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Abstract

Anisotropy of elastic properties of ultrafine-grained polycrystalline copper after one, two and four passes of equal-channel angular
pressing (ECAP) is investigated by means of ultrasonic methods. For each material, Young’s and shear moduli in the principal process-
ing directions are evaluated and the symmetry and orientation of the anisotropy are identified. The relation between the determined sym-
metry and the processing mechanisms is discussed. It is shown that the material after one and two passes of ECAP exhibits a measurable
anisotropy, while the material after the fourth pass behaves isotropically. Within the discussion, it is shown that the origin of the
observed anisotropy may be attributed to the spatial arrangement of grain boundaries rather than to the crystallographic texture. In
the light of this conclusion, the obtained results correspond well with optical and transmission electron microscopy observations of
the microstructures of ECAPed materials documented in the literature.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Ultrasonic methods are well-established for the investi-
gation of weak elastic anisotropy induced in polycrystalline
metals by manufacturing processes (plastic forming, heat
treatment, etc.) [1–3]. For rolled steel sheets, these methods
have already been automated for online monitoring during
mass production [4,5]. Exact knowledge of the elastic coef-
ficients of rolled sheets is important not only with respect
to their further engineering applications; it also enables fast
and simple determination of the texture coefficients and,
consequently, the plastic strain ratios (e.g. [2]). However,
these methods have not yet been applied (except for some
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preliminary tests done by the current authors in Ref. [6])
to determine the elastic anisotropy of finely grained mate-
rials prepared by modern methods of severe plastic defor-
mation (SPD), such as the equal-channel angular pressing
(ECAP [7]) or high-pressure torsion (HPT [8]). Unlike
rolled sheets, the symmetry of which is relatively high
and a priori known (the sheets have orthorhombic anisot-
ropy with the principal axes oriented along the rolling,
transverse and normal directions), the symmetry and orien-
tation of the anisotropy of the materials produced by SPD
methods are general and unknown, which complicates sig-
nificantly the use of ultrasonic methods, since in the first
step the materials must be always considered as fully tri-
clinic with 21 independent elastic coefficients. A short
remark on the elastic anisotropy of ECAPed copper can
be found in Ref. [9], where, however, no further details
are provided. In later papers concerned with measurements
of elastic properties of this material (e.g. [10,11]), the fact
rights reserved.
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Table 1
Dimensions of individual specimens.

Specimen dX ðmmÞ dY ðmmÞ dZ ðmmÞ
0P1 1.817 3.647 2.700
0P2 1.817 3.644 2.705
1P1 1.812 3.656 2.699
1P2 1.817 3.655 2.695
2P1 1.811 3.650 2.695
2P2 1.816 3.650 2.696
4P1 1.683 3.547 2.710
4P2 1.695 3.546 2.708
Accuracy (mm) ±0.005 ±0.005 ±0.005
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that the ECAPed polycrystalline copper could be aniso-
tropic is not taken into account at all. In other words,
whereas most other important properties of ECAPed mate-
rials, such as crystallographic texture [12], fatigue strength
[13] or corrosion resistance [14], have been already thor-
oughly analyzed, the anisotropy of elasticity remains still
uncertain.

In this paper, we apply a combination of two ultrasonic
methods, the pulse-echo method and resonant ultrasound
spectroscopy (RUS), to determine the evolution of elastic
anisotropy of polycrystalline copper during the first few
passes of ECAP. It will be shown that although some of
the 21 independent elastic coefficients cannot be accurately
determined, the output of the applied methods is sufficient
for the identification of the classes of symmetry of the
examined materials and the evaluation of basic mechanical
properties, in particular of Young’s and shear moduli in
the processing directions. The main aim of this paper is
to prove that the ECAPed materials exhibit weak elastic
anisotropy, which can be related to the microstructure
induced in the material by ECAP processing.

2. Examined material

Technical purity (99.95%) Cu was severely deformed by
ECAP to a maximum equivalent strain of e ¼ 4 (1, 2, 4
passes) at room temperature following route BC (specimen
rotated by 90� in the same sense about the longitudinal axis
after each pass). Prior to ECAP processing the material
was annealed for 2 h at 450 �C in a protective inert atmo-
sphere. The billets for ECAP had initial dimensions of
10 mm � 10 mm � 60 mm. The ECAP die used was manu-
factured from a common tool steel (X38 CrMoV 51). After
machining, the die was hardened to 47 HRC. The die had a
split design where one part contained the full channel and
the other part was used for die closure. The angle H
between two intersecting channels and the corner angle W
were 90� and 0�, respectively. Both channels had a square
cross-section of 10 mm � 10 mm. The length of the exit
channel was optimized to allow easier processing while
maintaining the straight shape of the specimen on exit.
The die was placed in a hydraulic Instron 8502 machine
which allows a maximum applicable load of 200 kN. Press-
ing was performed at the speed of 8 mm min�1. Molybde-
num disulfide grease was used as a lubricant.

For the ultrasonic measurements, two specimens were
cut from each of the examined materials. The individual
faces of the prisms were exactly parallel to the X, Y and
Z planes of the ECAP billet (the notation of processing
planes used here and throughout the whole paper is the
same as conventionally used for ECAPed materials [7,15]
with the X plane normal to the extrusion direction, the Y

plane being the symmetry plane of the channel and the Z

plane perpendicular to X and Y planes). To enable a com-
parison, two similar specimens were also prepared from the
original (as-cast) material. The dimensions of the speci-
mens are given in Table 1, where the following notation
Please cite this article in press as: Seiner H et al. Application of ultra
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is used: each specimen is labeled as xPy, where
x ¼ 0; 1; 2; 4 refers to the number of ECAP passes and
y ¼ 1; 2 identifies the specimen number. Hereafter in the
text, the simpler notation xP will also be used for material
after x ECAP passes (without distinguishing between indi-
vidual specimens). The mass density of all the examined
materials was measured by Archimedes’s method, giving
q ¼ 8:96 g cm�3 for all samples.

For the purpose of all the measurements described in
this paper, all examined materials were considered as
homogeneous both in the mass density and in the elastic
coefficients. The question of how justified this assumption
is falls beyond the scope of this paper. However, the repro-
ducibility of the experimental results presented below (the
agreement of results obtained, for example, for specimens
1P1 and 1P2) indicates that the effect of possible heteroge-
neity on our measurements could be neglected.

3. Experiment

3.1. Ultrasonic methods

The combination of two different experimental methods,
namely the pulse-echo method and RUS, was used to ana-
lyze the elastic anisotropy of the investigated material. In
the following subsections, both methods will be briefly
described and their outputs explained and summarized.
The reason why these two methods were combined (instead
of using only a single one, as is usual) is the following: as
was shown recently by the authors [6,16], and will be dis-
cussed later in the text, RUS cannot determine all indepen-
dent elastic coefficients with satisfactory accuracy. In
particular, those combinations of elastic coefficients related
to longitudinal motion of the material (unidirectional ten-
sion/compression, volumetric changes) can be obtained
only with high uncertainty. On the other hand, the com-
plete determination of all 21 elastic coefficients by the pulse
echo-technique would require measurements in incompara-
bly more directions than the three experimentally achiev-
able on each specimen (directions perpendicular to
individual faces). However, the results of pulse-echo mea-
surements in these three directions can provide sufficient
information on those coefficients which cannot be deter-
mined from RUS output. A similar concept of pulse-echo
sonic methods to determine elastic anisotropy of polycrystalline
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Table 2
Quasi-longitudinal phase velocities determined in directions perpendicular
to individual faces of the individual specimens by pulse-echo measure-
ments. The experimental errors are calculated assuming a 5 lm uncer-
tainty in the specimens’ thicknesses and 1 ns in the time-of-flight
measurements.

Specimen vqL
X ðmm=lsÞ vqL

X ðmm=lsÞ vqL
X ðmm=lsÞ

0P1 4.735 4.751 4.754
0P2 4.735 4.755 4.758
1P1 4.747 4.770 4.685
1P2 4.741 4.770 4.697
2P1 4.716 4.753 4.665
2P2 4.721 4.751 4.683
4P1 4.752 4.765 4.763
4P2 4.753 4.756 4.766
Accuracy ðmm=lsÞ ±0.018 ±0.009 ±0.013

Table 3
Transverse and quasi-transverse phase velocities determined in directions
perpendicular to individual faces of the individual specimens by pulse-
echo measurements. The experimental errors are calculated for the same
assumptions as in Table 2. (The higher accuracy in the determination of
the transverse wave velocities is given by the fact that the measured times-
of-flight are more than two times longer than in the case of qL waves.)

Specimen vT
X ðmm=lsÞ vT

X ðmm=lsÞ vT
X ðmm=lsÞ

0P1 2.331 2.304 2.298
0P2 2.226 2.309 2.299

vqT1
X ðmm=lsÞ vqT1

X ðmm=lsÞ vqT1
X ðmm=lsÞ

1P2 2.190 2.171 2.175
1P1 2.196 2.177 2.172
2P1 2.249 2.205 2.265
2P2 2.256 2.193 2.268
4P1 2.313 2.307 2.310
4P2 2.295 2.306 2.297

vqT2
X ðmm=lsÞ vqT2

Y ðmm=lsÞ vqT2
Z ðmm=lsÞ

2P1 2.156 — 2.191
2P2 2.149 — 2.192
Accuracy ðmm=lsÞ ±0.008 ±0.004 ±0.005

H. Seiner et al. / Acta Materialia xxx (2009) xxx–xxx 3

ARTICLE IN PRESS
data complementing RUS measurement was previously
used successfully on other materials [6,17].

3.1.1. Pulse-echo measurements

The pulse-echo method (e.g. [18]) is the simplest and the
most widely used method for the determination of elastic
coefficients of solids by ultrasound. This method is based
on measurements of times-of-flight of planar ultrasonic
pulses between two mutually parallel surfaces of the speci-
men of the examined material. The same ultrasonic probe
is used to generate the pulse and to detect it when it returns
reflected from the opposite side of the specimen. The veloc-
ity of the wave calculated from the thickness of the speci-
men in the measurement direction and the time-of-flight
contains the information on the elastic properties, as this
velocity is fully determined by the mass density and the
elastic coefficients. In particular, in any direction n of an
anisotropic material of density q and elastic coefficients
Cijkl, the planar waves can propagate only at such (phase)
velocities vu that [19]

detðCijklnjnl � qv2
udikÞ ¼ 0; ð1Þ

i.e. that qv2
u is an eigenvalue of the so-called Christoffel ma-

trix Cik ¼ Cijklnjnl. This gives, in general, three different
velocities for every direction, each of them corresponding
to one mode of propagation. According to the commonly
used terminology, the mode with the polarization direction
closest to n is called quasi-longitudinal (qL) and the other
two quasi-transverse (qT). We will use the labels qT1 and
qT2 for the faster and the slower modes, respectively.

The pulse-echo method was applied to determine phase
velocities of the qL mode in the examined material. These
velocities were always measured in directions perpendicular
to individual specimen’s faces. A 50 MHz pulse/receiver
system DPR50+ (JSR Ultrasonics Inc.) and a digital oscil-
loscope LT264M (LeCroy) were used to generate and to
record the pulses. These pulses were sent into the material
and detected by a delayed transducer VSP-50 (Ultran
Group). The results are listed in Table 2. Whereas for 0P
(as-cast material) and for 4P material the velocities in all
directions are very similar (the differences are within the
range of the experimental errors), in the 1P and 2P material
a measurable anisotropy in propagation of the qL mode is
observed.

The pulse-echo method was also applied to determine
the velocity of transverse waves in the as-cast (0P) material
(which was considered as isotropic, i.e. with only one trans-
verse mode of propagation) and of quasi-transverse waves
in 1P, 2P and 4P material. In this case, a miniature trans-
ducer V157 5/0.12500 (Panametrics) was used. The data
are given in Table 3. For most of the anisotropic speci-
mens, the echoes of the two quasi-transverse modes over-
lapped such that only the velocity of the faster one (qT1)
was reliably determinable. Only for directions perpendicu-
lar to X and Z of the 2P specimens were the arrivals of the
two modes distinguishable.
Please cite this article in press as: Seiner H et al. Application of ultra
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The velocities of the transverse waves for the 0P material
together with the first two rows of Table 2 give, after aver-
aging, the isotropic elastic coefficients of this material:

c11 ¼ ð202:0� 0:6ÞGPa; c44 ¼ ð47:17� 0:5ÞGPa: ð2Þ
These results are in good agreement with elastic coefficients
of commercial (99.85%) polycrystalline copper [20] and will
be taken as reference ones. The quasi-transverse velocities
obtained for 1P, 2P and 4P materials will be used for inde-
pendent verification of the results obtained by RUS.

3.1.2. Resonant ultrasound spectroscopy

For the 1P, 2P and 4P specimens, resonant spectra of
free elastic vibrations of individual specimens were mea-
sured. The method based on measurements and analysis
of such spectra is called RUS (e.g. [21]) and belongs
among the most advanced and sophisticated ultrasonic
techniques for evaluating the elastic properties of aniso-
tropic materials. The relation between the resonant spectra
sonic methods to determine elastic anisotropy of polycrystalline
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and the elastic coefficients of the material is the following:
according to Hamilton’s principle, the resonant (angular)
frequencies x and the displacement fields of corresponding
eigenmodes of vibrations u(x) of a specimen with known
geometry are stationary points of the time-averaged
Lagrangian energy:

Kðx; uðxÞÞ ¼ 1

2

Z
V

x2quiui � Cijkl
@ui

@xj

@uk

@xl

� �
dV ; ð3Þ

where Cijkl and q are the tensor of elastic coefficients and
mass density of the material, respectively, and V is the spec-
imen volume. The points (i.e. the eigennumbers x2 and
eigenvectors u(x)) where the variational condition

dKðx; uðxÞÞ ¼ 0 ð4Þ
is satisfied must be found numerically, for which the Ritz
method is usually adopted. Consequently, the elastic coef-
ficients must be obtained by an inverse procedure, i.e. by a
numerical search for such elastic coefficients that the reso-
nant frequencies corresponding to them fit the experimen-
tally obtained resonant spectra in some optimal way.

The resonant spectra used for the determination of elas-
tic coefficients of the ECAPed copper in this paper were
measured by a fully non-contact experimental setup [22].
In this setup, the specimen is excited by an impact of a
focused laser pulse (a so-called thermoacoustic source)
and the vibrations are detected by laser-Doppler interfer-
ometry of the surface of the excited specimen. In this
way, not only the resonant frequencies but also the shapes
of the eigenmodes are obtained (an enhancement of RUS
measurements introduced originally by Ogi et al. [23]).
The specimen itself is placed on an underlay which must
be extremely acoustically soft (i.e. its acoustic impedance
must be insignificant compared to the impedance of the
specimen) to ensure a good approximation of the free-sur-
face boundary conditions as required by the variational
condition (4).

The vibrations in the examined specimens were excited by
sequences of pulses of a focused infrared laser beam (pulse
duration 8 ns, energy 25 mJ, Quantel ULTRA Nd:YAG
laser system, equipped with fiber optic FOLA options) and
the displacement response was detected by a Polytec Micro
System Analyzer MSA-500 (using an OFV-5000 controller
and an OFV-551 sensor head) for a mesh of 25 � 25 points
evenly covering one face of the specimen. The spectra of
specimens 1P1; . . . ; 4P2 were measured in the frequency
range 150 kHz � 2 MHz. At least 50 peaks were reliably
located for each specimen. For each of the located peaks, a
shape of the corresponding mode of vibration was con-
structed from the amplitudes of this peak in spectra obtained
from individual points of the mesh.

For the sake of completeness, let us mention here that
the resonant spectra were also measured for the as-cast
material (specimens 0P1 and 0P2). The identified peaks in
these spectra (20 peaks for each specimen) agreed accu-
rately with resonant frequencies evaluated for coefficients
given in Eq. (2).
Please cite this article in press as: Seiner H et al. Application of ultra
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3.2. Inverse procedure and estimation of experimental errors

From the combined data of the pulse-echo and the RUS
measurements, the elastic coefficients for 1P, 2P and 4P
material were sought by minimizing a constrained error
function (superscripts calc. and exp. denote the calculated
and the experimentally obtained quantities):

F ðcij; kX ; kY ; kZÞ ¼
Xp

k¼1

xexp :
k � xcalc:

k ðcijÞ
� �2

þ kX vqL; exp:
X � vqL; calc:

X ðcijÞ
� �

þ kY vqL; exp:
Y � vqL; calc:

Y ðcijÞ
� �

þ kZ vqL; exp:
Z � vqL; calc:

Z ðcijÞ
� �

; ð5Þ

where the xk are the resonant angular frequencies, cij are
the sought elastic coefficients, vqL

X ; vqL
Y and vqL

Z are the qua-
si-longitudinal phase velocities in directions perpendicular
to the respective faces (from Table 2), and kX ; kY and kZ

are the Lagrange multipliers representing the constrains.
The association of the calculated resonant frequencies with
the experimental data in the first summation of Eq. (5) was
done based on the shapes of the individual modes of vibra-
tion as recorded by laser-Doppler interferometry. Only
those calculated resonances were taken into account for
which their experimental counterparts were reliably identi-
fiable in the spectrum. As initial guesses for the numerical
minimization (using a non-linear Levenberg–Marquardt
method), isotropic elastic coefficients (2) of the 0P material
were taken. For each of the analyzed specimens, a mini-
mum of the function (5) was found such that the misfit be-
tween the experimental and computed frequencies did not
exceed 0.2% for any of the identified modes.

As for any inverse problem, it is necessary to discuss
how accurate the results obtained by minimization of Eq.
(5) are. In its unconstrained form, the nature of the RUS
measurements directly provides well-justified estimates of
the experimental errors with which the individual elastic
coefficients are obtained. This method of estimation of
the experimental accuracy of the RUS measurements is
thoroughly described in Ref. [24] and discussed in Ref.
[6,16]; here, only the main findings are summarized: taking
x1;...;p as the experimentally obtained resonant frequencies
and C1;...;K as the unknown elastic coefficients (i.e. K = 3
for cubic symmetry, K = 9 for orthorhombic symmetry,
etc.), and for partial derivatives @xk=@Cl obtained numer-
ically within the solution of the variational problem (4), the
so-called sensitivity matrix S ¼ GTG can be constructed,
where Gij ¼ @xi=@Cj. In Ref. [24], two important proper-
ties of this sensitivity matrix are shown:

1. The sensitivity matrix is symmetric and positive definite,
which means that all its eigennumbers ðkl; l ¼ 1; . . . ;KÞ
are real and positive and the eigenvectors
(bkl; k ¼ 1; . . . ;K for each l) can be chosen orthonormal.
sonic methods to determine elastic anisotropy of polycrystalline
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2. If the eigenvectors bkl are now known, and C�l are linear
combinations of the original elastic coefficients C1;...;K

such that Ck ¼ bklC
�
l , we can estimate the experimental

error of each combination C�l as:

DC�l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
k¼1 xcalc:

k � xexp :
kð Þ2

kl

s
; ð6Þ

where the superscripts calc: and exp : are used to identify
the calculated and the experimentally obtained frequencies.

In other words, it is always possible to obtain a set of K
orthonormal combinations of the sought elastic coefficients
sorted by accuracy with which these combinations may be
determined from the particular RUS measurement. The
linear relation Ck ¼ bklC

�
l then enables the accuracies DCk

to be directly recalculated from DC�l . In Refs. [6,16,24], it
is shown that the combinations with the lowest accuracy
(largest experimental error) are often related to the longitu-
dinal motion of the material, and consequently, it is natural
to use the qL velocity data from the pulse-echo measure-
ments to stabilize the RUS measurement.

The estimation of the experimental error of the elastic
coefficients obtained by constrained optimization (5) can
be done using a similar manner, but taking the constraints
into account. We assume that close to the optimized elastic
coefficients, the constraints vqL; calc:

X ;Y ;Z ðCkÞ ¼ vqL; exp:
X ;Y ;Z can be

linearized, i.e. such coefficients Bk
X ;Y ;Z and B0

X ;Y ;Z can be
found that

vqL; calc:
X ðCkÞ �

XK

k¼1

Bk
X Ck þ B0

X ; ð7Þ

etc. Such a linearization enables us to write a system of lin-
ear equations (utilizing the orthogonality of bij):

b11 . . . bK1

..

. . .
. ..

.

b1K . . . bKK

B1
X . . . BK

X

B1
Y . . . BK

Y

B1
Z . . . BK

Z

0
BBBBBBBBB@

1
CCCCCCCCCA

C1

..

.

CK

0
BB@

1
CCA ¼

C�1

..

.

C�K
vqL; exp :

X � B0
X

vqL; exp :
Y � B0

Y

vqL; exp
Z � B0

Z

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð8Þ

where the experimental accuracy of the right-hand side is
known (DC�l are evaluated in Ref. (6) for the elastic coeffi-
cients minimizing the constrained problem (5), and
DvqL; exp :

X ;Y ;Z are taken from Table 2). By dividing each row
of this system by the corresponding experimental error,
we obtain a similar system but with all the accuracies of
the right-hand side equal to 1. As this system is obviously
overdetermined, the inverse linear relations can be found
in the least-squares sense only. This can be easily done
using the Moorse–Penrose pseudoinversion (the authors
used the pinv routine of the Matlab environment).
Thanks to the unit accuracy of the right-hand side, the
accuracies of individual elastic coefficients DCk are then di-
Please cite this article in press as: Seiner H et al. Application of ultra
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rectly equal to Euclidean norms of the respective rows of
the pseudoinverse matrix.

This approach was used for evaluation of experimental
errors of all the elastic coefficients reported in the next sec-
tion. For each specimen, it was checked that the involve-
ment of the pulse-echo data actually lowered the
experimental errors (in particular, that the accuracies of
the c11; c22; c33; c12; c13 and c23 coefficients were significantly
improved). Moreover, the correctness of this sensitivity
analysis for the constrained inverse problem was verified
by a Monte Carlo simulation: for each specimen, the sensi-
tivity matrix S was constructed and the combinations C�l
with accuracies DC�l given by relation (6) were evaluated.
Then, a population of 106 random sets of these combina-
tions (distributed normally with dispersions �DC�l ) was
generated. From this population, a subpopulation was
selected by taking only these sets for which the evaluated
qL velocities vqL;calc:

X ;Y ;Z ðC�l Þ fitted the experimental values
vqL; exp :

X ;Y ;Z with accuracy better than given in Table 2. Using
this procedure, subpopulations referred to hereafter as
SPð1P1Þ;SPð1P2Þ; . . . ;SP(4P2) were obtained, each
containing typically 200–300 sets of combinations. The
experimental errors obtained by the Monte Carlo simula-
tions and by the pseudoinversion of matrix (8) did not dif-
fer by more than 10%.

4. Optimized elastic coefficients

For each specimen, the elastic coefficients were obtained
in the form of a full triclinic matrix cij. In the following sec-
tion, these matrices will be used for determination of more
easily interpretable characteristics of the material, such as
the Young’s moduli in chosen directions or classes of mate-
rial symmetry (a complete overview of matrices cij is given
in Section 4.2). The consistency of the obtained results can
be easily checked by comparison of velocities of quasi-
transverse modes evaluated for them and those determined
by the pulse-echo method (Table 3). Such comparison is
done in Table 4, which confirms that the evaluated and
experimentally obtained values are in good (better than
±2%) agreement.

4.1. Summary of mechanical properties

The optimized elastic coefficients were used for the eval-
uation of elastic moduli in the directions and planes related
to the ECAP processing. These are the Young’s moduli in
directions normal to the planes X, Y and Z (denoted E?X ,
E?Y and E?Z) and the shear moduli in these planes ðGX ;GY

and GZÞ.
The Young’s modulus in a given direction is defined as a

coefficient of the linear relation between the magnitude of
unidirectional tension applied in this direction and the rel-
ative elongation of the material in this direction (i.e. the
Young’s modulus in the direction xi satisfies the relation
rii ¼ Eeii for all other rjk equal to zero). Similarly, the shear
modulus in a given plane is defined as a coefficient of linear
sonic methods to determine elastic anisotropy of polycrystalline
09), doi:10.1016/j.actamat.2009.08.071
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relation between a magnitude of pure shear loading applied
in this plane and the shear strain in this plane (i.e. the shear
modulus in plane xixj satisfies the relation rij ¼ 2Geij for all
other rkl equal to zero). For a Cartesian coordinate system
oriented such that x1 ? X ; x2 ? Y and x3 ? Z, it can be eas-
ily shown that E?X ¼ 1=s11; E?Y ¼ 1=s22; E?Z ¼ 1=s33;
GX ¼ 1=s44; GY ¼ 1=s55 and GZ ¼ 1=s66, where sij is an
inverse matrix to cij (so-called compliance matrix).

In Table 5, the Young’s and shear moduli for all speci-
mens are compared. Moreover, for each specimen the bulk
modulus K is also provided, which is a coefficient of linear
relation between a hydrostatic compression applied on the
material and the resultant volumetric change (i.e. the bulk
modulus for r11 ¼ r22 ¼ r33 ¼ r satisfies the relation
r ¼ KtrðeÞ). The Young’s and shear moduli are also plotted
in Fig. 1, which depicts both a comparison of individual
specimens for 1P, 2P and 4P and a comparison of evolution
of individual moduli. It shows (among other things) that
the first ECAP pass induces a significant shear softening
in all processing planes, which completely disappears after
the fourth pass of ECAP. The slight softening in the E?X

modulus due to the first pass of ECAP was also docu-
mented in Ref. [10].

Two general conclusions can be drawn based on Table 5.
Firstly, the determination of all moduli is fully reproducible,
since the differences between results for specimens 1P1 and
1P2 (as well as for 2P1 and 2P2, and for 4P1 and 4P2) are
within the respective experimental errors. Secondly, while
all Young’s and shear moduli significantly change with each
ECAP pass, the bulk modulus is approximately the same for
all specimens. This is not surprising, as the observed anisot-
ropy is induced purely by changes in texture and microstruc-
ture, while the material (fully dense polycrystalline copper)
remains the same. Note here that for single-crystal
copper (c11 ¼ 168:4 GPa; c12 ¼ 121:4 GPa and c44 ¼ 75:4
GPa [25]), the value of K is 137.1 GPa, which agrees with
the well-known equivalence between the bulk moduli of sin-
gle crystals and polycrystals (e.g. [26]).

The evolution of the Young’s and shear moduli in Table
5 (and Fig. 1) also supports the conjecture already indi-
cated in Table 2 that whereas the 1P and 2P specimens
are measurably anisotropic, the material after the fourth
pass of ECAP seems to behave isotropically.
Table 4
Quasi-transverse phase velocities evaluated in directions perpendicular to i
coefficients. For each velocity, its difference from the corresponding experimen

Specimen vqT1
X ðmm=lsÞ dqT1

X ð%Þ vqT1
Y ðmm

1P1 2.189 �0.26 2.199
1P2 2.191 �0.32 2.202
2P1 2.249 0.03 2.199
2P2 2.256 �0.01 2.191
4P1 2.317 �0.19 2.312
4P2 2.316 �0.90 2.323

vqT2
X ðmm=lsÞ dqT2

X (%) vqT2
Y ðmm

2P1 2.153 0.13 –
2P2 2.150 �0.08 –

Please cite this article in press as: Seiner H et al. Application of ultra
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4.2. Analysis of particular material symmetries

Knowing now that the anisotropy induced by ECAP
pressing is measurable and that our measurements are
reproducible (different specimens of the same material give
comparable results) and consistent with the origin of the
anisotropy (the bulk modulus does not change), we can
proceed to the analysis of the symmetry of this anisotropy.
In the following subsection, this will be done for 1P, 2P and
4P specimens.

For all examined materials, the symmetry is sought by
identification of planes of mirror symmetry of the so-called
normal surfaces [19], which are the surfaces of phase veloc-
ity magnitudes for the direction of propagation running
through a unit sphere. For each material, the normal sur-
faces of all modes of propagation (one qL mode and two
qT modes) are taken into account. We utilize the fact that
the anisotropy of the material is fully described by these
three surfaces and that these surfaces have the same sym-
metry elements as the elasticity of the material. The mirror
planes are sought using the following procedure:

1. For the experimentally obtained elastic coefficients, the
phase velocities of all three modes are evaluated in 400
directions covering a half of a unit sphere.

2. For w 2 h0; pi and h 2 h0; pi (a half-sphere) a function

Mðw; hÞ ¼
X400

k¼1

vqL
k ðcijÞ � vqL

k cM
ij ðw; hÞ

� �� �2

þ
X400

k¼1

vqT1
k ðcijÞ � vqT1

k cM
ij ðw; hÞ

� �� �2

þ
X400

k¼1

vqT2
k ðcijÞ � vqT2

k cM
ij ðw; hÞ

� �� �2

; ð9Þ

is evaluated, where cM
ij ðw; hÞ is a tensor of monoclinic

elastic coefficients with the plane of monoclinic (mirror)
symmetry equal to n ¼ ðsin w cos h; cos w; sin w sin hÞ.
This tensor is obtained by rotating the original tensor
into a coordinate system in which the x1x2 plane
becomes identical to n, setting the proper elastic
coefficients (c14; c24; c34; c15; c25; c35; c46 and c56) equal to
ndividual faces of the individual specimens from the optimized elastic
tally obtained value (Table 3) is given by dmode

direction.

=lsÞ dqT1
Y ð%Þ vqT1

Z ðmm=lsÞ dqT1
Z ð%Þ

�1.01 2.195 �1.07
�1.10 2.192 �0.94
0.27 2.251 0.60
0.03 2.261 0.30
�0.19 2.329 �0.82
�0.76 2.325 �1.24

=lsÞ dqT2
Y (%) vqT2

Z ðmm=lsÞ dqT2
Z (%)

– 2.189 0.08
– 2.177 0.69
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zero, and rotating this ”monoclinized” tensor back to
the original coordinate system.

3. Significant peaks on the surface 1=Mðw; hÞ are sought.
Each such peak corresponds to a plane of approximate
mirror symmetry.

In order to visualize the anisotropy, the difference
between the normal surfaces of qT modes DvqTðnÞ
¼ vqT1ðnÞ � vqT2ðnÞ is used. This difference is identically
equal to zero for isotropic materials. For anisotropic
materials, symmetry of DvqTðnÞ follows, again, the symme-
try of the material, having either zeros or local extremes
in the principal directions. Note that the anisotropy
induced by ECAP passes is weak, and thus plotting the
normal surfaces of individual modes themselves (or, for
example, surfaces of Young’s or shear moduli) would be
meaningless, as these surfaces cannot be visually distin-
guished from spheres.

4.2.1. Material after the first pass of ECAP

In the coordinate system given by the edges of the spec-
imens (x1 ? X ; x2 ? Y and x3 ? Z), the resulting elastic
coefficients for the specimens of the 1P material are:
3:1� 3:8 1:1� 5:2

�1:5� 4:2 2:5� 4:7

3:5� 3:6 0:0� 5:1

0:5� 0:9 �1:0� 0:6

42:9� 0:3 �0:1� 0:5

42:4� 0:2

1
CCCCCCCCCCA

GPa ð10Þ

0:2� 2:6 2:7� 4:0

�2:6� 2:8 1:4� 4:6

1:9� 2:8 1:5� 5:3

0:3� 0:5 �1:1� 0:6

42:9� 0:3 �0:2� 0:5

42:3� 0:1

1
CCCCCCCCA

GPa: ð11Þ
c1P1
ij ¼

201:8� 0:5 103:7� 0:6 111:8� 0:6 �0:4� 6:3

203:7� 0:3 109:8� 0:3 0:6� 5:4

196:6� 0:5 �0:1� 7:1

42:1� 0:1

0
BBBBBBBBBB@

and

c1P2
ij ¼

201:3� 0:5 104:2� 0:7 111:9� 0:5 2:0� 5:0

203:8� 0:4 109:9� 0:4 2:6� 5:1

197:6� 0:5 1:6� 6:4

42:1� 0:2

0
BBBBBBBB@

Here, all elastic coefficients are written in the form
cij � Dcij, where the mean values cij are those minimizing
the constrained error function (5) and the variations Dcij

were evaluated by pseudoinversion of system (8).
Table 5
Young’s and shear moduli in the processing directions.

Specimen E?X ðGPaÞ E?Y ðGPaÞ E?Z ðGPaÞ
0P12 127.1 ± 0.6 � � � � � �
1P1 126.2 ± 0.5 129.6 ± 0.8 116.2 ± 0.4
1P2 125.5 ± 0.5 129.5 ± 0.4 117.2 ± 0.6
2P1 122.6 ± 0.2 126.6 ± 0.4 114.0 ± 0.5
2P2 122.7 ± 0.6 127.2 ± 0.5 115.6 ± 0.4
4P1 128.0 ± 0.2 128.5 ± 0.4 129.2 ± 0.5
4P2 128.3 ± 0.9 127.7 ± 0.3 129.5 ± 0.4

Please cite this article in press as: Seiner H et al. Application of ultra
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An enormous difference in Dcij between the diagonal
quadrants (upper left quadrant containing coefficients
c11; c22; c33; c12; c13 and c23; lower right quadrant containing
coefficients c44; c55; c66; c45; c46 and c56) and the off-diagonal
quadrant for both matrices is clearly seen. While the
coefficients in diagonal quadrants of c1P1

ij and c1P2
ij are very

similar and are determined with satisfying accuracy (less
than ±1 GPa), the coefficients in the off-diagonal quadrant
are poorly determined and differ significantly between 1P1
and 1P2. Surprisingly, the constrained optimization (5)
cannot provide exact values of the off-diagonal quadrants.
However, this precludes neither reliable and accurate
evaluation of the Young’s and shear moduli (as obvious
from Table 5), nor identification of the material symmetry.
Indeed, when searching for the planes of the mirror
symmetry, the surfaces M�1ðw; hÞ look like those in
Fig. 2, with three significant peaks (denoted A, B and C)
for both specimens. If the surface M�1ðw; hÞ is constructed
for all the members of statistical subpopulations SP(1P1)
and SP(1P2) (introduced in Section 3.2) and the locations
of these peaks are found, we obtain the values listed in
Table 6 (considering, again, that the angles w and h are
normally distributed). We can conclude that the informa-
tion obtained from the measurements in the form of matri-
ces c1P1

ij and c1P2
ij and corresponding subpopulations

SP(1P1) and SP(1P2) is sufficient for reliable determina-
tion of the symmetry of the examined material, regardless of
GX ðGPaÞ GY ðGPaÞ GZ ðGPaÞ K (GPa)

47.2 ± 0.5 � � � � � � 139.1 ± 1.5
42.1 ± 0.3 42.7 ± 0.2 42. 3 ± 0.4 139.1 ± 1.8
42.0 ± 0.2 42.8 ± 0.3 42.2 ± 0.3 139.2 ± 1.1
42.8 ± 0.1 45.3 ± 0.7 41.4 ± 0.2 138.6 ± 1.9
42.6 ± 0.2 45.4 ± 0.3 41.4 ± 0.2 139.0 ± 1.4
47.2 ± 0.5 46.8 ± 0.7 47.8 ± 0.2 139.0 ± 1.4
47.3 ± 0.7 46.9 ± 0.1 48.0 ± 0.4 139.0 ± 0.9

sonic methods to determine elastic anisotropy of polycrystalline
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Fig. 1. Evolution of individual elastic moduli with ECAP passes. Agreement between red (dashed, corresponding to specimens 1P1, 2P1 and 4P1) and blue
(solid, corresponding to specimens 1P2, 2P2 and 4P2) lines illustrates the reproducibility of the measurements. For 0P, the values of moduli are evaluated
from averaged isotropic coefficients (2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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how large the experimental errors of the off-diagonal quad-
rants of c1P1

ij and c1P2
ij are. Note here that the experimental

errors of location of the three peaks at the M�1ðw; hÞ sur-
faces cannot be determined directly from Dc1P1

ij and Dc1P2
ij .

The reason is that the random variations of individual elas-
tic coefficients are not independent, since the system (8) is
overdetermined. The mutual relations between these varia-
tions cannot be expressed by Dc1P1

ij and Dc1P2
ij , but are fully
Fig. 2. Surfaces of function M�1ðw; hÞ for the material after the first pass
of ECAP (upper figure corresponds to specimen 1P1, lower figure to 1P2).
The peaks A, B and C indicate the planes of significant mirror symmetry.
Slightly weaker symmetry can be also found for w ¼ 0	 (or w ¼ 180	) as
indicated by D. The orientation of individual planes with respect to the
processing directions is outlined in the upper right corner.

Please cite this article in press as: Seiner H et al. Application of ultra
copper processed by equal-channel angular pressing. Acta Mater (20
respected by subpopulations SP(1P1) and SP(1P2) from
the Monte Carlo simulations.

Let us now return to Fig. 2. The three peaks (A, B

and C) shown here correspond to three planes of mirror
symmetry, being approximately perpendicular to each
other. This indicates that the examined material has an
orthorhombic symmetry. The way in which these planes
are oriented with respect to the processing direction is
also outlined in Fig. 2. The plane C is normal to Y

and is declined from Z by approximately 30�; the planes
A and B contain an angle of approximately 45� with Y.
Such orthorhombic symmetry can be easily related to
the microstructure evolution in the material during the
first ECAP pass. As observed by Iwahashi et al. [15] in
pure aluminum with large grain size and as confirmed
by various physical models [27–29], the grains after the
first pass of ECAP are elongated in a plane containing
an angle of about 30� with the extrusion direction. This
corresponds exactly to the plane C identified here from
the elastic anisotropy. For our 1P material, the signifi-
cance of this plane is clearly visible in Fig. 3a, which
shows a scanning electron microscopy image of the Y

plane with the grain boundaries highlighted by etching.
The oriented elongation of the grains was also observed
by optical microscopy (Fig. 3b).

Weaker, but still reliably identifiable, symmetry can be
found for the Y plane (w ¼ 0	 or w ¼ 180	 denoted by D

in Fig. 1). This symmetry is due to the symmetry of
Table 6
Locations of planes of approximate mirror symmetry for the 1P
specimens. The experimental errors are determined from random sub-
populations SP(1P1) and SP(1P2).

Plane label w h

A (1P1) (132.83 ± 1.4)� (27.3 ± 3.3)�
B (1P1) (43.13 ± 3.6)� (25.53 ± 2.4)�
C (1P1) (92.63 ± 1.7)� (119.83 ± 0.9)�
A (1P2) (138.13 ± 2.4) (31.03 ± 2.6)�
B (1P2) (48.23 ± 3.4) (24.53 ± 1.5)�
C (1P2) (87.73 ± 4.0) (120.33 ± 1.4)�

sonic methods to determine elastic anisotropy of polycrystalline
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Fig. 3. Grain elongation visible on face Y. (a) Scanning electron
micrograph with the grain boundaries highlighted by etching (the edge
of the specimen (with plane X) is visible). (b) Optical micrograph.

Fig. 5. Surfaces of function M�1ðw; hÞ for the material after the second
pass of ECAP (upper figure corresponds to specimen 2P1, lower figure to
2P2). One significant peak (M) indicates the monoclinic symmetry for both
specimens. The orientation of the plane M with respect to the processing
directions is outlined in the upper right corner.

H. Seiner et al. / Acta Materialia xxx (2009) xxx–xxx 9

ARTICLE IN PRESS
processing (the processing die as well as the channel itself
are symmetric with respect to this plane). By putting the
orthorhombic symmetry given by planes A, B and C

and the processing symmetry about plane Y together,
Fig. 4. Comparison of DvqT surfaces for two specimens of the 1P material and
to the processing directions is outlined by sketching the X and Z planes.

Please cite this article in press as: Seiner H et al. Application of ultra
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we obtain a tetragonal symmetry with a tetragonal axis
normal to plane C and with mirror symmetry with respect
to planes A, B, D and a plane normal to C and D (this
plane corresponds to the small peak clearly visible
between peaks A and B in Fig. 1). If we apply all these
symmetry elements to the matrix c1P

ij (an average of matri-
ces c1P1

ij and c1P2
ij ), we obtain a tetragonal approximation

of the elasticity of the material. In a coordinate system
oriented such that x1 is normal to plane C and x2 and
x3 (which are interchangeable) lie in intersections of
the tetragonal approximation. The orientation of the surfaces with respect

sonic methods to determine elastic anisotropy of polycrystalline
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�1:6� 6:0 0:6� 5:2

�2:0� 6:1 4:0� 4:4

�0:4� 6:8 1:3� 2:4

0:4� 0:3 0:5� 2:0

45:3� 0:2 �0:1� 0:7

41:5� 0:1

1
CCCCCCCCA

GPa ð12Þ

0:7� 6:5 0:4� 2:8

0:0� 5:9 3:3� 3:2

1:5� 6:5 1:9� 4:2

0:9� 0:7 �0:6� 0:9

45:5� 0:2 �0:6� 0:9

41:5� 0:1

1
CCCCCCCCA

GPa; ð13Þ

Fig. 6. Comparison of DvqT surfaces for two specimens of the 2P material and the monoclinic approximation. The orientation of the surfaces with respect
to the processing directions is outlined by sketching the X and Z planes.
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planes A and B with C, the non-zero elastic coefficients of
such approximation are ~c1P

11 ¼ ð199:3� 0:7Þ GPa,
~c1P

22 ¼ ~c1P
33 ¼ ð191:7� 1:2Þ GPa, ~c1P

44 ¼ ð50:0� 0:4Þ GPa,
~c1P

55 ¼ ~c1P
66 ¼ ð43:5� 0:8Þ GPa, ~c1P

12 ¼ ~c1P
13 ¼ ð112:5 � 0:3Þ

GPa and ~c1P
13 ¼ ð110:3� 0:4Þ GPa. The agreement between

the original triclinic results and this approximation is
shown in Fig. 4. Moreover, this figure shows again that
our measurements are acceptably reproducible, as the
agreement between the surfaces of DvqT for specimens
1P1 and 1P2 is obvious, in spite of the disagreement
between the off-diagonal quadrants of matrices c1P1

ij and
c1P2

ij . As the tetragonal approximation also gives a very
similar DvqT surface, we can conclude that the material
after one ECAP pass is tetragonal, with a symmetry con-
sistent with the symmetry of ECAP processing and with
the tetragonal axis normal to the plane along which the
grains are elongated.

4.2.2. Material after the second pass of ECAP

The determined elastic coefficients are:

c2P1
ij ¼

199:2� 0:8 105:0� 0:1 111:7� 1:0 1:1� 2:5

202:3� 0:1 109:8� 1:3 �1:7� 2:4

194:9� 0:4 4:5� 2:4

43:1� 0:3

0
BBBBBBBB@

and:

c2P2
ij ¼

199:7� 0:5 105:1� 0:5 112:2� 0:7 0:0� 3:4

202:2� 0:1 109:6� 0:9 �1:7� 2:9

196:4� 0:3 3:0� 3:7

42:8� 0:5

0
BBBBBBBB@
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with the same discrepancy between diagonal and off-diago-
nal quadrants as for 1P specimens. The procedure for deter-
mination of the symmetry planes gives the results shown in
Fig. 5. There is only one obvious plane of monoclinic symme-
try in this material. This plane has a general orientation
(hMð2P1Þ ¼ ð73:5� 3:1Þ	, wMð2P1Þ ¼ ð117:1 � 2:4Þ	, hMð2P2Þ ¼
ð76:1� 2:0Þ	 and wMð2P2Þ ¼ ð112:8 �3:9Þ	, the experimental
errors were determined from subpopulations SP(2P1) and
SP(2P2)) which does not seem to have any relation to any
known mechanism of the formation of the microstructure
during the second pass. Fig. 6 provides a visual comparison
of elastic anisotropy of specimen 2P1, specimen 2P2 and a
monoclinic approximation of matrix c2P

ij (an average of
matrices c2P1

ij and c2P2
ij ). We can conclude that the surfaces

of DvqT are very similar for 2P1 and 2P2 and may be well
approximated by the monoclinic symmetry.

4.2.3. Material after the fourth pass of ECAP

The matrices of obtained elastic coefficients for the spec-
imens after the fourth pass of ECAP:
sonic methods to determine elastic anisotropy of polycrystalline
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�1:6� 2:5 �0:9� 5:9

�3:3� 2:1 �0:0� 6:0

�1:4� 1:7 �1:2� 5:3

1:1� 1:0 �0:5� 1:1

47:0� 0:1 �0:2� 1:0

48:0� 0:2

1
CCCCCCA

GPa ð14Þ

�3:1� 5:3 �2:1� 3:0

�3:4� 6:0 �0:6� 2:7

�1:0� 6:1 �1:7� 2:7

1:4� 0:6 �0:0� 0:2

46:9� 0:2 �0:5� 0:9

47:8� 0:1

1
CCCCCCCCA

GPa ð15Þ
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c4P1
ij ¼

202:4� 0:2 107:7� 0:5 106:6� 0:5 �0:0� 7:7

202:6� 0:2 107:4� 0:8 1:4� 6:0

203:5� 0:3 1:8� 5:9

47:4� 0:5

0
BBBBBB@

and:

c4P2
ij ¼

202:2� 0:4 107:7� 0:3 106:7� 0:3 0:7� 0:9

203:4� 0:2 107:5� 0:6 0:1� 0:9

203:2� 0:2 �0:5� 1:7

47:2� 0:1

0
BBBBBBBB@
look similar to the matrices for the 1P and 2P specimens.
However, for this material, the differences between, for
example, c11, c22 and c33 are comparable with the experi-
mental errors. This means that it is questionable whether
our measurements can reliably identify the elastic anisot-
ropy of this material. Moreover, our algorithm for identi-
fication of the mirror planes fails: the M�1ðw; hÞ surfaces
do not contain any significant peaks (but the whole sur-
faces are slightly shifted upwards), which also supports
our conjecture that the 4P material can be sufficiently
described by isotropic elasticity. This finding can be
quantitatively illustrated by evaluation of anisotropy fac-
tors A of individual materials. This factor can be (for gen-
eral triclinic anisotropy) defined, for example, as
A ¼ vqT

max=vqT
min

� �2
, where vqT

max and vqT
min are the maximal

and the minimal quasi-transverse velocity, respectively.
For a cubic single crystal of copper, this definition is equiv-
alent to the classical definition for cubic materials
A ¼ 2c44=ðc11 � c12Þ, and gives A ¼ 3:21. For the 1P, 2P
and 4P materials (always taking the average values of cij

for the two examined specimens), the respective coefficients
are as follows: A1P ¼ 1:23; A2P ¼ 1:21 and A4P ¼ 1:08.
This, again, confirms that the anisotropy of the 4P material
is significantly smaller than that of 1P or 2P (which are
comparable to each other). By minimizing an error func-
tion similar to (9), we can find the isotropic constants giv-
ing the best approximation of the 4P material. These
values (c11 ¼ 202:7 GPa and c44 ¼ 47:8 GPa) are very close
to the coefficients of the 0P material (2). In other words,
the grain refinement induced by the four ECAP passes
(route BC) does not change the elasticity of the material.
This general conclusion is in good agreement with
commonly accepted models of shearing processes during
the ECAP. It is well known that the material after one
and two passes of ECAP contains elongated grains, while
almost equiaxed grains are observed in the material
after four passes of pressing by route BC (in Ref. [15], both
the theoretical explanation of this effect and an
illustrative transmission electron microscopy image can
be found).
Please cite this article in press as: Seiner H et al. Application of ultra
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5. Discussion

As mentioned in the Introduction, measurements of the
elastic anisotropy of polycrystalline metals are commonly
used for investigation of the texture, i.e. for determination
of preferred orientation of the crystallites in a polycrystal-
line aggregate. It can be shown (e.g. [1]) that for aggregates
with orthorhombic or higher symmetry (which is satisfied
by the tetragonal symmetry of the 1P material) and for
the single crystals with cubic symmetry (which is also valid
for copper), the anisotropy given by the texture can be, as a
first-order approximation, fully described by three indepen-
dent crystallite orientation distribution function (CODF)
coefficients, usually denoted as W 400;W 420 and W 440. In
Ref. [2], these coefficients are determined for rolled steel
sheets from ultrasonic measurements (using an EMAT
technique similar to RUS) and it is shown that the CODF
evaluated for these coefficients gives a surprisingly good
approximation of the CODF obtained by X-ray measure-
ments. In this section, we will discuss the possibility of
similarly estimating the CODF coefficients of the 1P and
2P material from the elastic anisotropy. We will distinguish
between the two possible origins of the anisotropy: the
crystallographic texture and the microstructure. These
two terms will be used in the same sense as in most of
the literature concerned with ECAP (e.g. the review papers
Refs. [7,12]), which means that the anisotropy induced by
the texture will be the anisotropy given by the preferred
crystallographic orientation of individual crystallites in
the polycrystalline material, whereas the anisotropy
induced by the microstructure will be the anisotropy
given by the anisotropic spatial arrangement of grain
boundaries (typically the grain elongation in 1P and 2P
material).

The relation between the elastic coefficients of a textured
aggregate cij, the elastic coefficients of the single crystal Cij

and the CODF coefficients can be, in general, written in the
form of:

cij ¼ cijðCijÞ þ c0ðCijÞf ðW 400;W 420;W 440Þ; ð16Þ
sonic methods to determine elastic anisotropy of polycrystalline
09), doi:10.1016/j.actamat.2009.08.071

http://dx.doi.org/10.1016/j.actamat.2009.08.071


12 H. Seiner et al. / Acta Materialia xxx (2009) xxx–xxx

ARTICLE IN PRESS
where the mean (isotropic) elastic coefficients cij and the
parameter c0 depend not only on the single-crystal elastic
coefficients Cij but also on the chosen averaging method,
whereas f is a function of the CODF coefficients only, inde-
pendent of the averaging method. Hirao and Ogi [3] give a
complete overview of explicit formulas for cij and c0 for
Voigt’s method (averaging directly the stiffness matrices
Cij), Reuss’s method (averaging the compliance matrices
Sij ¼ C�1

ij ) and Hill’s method, which is a combination of
Voight’s and Reuss’s methods.

It is obvious that the determination of the CODF coef-
ficients W 400W 420 and W 440 from ultrasonic measurements
by inverting the relation (16) is meaningful only under
the two following conditions:

1. The mean elastic coefficients cij obtained by the chosen
averaging method are good approximations of the elas-
tic coefficients of an untextured aggregate of the exam-
ined material, i.e. the difference between the real mean
elastic coefficients and the isotropic approximations cij

is smaller than the perturbation c0ðCijÞ f ðW 400;W 420;
W 440Þ attributed to the texture.

2. The anisotropy is fully given by the texture, i.e. the elas-
tic coefficients of a ”super-aggregate” (an aggregate of
randomly oriented aggregates with elastic coefficients
cij) must be equal to cij.

We will show that none of these conditions is fulfilled
for our 1P and 2P materials.

In the first three rows of Table 7, the elastic coefficients
of a single crystal of copper [25] and of the isotropic poly-
crystalline aggregates 0P and 4P are listed (the former
determined by pulse-echo measurements, the latter by
RUS as described in the previous sections). Let us now
Table 7
Comparison of the elastic coefficients of a single crystal of copper (the first
row), the coefficients of isotropic polycrystals obtained experimentally on
0P and 4P specimens (the second and the third row), isotropic elastic
coefficients evaluated by different averaging methods (middle part of the
table) and the isotropic coefficients obtained by averaging of the
experimentally obtained coefficients of 1P and 2P specimens.

c11 ðGPaÞ c12 ðGPaÞ c44 ðGPaÞ
Single crystal 168.4 121.4 75.4
0P (pulse-echo) 202.0 107.6 47.2
4P (RUS) 202.7 107.2 47.8
cij ðVoigtÞ 209.9 100.7 54.6
cij ðReussÞ 180.7 146.2 17.2
cij ðHillÞ 195.7 123.4 35.9
cij (Hershey–Kröner–Eshelby) 201.3 104.9 48.2
c1P1 ðVoigtÞ 197.7 110.3 43.7
c1P2 ðVoigtÞ 197.2 110.3 43.4
c1P1 ðReussÞ 197.5 110.1 43.7
c1P2 ðReussÞ 197.1 110.1 43.5
c2P1 ðVoigtÞ 197.7 109.6 44.1
c2P2 ðVoigtÞ 196.9 109.6 43.7
c2P1 ðReussÞ 197.7 109.9 43.9
c2P2 ðReussÞ 197.3 109.9 43.7
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check which of the available averaging methods gives the
best approximation of the polycrystalline aggregates. Led-
better [30] has provided an analysis showing that neither
Voigt’s nor Reuss’s method, nor their average (Hill’s
method), is suitable for the evaluation of the elastic
coefficients of copper, and that the only method giving
acceptable results in this case is the Hershey–Kröner–
Eshelby method [31] based on considering an anisotropic
inhomogeneity embedded in an isotropic matrix. Indeed,
when repeating the calculations after [30], we obtain the
results listed in the middle part of Table 7. Only the Her-
shey–Kröner–Eshelby method gives a reasonably accurate
approximations of the constants obtained by pulse-echo
and RUS measurements. Unfortunately, no relation for
the parameter c0 from (16) for this method is available in
the literature, which makes the formula (16) useless for tex-
ture analysis of our 1P and 2P specimens.

A slightly deeper insight in the nature of the elastic
anisotropy of the 1P and 2P materials can be obtained by
discussing the second condition, i.e. by constructing a
super-aggregate. For the experimentally obtained cij of
the 1P and 2P material, this was done numerically by gen-

erating 106 random orientations (matrices Rðn¼1;...;106Þ
ij 2

S0ð3Þ) and calculating the Voigt’s average:

cijkl ¼
X

n

RðnÞia RðnÞjb RðnÞkc RðnÞld cabcd ð17Þ

and the Reuss’s average

cijkl ¼
X

n

RðnÞia RðnÞjb RðnÞkc RðnÞld c�1
abcd

 !�1

: ð18Þ

Due to the extremely weak anisotropy of the 1P and 2P
materials, both averaging methods give approximately the
same results, as shown in the lower half of Table 7. (The
weakness of the anisotropy also makes the use of both
these methods fully justified.) However, the obtained
results agree neither with the experimental data for the
0P and 4P materials, nor with the corresponding Her-
shey–Kröner–Eshelby approximation. In particular, the
differences in c44 are obvious and cannot be attributed to
experimental errors. On the other hand, the bulk modulus
remains the same, as can be easily checked (K ¼ c11 � 4

3
c44

for isotropic materials).
We can clearly conclude that the elastic anisotropy of

the 1P and 2P materials is not given solely by the texture.
It seems that the anisotropy is rather related to the pre-
ferred orientation of the grain boundaries (the most appar-
ent evidence for such conclusion is the C plane in the 1P
material), which is also consistent with the fact that for
the 4P material, where the grains are equiaxed, the elastic-
ity returns to the original isotropic state.

6. Conclusions

We have shown that specimens of polycrystalline copper
after the first and the second pass of ECAP exhibit measur-
sonic methods to determine elastic anisotropy of polycrystalline
09), doi:10.1016/j.actamat.2009.08.071
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able elastic anisotropy, and that the applied ultrasonic
methods (a combination of RUS and the pulse-echo
method) are suitable for experimental examination of this
anisotropy. For the 1P material, the orientation of the
experimentally determined tetragonal symmetry can be
clearly related to the grain elongation along the plane con-
taining approximately the angle 30� with the Z plane and
normal to the Y plane. The 2P material exhibits monoclinic
symmetry along a plane which we were unable to relate to
any significant plane given by the microstructure. After the
fourth pass (4P), the material is isotropic, with elastic coef-
ficients very close to those determined for the material in
the initial state (as-cast, 0P).

The bulk modulus of the material does not change
during the first four passes of ECAP, while the mean
elastic coefficients (isotropic coefficients obtained by aver-
aging methods) are slightly changing. This leads us to the
conclusion that the anisotropy we observe for 1P and 2P
materials is not given only by the texture, but also by the
microstructure, i.e. by the orientation of the grain bound-
aries, etc.
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