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On the Bahadur-Ef�cient Testing of Uniformity by
means of the Entropy

Peter Harremoës, Member, IEEE, and Igor Vajda, Fellow, IEEE,

Abstract�This paper compares the power divergence statistics
of orders � > 1 with the information divergence statistic in
the problem of testing the uniformity of a distribution. In this
problem the information divergence statistic is equivalent to the
entropy statistic. Extending some previously established results
about information diagrams, it is proved that the information
divergence statistic in this problem is more ef�cient in the
Bahadur sense than any power divergence statistic of order
� > 1: This means that the entropy provides in this sense the most
ef�cient way of characterizing the uniformity of a distribution.

Index Terms�Bahadur ef�ciency, entropy, goodness-of-�t,
index of coincidence, information diagram, power divergences.

I. POWER DIVERGENCE STATISTICS

LET M(k) denote the set of all discrete probability distri-
butions of the form P = (p1; :::; pk) and

M(kjn) =
�
P 2M(k) : nP 2 f0; 1; : : :gk

	
(1)

the subset of types. One of the fundamental problems of
mathematical statistics can be described by n balls distributed
into boxes 1; :::; k independently according to an unknown
probability law

Pn = (pn1; :::; pnk) 2M (k) (2)

possibly depending on the number of balls n. This results in
frequency counts Xn1; : : : ; Xnk the vector of which Xn =
(Xn1; : : : ; Xnk) 2 f0; 1; : : :gk has a multinomial distribution
with parameters k, n, Pn,

Xn �Multinomialk(n; Pn): (3)

The problem is to decide on the basis of observations Xn

whether the unknown law (2) is equal to a given Q =
(q1; :::; qk) 2M (k) or not.

The observations Xn are represented by the (random)
empirical probability distribution

P̂n =
�
p̂n1

4
= Xn1=n; :::; p̂nk

4
= Xnk=n

�
2M(kjn) (4)

and the hypothesis Q about Pn is usually decided by means
of a procedure T called a test. This procedure uses a statistic
Tn(P̂n; Q) which characterizes the goodness-of-�t between
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the distributions P̂n and Q. The test T rejects the hypothesis
Pn = Q if T = Tn(P̂n; Q) exceeds certain rejection level
rn 2 R.

The goodness-of-�t statistic is usually one of the power
divergence statistic

T� = T�;n = 2nD�(P̂n; Q); � 2 R (5)

where D�(P;Q) denotes the so-called �-divergence (power
divergence of order �) of distributions P;Q 2 M (k) de�ned
by

D�(P;Q) =
kX
j=1

qj ��

�
pj
qj

�
; � 2 R; (6)

for the power function �� of order � 2 R given in the domain
t > 0 by the formula

��(t) =
t� � �(t� 1)� 1

�(�� 1) when �(�� 1) 6= 0 (7)

and by the corresponding limits

�0(t) = � ln t+ t� 1; (8)
�1(t) = t ln t� t+ 1: (9)

For details about the de�nition (6) and properties of power
divergences, see [1] or [2]. Next we cite the best known
members of the family of statistics (5) with a reference to
the skew symmetry D�(P;Q) = D1��(Q;P ) of the power
divergences (6).

Example 1: The quadratic divergences

D2(P;Q) = D�1(Q;P ) =
1

2

kX
j=1

(pj � qj)2
qj

lead to the well known Pearson statistic

T2 = T2;n =
kX
j=1

(Xnj � nqj)2
nqj

(10)

and Neyman statistics

T�1 = T�1;n =
kX
j=1

(Xnj � nqj)2
Xnj

:

The logarithmic divergences

D1(P;Q) = D0(Q;P ) =
kX
j=1

pj ln
pj
qj

(11)
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lead to the log-likelihood ratio statistic

T1 = T1;n = 2
kX
j=1

Xnj ln
Xnj

nqj
(12)

and reversed log-likelihood ratio statistic

T0 = T0;n = 2nqj

kX
j=1

ln
nqj
Xnj

:

The symmetric Hellinger divergence

D1=2(P;Q) = D1=2(Q;P ) = 4
kX
j=1

�p
pj �

p
qj
�2

leads to the Freeman�Tukey statistic

T1=2 = T1=2;n = 2
kX
j=1

�p
Xnj �

p
nqj

�2
: (13)

In this paper we would like to �nd the power divergence
statistic T�; � 2 R that is most suitable for testing the
hypothesis that the true distribution Pn is uniform, i.e. the
hypothesis H : Pn = U

�
= (1=k; :::; 1=k). Hence in our model

Xn �Multinomialk(n;U) under H: (14)

The alternative to the hypothesis H is denoted by An. Thus
by (3),

Xn �Multinomialk(n; Pn) under An (15)

for Pn assumed in (2).

Next follows a typical example of the hypotheses testing
model introduced in (14) - (15).

Example 2: Let �; � be two different probability measures
on the Borel line (R;B) with absolutely continuous distrib-
ution functions F , G and Y1; : : : ; Yn an i.i.d. sample from
the probability space (R;B; �). Consider a statistician who
knows neither the probability measure � governing the random
sample (Y1; : : : ; Yn) nor this sample itself. Nevertheless he
observes the frequencies Xn = (Xn1; : : : ; Xnk) of the sam-
ples Y1; : : : ; Yn in an interval partition Pn = fAn1; : : : ; Ankg
of R chosen by him. Using Xn he has to decide about the
hypothesis H that the unknown probability measure on (R;B)
is the given �. Thus for a partition Pn = fAn1; : : : ; Ankg
under his control he obtains the observations

Xn �Multinomialk(n; Pn) (16)

where
Pn = (�(An1); : : : ; �(Ank))

and his task is to test the hypothesisH : � = �. Knowing �, he
can use the quantile function G�1 of � or, more precisely, the
quatiles G�1(j=k) of the orders j=k for 1 � j � k cutting R
into a special system of intervals Pn = fAn1; : : : ; Ankg with
the property �(Anj) = 1=k for 1 � j � k. Hence for this
special partition we get from (16)

Pn = U = (1=k; :::; 1=k) 2M(kjn) under H (17)

Fig. 1. The domain of a Cauchy distribution divided in �ve bins with equal
probabilities.

and

Pn = (�(An1); : : : ; �(Ank)) 2M(k) under An: (18)

We see from (16) - (18) that the quantile-generated partitions
Pn lead exactly to the situation assumed in (14) - (15). This

idea is illustrated in Figure 1.

The formulas for divergences D�(P;Q) simplify when Q =
U , e.g.,

D1(P;U) = ln k �H(P ) for P 2M(k) (19)

where H(P ) denotes the Shannon entropy

H(P ) = �
kX
j=1

pj ln pj :

Similarly, (6) and (7) imply for all � > 1 and P 2M(k)

D�(P;U) =

Pk
j=1 p

�
j (1=k)

1�� � 1
�(�� 1)

=
k��1

Pk
j=1 p

�
j � 1

�(�� 1)

=
k��1IC�(P )� 1

�(�� 1) : (20)

Here

IC�(P ) =
kX
j=1

p�j for P 2M(k) (21)

is the index of coincidence of P of order � > 1 introduced in
[3], taking on values between k1�� (when P is the uniform
distribution U ) and 1 (when P is the Dirac distribution Pj
with pj = 1 for some 1 � j � k).

From (19) we see that the log-likelihood ratio statistics
statistic T1;n = 2nD1(P̂n; Q) is one-one related to the entropy
statistic 2nH(P̂n), and from (20) we see that for each � > 1
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the power divergence statistic T�;n = 2nD�(P̂n; Q) is one-
one related to the corresponding IC-statistic 2nIC�(P̂n). The
entropyH(P̂n) as well as the indices of coincidence IC�(P̂n);
� > 1 characterize the uniformity of the distribution P̂n. We
are interested in the characterization which is most ef�cient
from the statistical point of view.

The rest of the paper is organized as follows. In Section
II the basic idea behind Bahadur ef�ciency is explained
and previous result related to ef�ciency of certain tests are
mentioned. These previous results have been an important
inspiration for developing the results of this paper, but they
are not used directly. In Section III conditions for the plug-
in estimator of power divergence to be consistent are given.
These conditions play an important role in the formulation and
the proof of the main results, but the results should also be of
independent interest. Section IV is the most technical where
Bahadur functions are introduced and the link to result from
[3] is established.

Section V states the main result of the paper and proves
it using results of the previous sections This result is then
discussed in Section VI.

II. BAHADUR EFFICIENCY

In the previous section we introduced the family of power
divergence statistics T�; or the one-one related family of
statistics D�(P̂n; Q); � 2 R. In the rest of this paper we
are interested in the relative asymptotic ef�ciencies of these
statistics for 1 � �1 < �2 < 1 when applied in testing the
uniformity hypothesis (14). To this end we use the concept of
Bahadur asymptotic relative ef�ciency of T�1 with respect to
T�2 (brie�y Bahadur ef�ciency, in symbols BE(T�1 j T�2)).
Roughly speaking, this ef�ciency compares the sample sizes
ni needed by the T�i-tests of the same powers to achieve the
same asymptotic sizes. It differs from the Pitman asymptotic
relative ef�ciency of T�1 with respect to T�2 which compares
the sample sizes ni needed by the T�i-tests of the same sizes
to achieve the same asymptotic powers (cf. [4, pp. 332�341]
or [5]). We use the general concept of Bahadur ef�ciency
introduced in [6] where it was extended the original concept
of [7]. Before its formal de�nition, we brie�y review some
useful preliminary testing results.

Let us �rst suppose that k remains �xed while n tends to
in�nity. In this case the goodness-of-�t statistic (5) � (13) have
been studied systematically in [2]. They proved under H the
limit law

T�;n
L! �2k�1 as n!1; � 2 R (22)

where �2k�1 stands for the �2-distributed random variable
with k � 1 degrees of freedom and where ! here denotes
convergence in distribution. In [2] the authors also proved a
modi�cation of (22) under the local alternatives

An : Pn = (1� 1=
p
n)U + P=

p
n for P 2M(k) �xed.

(23)
An extension of (22) to the case where (14) remains valid but

k = kn increases slowly to 1 as n!1 in the sense

lim
n!1


n = 0 for 
n =
k

n
(24)

has been studied for � = 2 in [8] and for arbitrary positive
integers � in [9].

The asymptotic normality
T�;n � kp

2k

L! N(0; 1) as n!1; � 2 R (25)

has been proved under H subsequently in [10], [11] and [12]
under stronger alternatives to the slow convergence condition
(24), namely

lim
n!1


n = 0 for 
n =
k2 ln2 n

n
;
k2 ln k

n
and

k2

n
(26)

respectively. Extension of (25) to a local alternative of the
type (23) can be found for � = 1 and � = 2 in [9], and for
arbitrary � 2 R in [13].

If contrary to (24) or (26), k = kn increases fast to 1 in
the sense

lim
n!1


n = 
 > 0 for 
n =
k

n
(27)

then (25) has to be replaced by more complicated limit laws
established in [14], [15], [2] and [16]. However, the practical
situations where the model satis�es (27) are rare. In our in-
troductory example with distribution of balls, this assumption
means that the number of boxes is comparable with the number
of balls. Hence either the frequencies Xn1; : : : ; Xnk of balls
in all boxes remain bounded as n ! 1, or majority of the
boxes remains empty.

In what follows we restrict ourselves to the usual situations
where k = kn satis�es the conditions of the type (24) or (26).
The limit laws mentioned above enable us to specify for any
� 2 R the T�-based test of the hypothesis H of an arbitrary
asymptotic size s 2 ]0; 1[. Under the normal law (25) such a
test is de�ned by the rejection rule

T� > rn(s) for rn(s) = kn +
p
2kn�

�1(1� s) (28)

for the quantile of the order 1 � s of the standard normal
distribution function �. We would like to choose the optimal
statistic T�opt from the family T�; � 2 R. This leads to
the comparison of the asymptotic relative ef�ciencies in this
family.

If k = kn increases slowly as assumed in (24) or (26),
then the Pitman asymptotic relative ef�ciencies of all sta-
tistics T�, � 2 R coincide (cf. e.g. [2]). In this situation
preferences between these statistics must be based on the
Bahadur ef�ciencies BE(T�1 j T�2). The key result in this
direction was established in [6] where it was demonstrated that
BE(T1 j T2) =1 so that the log-likelihood ratio statistic T1
is more Bahadur ef�cient than the Pearson statistic T2. Using
the results from [17], this �rst achievement was extended in
[18] where it was proved that the Bahadur ef�ciencies of the
reversed log-likelihood ratio statistic T0 and the Neyman sta-
tistic T�1 coincide and both are less Bahadur ef�cient than the
Pearson's T2. A problem left open in the previous literature is
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to evaluate the Bahadur ef�ciencies of the remaining statistics
T�; � 2 R, in particular to con�rm or reject the conjecture that
the log-likelihood ratio statistic T1 is most Bahadur ef�cient in
the class of all power divergence statistics T�, � 2 R. In this
paper we present a partial solution to this problem for � � 1.
Our solution is based on the results for indices of coincidence
established in [3].

The above mentioned Bahadur ef�ciency BE(T�1 j T�2)
is de�ned under the condition that for � = �1 and � = �2
the statistic D�(P̂n; U) is consistent and admits the so-called
Bahadur function. These two concepts are given in De�nition
1 and 2 below. In what follows we often use the statistics
D�

�
P̂n; U

�
instead of the ono-one related T� = T�;n :

Further by P(Bn) we shall denote the probabilities of events
Bn depending on the random observations Xn (cf. (14) and
(15)) and by E the corresponding expectations.

De�nition 1: For � 2 R we say that
1) the model satis�es the Bahadur condition if there exists
0 < �� <1 such that under the alternatives An

lim
n!1

D�(Pn; U) = ��; (29)

2) the statistic D�(P̂n; U) is consistent if the Bahadur
condition holds and for n!1

ED�(P̂n; U) �! 0 under H (30)

and
D�(P̂n; U)

p�! �� under An: (31)

The inequality 0 < �� < 1 in the Bahadur condition
means that in term of the statistic D�(P̂n; U), the alternatives
An are neither too near to nor too far from the hypothesis H.
The next example demonstrates that in the model of Example
2 this important condition holds.

Example 3: Let us consider the typical situation of Example
2 leading to the present statistical testing model. If the proba-
bility measure � considered there is dominated by � then, by
[19, Theorem 2],

lim
n!1

D�(Pn; U) =

Z 1

�1
��

�
d�

d�

�
d� for all � 2 R:

The integrals are �-divergences D�(�; �) of probability mea-
sures � and �, see [1]. Thus (29) holds for �� = D�(�; �)
when � is dominated by � and �� > 0 unless � = � (i.e.
H = An for all n = 1; 2; :::). This means that if the model of
Example 2 is nontrivial then then the Bahadur condition holds
for all � 2 R such that D�(�; �) <1.

The consistency of D�(P̂n; U) introduced in De�nition 1
means that D�(P̂n; U)-based test of the hypothesis H : U
against the alternative An : Pn of any �xed size has power
tending to 1. Indeed, under H we have D�(P̂n; U)

p�! 0 so
that the rejection level rn(s) of the D�(P̂n; U)-based test of
size s 2]0; 1[ tends to 0 for n!1 while under An we have
D�(P̂n; U)

p�! �� > 0:

De�nition 2: For � 2 R we say that g� is the Bahadur
function for the statistic T� = 2nD�(P̂n; U) if g� : R+ ! R+
is continuous and there exists a sequence c�;n > 0 such that
under H

lim
n!1

�c�;n
n
lnP(D�(P̂n; U) � �) (32)

= g�(�); � > 0.

Remark 1: One should note that the Bahadur function de-
pends on the sequence c�;n: For the kind of results that
we are interested in, the crucial thing is to determine the
asymptotic behavior of sequences c�;n admitting the Bahadur
function rather than the exact value of this. Nevertheless we
shall calculate the exact value of the Bahadur function for
certain sequences because this will allow us to use standard
terminology and because the determination of the Bahadur
function may be of independent interest.

Next follows the basic de�nition of the present paper where
��1 , ��2 are the limits from the Bahadur condition and g�1 ,
g�2 and c�1;n, c�2;n are the functions and sequences from the
de�nition of Bahadur function. In this de�nition we apply to
the power divergence statistics T�1 and. T�2 the concept of the
Bahadur ef�ciency BE(T1 j T2) introduced for more general
statistics T1 and T2 in [6, p. 732].

De�nition 3: Let the statistic D�1(P̂n; U) and D�2(P̂n; U)
be consistent and let the Bahadur functions g�1 and g�2 of
the power divergence statistics T�1 and. T�2exist. Then the
Bahadur ef�ciency BE(T�1 j T�2) of T�1 with respect to
T�2 is de�ned by

BE(T�1 j T�2) =
g�1(��1)

g�2(��2)
lim
n!1

c�1;n
c�2;n

(33)

provided the limit exists in [0;1]: Therefore this ef�ciency
takes on values in the domain [0;1].

Assume that the statistics D�i(P̂n; U) are consistent for i 2
f1; 2g and that there exist Bahadur functions g�i satisfying
(32) for some sequences c�i;n > 0. Then the de�nition of
consistency implies that both the T�i-tests of the uniformity
hypothesis H : U will achieve identical powers

� = P(D�i(P̂n; U) � rn;i)

for � 2 ]0; 1[ and i 2 f1; 2g under An if and only if rn;i #
��i for i 2 f1; 2g as n ! 1: The convergence rn;i # ��i
leads to the approximate T�i-test sizes

sn;i
�
= P(D�i(P̂n; U) � ��i)
� P(D�i(P̂n; U) � rn;i)

for i 2 f1; 2g under H where sn;i ! 0 as n ! 1 for
i 2 f1; 2g under H. By (32), the T�i-tests need different
sample sizes

ni =
c�i;n

g�i(��i)
ln
1

sn
; i 2 f1; 2g (34)

to achieve the same approximate test sizes sn = sn;1 = sn;2
when n is here playing the role of a formal parameter that
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Fig. 2. The function y ! y� illustrated for � = 3=2 by the full line. The
lower bound given in (35) is indicated by the dashed straight line for x = 0:5
. The upper bound in (36) is indicated by the dotted line.

increases to 1: Thus De�nition 3 formalizes the concept of
asymptotic relative ef�ciency announced at the beginning of
this section.

Before presenting the main results based on De�nition 3 in
Section V, we investigate suf�cient conditions for consistency
of the statistic D�(P̂n; U) in the domain � � 1 in Section
III. Section IV presents conditions for the existence of the
corresponding Bahadur functions g�; � � 1 and explicitly
evaluates these functions.

III. CONSISTENCY
When a statistician uses D�(P̂n; U) as a statistic to dis-

tinguish between Pn and U then he does so because he
considers the plug-in estimator D�(P̂n; U) as a good esti-
mate of D� (Pn; U) : This idea was made precise in De�n-
ition 1 dealing with the important concept of consistency of
D�(P̂n; U). Our next theorem presents consistency conditions
for all statistic D�(P̂n; U), � � 1: It is based on the following
auxiliary result.
Lemma 1: For x 2 [0; 1[ and y 2 [0; 1] and � 2 ]1; 2[ we

have

jy� � x�j � �x��1 jy � xj+ (�� 1)x��2 (y � x)2 :
Proof: First we observe that

y� � x� + �x��1 (y � x) (35)

because the function y ! y� is convex. Next we prove the
inequality

y� � x� + �x��1 (y � x) + (�� 1)x��2 (y � x)2 : (36)

The upper and lower bounds in (35) and (36) are illustrated
in Figure 2.

We have to prove that

y� �
�
x� + �x��1 (y � x) + (�� 1)x��2 (y � x)2

�
is negative. This is obvious for y = x and for y = 0. The
derivative is

�y��1 �
�
�x��1 + (�� 1)x��22 (y � x)

�
= �y��1 + (�� 2)x��1 + (2� 2�)x��2y:

The derivative is 0 for y = x: Differentiate once more and get

� (�� 1) y��2 + (2� 2�)x��2

= (�� 1)
�
�y��2 � 2x��2

�
;

which is positive for y �
�
�
2

� 1
2�� x � x: Combining (36) and

(35) leads to

0 � y� � x� � �x��1 (y � x) � (�� 1)x��2 (y � x)2 :
(37)

Now 1� x� ��x��1 (1� x) is increasing in x and equals 0
for x = 1 so the lower bound in (37) side is negative and we
have��y� � x� � �x��1 (y � x)�� � (�� 1)x��2 (y � x)2 :
The inequality follows because

jy� � x�j �
���x��1 (y � x)��

+
��y� � x� � �x��1 (y � x)�� :

We shall also use the following upper bound a number of
times

E(p̂j � pj)2 =
pj (1� pj)

n

� pj
n

For divergence of order 2 it gives

ED2

�
P̂nkP

�
=

kX
j=1

E (p̂j � pj)2

pj
(38)

�
kX
j=1

1

n

=
k

n
:

Theorem 1: For all � � 1 let the Bahadur condition (29)
hold. Then D�(P̂n; U) is consistent if

� 2 [1; 2] and lim
n!1

k

n
= 0; (39)

or
� > 2 and lim

n!1

k��1

n
= 0: (40)

Proof: Under H we have D�(Pn; U) = D�(U;U) = 0:
Hence it suf�ces to prove that under both H and An

lim
n!1

E
���D�(P̂n; U)�D�(Pn; U)

��� = 0 for all � � 1:
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Put for brevity ��;n = D�(P̂n; U) �D�(Pn; U) and denote
the variance by Var and the covariance by Cov. The cases
i) � = 1; ii) � 2 ]1; 2] and iii) � > 2 have to be treated
separately.
(i) For � = 1 we have

�1;n =
kX
j=1

(p̂j ln p̂j � pj ln p)j ; (41)

where we dropped the subscript n everywhere in the sum.
From (41) we obtain

�1;n =
kX
j=1

p̂j ln
p̂j
pj
�

kX
j=1

(p̂j � pj) ln
1

pj

and hence

j�1;nj � D1(P̂n; Pn) +

������
kX
j=1

(p̂j � pj) ln
1

pj

������ :
If n̂i = p̂in is the number of observations of type i then

D1(P̂n; Pn) � 2D2(P̂n; Pn):

Therefore

E j�1;nj �

2ED2(P̂n; Pn) + E

������
kX
j=1

(p̂j � pj) ln
1

pj

������ : (42)

The last term on the right hand side can be bounded using
Jensen's Inequality.

E

������
kX
j=1

(p̂j � pj) ln
1

pj

������ �
0B@E

0@ kX
j=1

(p̂j � pj) ln
1

pj

1A2
1CA
1=2

=

0@ kX
i;j=1

ln pj ln piCOV (p̂i; p̂j)

1A1=2

=

0@ kX
i;j=1

ln pj ln pi
COV (n̂i; n̂j)

n2

1A1=2

; (43)

Further,

kX
i;j=1

ln pj ln pi
Cov (n̂i; n̂j)

n2

=
kX
i=1

(ln pi)
2 Var (n̂i)

n2
+
X
i 6=j

ln pj ln pi
Cov (n̂i; n̂j)

n2

�
kX
i=1

(ln pi)
2 pi
n
+
X
i 6=j

ln pj ln pi
npipj
n2

=
1

n

kX
i=1

pi (ln pi)
2
+
1

n

 
kX
i=1

pi ln pj

!2
: (44)

The function x! x ln2 x is concave in the interval
�
0; e�1

�
and convex in the interval

�
e�1; 1

�
: Therefore we are able to

use [3, Theorem 3.1] to see that
Pk

i=1 pi (ln pi)
2 attains its

maximum for a mixture of uniform distributions on k and
k � 1 points. Thus

kX
i=1

pi (ln pi)
2 �

kX
i=1

1

k � 1

�
ln
1

k

�2
(45)

=
k (ln k)

2

k � 1
� 2 (ln k)2 :

The sum
Pk

i=1 pi ln pj equals minus the entropy, which has
maximum ln k: By combining (38), (42), (43), (44), and (45)
we get

E j�1;nj �
2k

n
+

 
3 (ln k)

2

n

!1=2

and the right hand side tends to zero under the condition (39)
for n tending to in�nity. This proves (39) for � = 1:
(ii) For every � 2 ]1; 2[ we have

��;n =
k��1

� (�� 1)

kX
j=1

(p̂�j � p�j ):

Using the abbreviation

D�;n = D�(Pn; U); (46)

we obtain

j��;nj �

k��1

� (�� 1)

kX
j=1

�
�p��1j jp̂j � pj j

+(�� 1) p��2j (p̂j � pj)2
�
�

k��1

�� 1

0@ kX
j=1

�
p
�=2
j

�21A1=20@ kX
j=1

p��2j (p̂j � pj)2
1A1=2

+
k��1

�

kX
j=1

p��2j (p̂j � pj)2 =

k
��1
2

�
� (�� 1)D�;n

+1

�1=2
�� 1

0@ kX
j=1

p��2j (p̂j � pj)2
1A1=2

+
k��1

�

kX
j=1

p��2j (p̂j � pj)2
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because
Pk

j=1 p
�
j = [� (�� 1)D�;n + 1]=k

��1: Thus

E j��;nj

� k
��1
2

�� 1 (� (�� 1)D�;n + 1)
1=2

0@ kX
j=1

p��2j

pj
n

1A1=2

+
k��1

�

kX
j=1

p��2j

pj
n

=
(� (�� 1)D�;n + 1)

1=2

�� 1

 
k��1

Pk
j=1 p

��1
j

n

!1=2

+
k��1

�n

kX
j=1

p��1j :

The sequence D�;n is upper bounded and that implies that
there exists a constant c < 1 such that pj � c for all n; j:
Thus

E j��;nj ��
� (�� 1)D�;n

+1

�1=2
�� 1

 
k��1k

�
1
k

���1
n

!1=2

+
2

�

k��1k
�
1
k

���1
n

=
(� (�� 1)D�;n + 1)

1=2 � k
n

�1=2
�� 1 +

k

�n
:

This proves (39) for � 2 ]1; 2] :
(iii) For � � 2 we shall use the second order Taylor

expansion

p̂�j = p�j + �p
��1
j (p̂j � pj) +

�(�� 1)
2

���2j (p̂j � pj)2;

leading to

j��;nj �
k��1

�� 1

kX
j=1

p��1j jp̂j � pj j+
k��1

2

kX
j=1

(p̂j � pj)2:

(47)
We use Cauchy-Schwarz' inequality on the �rst term on the
right hand side of (47) to get

k��1

�� 1

kX
j=1

p��1j jp̂j � pj j �

k��1

�� 1

0@ kX
j=1

p
2(��1)
j

1A1=20@ kX
j=1

(p̂j � pj)2
1A1=2

: (48)

Using the sequence D�;n introduced in (46) we get

kX
j=1

p
2(��1)
j �

kX
j=1

p�j (49)

=
� (�� 1)D�;n + 1

k��1
:

By combining (47), (48) and (49) we get

E j��;nj

� k��1

�� 1

�
� (�� 1)D�;n + 1

k��1

�1=20@ kX
j=1

E (p̂j � pj)2
1A1=2

+
k��1

2

kX
j=1

E(p̂j � pj)2

� 1

�� 1

�
k��1

n
(� (�� 1)D�;n + 1)

�1=2
+
k��1

2n
:

ButD�;n is zero under the hypothesis of a uniform distribution
and, by (29), has a �nite limit under the alternative. This
completes the proof of (40).

Example 4: Assume that for � = 3 the model satis�es the
Bahadur condition, in particular that (29) holds with � = 3:
Then

ED3

�
P̂n; U

�
=
k2E

�Pk
j=1 p̂

3
j

�
� 1

6

where

p̂3j = p3j + 3p
2
j (p̂j � pj) + 3pj (p̂j � pj)

2
+ (p̂j � pj)3 :

Therefore

ED3

�
P̂n; U

�

=

k2
Pk

j=1 E

�
p3j + 3p

2
j (p̂j � pj)

+3pj (p̂j � pj)2 + (p̂j � pj)3
�
� 1

6

=
k2p3j � 1

6

+
k2

6

kX
j=1

�
3pjE (p̂j � pj)2 + E (p̂j � pj)3

�
:

By taking mean values we get

ED3

�
P̂n; U

�
= D3 (Pn; U)

+
k2

6

kX
j=1

�
3pj

pj (1� pj)
n

+
pj (1� pj) (1� 2pj)

n

�

= D3 (Pn; U) +
k2

6n

kX
j=1

�
pj � p3j

�

= D3 (Pn; U) +
k2
�
1�

Pk
j=1 p

3
j

�
6n

= D3 (Pn; U) +
k2 � 6D3 (Pn; U)� 1

6n
:

By (29), D3 (Pn; U) is bounded away from 0 under An
uniformly for all suf�ciently large n. Therefore (40) is not only
suf�cient but also necessary for the consistency of statistic
D�

�
P̂n; U

�
in the spacial case � = 3.
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IV. BAHADUR FUNCTIONS
Throughout this section we consider the statistical testing

model (14) - (15) under the hypothesis H. This means that
P(Bn) denotes the probability of the random events Bn
depending on Xn with a multinomial distribution in the
sense of (14). As before, we consider k = kn depending on
the sample size n and we study the Bahadur functions (32)
corresponding to the statistic D�(P̂n; U) for � � 1.

Example 5: Let k = kn increase so slowly that

lim
n!1

k lnn

n
= 0: (50)

Then (32) holds for the sequence c1;n � 1 and function

g1(�) = � for all � > 0; (51)

i.e., (51) is the Bahadur function for the log-likelihood ratio
statistic

T1 = 2nD1(P̂n; U):

This result was �rst obtained independently in [20, Corollary
2.4] and [6, Theorem 2]. Using the simple method based on
the inequality (52) below, it was obtained in [17, Theorem 2].

According to the result of [21] made precise in [22, Problem
1.2.11] and in [23, p. 16], for every subset A � M(k) the
divergence D1(P;U) de�ned by (11) satis�es the inequality���� inf

P2A\M(kjn)
D1(P;U) +

1

n
lnP(P̂n 2 A)

���� (52)

� k ln(n+ 1)

n
: (53)

Hence the approximation of � 1
n lnP(P̂n 2 A) in (32) by

means of the in�mum appearing in (52) is possible under the
restriction

lim
n!1

c�;n
k lnn

n
= 0 (54)

on the sequence k = kn, in addition to (24).

In the rest of this section we present an alternative to the
formula (32) for the Bahadur functions g�; � 2 R which
is based on the inequality (52). These formulas are given in
terms of the Shannon entropy H (P ) maximized on the sets

A�;�(k) = fP 2M(k) : D�(P;U) � �g (55)

and
A�;�(kjn) = A�;�(k) \M(kjn) (56)

or, equivalently, in terms of the information divergence
D1(P̂n; U) minimized on these sets.

Lemma 2: Assume that for some � 2 R and k = kn
there exist c�;n > 0 satisfying (54) such that the sequence
of functions

G�;�(kjn) = c�;n

�
inf

P2A�;�(kjn)
D�(P;U)

�
; � > 0 (57)

converges to a positive limit limit

g�(�) = lim
n!1

G�;�(kjn); � > 0: (58)

Fig. 3. In the simplex of distributions on a 3-element set, the distributions
with index of coincidence less a certain value are indicated by the shaded area.
A level curve of the entropy function is indicated by a full curve. Mixtures
of the uniform distribution U and a Dirac distribution at one of the extreme
points is indicated by a dashed line. Maximal entropy over the shaded area is
obtained at the point where the dashed line leaves the shaded area. The two
other points with maximal entropy are indicated as well.

Then the Bahadur function for the power divergence statistic
T� is equal to g� .

Proof: Using (19) and (52) we get that the functions (57)
satisfy the inequality���c�;n

n
lnP(D�(P̂n; U) � �) +G�;�(kjn)

���
� k c�;n ln(n+ 1)

n
:

Since (54) holds, (58) follows from here and from (33).
In the following assertion we consider for arbitrary � 2 R,

k = kn and c�;n > 0 the sequence of functions

G�;�(k) = c�;n

�
inf

P2A�;�(k)
D�(P;U)

�
; � > 0: (59)

Obviously, G�;�(k) � G�;�(kjn).

Lemma 3: Let for some � 2 R the Bahadur condition hold
and c�;n > 0 satisfy (54). If the corresponding sequences of
functions (57) and (59) asymptotically coincide in the sense

lim
n!1

[G�;�(kjn)�G�;�(k)] = 0 (60)

and at the same time G�;�(k) converges to a positive limit

g�(�) = lim
n!1

G�;�(k); � > 0 (61)

then g� is the Bahadur function for the power divergence
statistic T�.

Proof: Clear from the assumption (60) and Lemma 2.

In [3] it was proved that for every x 2 [k1��; 1] and for the
Dirac distribution 1 = (1; 0; : : : ; 0) 2M(k); the equation

IC�(s1+ (1� s)U) = x (62)



ACCEPTED FOR IEEE TRANSACTIONS ON INFORMATION THEORY 9

has a unique solution s 2 [0; 1] and that this solution satis�es
the relation

sup
IC�(P )�x

H(P ) = H(s1+ (1� s)U): (63)

This result is illustrated in Figure 3. It leads to the following
lemma using the constants

s�;k =
1� (1� 1=k)1=(��1)
1 + (1� 1=k)�=(��1) 2 ]0; 1[ : (64)

Lemma 4: For every � > 1 and

1

�(�� 1) k < � �
k��1 � 1
�(�� 1) ; (65)

the equation
1

k
(ks+ 1� s)� + (1� s)� = 1 + �(�� 1)� (66)

has a unique solution s 2 [0; 1] and this solution satis�es the
inequality

s�;k < s � 1 (67)

and the equality

inf
P2A�;�(k)

D1(P;U) =

1

k
(ks+ 1� s) ln(ks+ 1� s) + (1� s) ln(1� s): (68)
Proof: By de�nition of A�;�(k) in (55) and (20), P 2

A�;�(k) if and only if IC�(P ) � x for

x = k1��[1 + �(�� 1)�]:

By the de�nition of IC�(P ) in (21),

IC�(s1+ (1� s)U)

= k1��
�
1

k
(ks+ 1� s)� + (1� s)�

�
(69)

so that the equation (62) is equivalent to (66). Further,

D1(s1� (1� s)U;U) =
1

k
(ks+ 1� s) ln(ks+ 1� s) + (1� s) ln(1� s): (70)

Therefore, by (63) and (62), the relation (68) will be proved
if we prove that the equation (66) has a unique solution s 2
[0; 1]. One can verify by differentiation that the continuous
function

 (s) =
1

k
(ks+ 1� s)� + (1� s)�; s 2 [0; 1] (71)

appearing on the left of (66) is decreasing on the interval
[0; s�;k] and increasing on the complement ]s�;k; 1]. Since

 (0) =
1

k
+ 1 and  (1) = k��1;

for each � satisfying (65) the solution s 2 [0; 1] is unique and
strictly greater than s�;k. Thus not only (68) but also (67) is
valid.
In the following lemma and everywhere in the sequel, con-

vergence as well as the symbols o(�) and O(�), are considered

for n ! 1. We remind that k = kn is assumed to satisfy
(24).

Lemma 5: For every � > 1 and � > 0,

inf
P2A�;�(k)

D1(P;U) =�
[�(�� 1)�]1=� + o(1)

� k1=� ln k1=�
k

:

Proof: Consider arbitrary � > 1 and " > 0. Since k = kn
satis�es (24), Lemma 4 implies for all suf�ciently large n that
the equation (66) has in the interval ]s�;k; 1] a unique solution
s = sk satisfying (68). Therefore it suf�ces to prove that the
sequence

xk =
1

k
(ksk + 1� sk) ln(ksk + 1� sk) (72)

+ (1� sk) ln(1� sk) (73)

and the positive constant

� = [�(�� 1)�]1=�

satisfy the asymptotic relation

xk = (� + o(1))
k1=� ln k1=�

k
: (74)

By (64) and (67), sk is a positive sequence and (66) with s
replaced by sk obviously contradicts the assumption

lim sup
k!1

sk > 0:

Therefore, under (24), sk = o(1) and, consequently, (66) with
s replaced by sk leads to the asymptotic relation

1

k
[ksk +O(1)]

� + 1 + o(1) = 1 + ��:

This relation implies that

sk =
� k1=�

k
+ o

�
k1=�

k

�
(75)

and the desired relation (74) follows from here and from the
de�nition of xk in (72).
In the rest of the paper we are interested in the sequences

c�;n =
k

k1=� ln k1=�
(76)

for � > 1 and k = kn satisfying (24).

Lemma 6: If c�;n is given by (76) and (24) is satis�ed then
(60) holds for every � > 1 and � > 0.

Proof: Let �; � and sk be the same as in the previous
proof. Further, denote by `k the integer part of n(1� sk)=k,

`k =

�
n(1� sk)

k

�
;

and de�ne

~sk =
n� k`k

n
;

~Pk = ~sk1+ (1� ~sk)U;
Pk = sk1+ (1� sk)U;
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where 1 and U are the same elements of M(k) as in (69) and
(70). Then

sk � ~sk � sk +
k

n
; (77)

and one obtains from (20), (69) and (71)

D�( ~Pk; U) =
1

�(�� 1)
�
k��1 (~sk)� 1

�
and

D�(Pk; U) =
1

�(�� 1)
�
k��1 (sk)� 1

�
:

The distribution Pk belongs to A�;�(k) of (55). Indeed, sk
satis�es (66) and, consequently, D�(Pk; U) = �. The distrib-
ution ~Pk belongs to M(kjn) �M(k) de�ned by (1). Further,
in the proof of Lemma 4 we argued that the function  (s) of
(71) is increasing in the domain ]sk; 1] �]sk;�; 1]. Therefore
the left-hand side of (77) implies D�

�
~Pk; U

�
� �; which

means that ~Pk belongs to A�;�(kjn) of (56). Consequently,

inf
P2A�;�(kjn)

D1 (P;U) � D1

�
~Pk; U

�
where

D1

�
~Pk; U

�
= ln k �H( ~Pk)

= ln k �H(~sk1+ (1� ~sk)U)
= ~xk cf. (70)

for ~xk de�ned by (72) with sk replaced by ~sk. Further, in
the previous proof we deduced for xk of (72) the formula
(74) from the asymptotic property (75) of sk. However, under
(24) the sequence ~sk satis�es this asymptotic property too.
Therefore (74) remains to be valid with xk replaced by ~xk.
This means that under (24) takes place the asymptotic relation

inf
P2A�;�(kjn)

D1 (P;U)

�
�
[�(�� 1)�]1=� + o(1)

� k1=� ln k1=�
k

:

Combining this with the result of Lemma 5, we obtain the
desired relation (60).
In (51) we presented a simple explicit formula for the

Bahadur function g1 of the log-likelihood ratio statistic T1.
Now we can give explicit formulas for the Bahadur functions
of the remaining statistic T�, � > 1.

Theorem 2: Let k = kn increase to in�nity slowly in the
sense that for some � > 1

lim
n!1

k
2�(1=�)
n lnn

n ln kn
= 0: (78)

Then (33) holds for the sequence c�;n given by (76) and for
the function

g�(�) = [�(�� 1)�]1=�; � > 0 (79)

i.e., (79) is the Bahadur function of the statistic T�.
Proof: Let � > 1 be arbitrary �xed. If c�;n is given

by (76) then (78) implies (24) as well as (54). Hence it
follows from Lemmas 3 and 6 that (32) holds for c�;n under
consideration and for g� given by (79). Employing Lemma 4

we �nd that (61) reduces to (79) which completes the proof.

The particular case of Theorem 2 for � = 2 was obtained in
[6, Theorem 1] by using more complicated analytic methods
involving limit theorems for multinomial and Poisson distrib-
utions. This particular case has been obtained also by [17] by
using similar simple method as here, based on the inequality
(52).

V. MAIN RESULTS

The functions g� as well as the normalizing sequences c�;n
have been explicitly evaluated in Theorem 2 and Example
5 for all � � 1. Therefore (33) provides explicit Bahadur
ef�ciencies BE(T�1 j T�2) on the whole domain �1; �2 � 1:
These ef�ciencies are given in the following main result of
this paper.

Theorem 3: Let 1 � �1 < �2 <1.
(i) If the statistics D�1(P̂n; U) and D�2(P̂n; U) are consis-

tent and k = kn increases so slowly that

lim
n!1

k2�1=�2 lnn

n
= 0 (80)

then the Bahadur ef�ciency of the statistic T�1 with respect
to T�2 satis�es the relation

BE(T�1 j T�2) =1: (81)

(ii) If k = kn increases to in�nity slowly in the sense that
for some � � 3

lim
n!1

k�

n
= 0 (82)

then (80) and the consistency required in (i) hold for all
1 � �1 < �2 � � + 1. Hence in this case also the Bahadur
ef�ciency relation (81) holds for all 1 � �1 < �2 � � + 1.

Proof: (i) Let the assumptions of (i) hold for some 1 <
�1 < �2 < 1. Then (80) implies (78) for � = �1 and
� = �2. By Theorem 2, the sequences c�1;n and c�2;n given
by (76) for lead to the corresponding Bahadur functions g�1
and g�2 given by (32) and to the limit

lim
n!1

c�2;n
c�1;n

= lim
n!1

k1=�1 ln k1=�1

k1=�2 ln k1=�2
=1: (83)

Relation (81) thus follows from (33) in De�nition 3. If the
assumptions of (i) hold for 1 = �1 < �2 < 1 then instead
of the above considered Bahadur function g�1 given by (32)
we have g�1(�) = � given by (51), and instead of c�1;n =
kn=k

1=�1
n ln k

1=�1
n given by (76) we have c�1;n = 1 given in

Example 5. Therefore the limit

lim
n!1

c�2;n
c�1;n

= lim
n!1

kn

k
1=�2
n ln k

1=�2
n

remains to be in�nite as in (83).
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(ii) If (82) holds for � � 3 then (�� 2)=� > 0 so that (82)
implies

0 = lim
n!1

k2

n2=�

= lim
n!1

k2 lnn

n2=�n(��2)=�

= lim
n!1

k2 lnn

n
:

Therefore (82) holds for all �2 � 1: Further, if

lim
n!1

k3

n
= 0

then it is easy to verify that the consistency conditions of
Theorem 1 are satis�ed for all 1 � � � 3, and if (82) holds
then these conditions are satis�ed for all 1 � � � �+1. This
completes the proof.

VI. DISCUSSION

The special case of (81) with �1 = 1 and �2 = 2
with increasing k = kn has been obtained in [6]. In the
present paper we extended the fact that the log-likelihood ratio
statistic T1 is more Bahadur ef�cient than the classical Pearson
statistic T2 by proving that T1 is more Bahadur ef�cient than
any statistics T� with � > 1. Moreover, we found that the
Bahadur ef�ciency of the power divergence statistic T� strictly
decreases with � increasing in the domain [1;1[. In particular
any statistic T�, 1 � � < 2, is more Bahadur ef�cient than
the Pearson's T2.
One of the aims of this paper was to verify whether there

is a statistic T�, � 2 R more ef�cient in the Bahadur sense
than T1. In this respect, the result of of Theorem 3 is negative.
All we can say is that, if such a statistic exists, then it is most
likely that it is of the form T� with � 2 ]0; 1[. Let us comment
this conclusion in more detail.
In spite of that we do not have a systematic result for � < 1,

some fragments of such a result are available. Namely, [17]
found the Bahadur functions g0(�) = g�1(�) = � for all
� > 0, under the identical sequences c0;n = c�1;n = kn
�guring in (32). There is a small problem with the condition
(29), because the event minj p̂nj = 0 takes place with a
positive probability and implies D�(Pn; U) = 1 for all
� � 0. Nevertheless the probability of this unpleasant event
tends exponentially to zero, and one can modify the statistic
T0;n and T�1;n in such a way that the above evaluated Bahadur
functions and sequences remain unaltered and, at the same
time, the consistency condition (30) hold, see [18] and [24].
Therefore in the light of present Theorem 2, the result of [17]
means that the reversed log-likelihood ratio statistic T0, and the
Neyman statistic T�1, are mutually equally Bahadur ef�cient,
and each of them is less Bahadur ef�cient than any T�, � � 1.
This extends the previous result of [18] who found T0 and
T�1 to be less Bahadur ef�cient than T2. If the low Bahadur
ef�ciency of T0 and T�1 is shared by all statistics T� of the
non-positive powers � � 0 then the possibility to �nd T�
comparable with T1 or better is restricted to � 2 (0; 1), as
conjectured above.

Acknowledgement: We would like to thank Wouter
Koolen-Wijkstra for comments that have improved the quality
of this paper.
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