, 2] with costfunctions
ϕ1(x1, x2, x3) = (x1 − x2)2 − x1 + x2 + x3,

ϕ2(x1, x2, x3) = (x1 − x2)2 − 2(x3)2,

ϕ3(x1, x2, x3) = (x3)2 − 2x1x3 + 2x2x3.As a three person Nash game, assumptions (A4)-(A7) are satis�ed and consequentlythere is a solution in pure strategies.Consider now the situation when player 1 and player 2 become the leaders. The gamecan be reduced to a game only among the leaders with cost functions
θ1(x1, x2) = (x1 − x2)2,

θ2(x1, x2) = −(x1 − x2)2,with the solution map of the follower speci�ed by
S(x1, x2) = x1 − x2, (x1, x2) ∈ [0, 2]2.Even if the cost function of the second player is now non-convex, according to Theorem3.3, a solution in mixed strategies exists. Based on the results in [6], the solution of thisEPEC is
x̄1 = 1

x̄2 =

{

0

2

x̄3 = x̄1 − x̄2

with probability 1,with probability 1/2,with probability 1/2,with probability 1.We purposely write the solution of the third player in the above form to emphasize thathe or she always plays a pure strategy, although actually it is 1 with probability 1
2
and −1with probability 1

2
.Clearly, since this is the only solution in mixed strategies, the considered EPEC doesnot have any pure strategy solution. 4



46 Equilibrium Problem with Equilibrium Constraints (EPEC)It is apparent that existence theory of n-person Nash games can be easily applied toEPECs when assumption (A1') holds and we do not allow followers to play mixed strategies.We state the existence result for mixed solutions to EPECs in the following theorem.Theorem 3.5. Let the assumptions (A1') and (A4) hold and let for all i = 1, . . . , n,functions ϕi be continuous on an open set containing ω × R
ml2. Then the EPEC (3.5)possesses at least one solution in mixed strategies.Proof. Assumption (A1') together with continuity of functions ϕi, i = 1, . . . , n, guaranteevalidity of assumption (A6). It remains to apply Theorem 3.3.The assumption (A1') plays a crucial role in the above theorem and the existence ofsolutions to the EPEC can be guaranteed via rather lenient conditions. It turns out thatin the absence of (A1'), the situation gets much more complicated, as explained next.Consider that (A1') does not hold simply because S(x) is not single valued for some

x ∈ ω. Let us consider �rst the case when this is true for strategies of just one follower.Without loss of generality we can omit the remaining followers and analyze a multi-leader-single-follower game.When the lower problem is not uniquely solvable, we may apply the optimistic hypoth-esis, this time, however, only with respect to one of the leaders. I.e, we may replace theloss function of the kth leader for a chosen k = 1, . . . , n, by the marginal function
ψk(x) = inf

y∈S(x)
ϕk(x, y). (3.23)We can associate to this marginal function the so-called marginal map

Mo
k (x) = {u ∈ S(x)|ϕk(x, u) = inf

y∈S(x)
ϕk(x, y)}.This marginal function re�ects an expectation of leader k that the follower will try to helphim or her to achieve the best outcome. Similarly, using

Φk(x) = sup
y∈S(x)

ϕk(x, y),one speaks of the pessimistic formulation with respect to leader k. The correspondingmarginal map
Mp

k (x) = {u ∈ S(x)|ϕk(x, u) = sup
y∈S(x)

ϕk(x, y)}expresses a reasonable expectation of the kth leader that the follower, if there is a chanceto choose from several strategies leading to the same (optimal) outcome, will try to harmleader k as much as possible.The optimistic position can be expected, e.g., in the case when the follower participatesin pro�ts of the kth leader. Compared to the realistically applicable pessimistic position,the optimistic position may violate legislative constraints (in some cases the cooperation



3.3 Existence of solutions 47is forbidden by legislation) or natural constraints (cooperation is not possible, e.g., inso-called games against the nature), for the discussion see [12].Let us �rst investigate a situation when the kth leader is able to persuade the followerto select an optimal solution which accommodates his purposes best. Due to the presenceof other leaders we need to investigate the behavior of the suggested couple of playerscarefully.To ensure continuity of marginal function (3.23) of the kth leaders, it is su�cient toensure existence of the so-called continuous selection of S. This is guaranteed if S is acontinuous multifunction.It is known that ensuring lower semicontinuity of S without single-valuedness may beproblematic or quite restrictive. The possible lack of lower semicontinuity of the solutionmapping may lead to a very unstable solution, cf. [12].One of the suitable ways to test both lower and upper semicontinuity is the use of thepowerful Mordukhovich criterion
D∗S(x, y)(0) = {0} (3.24)which ensures the Aubin property of multifunction S around a point (x, y). Expressing(3.24) in terms of the initial data of our problem (3.5), together with the quali�cationcondition from [27, Theorem 6.10] we obtain the condition

0 ∈ (∇yF (x, y))Tw +D∗N(y,−F (x, y); Ω)(w) ⇒ w = 0. (3.25)Unfortunately, this condition forces S to be single-valued and locally Lipschitz continuouswhenever Ω is polyhedral, see [15]. If ∇xF is not surjective, we can avoid this drawbackby replacing the condition (3.25) with the condition on calmness of multifunction
P (q) = {(x, y) | (y,−F (x, y)) + q ∈ Gph N(·; Ω)},see [21, Theorem 6] and related results therein.Similarly to S, the marginal map need not be single-valued for some values of x. Onthe other hand, no matter what y ∈ Mo

k (x) is chosen by the follower, the value of themarginal function remains the same. However, this is no longer true for the cost functionsof other leaders; their values may be, of course, in�uenced by the choice of a marginalselection σo
k(x) from Mo

k (x).The objectives of the remaining leaders can be expressed in the form
ψi(x) = ϕi(x, σo

k(x)), i 6= k.To ensure the continuity of all ψi, i 6= k, the existence of a continuous selection of Mo
kis not su�cient. Even if such a selection exists, the follower may have no intention to playit and nor can any leader force him or her to do so. Hence we need to impose additionalassumptions under which the marginal map is single-valued. This is the main di�erencefrom the analysis of the optimistic formulation of an MPEC.The respective su�cient conditions are stated in the lemma below.



48 Equilibrium Problem with Equilibrium Constraints (EPEC)Lemma 3.6. Let ϕ(x, y) be continuous and strictly convex function in y for all x and let
S be continuous, convex- and compact-valued multifunction. Then function

Mo(x) = arg min
y∈S(x)

ϕ(x, y)is single-valued and continuous.Proof. The single-valuedness of Mo is clear from the assumptions.Assume that by contradiction there is a sequence xi → x̄ with ȳ = Mo(x̄) ⊂ S(x̄)and yi = Mo(xi) such that yi → y0 6= ȳ. The condition yi = Mo(xi) is equivalent to
(yi ∈ S(xi), ϕ(xi, yi) = infz∈S(xi) ϕ(xi, z)). According to [3, Theorem 1.4.16], under ourassumptions the marginal function infz∈S(xi) ϕ(xi, z) is continuous and hence for xi → x̄converges to infz∈S(x̄) ϕ(x̄, z) which equals to ϕ(x̄, y0) with y0 ∈ S(x̄). This means that
y0 = Mo(x̄) which is in contradiction with ȳ 6= y0.Note that, in fact, we analyze the problem as a hierarchical three-level game where onthe new, middle level the follower selects from the solution map strategies that belong tothe single-velued marginal map.We can now state the conditions ensuring the existence of a solution to the optimisticformulation of EPEC with respect to the kth leader.Theorem 3.7. Let assumption (A4) hold, S be convex- and compact-valued, functions
ϕi, i = 1, . . . , n, be continuous on an open set containing ω×R

ml2 , ϕk be strictly convex in
y for all values of x ∈ ω. Further, assume that for all (x̄, ȳ) ∈ Gph S the multifunction Pis calm at (0, x̄, ȳ) and let the condition

0 ∈ (∇yF (x̄, ȳ))>w +D∗N(ȳ,−F (x̄, ȳ); Ω)(w) ⇒ w ∈ Ker(∇xF (x̄, ȳ))> (3.26)hold. Then the EPEC composed of problems (3.7), i = 1, . . . , n, with functions θi replacedby ψi admits a solution in mixed strategies.Proof. According to Theorem 3.3, we need to ensure that functions θi, i = 1, . . . , n arecontinuous on ω.To this end we �rst invoke the result [3, Theorem 1.4.16] stating that the marginalfunction θk is continuous if ϕk is continuous and S is compact-valued and continuous.For continuity of S we apply the results from [21, Theorem 6 and formula (39)] to
h(x, y) = (y,−F (x, y)),Λ = Gph N(; Ω),Θ = R

ml2 and v = (u,−w) which ensures theAubin property of S around each point from GphS.Applying Lemma 3.6 we get Mo
k = σo

k single-valued and continuous. This implies thatthe cost functions ψi, i 6= k, are continuous which completes the proof.Compact-valuedness of S can be obtained, e.g., by requiring the set Ω to be compactand function F (x, y) to be continuous. To ensure the convex-valuedness of S, we need Ωto be a convex set and F (x, y) monotone in y for all admissible values of x, i.e.,
〈

F (x, y1) − F (x, y2), y1 − y2
〉

≥ 0, ∀y1, y2 ∈ Ω.



3.3 Existence of solutions 49It is clear from the proof of Theorem 3.7 that the continuity of the marginal function isnot sensitive to whether we consider optimistic or pessimistic formulation of the problemwith respect to the kth leader. However, where needed, convexity of ϕk(x, y) has to bereplaced by concavity.Lemma 3.8. Let ϕ(x, y) be continuous and strictly concave function in y for all valuesof x and let S be continuous and convex- and compact-valued multifunction. Then thefunction
Mp(x) = arg max

y∈S(x)

ϕ(x, y)is single-valued and continuous.Proof. The proof is analogous to the proof of Lemma 3.6.Similarly to optimistic bilevel problem, the objectives of the remaining leaders are inthe form
Φi(x) = ϕi(x, σp

k(x)), i 6= k,where σp
k is a marginal selection from Mp

k . Now, we can obtain results corresponding toTheorem 3.7.Theorem 3.9. Let the assumption (A4) hold, S be convex- and compact-valued, functions
ϕi, i = 1, . . . , n, be continuous on an open set containing ω × R

ml2, ϕk be strictly concavein y for all x. Further, assume that for all (x̄, ȳ) ∈ Gph S the multifunction P is calm at
(0, x̄, ȳ) and let the condition

0 ∈ (∇yF (x̄, ȳ))>w +D∗N(ȳ,−F (x̄, ȳ); Ω)(w) ⇒ w ∈ Ker(∇xF (x̄, ȳ))>hold. Then the EPEC composed of problems (3.7), i = 1, . . . , n, with functions θi replacedby Φi admits a solution in mixed strategies.Proof. The proof is analogous to the proof of Theorem 3.7.One can easily �nd examples to see that the continuity of the solution map is notnecessary for continuity of the marginal selection. On the other hand, the Aubin propertyseems too restrictive for ensuring lower semicontinuity. It would be worth investigatingmore precise criteria to achieve the results of Theorems 3.7 and 3.9.Let us now brie�y discuss the general case with multiple followers and with the multi-valued lower level solution mapping. Without loss of generality assume just the game withtwo followers, both able to respond to the leaders' strategies by playing more than just oneoptimal reaction. Naturally, each follower in question behaves independently and in�uencesthe range of multiple rational reactions of the other one. This makes the treatment of ageneral situation extremely di�cult, e.g., when one follower aims to harm one particularleader and the second follower tries to do the same to another leader.We may avoid the above mentioned complications if the decision to select the commonstrategy is not taken by the followers themselves, e.g., this could be the role of an inde-pendent entity on separate middle level in the hierarchy of decision making. We aim toaddress these issues in detail in our future analysis of particular situations.



50 Equilibrium Problem with Equilibrium Constraints (EPEC)3.4 Stationarity concepts and existence of stationarypointsIn this section we present conditions associated with suitable stationarity concepts forEPECs. These conditions are connected to the respective necessary optimality conditionsfor MPECs due to the structural dependence of EPECs on MPECs.First, take a look at the EPEC for which each of n MPECs can be formulated asthe mathematical program (3.7). For this EPEC we can derive stationarity conditionsanalogous to conditions (2.14).Theorem 3.10. Let (x̄1, . . . , x̄n, ȳ) be a solution of the EPEC composed of n MPECs (3.7).Then for each i = 1, . . . , n, there exists a vector ξi ∈ N(x̄i;U i) such that
0 ∈ ∇xiϕi(x̄i, x̄−i, ȳ) +D∗Sx̄−i(x̄i)(∇yϕ

i(x̄i, x̄−i, ȳ)) + ξi. (3.27)Proof. It su�ces to apply Theorem 2.13 to each MPEC (3.7).The system of conditions (3.27) amounts to a natural stationary concept for EPECs.As we emphasized in the previous chapter, in most cases we are unable to computethe coderivative term in (3.27) precisely, and consider weaker conditions, replacing thecoderivative term with suitable upper approximation.Let us now focus on the case when the lower-level solution map S is given by the NCP(2.17), i.e., on the EPCC (3.6).To proceed to the EPCC counterparts of MPCC stationarities, we will make use of theEPEC versions of the MPEC generalized Mangasarian-Fromowitz constraint quali�cationand MPEC generalized linear independence constraint quali�cation.De�nition 3.11. (EPEC generalized MFCQ and LICQ)We say that the EPCC (3.6) satis�esi) EPEC generalized MFCQ (EPEC-GMFCQ) at a feasible point (x̄1, . . . , x̄n, ȳ) if foreach i = 1, . . . , n, the MPCC in (3.6) satis�es MPEC-GMFCQ at (x̄i, x̄−i, ȳ).ii) EPEC generalized LICQ (EPEC-GLICQ) at a feasible point (x̄1, . . . , x̄n, ȳ) if for each
i = 1, . . . , n, the MPCC in (3.6) satis�es MPEC-GLICQ at (x̄i, x̄−i, ȳ).Clearly, as it was true for the MPEC versions of the respective constraint quali�cations,EPEC-GLICQ implies EPEC-GMFCQ.Analogously, one can de�ne KKT-type stationarity conditions for EPCCs by those forMPCCs.De�nition 3.12. (strongly, M-, C- and weakly stationary point for EPCC)Let (x̄1, . . . , x̄n, ȳ) be feasible for the EPCC (3.6). Then we call (x̄1, . . . , x̄n, ȳ) strongly (M-, C- and weakly) stationary point for the EPCC (3.6) if for each i = 1, . . . , n, (x̄i, x̄−i, ȳ)is strongly (M-, C- and weakly) stationary point for the MPCC in (3.6).



3.4 Stationarity concepts and existence of stationary points 51Also for EPCCs we have the chain of implicationsstrong stationarity ⇒ M-stationarity ⇒ C-stationarity ⇒ weak stationarity.Following the same arguments used in the proof of Theorem 2.6 we get the followingresults.Theorem 3.13. Let (x̄1, . . . , x̄n, ȳ) be a solution of the EPCC (3.6). If EPEC-GMFCQholds at (x̄1, . . . , x̄n, ȳ) then it is M-stationary point for the EPCC and thus also C-stationary point for the EPCC.Proof. It su�ces to apply Theorem 2.6 to MPCC in (3.6), for each i = 1, . . . , n.The complementarity constraints of each MPCC in (3.6), i = 1, . . . , n, can be equiva-lently reformulated as the generalized equation
0 ∈

(

F 1(xi, x̄−i, y) − νi

F 2(xi, x̄−i, y)

)

+N(y, νi; Rml2 × R
ml2
+ ). (3.28)Whenever for every i = 1, . . . , n, the generalized equation (3.28) is strongly regular at

(x̄i, ȳ), we can apply Theorem 2.17 and the technique of adjoint equations to derive theClarke stationary conditions for EPCC.De�nition 3.14. (Clarke stationarity conditions to EPCC)Let (x̄1, . . . , x̄n, ȳ) be a feasible point for the EPCC (3.6) and let each generalized equa-tion (3.28) be strongly regular at (x̄i, ȳ), i = 1, . . . , n. Then we call (x̄1, . . . , x̄n, ȳ) Clarkestationary for the EPCC if for each i = 1, . . . , n, the following conditions
0 ∈ ∇xiϕi(x̄, ȳ) − conv



(

∇xiF 1
L∪(I0\Mj)

(x̄, ȳ)

∇xiF 2
I+∪Mj

(x̄, ȳ)

)>

pij(x̄, ȳ)|j ∈ K(x̄, ȳ)







+N(x̄i;U i),(3.29)are satis�ed, where pij(x̄, ȳ) are the unique solutions of the adjoint equations
(

∇yF
1
L∪(I0\Mj)

(x̄, ȳ)

∇yF
2
I+∪Mj

(x̄, ȳ)

)>

p = ∇yϕ
i(x̄, ȳ). (3.30)Theorem 3.15. Let (x̄1, . . . , x̄n, ȳ) be a solution of the EPCC (3.6). Let each generalizedequation (3.28) be strongly stationary at (x̄i, x̄−i, ȳ) and for all j ∈ K(x̄, ȳ) the vectors

pij(x̄, ȳ) be the unique solutions of (3.30). Then for each i = 1, . . . , n, conditions (3.29)are ful�lled. In particular, the point (x̄, ȳ) is Clarke stationary for the EPCC.Proof. The statement follows from Theorem 2.20 applied separately to each MPCC in(3.6).



52 Equilibrium Problem with Equilibrium Constraints (EPEC)As a consequence of Theorems 2.24 and 2.26, under SRC for each of n generalizedequations (3.28) and EPEC-GLICQ satis�ed, we verify also the equivalence of Clarke andC-stationarity for EPCCs. This is the statement of the following theorem.Theorem 3.16. Let (x̄1, . . . , x̄n, ȳ) be a feasible point for the EPCC (3.6). Let EPEC-GLICQ hold at (x̄1, . . . , x̄n, ȳ) and for each i = 1, . . . , n, let SRC hold for the generalizedequation (3.28) at (x̄i, x̄−i, ȳ). Then the point (x̄1, . . . , x̄n, ȳ) is Clarke stationary for theEPCC if and only if it is C-stationary for the EPCC.Note that the assumption of the strong regularity of each generalized equation (3.28)at the reference point can be replaced by stronger assumption of the strong regularity ofthe generalized equation
0 ∈

(

F 1(x1, . . . , xn, y) − ν
F 2(x1, . . . , xn, y)

)

+N(y, ν; Rml2 × R
ml2
+ ).at the reference point.In [37] one can �nd an existence theorem for Clarke stationary points for EPECs. Thistheorem can be reformulated for EPCCs as follows.Theorem 3.17. Let assumptions (A1'), (A4) and (A5) be ful�lled and suppose that foreach i = 1, . . . , n the multifunctions Γi : x ⇒ ∂̄Sx−i(xi) are upper semicontinuous on ω.Then the EPCC (3.6) possesses a Clarke stationary point.Proof. To prove that there is a Clarke stationary point for the EPCC it is su�cient toshow that the generalized equation

0 ∈ C(x) +N(x;ω) (3.31)with the multifunction
C(x) =







∇x1ϕ1(x, S(x))...
∇xnϕn(x, S(x))






+







Γ1(x)>...
Γn(x)>













∇yϕ
1(x, S(x))...

∇yϕ
n(x, S(x))





has a solution. For details see [37, Theorem 3.3].To our knowledge, Theorem 3.17 provided up to now the only result derived for EPECsconcerning the existence of (at least) stationary points. As a corollary of Theorems 3.16and 3.17 we can present the following existence result.Corollary 3.18. Let assumptions (A4) and (A5) be ful�lled and for each i = 1, . . . , n, thegeneralized equation (3.28) be strongly regular and MPEC-GLICQ hold at every feasiblepoint of the MPCC in (3.6). Further, let the solution map of each generalized equation(3.28), i = 1, . . . , n, be single-valued and multifunctions Γi be upper semicontinuous on ω.Then the EPCC (3.6) possesses a C-stationary point.



3.4 Stationarity concepts and existence of stationary points 53Recall that even though the respective generalized equations are assumed to be stronglyregular at each feasible point, the solution map may not be single-valued. Strong regularityimplies single-valuedness only locally on the neighborhood of the point from the graph of
S. For global unicity of the solution to the generalized equation one can suppose, e.g.,strict monotonicity of the single-valued part of the generalized equation, see [39, Theorem4.4].Note that, e.g., when the complementarity constraints are in the form of a linearcomplementarity problem, the assumption of upper semicontinuity of the multifunctions
Γi, i = 1, . . . , n, is automatically satis�ed since the solution maps Sx−i do not depend on
x−i.We can modify the conditions in the above theorem and corollary by weakening thecompactness assumptions, for in many applications the sets U i, i = 1, . . . , n, (and thusalso the set ω) are unbounded. To this end, we present the following two modi�cationsof Theorem 3.17. Before we proceed with the statement and its proof, recall that a set
V ⊂ R

n is said to be contractible, if there is a point x0 ∈ V and a continuous function
g : V × [0, 1] → V , such that

g(x, 0) = x and g(x, 1) = x0 for each x ∈ V.Theorem 3.19. Let assumptions (A1') and (A5) be ful�lled. Further, suppose that thereis a convex set E with nonempty interior such thati) the set ω ∩ E is nonempty and compact;ii) multifunctions Γi, i = 1, . . . , n, restricted to ω ∩ E are upper semicontinuous;iii) for each x ∈ ω ∩ bdry(E) there is an x0 ∈ ω ∩ int(E) such that
〈

y, x− x0
〉

≥ 0 for all y ∈ C(x).Then the EPCC (3.6) possesses a Clarke stationary point.Proof. To prove the existence of a Clarke stationary point to EPCC (3.6) it su�ces toapply [17, Theorem 3.2] to the generalized equation (3.31). All but assumptions (iii)(b)and (iii)(c) of [17, Theorem 3.2] follow directly from the statement of the theorem.Clearly, the multifunction C is nonempty-, convex- and compact-valued. Further, C(x)is contractible for each x ∈ ω∩E, since C(x) is a convex set. Thus condition (iii)(c) of [17,Theorem 3.2] is satis�ed. The condition ii) implies upper semicontinuity of C restricted to
ω ∩ E and hence also assumption (iii)(b) of [17, Theorem 3.2] holds. This completes theproof.The second modi�cation involves generalization of coercivity for set-valued maps.



54 Equilibrium Problem with Equilibrium Constraints (EPEC)Theorem 3.20. Let the sets Ui, i = 1, . . . , n, be closed and convex (possibly unbounded)and let assumption (A1') be ful�lled. Further, suppose that multifunctions Γi, i = 1, . . . , n,are upper semicontinuous on ω and that there is an x0 ∈ ω such that
lim

‖x‖→+∞

(

inf
y∈C(x)

〈y, x− x0〉

‖ x ‖

)

= +∞Then the EPCC (3.6) possesses a Clarke stationary point.Proof. Analogously to Theorem 3.19, it su�ces to apply [17, Corollary 3.1] to the gener-alized equation (3.31).Similarly to Corollary 3.18, on the basis of Theorems 3.19 and 3.20 we can deriveexistence results also for C-stationary points to EPCC using Theorem 3.16.



Chapter 4Multiobjective Problem withEquilibrium Constraints (MOPEC)In the previous chapter we have focused on EPECs in which the upper problem admits astructure of a Nash game, i.e., when leaders act noncooperatively. We can investigate alsothe opposite sort of �extreme� situation when leaders cooperate by solving a multiobjectiveoptimization problem. This brings us to the study of a class of multiobjective problemswith equilibrium constraints.In this chapter the main attention is paid to MOPECs with equilibrium constraints inthe form of mixed complementarity problem (MCP). We discuss the existence of solutionsto this problem and derive its necessary optimality conditions.4.1 Mathematical formulationFollowing the notation introduced in previous chapters, suppose yet again that our prob-lem involves n leaders and m followers. In the multiobjective problem with equilibriumconstraints, the behavior of leaders is not only described by their individual objectives
ϕi : R

nl1+ml2 → R, i = 1, 2, . . . , n, but this time also by a closed convex cone K ⊂ R
n thatspeci�es an ordering of R

n in the standard way:
z1 � z2 ⇔ z2 − z1 ∈ K. (4.1)When discussing solutions to multiobjective problems, we speak of Pareto optimal points.As it is common in standard optimization literature, we distinguish two notions of (gen-eralized) Pareto optimality. Denote by ϕ the map from R

nl1+ml2 to R
n such that ϕ :=

(ϕ1, ϕ2, . . . , ϕn)>. Then for the (unconstrained) multiobjective problemminimize ϕ(x, y)with respect to partial ordering induced by a cone K, a multistrategy (x̄, ȳ) is calledstrongly Pareto optimal if there is no multistrategy (x, y) such that (x, y) 6= (x̄, ȳ) and
ϕ(x̄, ȳ) − ϕ(x, y) ∈ K.



56 Multiobjective Problem with Equilibrium Constraints (MOPEC)However, to our purposes, a weaker notion of Pareto optimality proves to be more suitable.A multistrategy (x̄, ȳ) is called weakly Pareto optimal if there is no multistrategy (x, y)such that
ϕ(x̄, ȳ) − ϕ(x, y) ∈ rintK.Note that for K = R

n
+ we arrive at the standard notions of Pareto optimality.Now we are able to de�ne a weak Pareto solution of an abstract MOPEC.De�nition 4.1. (weak Pareto solution of abstract MOPEC)A multistrategy (x̄, ȳ) ∈ R

nl1 × R
ml2 is a weak Pareto solution of an abstract MOPECminimize

K
ϕ(x, y)subject to y ∈ S(x),

(x, y) ∈ κ,

(4.2)if ȳ ∈ S(x̄) and there is a neighborhood U of (x̄, ȳ) such that for all (x, y) ∈ U ∩ κ with
y ∈ S(x) we have

ϕ(x̄, ȳ) − ϕ(x, y) /∈ rintK. (4.3)Here again, S denotes the solution map to the lower problem for given multistrategyof all leaders and κ denotes the set of nonequilibrium constraints.Also in this case, we implicitly assume the optimistic formulation of the problem. If themultifunction S is not single-valued, it is clear from the above de�nition that the problem(4.2) is still well-de�ned, contrary to the EPEC case.As before, S(x) can be, e.g., a solution set to the equilibrium problem in the form ofgeneralized equation
0 ∈ F (x, y) +Q(x, y) (4.4)with single-valued function F and multifunction Q which in many practical cases is anormal cone mapping.Now, let us specify the behavior of players on the lower level, just as we did whendiscussing EPECs, but with a slight modi�cation in the structure of followers' feasiblesets. Let the multistrategies y ∈ R

ml2 be feasible provided that all of its components
yj, j = 1, . . . , m, belong to given boxes (intervals) I

j ⊂ R
l2 .Let the followers act according to their objectives f j : R

nl1+ml2 → R, j = 1, 2, . . . , m.Hence, for a given multistrategies x̄ ∈ ω and ȳ−i the strategy of the j th follower amountsto a solution of the optimization problemminimize
yj

f j(x̄, ȳj, ȳ−j)subject to yj ∈ I
j.

(4.5)Recall that we assume that the assumption (A0) from page 35 is ful�lled. Given x̄, acorresponding multistrategy ȳ amounts this time to a solution of themixed complementarityproblem de�ned by
0 ∈ F (x̄, y) +N(y; I), (4.6)



4.2 Existence of weak Pareto solutions 57where
I :=

mX
j=1

I
j .Now, the solution map S is given by

S(x) := {y ∈ R
ml2 | 0 ∈ F (x, y) +N(y; I)}.Thus we arrive at a special MOPEC, where the behavior of the followers is described byan MCP of the type above. According to the accepted terminology, we therefore speak ofa multiobjective problem with complementarity constraints, abbreviated to MOPCC.Let again κ = ω × R

ml2 , where ω amounts to nX
i=1

U i with U i ⊂ R
l1 being the set offeasible strategies of leader i.De�nition 4.2. (weak Pareto solution of MOPCC)A multistrategy pair (x̄, ȳ) ∈ ω× I is declared to be a weak Pareto solution of an MOPCCif

0 ∈ F (x̄, ȳ) +N(ȳ; I),and there is a neighborhood U of (x̄, ȳ) such that for all (x, y) ∈ U ∩ (ω × I) for which
0 ∈ F (x, y) +N(y; I)we have

ϕ(x̄, ȳ) − ϕ(x, y) /∈ rintK. (4.7)We can summarize the corresponding multiobjective optimization problem as follows:minimize
K

ϕ(x, y)subject to 0 ∈ F (x, y) +N(y; I),

x ∈ ω.

(4.8)Note that in [28], [30], and [53] one can �nd results for substantially more generalconcepts of multiobjective optimization.4.2 Existence of weak Pareto solutionsIn this section we pay attention to conditions ensuring the existence of optimal solutionsto MOPECs (4.8). For this we apply recent results involving subdi�erential calculus forset-valued mappings and new conditions of coercivity and Palais-Smale type each of whichensures the existence of optimal solutions to set-valued optimization problems with non-compact feasible sets [4, 5]. Multiobjective (or vector-valued) optimization problems canbe viewed as a special case of the set-valued optimization.



58 Multiobjective Problem with Equilibrium Constraints (MOPEC)First, we need to introduce some important extensions of the notion of subdi�erentialto set-valued mappings, developed in [4, 5].Consider a set-valued mapping H : R
n

⇒ R
m and the partial ordering on R

m speci�edby a nonempty closed cone K ⊂ R
m. Using (4.1) we can de�ne the generalized epigraph of

H with respect to the partial ordering byepiH = {(x, y) ∈ R
n × R

m|y ∈ H(x) +K}. (4.9)Note that epiH = GphH if K = {0}. Otherwise we have the strict inclusion GphH ⊂epiH .By means of the generalized epigraph (4.9) we can associate with H and K the epi-graphical multifunction EH : R
n

⇒ R
m given by

EH(x) = {y ∈ R
m|y ∈ H(x) +K}.The limiting and singular subdi�erentials of multivalued mapping H are generated by thecoderivative of its epigraphical multifunction.De�nition 4.3. (limiting and singular subdi�erentials of a multifunction)Let a multifunction H map R

n into R
m with partial ordering on R

m induced by a cone Kand let (x̄, ȳ) ∈ epiH. Then the limiting subdi�erential of the multifunction H at (x̄, ȳ) isde�ned by
∂KH(x̄, ȳ) := {x∗ ∈ D∗EH(x̄, ȳ)(z∗)| − z∗ ∈ N(0;K), ‖z∗‖ = 1} (4.10)and the singular subdi�erential of H at (x̄, ȳ) is de�ned by

∂∞KH(x̄, ȳ) := D∗EH(x̄, ȳ)(0). (4.11)Note that in case of extended real valued functions on R
n the subdi�erentials (4.10) and(4.11) reduce to the classical limiting and singular subdi�erentials, respectively, provided

K = R
+, i.e., with the standard order on R.Let us now de�ne the set-valued counterpart of coercivity condition.De�nition 4.4. (coercivity of set-valued mappings)We say that the multifunction H : R

n
⇒ R

m satis�es the coercivity condition if there is acompact set Θ ⊂ R
n such that

x ∈ R
n \ Θ

y ∈ H(x)

}

⇒ ∃ (u, v) ∈ Gph H with u ∈ Θ and v ≤ y. (4.12)For the de�nition of set-valued counterpart of Palais-Smale condition we need to intro-duce a generalization of boudedness from below.



4.2 Existence of weak Pareto solutions 59De�nition 4.5. (quasiboudedness from below)For a set-valued mapping H : R
n

⇒ R
m and a set Ξ ⊂ R

m, we say that F is quasiboundedfrom below with respect to Ξ if there is a bounded set M such that
H(Ξ) ⊂M +K,where K is the cone specifying the generalized order optimality and H(Ξ) =

⋃

x∈ΞH(x).A set A ⊂ R
m is quasibounded from below if the constant mapping H(x) ≡ A has thisproperty.De�nition 4.6. (subdi�erential Palais-Smale condition)A set-valued mapping H : R

n
⇒ R

m satis�es the subdi�erential Palais-Smale condition ifany sequence {x(k)} ⊂ R
n such that there are

y(k) ∈ H(x(k)) and x(k)∗ ∈ ∂KH(x(k), y(k)) with ‖x(k)∗‖ → 0 for k → ∞contains a convergent subsequence provided that {y(k)} is quasibounded from below.Recall the classical Palais-Smale condition for di�erentiable real-valued function ϕ :
R

n → R. Let {x(k)} ⊂ R
n be a sequence such that {ϕ(x(k))} is bounded from below and

‖∇ϕ(x(k))‖ → 0 as k → ∞. Then {x(k)} contains a convergent subsequence.It is known, that the Palais-Smale condition implies coercivity for C1 functions andlocally Lipschitz functions. In [4] the authors presented an existence result for the con-strained set-valued optimization problemminimize
K

H(x)subject to x ∈ Ξ,
(4.13)�rst under coercivity condition imposed on H and later under a corresponding version ofthe subdi�erential Palais-Smale condition.Whenever the constraint set Ξ of the set-valued optimization problem (4.13) involvesalso equilibrium constraints, we arrive at a class of problems called set-valued optimizationproblems with equilibrium constraints (SOPECs). These problems are formally de�ned asminimize

K
H(x)subject to 0 ∈ G(x) +Q(x),

x ∈ κ,

(4.14)where H,G and Q are generally set-valued mappings. Note that for H and G single-valuedwe get an MOPEC.Let us denote by Min H(x) the collection of minimal points of the set H(x) de�ned byMinH(x) = {ȳ ∈ H(x)|ȳ − y /∈ K whenever y ∈ H(x) \ {ȳ}}.Similarly, replacing K with rintK 6= ∅ we obtain the collection of weakly minimal points.



60 Multiobjective Problem with Equilibrium Constraints (MOPEC)To obtain a version of subdi�erential Palais-Smale condition for the constraint case(4.13), it su�ces to consider De�nition 4.6 with a restriction of H to Ξ

HΞ(x) = H(x) + ∆(x,Ξ) with ∆(x,Ξ) =

{

0 ∈ R
m if x ∈ Ξ,

∅ otherwise.The following proposition taken from [4] and [5] states the conditions for the existenceof weak minimizers to the problem (4.13).Proposition 4.7. Let H : R
n

⇒ R
m be quasibounded from below with respect to Ξ andhave a closed epigraph. Let the sets Ξ and Min H(x) for x ∈ Ξ be closed and letfor every x ∈ Ξ and y ∈ H(x) there is ȳ ∈ Min H(x) with ȳ ≤ y. (4.15)Then the set-valued optimization problem (4.13) admits a weak minimizer in each of thefollowing cases:i) Let the constraint set Ξ be compact.ii) Let the multifunction H satisfy the coercivity condition.iii) Let the following version of the subdi�erential Palais-Smale condition hold:Any sequence {x(k)} ⊂ Ξ such that there are

y(k) ∈ H(x(k)) and x(k)∗ ∈ ∂KH(x(k), y(k)) +N(x(k); Ξ) with ‖x(k)∗‖ → 0 for k → ∞contains a convergent subsequence provided that {y(k)} is quasibounded from below.In addition, assume that for every (x, y) ∈ Gph H with x ∈ Ξ the quali�cationcondition
∂∞K H(x, y) ∩ (−N(x; Ξ)) = {0} (4.16)is satis�ed.Proof. The �rst and the second assertion follow from [4, Theorem 4.1] and the third state-ment is a �nite-dimensional counterpart of [5, Theorem 3.2].Let us now apply the previous proposition to the MOPCC (4.8). This enables us tostate the following the conditions ensuring the existence of weak Pareto solutions to theconsidered MOPCC.Theorem 4.8. Let ϕ be lower-semicontinuous and let the mapping ϕ̃(x, y, z) := ϕ(x, y) bequasibounded from below with respect toGph (−F ) ∩ (Rnl1 ×Gph N(·; I)) ∩ (ω × R

ml2 × R
ml2),

F be a continuous function and ω and I be closed sets. Then the MOPCC (4.8) admits aweak Pareto solution in each of the following cases:



4.2 Existence of weak Pareto solutions 61i) The sets ω and I are compact.ii) The function ϕ is coercive.iii) Let the following version of the subdi�erential Palais-Smale condition be satis�ed:any sequence {(x(k), y(k))} ⊂ ω × R
ml2 such that there are z(k) = −F (x(k), y(k)) ∈

N(y(k); I), y(k)∗ ∈ R
ml2 , ‖x(k)∗‖ → 0 with

x(k)∗ ∈ ∂Kϕ(x(k), y(k)) +D∗F (x(k), y(k),−z(k))(y(k)∗) + {0} ×D∗N(y(k), z(k); I)(y(k)∗)

+N(x(k);ω) × {0} (4.17)contains a convergent subsequence provided that {z(k)} is quasibounded from below.In addition, whenever x ∈ ω, z = −F (x, y) ∈ N(y; I) and y∗ ∈ R
ml2 , let the followingquali�cation conditions be ful�lled:

−∂∞K ϕ(x, y) ∩ (D∗F (x, y,−z)(y∗) + {0} ×D∗N(y, z; I)(y∗) +N(x;ω) × {0}) = {0},(4.18)
x1∗ ∈ D∗F (x, y,−z)(y∗)

x2∗ ∈ {0} ×D∗N(y, z; I)(y∗)

x3∗ ∈ N(x;ω) × {0}

0 = x1∗ + x2∗ + x3∗



















⇒

{

y∗ = 0

x1∗ = x2∗ = x3∗ = 0
(4.19)Proof. Clearly, for the MOPCC (4.8) it su�ces to set H := ϕ̃ and

Ξ := Gph (−F ) ∩ (Rnl1 ×Gph N(·; I)) ∩ (ω × R
ml2 × R

ml2).Observe that for F continuous, ω and I compact, the set Ξ is also compact. Also, for single-valued functions the condition (4.15) is trivially satis�ed. This proves the �rst statement.The second statement follows immediately from the proposition above.It remains to prove the third statement. Taking into account the relationship
(x∗, y∗) ∈ N(x, y,−z; Gph (−F )) ⇔ (x∗,−y∗) ∈ N(x, y, z; Gph F )and applying the intersection rule for limiting normal cones [29, Corollary 3.37], we getthe inclusion

N(x, y, z; Ξ) ⊂

⊂ N(x, y, z; Gph (−F )) +N(x, y, z; Rnl1 ×Gph N(·; I)) +N(x, y, z;ω × R
ml2 × R

ml2)provided the quali�cation condition (4.19) holds, where we set z = −F (x, y) ∈ N(y; I) andapplied the de�nition of coderivative.Observe that
∂∞K ϕ̃(x, y, z) = ∂∞K ϕ(x, y) × {0}.



62 Multiobjective Problem with Equilibrium Constraints (MOPEC)Also, the inclusion (x∗, 0) ∈ N(x, y, z; Ξ) implies
x∗ ∈ D∗F (x, y,−z)(y∗) + {0} ×D∗N(y, z; I)(y∗) +N(x;ω) × {0}with some y∗ ∈ R

ml2 .This also implies the quali�cation condition (4.18) from (4.16) and the version of sub-di�erential Palais-Smale condition with (4.17) which completes the proof.4.3 Necessary optimality conditionsIn the recent book by Mordukhovich [30], the whole section 5.3.5 is devoted to necessaryoptimality conditions for MOPECs with equilibrium constraints given by the generalizedequation (4.4) on in�nite-dimensional spaces. Hence we kindly refer the reader to [30] andpresent here only the speci�cation of these necessary optimality conditions to the MOPCC(4.8).Let (x̄, ȳ) be a weak Pareto solution of the MOPCC (4.8) and assume that ϕ is locallyLipschitz continuous around (x̄, ȳ). Further suppose that
I
i = [ai, bi]and that ai

j < bij for all j = 1, . . . , l2, and i = 1, . . . , m. Similarly to previous cases whenwe were dealing with complementarity constraints, let k := (i − 1)l2 + j, 0 < j ≤ l2, andlet us employ the following index sets:
L(y) :={k ∈ {1, . . .ml2}|a

i
j < yk < bij},

I+
1 (x, y) :={k ∈ {1, . . .ml2}|Fk(x, y) > 0},

I+
2 (x, y) :={k ∈ {1, . . .ml2}|Fk(x, y) < 0}, (4.20)
I0
1 (x, y) :={k ∈ {1, . . .ml2}|yk = ai

j, Fk(x, y) = 0},

I0
2 (x, y) :={k ∈ {1, . . .ml2}|yk = bij , Fk(x, y) = 0}related to the constraint y ∈ I. As before, the arguments x, y will be omitted whenever itcannot lead to a confusion. To simplify the notation, put

I+(x, y) := I+
1 (x, y) ∪ I+

2 (x, y), I0(x, y) := I0
1 (x, y) ∪ I0

2 (x, y).The following optimality conditions represent a modi�cation of [53, Theorem 5.29]. Notethat we do not need to assume the single-valuedness of S in this statement.Theorem 4.9. Let (x̄, ȳ) be a weak Pareto solution of MOPCC.i) Then there exist vectors z̄ ∈ K−, ū, v̄ ∈ R
ml2, not simultaneously equal to zero, suchthat the following hold:

ūL = 0 and v̄I+ = 0,



4.3 Necessary optimality conditions 63for k ∈ I0
1 (x̄, ȳ) either ūkv̄k = 0 or ūk < 0 and v̄k > 0,for k ∈ I0
2 (x̄, ȳ) either ūkv̄k = 0 or ūk > 0 and v̄k < 0,and one has the inclusion

0 ∈ D∗ϕ(x̄, ȳ)(−z̄) +

(

−(∇xF (x̄, ȳ))>v̄ +N(x̄;ω)
ū− (∇yF (x̄, ȳ))>v̄

)

. (4.21)ii) Assume further that either F is a�ne and ω is convex polyhedral, or the constraintquali�cation
− (∇xF (x̄, ȳ))>v ∈ −N(x̄, ω),

u− (∇yF (x̄, ȳ))>v = 0,

uL = 0, vI+ = 0,for k ∈ I0
1 (x̄, ȳ) either ukvk = 0 or uk < 0 and vk > 0,for k ∈ I0
2 (x̄, ȳ) either ukvk = 0 or uk > 0 and vk < 0,































⇒ v = 0 (4.22)
is ful�lled. Then z̄ 6= 0.Proof. To justify the �rst statement, we rewrite our MCP

0 ∈ F (x, y) +N(y; I) (4.23)to the form
Φ(x, y) ∈ Λ,where Φ(x, y) =

(

y
−F (x, y)

) and Λ = Gph N(·; I). To proceed, we �rst apply to problem(4.8) the general results on multiobjective optimization involving weak Pareto optimality,see [28] and [30, Theorem 5.80], and then use a calculus rule to compute the basic normalcone to the constraint set de�ned by
M :=

{

(x, y) ∈ R
nl1+ml2 | Φ(x, y) ∈ Λ

}

;see, e.g., [27, Theorem 6.10]. This allows us, by taking into account the special structureof the mapping Φ and the set Λ, to reduce calculations to computing the normal cone
N(ȳ,−F (x̄, ȳ); Λ) of the graphical set Λ = Gph N(·; I). The latter has been done in [36,Lemma 2.2]. To complete the proof of the �rst part of the theorem, it remains to observethat N(0;K) = K−.To derive the second part of the theorem, the �quali�ed� form of the necessary opti-mality conditions with z̄ 6= 0, we invoke the result from [28, Theorem 3.2]. This gives usa vector z̄ ∈ N(0;K) \ {0} satisfying

0 ∈ D∗ϕ(x̄, ȳ)(−z̄) +N(x̄, ȳ; ∆),



64 Multiobjective Problem with Equilibrium Constraints (MOPEC)where ∆ = {(x, y) ∈ ω × R
ml2 | Φ(x, y) ∈ Λ}. Assuming now the constraint quali�cation(4.22) imposed in the theorem, we conclude by [27, Theorem 6.10] that the normal cone

N(x̄, ȳ; ∆) is included into the set given as the second term on the right-hand side of (4.21).If, as an alternative to the constraint quali�cation (4.22), F is a�ne and ω is convexpolyhedral, we observe that the map
M(p) = {(x, y) ∈ ω × R

ml2 | Φ(x, y) + p ∈ Λ}happens to be calm at (0, x̄, ȳ). Since we clearly have ∆ = M(0), the desired representationof N(x̄, ȳ; ∆) is now provided by [20, Theorem 4.1]. This completes the proof of thetheorem.Note that the constraint quali�cation (4.22) imposed in Theorem 4.9 is exactly therespective MPEC-GMFCQ.Let us localize the assumption (A1') from page 36 as follows:(A1�) S is single-valued and locally Lipschitz continuous on a neighborhood of x̄.The latter enables us to derive the following quali�ed form of necessary optimalityconditions for the MOPCC under consideration.Theorem 4.10. Let (x̄, ȳ) be a weak Pareto solution of MOPCC. Suppose that assumption(A1�) is ful�lled and that the modi�ed constraint quali�cation
− (∇xF (x̄, ȳ))>v = 0

u− (∇yF (x̄, ȳ))>v = 0

uL = 0, vI+ = 0for k ∈ I0
1 (x̄, ȳ) either ukvk = 0 or uk < 0 and vk > 0for k ∈ I0
2 (x̄, ȳ) either ukvk = 0 or uk > 0 and vk < 0































⇒ v = 0 (4.24)
holds true. Then there exists a nonzero vector z̄ ∈ K− and multipliers ū, v̄ ∈ R

ml2 satisfyingthe relationships
ūL = 0 and v̄I+ = 0,for k ∈ I0

1 (x̄, ȳ) either ūkv̄k = 0 or ūk < 0 and v̄k > 0,for k ∈ I0
2 (x̄, ȳ) either ūkv̄k = 0 or ūk > 0 and v̄k < 0,as well as the inclusion (4.21).Proof. Our problem can be rewritten to the form of the multiobjective programminimize

K
Θ(x)subject to x ∈ ω,

(4.25)



4.3 Necessary optimality conditions 65where Θ(x) := ϕ(x, S(x)). By virtue of (A1�), the map Θ is locally Lipschitz continuousaround x̄. It follows from [28, Theorem 3.2] the existence of a nonzero vector z̄ ∈ K−satisfying
0 ∈ D∗Θ(x̄)(−z̄) +N(x̄;ω).It remains therefore to compute the coderivative of the map Θ. From [27, Theorem 5.1]we have the inclusion

D∗Θ(x̄)(w∗) ⊂ {a +D∗S(x̄)(b)|(a, b) ∈ D∗ϕ(x̄, ȳ)(w∗)}for all w∗ ∈ R
n due to the assumptions imposed on ϕ and S. To compute the coderivativeof S, we rewrite our MCP to the form (4.23) and employ again [27, Theorem 6.10]. Itfollows from this result that under the constraint quali�cation (4.24) we have the inclusion

D∗S(x̄)(y∗) ⊂ {−(∇xF (x̄, ȳ))>v| − y∗ = u− (∇xF (x̄, ȳ))>v, uL = 0, vI+ = 0,for k ∈ I0
1 (x̄, ȳ) either ukvk = 0 or uk < 0 and vk > 0and for k ∈ I0

2 (x̄, ȳ) either ukvk = 0 or uk > 0 and vk < 0}for all y∗ ∈ R
ml2 . The latter allows us to conclude that

D∗Θ(x̄)(z̄) ⊂ {a− (∇xF (x̄, ȳ))>v|0 = b+ u− (∇yF (x̄, ȳ))>v, (a, b) ∈ D∗ϕ(x̄, ȳ)(z̄)},that uL = 0 and vI+ = 0, that either ukvk = 0 or uk < 0 and vk > 0 for k ∈ I0
1 (x̄, ȳ), andthat either ukvk = 0 or uk > 0 and vk < 0 for k ∈ I0

2 (x̄, ȳ). This is exactly what we need,whence the proof is complete.We conclude this section with several remarks.It follows from the proof of Theorem 4.10 that the modi�ed constraint quali�cation(4.24) is needed only for the computation of D∗S(x̄) in terms of F . If F is a�ne, we donot need any constraint quali�cation at all; cf. [21, Theorem 6]. The modi�ed constraintquali�cation (4.24) from Theorem 4.10 is less restrictive than the constraint quali�cation(4.22) from Theorem 4.9. The reason is that the MCP under consideration is not coupledwith the constraint x ∈ ω.To ensure the localized assumption (A1�), it is su�cient to suppose that the MCPsatis�es the strong regularity condition at (x̄, ȳ). However, SRC ensures simultaneouslythe constraint quali�cation (4.22) of Theorem 4.9, cf. [36, Proposition 2.6].
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Chapter 5Solution Methods for EPECs andMOPECsThe previous chapters have focused on theoretical aspects of MPECs, EPECs and MOPECs.In this �nal chapter we discuss numerical methods to obtain solutions to EPECs andMOPECs. We �rst give a brief overview of existing approaches. The main part of thischapter is devoted to the generalization of a homotopy method to search for C-stationarypoints of EPCCs with simple structure. Final section concerns the solution method forMOPECs which invokes implicit programming approach.5.1 Overview5.1.1 Diagonalization methodsThe �rst approaches used by researches to solve problems from the EPEC class are thediagonalization type methods based on algorithms developed speci�cally for MPECs. Themain idea is to solve one MPEC at a time and repeat this procedure cyclically for everyMPEC. The computed solutions are then used to update the multistrategy vector of leadersuntil a �xed point of this operation is found.In [49] one can �nd a detailed description of the nonlinear Jacobi and the nonlinearGauss-Seidel diagonalization methods. The former one works as follows:1) Choose a feasible starting multistrategy (x(0), y(0)) of the EPEC, maximum numberof iterations J ∈ N and accuracy tolerance ε > 0 and set k = 1;2) For each i = 1, . . . , n, �x x−i,(k−1) and solve the MPEC of the ith leader. Denote thesolutions for leaders of these problems as xi,(k);3) Check the accuracy tolerance, i.e., if ||xi,(k) −xi,(k−1)|| < ε for each i = 1, . . . , n, thenSTOP and declare (x(k), y(k)) as the solution, else go to step 4;



68 Solution Methods for EPECs and MOPECs4) If k < J, then increase k by one and go to step 2 else report that the procedure failedto �nd a solution.The Gauss-Seidel method improves the Jacobi method since the �updated information�about the vector of leaders' multistrategies is used immediately after solving each MPECand not just after completed cycle. Hence Gauss-Seidel method works as follows:1) Choose a feasible starting multistrategy (x(0), y(0)) of the EPEC, maximum numberof iterations J ∈ N and accuracy tolerance ε > 0 and set k = 1;2) For each i = 1, . . . , n, �x (x1,(k), . . . , xi−1,(k), xi+1,(k−1), . . . , xn,(k−1)) and solve theMPEC for the ith leader. Denote the solution of this problem as xi,(k).3) Check the accuracy tolerance, i.e., if ||xi,(k) −xi,(k−1)|| < ε for each i = 1, . . . , n, thenSTOP and declare (x(k), y(k)) as the solution, else go to step 4;4) If k < J, then increase k by one and go to step 2 else report that the procedure failedto �nd a solution.For details on these methods, see [22] or [49].5.1.2 Sequential nonlinear complementarity methodThe algorithms based on the diagonalization method can be generally used for EPEC withthe equilibrium constraints in arbitrary form. A sequential NCP method, introduced in[49], was designed for EPCCs with the equilibrium constraint governed by the NCP (2.17).After a regularization of the complementarity condition, these constraints amount to
F 1(xi, x̄−i, y) ≥ 0,

F 2(xi, x̄−i, y) ≥ 0,

F 1
j (xi, x̄−i, y)F 2

j (xi, x̄−i, y) ≤ t, j = 1, . . . , ml2,

(5.1)where t > 0. Replacing the complementarity constraints by (5.1), we transform the MPCCinto a regularized nonlinear program. This is done simultaneously for each MPCC. The se-quential NCP method then can be described as solving, under assumption of EPEC-LICQ,a sequence of mixed complementarity problems for t ↘ 0. These mixed complementarityproblems correspond to collection of �rst-order KKT systems of each regularized NLP.A detailed comparison of the numerical performance of the above mentioned methodson randomly generated EPECs in the form of EPCCs with quadratic objectives and linearcomplementarity constraints, can be found in [49].



5.1 Overview 695.1.3 Price-consistent NCP methodIn [24] another special type of EPEC is considered. The equilibrium constraints representthe �rst order conditions of the following optimization problems of the followersminimize
yj

f j(x̄, yj, ȳ−j)subject to cj(x̄, yj, ȳ−j) ≥ 0,

yj ≥ 0.

(5.2)Again, using the solution mapping S of the lower problem, the ith leader is trying to solvethe MPEC in the form minimize
xi,y

ϕi(xi, x̄−i, y)subject to di(xi, x̄−i, y) ≥ 0,

xi ≥ 0,

y ∈ S(xi, x̄−i).

(5.3)Note that in [24] the upper-level objectives as well as the constraints are allowed todepend also on multipliers of the constraints cj(x, y) ≥ 0. Here, to be consistent with theprevious parts of the thesis, we restrict ourselves to the above considered case.To achieve a price consistent restriction of the EPEC composed of MPECs (5.3), thefollowing assumptions are considered.(A8) For each i = 1, . . . , n, the nonequilibrium constraints of the ith leader consist of aset of constraints of the form di(xi) ≥ 0 and a set of constraints d(x, y) ≥ 0 commonfor all leaders;(A9) For each i = 1, . . . , n, the objective function of the ith leader includes a term depen-dent on x only and a term common for all leaders, i.e., the objective is of the form
ϕi(x, y) = ϕi(x) + ϕ(x, y);If we strengthen the assumption (A9) such that each upper-level objective is of theform

ϕi(x, y) = ϕi(xi) + ϕ(x, y),then we say that the EPEC composed of MPECs (5.3) is completely separable.Generally, this problem entails three sets of players; the leaders, the followers andthe markets. The markets decide about the multipliers (shadow prices) of the (resource)constraints. When considering the so-called price-consistent problem, the multipliers asso-ciated with the common constraints are set to be the same. This allows us to eliminate alarge number of multipliers and to reduce signi�cantly the size of the problem.



70 Solution Methods for EPECs and MOPECsUnder assumptions (A8) and (A9), we can reduce the price-consistent EPEC to thefollowing problem
x̄i ∈

{

arg min
xi≥0,di(xi)≥0

ϕi(xi, x̄−i) + ϕ(xi, x̄−i, ȳ) − d(xi, x̄−i, ȳ)>λ̄− (h(xi, x̄−i, ȳ, z̄) − s̄)>µ̄

}

,

i = 1, . . . , n,

(ȳ, z̄, s̄) ∈

{

arg min
y≥0,z≥0,s≥0

ϕ(x̄, y) − d(x̄, y)>λ̄− (h(x̄, y, z) − s)>µ̄+ σ̄(y> z>)s

}

,

(λ̄, µ̄, σ̄) ∈

{

arg min
λ≥0,µ,σ≥0

d(x̄, ȳ)>λ+ (h(x̄, ȳ, z̄) − s̄)>µ− σ(ȳ>, z̄>)s̄

}

, (5.4)where
h(x, y, z) =



















∇y1f 1(x, y) −∇y1c1(x, y)z1...
∇ymfm(x, y) −∇ymcm(x, y)zm

c1(x, y)...
cm(x, y)



















.

Assume in addition the complete separability. Then the following result relates the priceconsistent restriction (5.4) to a special MPEC.Proposition 5.1. Assume that the EPEC (5.3) is completely separable. Then the �rstorder optimality conditions of (5.4) are equivalent to the strong stationarity conditions ofthe following MPEC: minimize
x

n
∑

i=1

ϕi(xi) + ϕ(x, y)subject to di(xi) ≥ 0, i = 1, . . . , n,

d(x, y) ≥ 0,

h(x, y, z) − s = 0,

0 ≤

(

y
z

)

⊥ s ≥ 0.

(5.5)
Proof. For proof see [24, Proposition 5.1].The problem above can be interpreted as �nding one particular solution to a multiob-jective optimization problem. Since price consistency is a restriction, any solution to (5.4)or (5.5) is a solution to the original problem. Clearly, in this way one may not be able to�nd a solution even in the case when it exists.For detailed comparison of the diagonalization methods, sequential nonlinear comple-mentarity method and a numerical solution method of the price consistent restriction ofEPEC, see [24, Section 6].



5.2 Homotopy method for computation of C-stationary points to EPCCs 715.2 Homotopy method for computation of C-stationarypoints to EPCCsNone of the above methods is without a signi�cant drawback. The sequence of pointsproduced by diagonalization methods may not converge. Moreover, even if there is a limitto this sequence and the lower problem is not uniquely solvable, the limit point may notbe a solution of EPEC. The sequential nonlinear complementarity method leads to solvinga sequence of large and complex complementarity problems. The price-consistent methoddepends on highly restrictive assumptions on the structure of the problem, which in someapplications could not be justi�ed.In this section we intend to design the �rst numerical method tailored speci�cally tothe structure of the EPCC. However, even we could not avoid to impose some restrictiveassumptions. The most crucial restriction concerns the dimension of the lower problem;this helps us to slightly simplify the description of the proposed algorithm.Let us turn our attention to the simplest form of EPCC (3.6) with convex-quadratic ob-jective functions ϕi constrained only by the lower problem in the form of a one-dimensionallinear complementarity problemfor a given vector x �nd y ∈ Rsuch that 0 ≤ Ax+ by + a ⊥ y ≥ 0
(5.6)with a row vector A ∈ R

1×nl and real constants a, b.Further we assume that b > 0, which is su�cient for the linear complementarity problem(5.6) to be uniquely solvable, [33]. This problem corresponds to the necessary and su�cient�rst order optimality conditions of the convex-quadratic parametric optimization problemminimize
y

1

2
by2 + (Ax+ a)ysubject to y ≥ 0.

(5.7)Hence, in this section we aim to analyze and propose a numerical method for the class ofEPCCs associated with n convex-quadratic MPCCs, where the ith mathematical program,
i = 1, . . . , n, has the formminimize

xi,y

1

2
(x>, y)Qi

(

x
y

)

+ (ci)>
(

x
y

)subject to 0 ≤ Ax+ by + a ⊥ y ≥ 0

(5.8)with the symmetric matrix Qi ∈ R
nl1+1 × R

nl1+1 and the vector ci ∈ R
nl1+1. Further weassume that the square submatrix which results from Qi by deletion of rows and columnswith indices corresponding to parameters x−i is positive de�nite.In [42], the authors introduced two versions of a piecewise a�ne homotopy methodwhich search for C-stationary points of convex-quadratic mathematical programs with lin-ear complementarity constraints. The methods performed surprisingly well and its elegant



72 Solution Methods for EPECs and MOPECsgeometric interpretation inspired us to consider modi�cation of the homotopy method I,[42], tailored to the EPCC above.We admit that EPCCs with only one follower with scalar decision variable seem toorestrictive. Also, in the view of restrictions we impose upon the data, cf. the next section,nontrivial description of the algorithm and the fact that the proposed numerical methodmay not �nd any C-stationary point even if there is one, the practical use our modi�edhomotopy method is questionable.On the other hand, during the process we gained a detailed, previously unknown infor-mation about the structure of the sets of stationary points and solutions to the consideredclass of problems.5.2.1 Parameter-free problemAnalogously to the general case (2.40), we can de�ne the index sets I+(x̄, ȳ), L(x̄, ȳ) and
I0(x̄, ȳ) associated with problem (5.6), setting F (x, y) = Ax+ by + a.For the ith MPCC (5.8), i = 1, . . . , n, and a feasible point (x̄, ȳ) we can explicitly writedown MPEC-LICQ as the following condition: The (l1 + 1) × 2 matrix

(

(A>
L∪I0)xi 0I+∪I0

bL∪I0 1I+∪I0

)has the full column rank. The EPEC-LICQ is then said to hold at (x̄, ȳ), if MPEC-LICQholds at (x̄, ȳ) for each MPCC (5.8), i = 1, . . . , n.Denote by λi and µi the multipliers of the ith mathematical program (5.8) correspond-ing to the constraints Ax+ by + a ≥ 0 and y ≥ 0, respectively. Let us write
Qi =

(

Qi
xx Qi

xy

Qi
yx Qi

yy

)

.Then the stationarity conditions for the program (5.8), cf. De�nition 2.4, consist of con-ditions (2.27) in form of a system of linear equations
0 =









(Qi
xx)xi (Qi

xy)xi −(A>
L∪I0)xi 0

Qi
yx Qi

yy −bL∪I0 −1I+∪I0

AL∪I0 bL∪I0 0 0
0 1I+∪I0 0 0

















x̄
ȳ

λ̄i
L∪I0

µ̄i
I+∪I0









+









ci
xi

ciy
aL∪I0

0









, (5.9)and, additionally, the respective conditions on multipliers λ̄I0 and µ̄I0.If MPEC-LICQ holds true, strong stationarity conditions and hence also all other typesof stationarity conditions are the �rst order necessary optimality conditions [45, Theorem7(1)].The collection of conditions (5.9) for each i = 1, . . . , n, together into one system pro-duces a non-square system of linear equations. Recall that we assume b > 0 and thus thevariable y is uniquely determined by the vector x. We can therefore treat the variable y



5.2 Homotopy method for computation of C-stationary points to EPCCs 73in each MPCC separately, denoting it by yi. This allows us to work with the followingsquare system of linear equations where, implicitly, variables yi for all i = 1, . . . , n attainthe same value:
0 =









Qxx Qxy −ÃL∪I0 0

Qyx Qyy −B̃>
L∪I0 −E>

I+∪I0

ĀL∪I0 B̃L∪I0 0 0
0 EI+∪I0 0 0

















x̄
ỹ

λ̄L∪I0

µ̄I+∪I0









+









cx
cy
ãI

0









, (5.10)where
Qxx =







(Q1
xx)x1...

(Qn
xx)xn






∈ R

nl×nl, Qyx =







Q1
yx...

Qn
yx






∈ R

n×nl,

Qxy = diag((Q1
xy)x1, . . . , (Qn

xy)xn) ∈ R
nl×n, Qyy = diag(Q1

yy, . . . , Q
n
yy) ∈ R

n×n,

ĀL∪I0 =







AL∪I0...
AL∪I0






∈ R

(1−a+)n×nl, ÃL∪I0 = diag((A>
L∪I0)x1 , . . . , (A>

L∪I0)xn) ∈ R
nl×(1−a+)n,

B̃L∪I0 = diag(bL∪I0 , . . . , bL∪I0) ∈ R
(1−a+)n×n, EI+∪I0 = diag(1I+∪I0 , . . . , 1I+∪I0) ∈ R

(a++a0)n×n,

ỹ =







ȳ1...̄
yn






∈ R

n, λ̃L∪I0 =







λ̄1
L∪I0...
λ̄n

L∪I0






∈ R

(1−a+)n, µ̃I+∪I0 =







µ̄1
I+∪I0...
µ̄n

I+∪I0






∈ R

(a++a0)n,

cx =







c1
x1...
cnxn






∈ R

nl, cy =







c1y...
cny






∈ R

n and ãL∪I0 =







aL∪I0...
aL∪I0






∈ R

(1−a+)n.To understand better the structure of the system (5.10) see the next example.Example 5.2. Consider the EPCC consisting of the following two MPCCs with parameters
α, β ∈ R: minimize

x1∈R1,y∈R1

1

2
(x1, x2, y)>





2 1 1
1 2 1
1 1 1









x1

x2

y



+ (1, 0, α)>





x1

x2

y



subject to 0 ≤ 2x1 + 2x2 + y − 2⊥ y ≥ 0,minimize
x2∈R1,y∈R1

1

2
(x1, x2, y)>





3 2 1
2 3 2
1 2 3









x1

x2

y



+ (0, 1, β)>





x1

x2

y



subject to 0 ≤ 2x1 + 2x2 + y − 2⊥ y ≥ 0,



74 Solution Methods for EPECs and MOPECsE.g., at the feasible point (x̄1, x̄2, ȳ) = (1, 0, 0) both constraints are active, hence I0 = {1}and the system (5.10) becomes
0 =

























2 1 1 0 −2 0 0 0
2 3 0 2 0 −2 0 0
1 1 1 0 −1 0 −1 0
1 2 0 3 0 −1 0 −1
2 2 1 0 0 0 0 0
2 2 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

















































x̄1

x̄2

ȳ1

ȳ2

λ̄1

λ̄2

µ̄1

µ̄2

























+

























1
1
α
β
−2
−2
0
0

























. (5.11)
4Recall the de�nition of the KKT-type stationarity concepts for EPCCs: Let (x̄, ȳ) bea feasible point for the EPCC associated with the MPCCs (5.8). Then we call (x̄, ȳ)i) weakly stationary if there exist Lagrange multipliers λ̄, µ̄ such that (x̄, ȳ, λ̄, µ̄) satis�esconditions (5.10);ii) C-stationary, if there exist Lagrange multipliers λ̄, µ̄ such that (x̄, ȳ, λ̄, µ̄) satis�esconditions (5.10) and, additionally, λ̄i

I0µ̄i
I0 ≥ 0, i = 1, . . . , n;iii) M-stationary, if there exist Lagrange multipliers λ̄, µ̄ such that (x̄, ȳ, λ̄, µ̄) satis�esconditions (5.10) and, additionally, either λ̄i

I0 > 0 and µ̄i
I0 > 0 or λ̄i

I0µ̄i
I0 = 0, i =

1, . . . , n;iv) strongly stationary, if there exist Lagrange multipliers λ̄, µ̄ such that (x̄, ȳ, λ̄, µ̄) sat-is�es conditions (5.10) and, additionally, λ̄i
I0 ≥ 0 and µ̄i

I0 ≥ 0, i = 1, . . . , n.The following proposition shows that under EPEC-LICQ the set of strongly stationarypoints of EPCC coincide with the set of solutions to EPCC.Proposition 5.3. Let (x̄, ȳ) be a local equilibrium point of EPCC. If EPEC-LICQ holdsat (x̄, ȳ), then it a strongly stationary point with unique multipliers. Conversely, a stronglystationary point (x̄, ȳ) is a local equilibrium point of EPCC.Proof. The �rst statement of the proposition follows from [45, Theorem 7(1)] applied toeach ith MPCC, i = 1, . . . , n. Since Lagrangian of each MPCC is strictly convex, thesecond statement is implied by [45, Theorem 7(2)].The following two assumptions imposed on the data of the EPCC are crucial for thehomotopy method to execute each step in a �regular� way.(A10) The EPEC-LICQ holds at each feasible point of EPCC.



5.2 Homotopy method for computation of C-stationary points to EPCCs 75(A11) Consider two matrices




Qxx Qxy −ÃL

Qyx Qyy −B̃>
L

ĀL B̃L 0



 ,





Qxx Qxy 0
Qyx Qyy −E>

I+

0 EI+ 0



and all matrices








Qxx Qxy −(Ã>
I0)>I 0

Qyx Qyy −(B̃I0)>I −(EI0)>J
(ĀI0)1 (B̃I0)1 0 0

0 EI0 0 0









,where the index sets index sets I ⊂ {1, . . . , n} and J ⊂ {1, . . . , n} ful�ll |I| + |J | =
n+ 1. Then we suppose that all these matrices are nonsingular.When we say that some condition imposed upon data or some property of data holdsin generic sense, we mean that it holds for all data in an open and dense subset of thedata space. This notion of �typical data� is particularly attractive if the data space isendowed with a topology. One of the possibilities how to prove that some conditionholds in a generic sense is to show that data which do not satisfy such condition or datawith undesired property lie in the union of �nitely many smooth manifolds of positivecodimensions.Alternatively, if the data space is endowed with a measure, the property holds in ageneric sense whenever it holds for almost all data with respect to this measure, cf. [48].Although the above assumptions on data of the EPCC might appear too restrictive,both hold in generic sense.Proposition 5.4. Assumption (A10) holds for all (A, b, a) from some open and densesubset M∗ of the set M = {(A, b, a) ∈ R

1×(nl+1) × R
1 × R

1}.Proof. The validity of EPEC-LICQ in generic sense is an immediate consequence of [48,Theorem 3(1)], which states that MPEC-LICQ holds true in generic sense.Proposition 5.5. Assumption (A2) holds for all (Q,A, b, a) from some open and densesubset N# of the set N = {(Q,A, b, a) ∈ R
(nl+1)×(nl+1) × R

1×(nl+1) × R
1 × R

1}.Proof. The statement follows from the fact that the set of all matrices M ∈ R
m×n of rank

r ≤ min{m,n} is a smooth manifold of codimension (m − r)(n − r) in R
m×n, cf. [23].Thus, each square matrix is nonsingular in generic sense. This completes the proof.In view of Propositions 5.4 and 5.5, we presume that from now on assumptions (A10)and (A11) hold.Similarly to [42] we can de�ne a nondegenerate C-stationary point of EPCC as follows.De�nition 5.6. Let (x̄, ȳ) be a C-stationary point of the EPCC with multipliers λ̄ and µ̄.Then we call (x̄, ȳ) nondegenerate if for each i = 1 . . . , n, and j ∈ I0 the sign conditionsimposed on multipliers are satis�ed with strict inequality, i.e., λi

jµ
i
j > 0.



76 Solution Methods for EPECs and MOPECsThe above condition is usually called the upper-level strict complementarity. Now, fora nondegenerate C-stationary point, we can introduce the following generalization of theconcept of a C-index from [42].De�nition 5.7. The C-index of a nondegenerate C-stationary point (x̄, ȳ) is the sum ofnegative components of the vector λ̄ (or, equivalently, µ̄).Clearly, a nondegenerate C-stationary point is strongly stationary if and only if itsC-index vanishes.5.2.2 A oneparametric problemLet us modify our EPCC in such a way that it will include a onedimesional real-valued pa-rameter t. The parametric problem EPCC(t) will then consist of n oneparametric MPCCs,where the ith MPCC(t), i = 1, . . . , n, is de�ned byminimize
xi,y

1

2
(x>, y)Qi

(

x
y

)

+ (di(t))>
(

x
y

)subject to 0 ≤ Ax+By + a ⊥ y ≥ 0,

(5.12)where di(t) := di + t(ci − di), i = 1, . . . , n, for some vectors di ∈ R
nl1+1 and t ∈ R. Laterwe will describe how the vectors di = di(0), i = 1, . . . , n, are constructed.The C-stationarity conditions of the EPCC(t) consist of

0 =









Qxx Qxy −ÃL∪I0 0

Qyx Qyy −B̃>
L∪I0 −E>

I+∪I0

ĀL∪I0 B̃L∪I0 0 0
0 EI+∪I0 0 0

















x
ỹ

λL∪I0

µI+∪I0









+









dx(t)
dy(t)
ãL∪I0

0









, (5.13)
0 ≤ λi

I0µi
I0 , i = 1, . . . , n, (5.14)where the vectors dx(t) and dy(t) are composed of components of vectors d1(t), . . . , dn(t)in the following way

dx(t) =







(d1(t))x1...
(dn(t))xn






and dy(t) =







(d1(t))y...
(dn(t))y






.Note that, by choosing t = 1, we arrive at the original EPCC and its correspondingC-stationarity conditions.Let us introduce the following sets:

Σsol = {(t, x, y) ∈ R × R
nl1 × R

1|(x, y) is a solution to EPCC(t)}

ΣS−stat = {(t, x, y) ∈ R × R
nl1 × R

1|(x, y) is a strongly stationary point of EPCC(t)}

ΣC−stat = {(t, x, y) ∈ R × R
nl1 × R

1|(x, y) is a C-stationary point of EPCC(t)}



5.2 Homotopy method for computation of C-stationary points to EPCCs 77As mentioned above, we have the relation Σsol ⊂ ΣS−stat ⊂ ΣC−stat and due to assump-tion (A10), the �rst inclusion becomes equality.For oneparametric as well as nonparametric EPCCs, it does not hold that all C-stationary points are nondegenerate in generic sense, see Figure 5.1 below. In our analysis,we are particularly interested in the following class of singular points.De�nition 5.8. For t̄ ∈ R a C-stationary point (x̄, ȳ) of EPCC(t̄) with multipliers λ̄, µ̄ iscalled the codimension n singularity (co-n-singularity) if the following conditions hold:i) Exactly n entries of the vector (λ̄I0 , µ̄I0) vanish.ii) If I ⊂ {1, . . . , n} and J ⊂ {1, . . . , n} are index sets such that λ̄I 6= 0, µ̄J 6= 0 and
|I| + |J | = n, then the matrix









cx − dx Qxx Qxy −(Ã>
I0)>I 0

cy − dy Qyx Qyy −(B̃I0)>I −(EI0)>J
0 (ĀI0)1 (B̃I0)1 0 0
0 0 EI0 0 0







is nonsingular.Further, we call the co-n-singular C-stationary point (x̄, ȳ)i) 0-singularity, if I 6= ∅, J 6= ∅ and I ∩ J = ∅;ii) i-singularity, if |I ∩ J | = i;iii) exit point, if either I = ∅ or J = ∅.Note that each co-n-singularity falls to exactly one of the above mentioned categories.The homotopy method traces the set ΣC−stat, searching for C-stationary points of theoriginal problem. In order to design such algorithm, we have to understand the structure ofthe set ΣC−stat, in particular its local structure around co-n-singularities. In the followingwe show that around each type of co-n singularity, ΣC−stat admits di�erent structure.0-singularityFix a t̄ ∈ [0, 1] and consider �rst the 0-singular C-stationary point (x̄, ȳ) of EPCC(t̄).If I ⊂ {1, . . . , n} and J ⊂ {1, . . . , n} are index sets uniquely de�ned by conditions λ̄I 6=
0, µ̄J 6= 0 and |I|+ |J | = n, let Ic and Jc denote the complement of I and J in {1, . . . , n},respectively.Then ΣC−stat can be locally around (x̄, ȳ) described by means of the following n systemsof equations

0 = Hλj(t, x, y, λI∪{j}, µJ) =

=











Qxx Qxy −(Ã>
I0)>I∪{j} 0

Qyx Qyy −(B̃I0)>I∪{j} −(EI0)>J
(ĀI0)1 (B̃I0)1 0 0

0 EI0 0 0



















x
ỹ

λI∪{j}

µJ









+









dx(t)
dy(t)
ãI∪{j}

0









,



78 Solution Methods for EPECs and MOPECsfor each j ∈ Ic and
0 = Hµj(t, x, y, λI , µJ∪{j}) =

=









Qxx Qxy −(Ã>
I0)>I 0

Qyx Qyy −(B̃I0)>I −(EI0)>J∪{j}
(ĀI0)1 (B̃I0)1 0 0

0 EI0 0 0

















x
ỹ
λI

µJ∪{j}









+









dx(t)
dy(t)
ãI

0









,for each j ∈ Jc.Clearly, for j ∈ Ic we have Hλj(t̄, x̄, ȳ, λ̄I∪{j}, µ̄J) = 0 and for j ∈ Jc we have
Hµj (t̄, x̄, ȳ, λ̄I , µ̄J∪{j}) = 0. Moreover, each system matrix in nonsingular due to the as-sumption (A11).Hence, locally around t̄ there exist for each j ∈ Ic locally unique linear functions
(xλj (t), yλj(t), λλj (t), µλj(t)) such that

(xλj (t̄), yλj(t̄), λλj(t̄), µλj(t̄)) = (x̄, ȳ, λ̄I∪{j}, µ̄J)and
Hλj(t, xλj (t), yλj(t), λλj (t), µλj(t)) = 0. (5.15)Analogously there exist locally unique linear functions (xµj (t), yµj(t), λµj (t), µµj (t)) for each

j ∈ Jc.Around the 0-singularity (t̄, x̄, ȳ), only a part of the set
Σλj := {(t, xλj (t), yλj(t))|t− t̄ ∈ (−ε, ε)}for some ε > 0 belongs to the set ΣC−stat. This is that part of Σλj , denoted by Σ

λj

+ , wherethe sign of multiplier λλj

j (t) is the same the sign of multiplier µλj

j (t). Analogously, the partthe sets
Σµj := {(t, xµj (t), yµj(t))|t− t̄ ∈ (−ε, ε)},which belongs to ΣC−stat is denoted by Σ

µj

+ .Theorem 5.9. At a 0-singular C-stationary point (x̄, ȳ) of the EPCC(t̄) with multipliers
λ̄, µ̄, for each j ∈ I the linear function (xλj (t), yλj(t), λλj (t), µλj(t)) intersects transversallyat (t̄, x̄, ȳ, λ̄, µ̄) with each linear function (xλk(t), yλk(t), λλk(t), µλk(t)), k ∈ I \ {j} and
(xµk(t), yµk(t), λµk(t), µµk(t)), k ∈ J.Also for each j ∈ J the linear function (xµj (t), yµj(t), λµj (t), µµj(t)) intersects transver-sally at (t̄, x̄, ȳ, λ̄, µ̄) with each linear function (xλk(t), yλk(t), λλk(t), µλk(t)), k ∈ I and
(xµk(t), yµk(t), λµk(t), µµk(t)), k ∈ J \ {j}.Proof. It is su�cient to show that λ̇λj

j (t̄) := d
dt
λ

λj

j (t̄) 6= 0. Since λ̇λk

j (t̄) = 0, k ∈ I \ {j} and
λ̇µk

j (t̄) = 0, k ∈ J, this would mean that the linear function (xλj (t), yλj(t), λλj (t), µλj(t))does not point into the same direction as any of the other linear functions.



5.2 Homotopy method for computation of C-stationary points to EPCCs 79Take derivatives with respect to t in (5.15). This yields
0 =











Qxx Qxy −(Ã>
I0)>I∪{j} 0

Qyx Qyy −(B̃I0)>I∪{j} −(EI0)>J
(ĀI0)1 (B̃I0)1 0 0

0 EI0 0 0





















ẋλj (t̄)
˙̃yλj(t̄)

λ̇
λj

I∪{j}(t̄)

µ̇
λj

J (t̄)











+









cx − dx

cy − dy

0
0









.This system of linear equations can be equivalently rewritten to
0 =















cx − dx Qxx Qxy −(Ã>
I0)>I∪{j} 0

cy − dy Qyx Qyy −(B̃I0)>I∪{j} −(EI0)>J
0 (ĀI0)1 (B̃I0)1 0 0
0 0 EI0 0 0
0 0 0 (ej)>I∪{j} 0





























1
ẋλj (t̄)
˙̃yλj(t̄)

λ̇
λj

I∪{j}(t̄)

µ̇
λj

J (t̄)















+













0
0
0
0

λ̇
λj

j (t̄)













,where ej denotes the jth unit vector of basis in R
n.By Laplace formula applied to the last row, the latter system matrix is nonsingular,since the matrix









cx − dx Qxx Qxy −(Ã>
I0)>I 0

cy − dy Qyx Qyy −(B̃I0)>I −(EI0)>J
0 (ĀI0)1 (B̃I0)1 0 0
0 0 EI0 0 0







is nonsingular for a co-n-singularity. Hence, λ̇λj

j (t̄) cannot vanish. This proves the �rstpart.The proof of the second statement is analogous.Theorem 5.10. On a neighborhood of a 0-singular C-stationary point (x̄, ȳ) of the EPCC(t̄)with multipliers λ̄, µ̄, the set ΣC−stat coincides with convex hull of the sets Σ
λj

+ , j ∈ Ic, and
Σ

µj

+ , j ∈ Jc. Moreover, all interior points of such convex hull share the same value of theC-index.Proof. Without loss of generality, it su�ces to show that for j, k ∈ J the convex hull of
Σ

λj

+ and Σλk
+ belongs to ΣC−stat.Take α ∈ (0, 1) and points (t1, x

(1), y(1)) ∈ Σ
λj

+ , (t2, x
(2), y(2)) ∈ Σλk

+ . Then we need toshow that also
(tα, x

α, yα) := α(t1, x
(1), y(1)) + (1 − α)(t2, x

(2), y(2)) ∈ ΣC−stat.The point (t1, x
(1), y(1), λ(1), µ(1)) solves (5.13), where multipliers λ(1), µ(1), uniquely de-termined by nonvanishing entries given by λλj

I∪{j}(t1), µ
λj

J (t1), respectively, satisfy condi-tions (5.14). Analogously, the point (t2, x
(2), y(2), λ(2), µ(2)) solves (5.13), where multipliers



80 Solution Methods for EPECs and MOPECs
λ(2), µ(2), uniquely determined by nonvanishing entries given by λλk

I∪{k}(t2), µ
λk

J (t2), respec-tively, satisfy conditions (5.14).Then, clearly, conditions (5.14) are satis�ed for λα = αλ(1) + (1 − α)λ(2) and µα =
αµ(1) + (1−α)µ(2). It remains to show that also (tα, x

α, yα, λα, µα) solves (5.13). To provethe latter statement, it su�ces now to recall that dx(t) and dy(t) is linear in t.Taking any α /∈ [0, 1], conditions (5.14) are violated for λα = αλ(1) + (1 − α)λ(2).This �nishes the proof of both parts of the theorem.
i-singularityAt the i-singularity, let k be an index such that λ̄k = µ̄k = 0. Then locally around
(t̄, x̄, ȳ) the whole sets Σλk and Σµk belong to ΣC−stat. This is due to the fact that µλk

k (t) = 0and λµk

k (t) = 0 for each t ∈ (−ε, ε) and the respective kth sign condition on biactivemultipliers is thus satis�ed regardless of the signs of λλk

k (t) and µµk

k (t), respectively.Theorem 5.9 clearly holds also for i-singularity. Then convex hull of the sets Σ
λj

+ , j ∈
Ic\{k},Σ

µj

+ , j ∈ Jc\{k}, {(t, xλk(t), yλk(t))|t−t̄ ∈ [0, ε)} and {(t, xµk(t), yµk(t))|t−t̄ ∈ [0, ε)}as well as convex hull of the sets Σ
λj

+ , j ∈ Ic\{k},Σ
µj

+ , j ∈ Jc\{k}, {(t, xλk(t), yλk(t))|t− t̄ ∈
(−ε, 0]} and {(t, xµk(t), yµk(t))|t− t̄ ∈ (−ε, 0]} belongs to the set ΣC−stat. We summarizethis in the following theorem.Theorem 5.11. On a neighborhood of an i-singular C-stationary point (x̄, ȳ) of theEPCC(t̄) with multipliers λ̄, µ̄, the set ΣC−stat coincides with a union of 2i convex hulls ofparts of sets Σλj , j ∈ Ic and Σµj , j ∈ Jc speci�ed above. Moreover, all interior points ofeach such convex hull share the same value of the C-index.Proof. The proof follows from the same arguments used in the proof of Theorem 5.10 andthe observations above.Exit pointNote that there are only two possible exit points (t̄, x̄, ȳ). At the �rst one with λ̄ = 0,all sets Σ

λj

+ , j = 1, . . . , n, belong to the set ΣC−stat.Moreover, the same is true for the feasible part of the set
ΣI+

= {(t, xI+

(t), yI+

(t))|t− t̄ ∈ (−ε, ε)}for some ε > 0, where the locally unique linear function (xI+

(t), yI+

(t), 0, µI+

(t)) is de�nedby the regular system of equations
0 =





Qxx Qxy 0
Qyx Qyy −E>

I+

0 EI+ 0









x
y
µI+



 +





dx(t)
dy(t)

0



 .Analogously, at the other exit point with µ̄ = 0, the sets Σ
µj

+ , j = 1, . . . , n, and feasiblepart of the set ΣL belong to the set ΣC−stat.



5.2 Homotopy method for computation of C-stationary points to EPCCs 81Theorem 5.12. At an exit point (x̄, ȳ) of the EPCC(t̄) with multipliers λ̄, µ̄, the statementof Theorem 5.9 holds true. Moreover, either the linear function (xI+

(t), yI+

(t), 0, µI+

(t)) in-tersects at (t̄, x̄, ȳ, λ̄, µ̄) transversally with the linear functions (xλj (t), yλj(t), λλj (t), µλj(t)),
j = 1, . . . , n or the linear function (xL(t), yL(t), λL(t), 0)) intersects at (t̄, x̄, ȳ, λ̄, µ̄) trans-versally with (xµj (t), yµj (t), λµj(t), µµj (t)), j = 1, . . . , n.Proof. Using the arguments from the proof of Theorem 5.9, we can prove that at the exitpoint with λ̄ = 0, for each j = 1, . . . n, the derivative λ̇λj

j (t̄) 6= 0 while λ̇I+

j = 0. Similarly,at the second exit point for each j = 1, . . . n, the derivative µ̇µj

j (t̄) 6= 0 while µ̇L
j = 0.Theorem 5.13. On a neighborhood of the exit point (x̄, ȳ) of the EPCC(t̄) with multipliers

λ̄ = 0 and µ̄ 6= 0, the set ΣC−stat coincides with a union of the feasible part of ΣI+ andconvex hull of the sets Σ
λj

+ , j = 1, . . . , n.On a neighborhood of the exit point (x̄, ȳ) of the EPCC(t̄) with multipliers λ̄ 6= 0 and
µ̄ = 0, the set ΣC−stat coincides with a union of the feasible part of ΣL and the convex hullof the sets Σ

µj

+ , j = 1, . . . , n.Proof. The proof follows from the same arguments used in the proof of Theorem 5.10 andobservations above.Clearly, the C-index of nondegenerate C-stationary points can change only at co-n-singularities which are not 0-singular. We show the change of C-index on the EPCC fromExample 5.1 with one particular setting of parameters α, β.Example 5.2. (continued) Consider the EPCC from Example 5.1 with α = 3/2 and
β = 1/2 and suppose that dx(t) = (−6,−10)> and dy(t) = (−3,−5)>.Then one can �nd exactly six co-2-singularities of the EPCC(t): two exit points, (1/3,2/3, 0) at t = 2/3 and (1, 0, 0) at t = 0 with multipliers (λ, µ) equal (0,0,1, 1/3) and (-2,-4, 0, 0), respectively; two 0-singularities, (25/9, -16/9, 0) at t = 8/9 and (1,0,0) at t = 4/7with multipliers (2,0,0,-8/9) and (0,-6/7,4/7,0), respectively; and two 1-singularities, (1, 0,0) at t = 8/11 and (17/9, -8/9, 0) at t = 4/9 with multipliers (6/11, 0, 8/11, 0) and (0,-2,0, -4/9), respectively.All co-2-singularities are depicted on Figure 5.1 in multiplier spaces; exit points as redbullets, 0-singularities as black bullets and 1-singularities as green bullets. The shadedarea is the set of all possible biactive multipliers of C-stationary points to EPCC(t).The interior points of the bounded piece correspond to multipliers of C-stationarypoints with C-index 1. The 1-singularity (1, 0, 0) at t = 8/11 connects this piece with theone with interior points with vanishing C-index. The other 1-singularity connects it withthe piece with interior points with C-index 2. The latter two pieces are connected to theparts of the set ΣC−stat of points with vanishing C-index by exit points.Note on Figure 5.1 that slight shifts of the dashed lines corresponding to small per-turbations to the data eliminate neither the co-2-singularities nor the remaining singularC-stationary points on the border of the shaded area. 4
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Figure 5.1: Co-2-singularities of the EPCC(t)5.2.3 Homotopy methodThe basic idea of the homotopy method we are about to describe in detail is to formulatean arti�cial EPCC by modifying (jointly) objective functions of all MPCCs (5.8) such thata chosen feasible point (x̄, ȳ) becomes strongly stationary. The parameter t then creates aconnection between the original and the arti�cial problem.Let (x̄, ȳ) be a feasible point of EPCC and L, I+ and I0 be the associated index sets.Based on the structure of the index sets we construct the vector d(0) = (dx(0)>, dy(0)>)>.If L = {1}, then we set µ̄ := 0 and choose a vector λ̄ with arbitrary strictly positivecomponents. If I+ = {1}, then we set λ̄ := 0 and µ̄ with arbitrary strictly positivecomponents. If I0 = {1}, we set either µ̄ := 0 and choose a multiplier vector µ̄ witharbitrary strictly positive components or vice versa. In either case, we use the followingformula to compute the vector d(0).
d(0) := −

(

Qxx Qxy

Qyx Qyy

)(

x̄
ỹ

)

+

(

ÃL∪I0

B̃>
L∪I0

)

λ̄+

(

0
E>

I+∪I0

)

µ̄. (5.16)Then (x̄, ȳ) is a solution of EPCC(0). To obtain vector d(t), we set
d(t) =

(

dx(t)
dy(t)

)

:=

(

dx(0)
dy(0)

)

+ t

((

cx
cy

)

−

(

dx(0)
dy(0)

))

. (5.17)The homotopy method traces the set ΣC−stat starting at t = 0. Note that if for theinitial feasible point the complementarity constraint is biactive, the method starts at oneof the two exit points.Overview of the homotopy method I for MPCCsBefore we proceed to the homotopy method in detail, let us summarize the homotopymethod I from [42] which searches for C-stationary points of convex-quadratic mathemat-ical programs with linear complementarity constraints.



5.2 Homotopy method for computation of C-stationary points to EPCCs 83The program (5.8) can be converted to the following convex-quadratic MPCC in vari-able z =

(

xi

y

) minimize 1

2
z>Q̄z + c̄>zsubject to 0 ≤ Āz + ā ⊥ B̄z + b̄ ≥ 0,

(5.18)where
Q̄ =

(

Qi
xixi Qi

xiy

Qi
yxi Qi

yy

)

, c̄ =

(

ci
xi

ciy

)

+ 2

(

Qxi,x−i

Qy,x−i

)

x̄−i,

Ā = (Axi , b), B̄ = (0, 1), ā = (A>
x−i)>x̄−i + a, b̄ = 0.For the purposes of this summary of the homotopy method I, consider the generalproblem (5.18) with matrices Ā, B̄ ∈ R

ml2×(l1+ml2).Let MPEC-LICQ hold at each feasible point of (5.18). Given a feasible point z̄ of theMPCC (5.18), put λ̄I+ = 0, µ̄L = 0 and
d̄ = −Q̄z̄ + Ā>

L∪I0λ̄L∪I0 + B̄>
I+∪I0µ̄I+∪I0with some strictly positive values of components of vectors λ̄L∪I0, µ̄I+∪I0 .Then z̄ is a local minimizer of the programminimize 1

2
z>Q̄z + (d̄+ t(c̄− d̄))>zsubject to 0 ≤ Āz + ā ⊥ B̄z + b̄ ≥ 0

(5.19)for t = 0. Locally around the point (t, z, λ, µ), C-stationary points of MPCC(t + τ) andtheir corresponding multipliers are given by the path




z(τ)
λ(τ)
µ(τ)



 =





z
λ
µ



+ τ





ż

λ̇
µ̇



with




Q̄ −Ā>
L∪I0 −B̄>

I+∪I0

ĀL∪I0 0 0
B̄I+∪I0 0 0









ż

λ̇
µ̇



 =





c̄− d̄
0
0



 .At the start, t is set to zero and the method traces the homotopy path in the directionof increasing t. The steplength is then determined as the minimal positive value of τ̄ forwhich one of the following inequalities vanishes
Āiz(τ) + āi > 0, i ∈ I+,

B̄jz(τ) + b̄j > 0, j ∈ L,

λi(τ) 6= 0, i ∈ I0,

µj(τ) 6= 0, j ∈ I0.



84 Solution Methods for EPECs and MOPECsThis value can be easily determined using the ratios
qi = −

Āiz + āi

Āiż
, i ∈ I+,

qi = −
λi

λ̇i

, i ∈ I0,

rj = −
B̄jz + b̄j
B̄j ż

, j ∈ L,

rj = −
µj

µ̇j

, j ∈ I0.Then, if moving forward in t, the method takes the steplength
τ̄ = min({qi ∩ (0, 1 − t), i ∈ I+ ∪ I0, rj ∩ (0, 1 − t), j ∈ L ∪ I0}).If this minimum is taken over the empty set, the value t = 1 can be reached directlyand the method terminates with a C-stationary point of the MPCC.If the minimum is attained at some qi, i ∈ I0, then λi(t+ τ̄ ) vanishes and biactivity ofconstraint i is dropped (i.e., we put the index i to the set I+). The sign of µi(t+ τ̄) thendecides about the direction in t for the next step: if µi(t + τ̄ ) < 0, the direction changes.If the minimum is attained at some qi, i ∈ I+, then we add the biactivity of the constraint

i (i.e., we put index i to the set I0) and the sign of multiplier µi(t + τ̄ ) determines thedirection of the next step. For ratios rj we proceed analogously.If the method currently proceeds in t backwards, the next step is the maximal negativevalue of the ratios
τ̄ = max({qi ∩ (−∞, 0), i ∈ I+ ∪ I0, rj ∩ (−∞, 0), j ∈ L ∪ I0}).If this maximum is taken over the empty set, an in�nite step could be taken to t↘ −∞and the method thus terminates without a solution. Else, analogous changes in activitiesare performed.The method described above depends on the knowledge of initial feasible point z̄ ofMPCC. The following Phase I.a approach uses the homotopy method itself to provide afeasible point.Consider the following auxiliary problem in variables z ∈ R

l1+ml2 and s ∈ Rminimize 1

2
s2subject to 0 ≤ (Ā, u− ā)

(

z
s

)

+ ā ⊥ (B̄, v − b̄)

(

z
s

)

+ b̄ ≥ 0
(5.20)for some chosen vectors u, v ∈ R

ml2 with 0 ≤ u ⊥ v ≥ 0. Note that the point (z, s) = (0, 1)is always feasible. Hence we can try to apply the homotopy method I to (5.20). If asolution point (z̄, 0) is found, z̄ is a feasible point for MPCC.



5.2 Homotopy method for computation of C-stationary points to EPCCs 85If l1 + 1 ≤ ml2, the �rst l1 + ml2 + 1 components of (u>, v>) are set to zero andthe remaining components are set to one. However, the Hessian of the objective is onlypositive semide�nite and thus the method may not succeed in some cases. Then, Phase I.bapproach is guaranteed to provide either a feasible point or veri�cation of inconsistency.In Phase I.b, sometimes called the disjunctive approach [25], we check, using the PhaseI of the simplex method, all 2ml2 polyhedral pieces of the feasible region. Each such pieceis determined by an index set I ⊂ {1, . . . , ml2} and conditions
ĀIz + āI = 0, ĀIcz + āIc ≥ 0, (5.21)
B̄Icz + b̄Ic = 0, B̄Iz + b̄I ≥ 0. (5.22)If all polyhedral pieces are inconsistent, then the considered MPCC is also inconsistent.Now, we modify this homotopy method I to the EPCC composed of MPCCs (5.8),using the knowledge about the structure of the set ΣC−stat around co-n-singular points.Phase I for EPCCAnalogously to Phase I procedure for MPCCs, we can compute an initial feasible pointof the EPCC either via application of the homotopy method I for MPCCs to an auxiliaryprogram or via checking each polyhedral piece of the feasible region of EPCC.The problem (5.20) now takes the form of an MPCC in variables x, y and sminimize 1

2
s2subject to 0 ≤ (A, b, u− ā)





x
y
s



+ ā ⊥ (0, 1, v)





x
y
s



 ≥ 0
(5.23)for some chosen scalars u, v ∈ R with 0 ≤ u ⊥ v ≥ 0. Again, the point (x, y, s) = (0, 0, 1) isalways feasible. Hence, we can try to apply the homotopy method I to (5.23). If a solutionpoint (x̄, ȳ, 0) is found, (x̄, ȳ) is feasible point of the EPCC.Similarly, if Phase I.a fails to provide a feasible point, we can apply Phase I.b. In ourcase it is enough to check, using the Phase I of the simplex method, just 2 polyhedralpieces of the feasible region. The �rst one is determined by conditions

Ax+ by + a = 0, y ≥ 0,while the second one by conditions
Ax+ by + a ≥ 0, y = 0.Overview of the algorithmFrom the analysis of the structure of the set ΣC−stat around co-n-singularities, it is clearthat the set ΣC−stat consists of �nitely many convex polyhedral pieces: (one-dimensional)



86 Solution Methods for EPECs and MOPECshal�ines corresponding to index sets I+ and L and n-dimensional polyhedral sets cor-responding to index set I0. It is thus su�cient to design an algorithm which traces allone-dimensional faces of each such convex polyhedral piece; such procedure would give usfull information about the set ΣC−stat, see Example 5.1.The description of the algorithm to trace the biactive part of the set ΣC−stat is signi�-cantly more complicated then in the homotopy method I for MPCCs. We make use of thefollowing lists of points or vectors:�untreated exit points�: the list of visited exit points for which the correspondingset ΣL
+ or ΣI+

+ was not yet traced�multiplier signs�: the list of vectors of signs of biactive multipliers, uniquelydetermining each convex polyhedral piece of biactive partof the set ΣC−stat�co-n-singularities�: the list of visited co-n-singularities�i-singularities�: the list of visited i-singularities�biactive C-stationary points�: the list of found C-stationary points in the biactive partof the set ΣC−stat�new directions�: the list of directions in which the next step can be madefrom the current iterate�new multiplier signs�: the list of vectors of signs of biactive multipliers, uniquelydetermining polyhedral pieces connected by i-singularityto previously traced polyhedral piece of the set ΣC−statAt the start of the method, all lists above are empty.First, we describe the steps of the method based on the initial structure of the indexsets.Starting the method at (x̄, ȳ) and t = 0 with L = {1} or I+ = {1}, the method tracesthe set ΣL
+ or ΣI+

+ in the direction of increasing t up to the respective exit point. In theformer case, we compute the ratio
r = −

y

ẏwith




Qxx Qxy −ÃL

Qyx Qyy −B̃>
L

ĀL B̃L 0









ẋ
ẏ

λ̇



 =





cx − dx(0)
cy − dy(0)

0



 .For r ≤ 0 or r ≥ 1 we then make a step into t̄ = 1 and terminate with the solution, elsetake a step into t̄ = r and add activity of the constraint y ≥ 0. In latter case we computethe ratio
q = −

Ax + by + a

Aẋ+ bẏ



5.2 Homotopy method for computation of C-stationary points to EPCCs 87with




Qxx Qxy 0
Qyx Qyy −E>

I+

0 EI+ 0









ẋ
ẏ
µ̇



 =





cx − dx(0)
cy − dy(0)

0



 .For q ≤ 0 or r ≥ 1 then make a step into t = 1 and terminate with the solution, else takea step into t = q and add activity of the constraint Ax+ by + a ≥ 0.Starting the method at (x̄, ȳ) and t = 0 with I0 = {1}, we add the point (x̄, ȳ) to thelist �untreated exit points�, otherwise proceed in the same way as if we got to one of theexit points by a step described above. The reason for this is that the method traces theset ΣL
+ or ΣI+

+ at the end of the procedure unless it was already traced the the step above.Each step of the algorithm in the biactive case proceeds by tracing line segments be-tween two neighboring co-n-singularities or half lines emanating from each co-n-singularity.Each such line can be generated by �xing n− 1 vanishing multipliers. In the former casethese �xed vanishing multipliers are common to both co-n-singularities. If index sets offree multipliers are I and J, cf. assumption (A11), and we are moving in t forward, themethod takes the steplength
τ̄ = min({−

λj

λ̇j
∩ (0, 1 − t), j ∈ I,−

λi

λ̇i
∩ (0, 1 − t), j ∈ J}),where the vectors λ̇I and µ̇I are given by the solution of









Qxx Qxy −(Ã>
I0)>I 0

Qyx Qyy −(B̃I0)>I −(EI0)>J
(ĀI0)1 (B̃I0)1 0 0

0 EI0 0 0

















ẋ
ẏ

λ̇I

µ̇J









=









cx − dx(0)
cy − dy(0)

0
0









. (5.24)If the minimum is taken over the empty set, t = 1 can be reached directly.If we are moving in t backwards, the steplength is determined by
τ̄ = max({−

λj

λ̇j
∩ (−∞, 0), j ∈ I,−

λj

λ̇j
∩ (−∞, 0), j ∈ J}).Now we describe how the algorithm proceeds in the biactive case. First, we add thevector of signs of the nonzero multiplier vector to the list �multiplier signs�. We label theexit point to be the �starting point� and initiate the following recursive procedure called�SearchStep�:1) If the current iterate is already in the list �co-n-singularities�, terminate �SearchStep�,else add the iterate to the list.2) If t = 1, and the iterate for the current vector of multiplier signs is not on the list�biactive C-stationary points�, add it to the list with information about the multipliersigns and terminate �SearchStep�.



88 Solution Methods for EPECs and MOPECs3) If the current iterate is an i-singularity, and not in the list �i-singularities�, add it tothe list.4) If the current iterate is an exit point not in the list �untreated exit points� and is notlabeled as �starting point�, add it to the list.5) Put all possible n directions, determined by the index sets I and J , from the currentiterate to the list �new directions�. As long as the list is nonempty, execute step 6).6) For the �rst direction in the list, determine the direction of the step in t by the signof the derivative in variable t of that free multiplier which is vanishing at the currentiterate and the corresponding component of the vector of sings of multipliers. If theycoincide, the method proceeds with the step forward in t, else we proceed backwardin t. Find the steplength. If the next step has a �nite length, initiate the procedure�SearchStep� for the new iterate. Delete the �rst entry from the list �new directions�.When the �rst call of �SearchStep� terminates, we have successfully �nished the analysisof the �rst convex polyhedral patch of the set ΣC−stat. Then, until the list �i-singularities�is empty, repeat the following steps:1) Determine the list �new multiplier signs�.2) Until the list �new multiplier signs� is empty, repeat the following. If its �rst entryis not in the list �multiplier signs�, add it to the list �multiplier signs�, label the�rst entry in the list �i-singularities� to be the �starting point�, empty the list �co-
n-singularities� and initiate �SearchStep�. Delete the �rst entry in the list �newmultiplier signs�.3) Delete the �rst entry in the list �i-singularities�.Now, if the list �untreated exit points� is nonempty, it su�ces to check ΣL

+ and ΣI+

+ notyet investigated .Following the set of rules above, the algorithm clearly never traces the same convexpolyhedral piece of the set ΣC−stat twice. However, it either terminates after one step at anonbiactive C-stationary point or traces only polyhedral pieces of the set ΣC−stat connectedby i-singular and exit points with t < 1.Theorem 5.14. Let the data of the EPCC associated with n MPCCs (5.8) satisfy bothassumptions (A1) and (A2). Then the following assertions hold:i) The algorithm terminates after �nitely many steps.ii) If the list �biactive C-stationary points� is nonempty, the set of all detected biac-tive C-stationary points consists of the union of convex hulls of points from the list�biactive C-stationary points� with the same corresponding vector of signs of multi-pliers. Moreover, interior points of each such convex hull consist of nondegenerateC-stationary points with the same C-index.



5.2 Homotopy method for computation of C-stationary points to EPCCs 89Proof. The statement of part i) follows due to the rules described above. There are only�nitely many co-n-singularities and each convex polyhedral piece of the set ΣC−stat is tracedat most once.The second statement follows from Theorems 5.10, 5.11 and 5.13.Example 5.2. (continued) Let us choose the initial feasible point (x̄1, x̄2, ȳ, λ̄1, λ̄2, µ̄1, µ̄2)
= (2, 2, 0, 0, 0, 1, 1). Then the computation of d(0) according to (5.16) yields (-6, -10, -3,-5)>. The application of the homotopy method described above results in the followingthree C-stationary points (x1, x2, y): within the biactive case the algorithm �nds points(-2, 3, 0) and (1, 0, 0) with multipliers (λ1, λ2, µ1, µ2) equal to (0,3, 5/2, 3/2) and (3/2,3/2, 1, 0), respectively, and a nondegenerate C-stationary point (10/3, -8/3, 2/3) with themultiplier vector (17/6, 1/2, 0, 0).The set of C-stationary points then consists of the union of the point (10/3, -8/3, 2/3)and convex hull of points (-2, 3, 0) and (1, 0, 0). Note that since each point is even stronglystationary, the set of C-stationary points coincides with the set of solutions of the EPCC.On Figure 5.1, the blue bullets and all points on the blue line correspond to multipliersof C-stationary points of the EPCC within the biactive case. 45.2.4 Numerical resultsWe have tested the performance of the homotopy method for EPCCs associated with
n = 2, . . . , 7 MPCCs with convex-quadratic objective functions and with one linear com-plementarity constraint. For each such problem we considered l1 = 1, 10 and 50 variableson on the upper-level. For each combination of (n, l1) we run the method on hundredrandomly generated test problems. The algorithm was implemented in Matlab 6.5 andtests were performed on a 2.8GHz PC with 1GB RAM. The results are summarized inTable 5.1.The columns in Table 5.1 denote the following:I.a: number of problems, for which Phase I.a succeededC: number of problems, for which at least one C-stationary point was foundM: number of problems, for which at least one M-stationary point was foundS: number of problems, for which at least one solution was foundbiac: number of problems, for which the method entered the biactive case

#C-s: total number of detected C-stationary points
#M-s: total number of detected M-stationary points
#S-s: total number of detected solutions
#n-biact: total number of detected nonbiactive stationary points
∅cpu: average CPU-time for solved problems in seconds
∅biac C-s: average number of computed C-stationary points in the biactive case



90 Solution Methods for EPECs and MOPECsTable 5.1: Numerical results for homotopy method
n l I.a C M S biac #C-s #M-s #S-s #n-biac ∅cpu ∅biac C-s2 1 86 62 60 50 53 93 83 59 44 0.065 0.9252 10 85 56 56 43 51 94 79 51 31 0.075 1.2352 50 78 63 62 46 52 105 89 61 29 0.158 1.4623 1 76 66 64 53 52 197 141 83 45 0.116 2.9233 10 85 67 63 40 59 292 177 75 28 0.151 4.4753 50 89 71 67 45 65 320 191 82 30 0.528 4.4624 1 83 65 61 44 57 551 298 83 38 0.309 9.0004 10 80 87 84 56 76 1191 596 163 39 0.732 15.1584 50 81 83 80 47 74 1369 580 96 38 4.722 17.9875 1 81 76 72 53 70 1718 817 117 48 0.949 23.8575 10 85 85 83 39 79 3657 1277 106 35 5.331 45.8485 50 82 93 92 54 82 5601 1849 187 44 20.018 67.76836 1 80 80 73 49 68 7937 1920 138 43 6.136 116.0886 10 78 92 89 55 81 15962 4818 182 49 30.147 196.4576 50 92 97 96 55 91 26650 6478 370 43 130.664 292.3857 1 81 89 84 52 82 57354 9112 533 43 109.848 698.9157 10 85 98 97 48 91 111419 17564 493 41 353.154 1223.9347 50 89 98 98 56 94 178385 23136 727 46 1196.385 1897.223We conclude this section with several remarks.For each tested problem we applied �rst the phase I.a. If it failed to produce a feasiblepoint of EPCC, the �rst polyhedral piece in phase I.b yielded a starting point for ourhomotopy method. The �rst piece corresponds in our case to that part of feasible set forwhich the constraint y ≥ 0 is active. We could have, of course, started immediately withphase I.b, since for m = 1 this procedure involves checking only 2 pieces and is thus notthat costly as in case of a high number of complementarity constraints.With higher values of n, the method is more likely to �nd a C-stationary point. More-over, only for a very small number of test problems for which a C-stationary point was foundthe method failed to �nd also an M-stationary point. The strongly stationary points, inour case already the solutions to EPCCs, were found for each tested combination of (n, l1)roughly for 50 percent of randomly generated test problems.The obtained results indicate an interesting fact that EPCCs may posses huge numberof solutions. This brings up several important issues. The most serious one is the impactof this large cardinality of the solution set on concrete decision making processes andinterpretation of these solutions with respect to the input data. Also, recall the numericalmethods from previous part of this chapter. In the view of our analysis, the question arises,to which speci�c solution these methods converge?



5.3 Numerical method for MOPCCs 915.3 Numerical method for MOPCCsIn this section we propose and describe a numerical method to solve the MOPCCs consid-ered in Chapter 4 based on the implicit programming approach, cf. [25]. The reformulation(4.25) of our MOPCC plays a crucial role in this approach.Note that the optimality conditions (4.21) can be used for numerical purposes only inthe case when the index sets (4.20) at the solution can be guessed or well estimated. Alter-natively, one can employ a nonsmooth multiobjective optimization method, e.g., the onlinemultiobjective optimization software WWW-NIMBUS 4.1. For details about NIMBUS werefer to [26] and to the web page http://nimbus.mit.jyu.fi.The implicit programming approach has been developed in connection with the Stack-elberg situation in [40], [39] with the usage of a standard bundle method in nonsmoothoptimization. In this section we describe a variant of this approach, which can be used forthe numerical solution of the class of MOPCCs under consideration. As a test problem wetake an example from [40], see below.Under the assumption (A1') we readily observe that (x̄, ȳ) ∈ ω × I is a weak Paretosolution of MOPCC whenever
ȳ = S(x̄)and there is a neighborhood U of (x̄, S(x̄)) such that (with Θ(x) = ϕ(x, S(x))) the relation

Θ(x) − Θ(x̄) ∈ rint K,does not hold for any (x, S(x)) ∈ U ∩ (ω× I). We face a new game only among the leaderswithout any hierarchical structure in form of a multiobjective optimization problem.In order to use NIMBUS for calculations, one has to provide an oracle which is able tocompute the function values of each leader's objective and the matrix of subgradients
(

ξ̂1, . . . , ξ̂n
)

,where ξ̂i is an arbitrary element from the Clarke subdi�erential ∂̄Θi(x), i = 1, . . . , n.Assume that all objectives ϕi, i = 1, . . . , n, are continuously di�erentiable. Using thetechnique of adjoint equations, ξ̂i is then computed by the formula
ξ̂i = ∇xϕ

i(x, y) − (∇xFL∪(I0\M)(x, y))
>π̂i,where π̂i is the unique solution of the adjoint equation

0 = (∇yFL∪(I0\M),L∪(I0\M)(x, y))
>π −∇yϕ

i(x, y)L∪(I0\M),and where M is an arbitrary subset of I0(x, y) = I0
1 (x, y) ∪ I0

2 (x, y), see the developmentin Section 2.3.2 leading to (2.42) and (2.43).The followers' strategies for the given leaders' strategies can be computed by any exist-ing method for the solution of MCP; we used the method proposed by Fukushima in [19]based on the sequential quadratic programming code NLPQL due to Schittkowski.



92 Solution Methods for EPECs and MOPECsTable 5.2: Parameter speci�cation for the production costsFirm 1 Firm 2 Firm 3
ai 2 3 5
bi 15 12 2WWW-NIMBUS 4.1 works as follows. The user must specify the starting point of theprocedure. Each time we have used NIMBUS, the starting point was set as the productionquantities from the Stackelberg game. NIMBUS then computes a solution to the consideredMOPCC which we call initial. This point is a projection of the starting point onto theset of e�ective points. Since this initial solution is rarely satisfactory, the user is asked to�guide the solver to a desired direction�. In NIMBUS, this process is called �classi�cation�.The user can choose which of the function values should be decreased from the currentlevel and which of the functions are less important. After submitting a new classi�cation,NIMBUS provides a new optimal solution.Consider now again an oligopolistic market model from Section 3.2.1 and further assumein the respective model that the leaders act cooperatively and that followers face productionlimitations given by I ⊂ R

ml2
+ . Then this model belongs to the family of MOPCCs discussedin Chapter 4.Recall that whenever assumption (A2) is satis�ed then at each feasible multistrategy

(x, y) the assumption (A1�) and, moreover, also the constraint quali�cation (4.24) holdstrue. Thus, given an optimal strategy pair (x̄, ȳ), the necessary optimality conditions fromTheorem 4.10 are satis�ed.If the function F (3.8) happens to be a�ne and ω is convex polyhedral, we get theoptimality conditions from Theorem 4.9 without any constraint quali�cation, and so wedo not need to impose conditions (i)-(iv) of assumption (A2). This situation occurs in thefollowing illustrative example.Example 5.15. Consider an example of three �rms supplying some homogeneous producton the market with the linear demand function
p(T ) = 20 − Tand assume that each �rm has a linear production cost function in the form

ci(xi) = aix
i + bi, i = 1, 2, 3,with the coe�cients given by Table 5.2.Each �rm aims to minimize its loss functions ϕi(x1, x2, x3), i = 1, 2, 3, given by

ϕ1(x1, x2, x3) = 2x1 + 15 − x1(20 − x1 − x2 − x3),

ϕ2(x1, x2, x3) = 3x2 + 12 − x2(20 − x1 − x2 − x3),

ϕ3(x1, x2, x3) = 5x3 + 2 − x3(20 − x1 − x2 − x3).



5.3 Numerical method for MOPCCs 93Table 5.3: Productions and pro�ts - Cournot and Stackelberg gamesFirm 1 Firm 2 Firm 3Cournot Production 5.500 4.500 2.500equilibrium Pro�t 15.250 8.250 4.250Stackelberg Production 11.000 2.667 0.667equilibrium Pro�t 25.333 -4.889 -1.556MOPCC Production 5.000 4.953 2.524stationary point Pro�t 12.619 10.404 4.369When Firm 1 and Firm 2 become the market leaders who act cooperatively, the resultingproblem can be written in the form (4.8) with y = x3. In this simple case we can evencompute stationary points satisfying the necessary conditions (4.21). Assuming that thefollower (Firm 3) produces x3 > 0, we arrive at the system of four equations with sixvariables:
0 = z1(−18 + 2x1 + x2 + x3) + z2x2 − v,

0 = z1x1 + z2(−17 + x1 + 2x2 + x3) − v,

0 = z1x1 + z2x2 − 2v,

0 = −15 + x1 + x2 + 2x3.If we �x the value of the multiplier z1 (e.g., z1 = 1), then for di�erent settings of x1we get solutions to the system above. However, since the optimality conditions (4.21) areonly necessary, an additional analysis is needed to verify that the obtained solution is aweak Pareto solution to the given MOPCC.In Table 5.3 we present the comparison of the production quantities and pro�ts ofeach �rm when they play the Cournot game, the Stackelberg game with Firm 1 as theleader, and the MOPCC with Firm 1 and Firm 2 as the leaders; for brevity we present thecomparison only for one possible stationary point. The optimal market prices for Cournot,Stackelberg, and MOPCC games are 7.5, 5.667 and 7.524, respectively. 4Next we consider a more realistic example of the oligopolistic market modeling andapply to its solution the numerical algorithm and computer codes described above.Example 5.16. Let all the production cost functions be in the form
ci(xi) = bix

i +
βi

1 + βi

K
− 1

βi

i (xi)
1+βi

βi ,where bi, Ki and βi, i = 1, . . . , n+m, are given positive parameters. Further, let
p(T ) = 5000

1

γ T− 1

γ ,



94 Solution Methods for EPECs and MOPECsTable 5.4: Parameter speci�cation for the production costsFirm 1 Firm 2 Firm 3 Firm 4 Firm 5
bi 2 8 6 4 2
Ki 5 5 5 5 5
βi 1.2 1.1 1.0 0.9 0.8Table 5.5: Productions and pro�ts - Stackelberg gameStackelberg Firm 1 Firm 2 Firm 3 Firm 4 Firm 5Production 99.5329 44.3804 45.8893 44.2806 40.2357Pro�t 958.6347 284.6830 350.5039 393.2799 410.5319

p(T ) = 18.2270with a positive parameter γ termed demand elasticity.Each production cost function is convex and twice continuously di�erentiable on someopen set containing the feasible set of strategies of a corresponding player. The inversedemand curve is twice continuously di�erentiable on int R+, strictly decreasing, and convex.Observe that the so-called industry revenue curve
Tp(T ) = 5000

1

γ T
γ−1

γis concave on int R+ for γ ≥ 1. We assume that at least one leader on the market isproducing some positive production quantity. Hence all the above assumptions (i)�(iv) areful�lled, and assumption (A1)' is ful�lled as well.The data are taken from [40] and [39], where numerical tests are performed for n+m =
5, γ ∈ [1, 2] and the parameters of the production cost function given by Table 5.4. Forthese data, Table 5.5 shows the productions and pro�ts of all the �rms for γ = 1.0 in theStackelberg case, when Firm 1 is the only leader; clearly, Firm 1 dominates the market.Consider next the MOPCC case, when Firm 5 (the second strongest producer) becomesthe second leader. The results are displayed in Table 5.6. The �rst section correspondsto the initial solution given by NIMBUS, the second one describes the situation under acontract that is bene�cial for both leaders. In the third section we show the initial solutiongiven by NIMBUS in the case when a uniform upper bound was imposed on the productionsof the followers. We have set the upper production bound to 49 to demonstrate the e�ectof presence of the active upper bounds.Due to a great di�erence between the market power of Firm 1 and Firm 5 (see Table5.5), the stronger leader Firm 1 has to sacri�ce a part of its pro�t to the bene�t of Firm 5.One can expect that the bigger the power di�erence between both leaders, the more thestronger leader has to sacri�ce. Observe that also the remaining three �rms signi�cantly



5.3 Numerical method for MOPCCs 95Table 5.6: Productions and pro�ts - Firm 1 and Firm 5 leadersMOPCC, γ = 1.0 Firm 1 Firm 2 Firm 3 Firm 4 Firm 5no upper production boundProduction 62.8288 49.1867 49.7383 47.2930 42.4805Pro�t 840.8600 378.3762 442.9064 478.9642 485.6284
p(T ) = 19.8786no upper production boundProduction 88.8892 46.7669 47.7940 45.7640 33.7368Pro�t 978.8980 328.1489 393.6102 433.3945 410.9734
p(T ) = 19.0150upper production bound 49Production 52.7198 49.0000 49.0000 48.7618 41.2945Pro�t 784.5941 421.1413 483.4428 527.4281 517.9824
p(T ) = 20.7662Table 5.7: Productions and pro�ts - Stackelberg game, b1 = 10Stackelberg Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

γ = 1.0Production 55.5483 50.1342 50.5040 47.8997 42.9768Pro�t 343.3453 400.008 463.9979 498.3845 502.6867
p(T ) = 20.2378increased their pro�ts. We could see this phenomenon already in Example 5.2. Thisimprovement is even more noticeable in the case when their productions are limited.We �nish our analysis by modifying the input data. We alter the parameter speci�-cations from Table 5.4 and set b1 = 10 (instead of 2) to show the results of the situationwhen not necessarily the strongest producers pretend to become cooperative leaders. Theelasticity parameter γ remains 1.0. For the Stackelberg situation with Firm 1 as the leader,the productions and pro�ts of all the �rms are shown in Table 5.7.In Table 5.8 we present then the results for the MOPCC case when Firm 2 becomes thesecond leader. The �rst section of this table presents the respective initial solution given byNIMBUS. The second and the third sections represent situations when the contract betweenboth leaders is more bene�cial for Firm 1 and Firm 2, respectively. The last section ofthe table displays one acceptable solution in the case when the followers' productions aresubject to a certain upper bound (namely, 50).We can observe that with an agreement more bene�cial for the stronger leader, themarket price decreases but still exceeds the market price in the Stackelberg game.



96 Solution Methods for EPECs and MOPECsTable 5.8: Productions and pro�ts - games with two Leaders, b1 = 10MOPCC, γ = 1.0 Firm 1 Firm 2 Firm 3 Firm 4 Firm 5Production 45.2558 42.5467 52.6768 49.6384 44.3219Pro�t 357.8634 410.9407 529.9167 558.8654 555.3318
p(T ) = 21.3275Production 50.8043 33.9370 53.0478 49.9381 44.5561Pro�t 394.2186 357.6356 542.1837 570.0930 565.0856
p(T ) = 21.5254Production 36.5470 50.1959 52.8052 49.7420 44.4028Pro�t 311.8783 458.3726 534.1281 562.7208 558.6816
p(T ) = 21.3956upper bound 50Production 42.6431 39.8824 50.0000 50.0000 45.0693Pro�t 371.6054 419.1422 548.4432 592.5498 582.1324
p(T ) = 21.9689Note that all the conclusions stated in connection with the previous set of data can beapplied here as well. 4



ConclusionIn this thesis we have discussed several models with hierarchical structure in which anequilibrium problem arises either only on lower level or both levels.In the chapter dedicated to MPECs, we presented the most important subclasses; withthe main focus on MPCCs. Our main aim was to build a bridge between KKT-typestationarity concepts coined in [45] and optimality conditions derived in [39]. It was foundthat Clarke and C-stationarity conditions coincide if the underlying generalized equation ofthe respective (lower-level) solution map is strongly regular and MPEC-GLICQ holds true.The latter is a modi�ed version of linear independence constraint quali�cation speci�callytailored to the MPCC structure.We have used this bridge to derive the existence conditions for C-stationary pointsof EPCCs. We realize that even if implicit programming approach can be applied, theresulting problem admits a structure of a nonconvex Nash game. We have therefore focusedour attention on a generalized concept of solutions and investigated su�cient conditionsfor existence of solutions in mixed strategies.Motivated by the oligopolistic market model, we investigated also the case of cooper-ative behavior of the upper-level players. Using the advanced subdi�erential calculus forset-valued mappings and subdi�erential Palais-Smale type condition, we obtained existenceof solutions to MOPCCs.Finally, we have focused our attention on approaches to solve EPECs and MOPECsnumerically. The proposed generalization of the homotopy method I from [42], despitethe strong limitation on the structure of considered problem, revealed rather complexstructure of the sets stationarity points of EPCCs. This indicates that in general casethe set of solutions (if non-empty) is composed not only of isolated points. We planto analyze whether this phenomenon occurs solely due to linear-quadratic structure ofconsidered problems and to test the numerical performance of the method for the EPCCwith a greater number of complementarity constraints. Another important question is thesensitivity analysis of stationary points in EPCCs with respect to perturbations of thedata. We intend to investigate these topics in future research.
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Appendix AVariational AnalysisThroughout the thesis we used many term and results we believed unnecessary to includedirectly in the text, assuming that the reader may be already familiar with the theory ofnonlinear optimization, MPECs and generalized calculus of Mordukhovich. In this and thefollowing appendices we intend to present the de�nitions and results which were requiredfor our analysis.A.1 MultifunctionsFor maps F which assign subsets of R
m to points from R

n, denoted by F : R
n

⇒ R
m,we use the term set-valued mapping or simply multifunction. Both terms can be usedinterchangeably.De�nition A.1. (domain and graph of a multifunction)For a set-valued map F : R

n
⇒ R

m, we call the setsDom F := {x ∈ R
n|F (x) 6= ∅}, (A.1)Gph F := {(x, y) ∈ R

n × R
m|y ∈ F (x)}, (A.2)the domain of F and the graph of F , respectively.De�nition A.2. (basic properties of a multifunction)Let x ∈ R

n. A multifunction F : R
n

⇒ R
m is calleda) closed at x if the following implication holds:

x(i) Dom F
−−−−→ x

y(i) ∈ F (x(i))

y(i) → y















⇒ y ∈ F (x).b) upper semicontinuous at x if for any neighborhood U of F (x) there is η > 0 suchthat for all x′ ∈ ηB(x), F (x′) ⊂ U .



100 Variational Analysisc) lower semicontinuous at x if for any y ∈ F (x) and for any sequence of elements x(n) ∈Dom F converging to x, there is a sequence of elements y(n) ∈ F (x(n)) converging to
y.d) continuous at x if it is both upper and lower semicontinuous at x.e) continuous if it is continuous at every point x ∈ R

n.f) convex-valued if for each x ∈ Dom F the set F (x) is convex.g) closed-valued if for each x ∈ Dom F the set F (x) is closed.Local Lipschitz continuity of single-valued functions can be naturally extended to mul-tifunctions.De�nition A.3. A set-valued mapping F : R
n

⇒ R
m has the Aubin property around

(x̄, ȳ) ∈Gph F if there are neighborhoods V of x̄ and W of ȳ and a constant k ≥ 0 suchthat
F (x′) ∩W ⊂ F (x) + k‖x′ − x‖B for all x, x′ ∈ V.Note that if F is not lower semicontinuous at x̄ then there exist ȳ ∈ F (x̄) such thatAubin property does not hold around (x̄, ȳ).De�nition A.4. A set-valued map F : R

n
⇒ R

m is said to be calm at (x̄, ȳ) ∈ Gph Fwith modulus λ ≥ 0 if there are neighborhoods V of x̄ and W of ū such that
F (x) ∩W ⊂ F (x̄) + λ‖x− x̄‖B for all x ∈ V.Obviously, if F has the Aubin property around some point of its graph, it is also calmat this reference point .A.2 Generalized di�erentiationDe�nition A.5. (limiting normal cone)Given Ω ⊂ R

n and x̄ ∈ cl Ω, the limiting (or basic) normal cone to Ω at x̄ is de�ned by
N(x̄; Ω) = Lim sup

x→x̄

[cone (x− Π(x; Ω)]. (A.3)By convention, we set N(x̄; Ω) := ∅ if x̄ /∈ cl Ω.The Euclidean projector onto cl Ω is given by
Π(x; Ω) := {w ∈ cl Ω |‖ x− w ‖= dist (x; Ω)} .In (A.3), the symbol �Lim sup� stands for the Painlevé-Kuratowski upper (or outer) limitthat is de�ned for a set-valued mapping F : R

n
⇒ R

m at a point x̄ byLim sup
x→x̄

F (x) := {y ∈ R
m|∃x(k) → x̄, ∃y(k) → y with y(k) ∈ F (x(k))}.



A.2 Generalized di�erentiation 101The limiting normal cone (A.3) is generally nonconvex. For a convex set Ω, however,it reduces to the normal cone in the sense of convex analysis. The normal cone can beequivalently represented as
N(x̄; Ω) = Lim sup

x
Ω−→x̄

N̂(x; Ω),where the Fréchet normal (or prenormal) cone N̂(·; Ω) is de�ned by
N̂(x̄; Ω) :=







{x∗ ∈ R
n| limsup

x
Ω−→x̄

〈x∗,x−x̄〉
‖x−x̄‖

≤ 0} for x̄ ∈ clΩ,
∅ otherwise.Note that the prenormal cone is the negative polar cone to the Bouligand-Severi contingentcone
T (x̄; Ω) = Lim sup

t↘0

Ω − x̄

t
.The limiting normal cone (A.3) cannot be dual to any tangent cone due to its noncon-vexity: polar cones are always convex.By the critical cone of Ω with respect to y and x− y we understand the set

K(x, y; Ω) = T (y; Ω) ∩ {x− y}⊥.De�nition A.6. (Clarke tangent and normal cones)Given Ω ⊂ R
n and x̄ ∈ cl Ω, the Clarke tangent cone to Ω at x̄ is de�ned by

TC(x̄; Ω) = Lim inf
x

Ω−→x̄
t↘0

Ω − x̄

t
.and the Clarke normal cone NC(x̄; Ω) is its negative polar cone.For an arbitrary set it obviously holds that

N̂(x; Ω) ⊂ N(x; Ω) ⊂ NC(x; Ω),where the inclusions can be replaced by equalities for convex set Ω.For details on normal cones, we refer the reader to [44], [29] and [30].The limiting and Clarke subdi�erentials can be de�ned in terms of the respective normalcones.De�nition A.7. (limiting and Clarke subdi�erentials)Let f : R
n → R be locally Lipschitz continuous. Then the limiting subdi�erential of f in

x̄ ∈ R
n is given by

∂f(x̄) := {ξ|(ξ,−1) ∈ N(x̄, f(x̄); epi f)}and the Clarke subdi�erential of f in x̄ ∈ R
n is given by

∂̄f(x̄) := {ξ|(ξ,−1) ∈ NC(x̄, f(x̄); epi f)}.



102 Variational AnalysisIt immediately follows that
∂f(x) ⊂ ∂̄f(x),and if f is a convex function the inclusion becomes equality.For details on the calculus of Clarke and limiting subdi�erentials, we refer the readerto [7], [29] and [30].The extension of the Clarke subdi�erential to locally Lipschitz continuous function

f : R
n → R

m is the generalized Jacobian.De�nition A.8. (generalized Jacobian)Let f : R
n → R

m be locally Lipschitz continuous. Then the generalized Jacobian of f at xis the subset of R
m×n given by
∂̄f(x) = conv { lim

i→∞
∇f(x(i))|x(i) → x, x(i) 6= Ωf},where

Ωf := {x|∇f(x) does not exist}.For locally Lipschitz continuous functions, the set Ωf has Lebesgue measure zero. If
m = 1, the generalized Jacobian coincides with the transpose of the Clarke subdi�erential.It is however common in literature to denote both objects by the same symbol.Among the main derivative-like constructions for multifunctions are coderivatives. Theyprovide a pointwise approximation of a set-valued mappings using elements of dual spaces.De�nition A.9. (coderivative)Given a set-valued mapping F : R

n
⇒ R

m and a point (x̄, ȳ) from its graph the coderivative
D∗F (x̄, ȳ) : R

m
⇒ R

n of F at (x̄, ȳ) is a set-valued map de�ned by
D∗F (x̄, ȳ)(y∗) := {x∗ ∈ R

n|(x∗,−y∗) ∈ N(x̄, ȳ; Gph F )}, (A.4)where ȳ in the notation D∗F (x̄, ȳ) is omitted if F is single-valued at x̄.In general, D∗F (x̄, ȳ)(·) is a positively homogeneous closed multifunction at all points
x̄ ∈Dom F, ȳ ∈ F (x̄) and it reduces to the adjoint Jacobian

D∗F (x̄)(y∗) = {∇F (x̄)>y∗}, y∗ ∈ R
m,when F is single-valued and strictly di�erentiable at x̄.A.3 Variational inequality and complementarity prob-lemThe following de�nitions are taken from [16].



A.3 Variational inequality and complementarity problem 103De�nition A.10. (variational inequality)For a convex set Ω ⊂ R
m and a map f : Ω → R

m the variational inequality is a problemto �nd a point x ∈ Ω such that
(y − x)>f(x) ≥ 0 ∀y ∈ Ω. (A.5)If Ω is closed and f continuous on an open set containing Ω, the set of solutionsto variational inequality (A.5) is closed, possibly empty. Equivalently, the variationalinequality can be written down using the normal cone in the form of generalized equation:

0 ∈ f(x) +N(x; Ω).When Ω is a cone, the variational inequality can be expressed in an equivalent form ofa complementarity problem.De�nition A.11. (complementarity problem)For a convex cone Ω and a map f : Ω → R
m, the complementarity problem is to �nd apoint x ∈ R

m such that the conditions
Ω 3 x ⊥ f(x) ∈ Ω∗,where Ω∗ is the dual (positive polar) cone of Ω.Consider the following special case. When Ω is the nonnegative orthant of R

m the com-plementarity problem is referred to as the (classical) nonlinear complementarity problem.De�nition A.12. (nonlinear complementarity problem)Given a map f : R
m
+ → R

m, the nonlinear complementarity problem is to �nd a point
x ∈ R

m such that
0 ≤ x ⊥ f(x) ≥ 0.This model can be easily extended to a generalized complementarity problem involvingtwo (or possibly more) functions F 1, F 2 : R

n → R
m:

0 ≤ F 1(x) ⊥ F 2(x) ≥ 0.Consider now a cone Ω ⊂ R
m1 × R

m2

+ , m1 + m2 = m. We can formulate the followinggeneralization of NCP.De�nition A.13. (Mixed complementarity problem)Let g and h be two mappings from R
m1 ×R

m2

+ into R
m1 and R

m2

+ , respectively. The mixedcomplementarity problem is to �nd a pair (u, v) ∈ R
m1 × R

m2 such that
g(u, v) = 0,

0 ≤ v ⊥ h(u, v) ≥ 0.



104 Variational AnalysisAn important special case of the variational inequality (A.5) is the one with the set Ωgiven by
Ω = {x ∈ R

m|ai ≤ xi ≤ bi, i = 1, . . . , m},with real constants ai and bi satisfying
−∞ ≤ ai < bi ≤ ∞, ∀i.If all ai and bi are �nite, we refer to it as to a box constrained variational inequality. With

a and b the vectors with components ai and bi respectively, this variational inequality canbe equivalently written down as
f(x) + y+ − y− = 0,

0 ≤ y+ ⊥ x− a ≥ 0,

0 ≤ y− ⊥ x− b ≥ 0.Clearly, a box constrained variational inequality attains the form of MCP.De�nition A.14. (C-function)A function Ψ : R
2 → R is called a C-function (complementarity function), if for any pair

(a, b) ∈ R
2

Φ(a, b) = 0 ⇔ [(a, b) ≥ 0, ab = 0].Given any C-function Φ, the NCP can be equivalently reformulated to the equationform:
0 =







Φ(x1, f1(x))...
Φ(xm, fm(x))






.The simplest C-function is the minimum function Φ(a, b) := min{a, b}, (a, b) ∈ R

2, inconnection with NCP also called Pang NCP function. So, x solves the generalized NCP ifand only if min{F 1(x), F 2(x)} = 0.We conclude this section with the de�nition of a face of a nonempty convex polyhedralset C.De�nition A.15. (face of a convex polyhedral set)A subset C ′ of a convex polyhedral set C ⊂ R
n is called a face of C, if it is convex and iffor each line segment [x, y] ⊂ C with (x, y) ∩ C ′ 6= ∅ one has x, y ∈ C ′.



Appendix BLICQ and MFCQ of StandardNonlinear ProgramConsider the (classical) nonlinear programming problemminimizef(x)

g(x) ≤ 0, (B.1)
h(x) = 0,with continuously di�erentiable functions f : R

n → R, g : R
n → R

m and h : R
n → R

p.We introduce only the constraint quali�cations which play role in our analysis of MPECsand EPECs, namely, the linear independence and Mangasarian-Fromowitz constraint qual-i�cations.De�nition B.1. (LICQ and MFCQ for nonlinear programs)Let x̄ be a feasible point of the program (B.1). We say thata) the linear independence constraint quali�cation holds at x̄ if the gradients
∇gi(x̄), ∀i ∈ Ig,

∇hj(x̄), ∀j = 1, . . . , p,are linearly independent, with the set of the active inequality constraints constraints
Ig = {i|gi(x̄) = 0}.b) the Mangasarian-Fromowitz constraint quali�cation holds at x̄ if the gradients

∇hj(x̄), ∀j = 1, . . . , p,are linearly independent and there exists a vector d ∈ R
n such that

∇gi(x̄)
>d < 0, ∀i ∈ Ig,

∇hj(x̄)
>d = 0, ∀j = 1, . . . , p,



106 LICQ and MFCQ of Standard Nonlinear ProgramWe can reformulate the LICQ into into equivalent form:




∑

i∈Ig

µi∇gi(x̄) +

p
∑

j=1

νj∇hj(x̄) = 0



⇒

{

µi = 0, i ∈ Ig,

νj = 0, j = 1, . . . , p.The Mangasarian-Fromowitz constraint quali�cation can be equivalently stated in theform:
∑

i∈Ig

µi∇gi(x̄) +

p
∑

j=1

νj∇hj(x̄) = 0

µi ≥ 0, i ∈ Ig















⇒

{

µi = 0, i ∈ Ig,

νj = 0, j = 1, . . . , p.Hence, in the Fritz John type of necessary optimality conditions for the nonlinear pro-gram (B.1), LICQ and MFCQ prevent the existence of the so-called abnormal (degenerate)multiplier.Clearly, LICQ ⇒ MFCQ.



Appendix CNoncooperative Nash GamesLet us have n players and assume that each player i, i = 1, . . . , n may choose to play astrategy xi from his or her action space U i. In in�nite games, the action space for at leastone of the players has in�nitely many elements. We may simply assume that U i ⊂ R
l.Denote the feasible set of multistrategies x := (x1, . . . , xn) by

ω :=
nX

i=1
U i.Let us also denote for the ith player by x−i an element of ω−i := Xj 6=i U

j , where x−i standsfor the strategies of the other players, over which he or she has no control in the absenceof cooperation.De�nition C.1. (decision rule)A decision rule of the ith player is a multifunction Ci : ω−i ⇒ U i which assigns to themultistrategies x−i ∈ ω−i determined by the other players, a strategy set Ci(x−i) ⊂ U i.From the previous de�nition an obvious question arises. Once each player has beenidenti�ed with its own decision rule, under what assumptions there is a common multi-strategy, the so called consistent multistrategy x ∈ ω, such that
xi ∈ Ci(x−i), ∀i = 1, . . . , N.Theorem C.2. Let all n strategy sets U i, i = 1, . . . , n, be convex and compact and all ndecision rules Ci be upper semicontinuous multifunctions with nonempty, closed and convexvalues. Then there exists a consistent multistrategy.Proof. See [2, Theorem 12.1].Let us now suppose that the decision rules are determined by loss functions ϕi : ω → R.The associated decision rules, the so called canonical decision rules are de�ned by

C̄i(x−i) :=

{

xi ∈ U i|ϕi(xi, x−i) = inf
yi∈U i

ϕi(yi, x−i)

}

.This leads us to the de�nition of Nash equilibria.



108 Noncooperative Nash GamesDe�nition C.3. (Nash equilibrium)A multistrategy x̄ ∈ ω which is consistent for the canonical decision rules is called anoncooperative Nash equilibrium.Theorem C.4. The following assertions are equivalent:a) x̄ is a noncooperative equilibrium;b) ϕi(x̄i, x̄−i) ≤ ϕi(xi, x̄−i) ∀i = 1, . . . , n, ∀xi ∈ U i;c) ∑n
i=1(ϕ

i(x̄i, x̄−i) − ϕi(xi, x̄−i)) ≤ 0 ∀x ∈ ω.Proof. See [2, Proposition 12.1].One can often �nd the de�nition of Nash equilibria in terms of part b) of the TheoremC.4 which, in words, states that no individual deviation from the equilibrium strategydecreases the value of loss function of a player in question.The following theorem provides a set of su�cient conditions under which a Nash equi-librium exists. This theorem is also known as Nash theorem.Theorem C.5. Let for each i = 1, . . . , n, the sets U i be convex and compact and thefunctions ϕi be continuous and convex in xi for every x−i ∈ ω−i. Then there exists anoncooperative equilibrium.Proof. The theorem follows from the Ky Fan's theorem. For more details on the proof see[2, Theorem 12.2].Assume that for i = 1, . . . , n, the loss functions ϕi are continuously di�erentiable. Ifthere is a Nash equilibrium x̄ ∈ ω, one observes that it is a solution of the generalizedequation
0 ∈ F (x) +N(x;ω), (C.1)where F (x) denotes the vector composed of the partial gradients of ∇xiϕi(x)

F (x) =







∇x1ϕ1(x)...
∇xnϕn(x)






.To gain more details, we refer, e.g., to [2].
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