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1. Introduction

Unpredictable behavior of stock markets, especially unexpected crashes, has been a nightmare for the financial world
ever since capital markets came into existence. Catastrophe theory attempts to unfold part of the information we might
need to understand crash phenomena. It describes how small, continuous changes in control parameters, or independent
variables influencing the state of the system, can have sudden, discontinuous effects on dependent variables. The theory is
widely applicable as it can be used to describe a sudden collapse of a bridge under slowly mounting pressure, freezing of
water when the temperature is gradually decreased, or the stability of black holes. In this paper, we apply the theory to
sudden stock market changes that are known as crashes. Zeeman (1974) was the first to qualitatively describe the “unstable
behavior of stock exchanges” by Thom (1975) catastrophe theory. We extend his ideas by incorporating a quantitative
analysis in a stochastic setup.

This article provides an extension of contemporary knowledge as it puts the theory to test on financial data. As only a
few papers deal with empirical applications of catastrophe theory - for instance in the field of physics, Aerts et al. (2003),
Tamaki et al. (2003); chemistry, Wales (2001), biology, Torres (2001), and van Harten (2000); in the social sciences, Holyst
et al. (2000); economics, Balasko (1978), Ho and Saunders (1980) or Jammemegg and Fischer (1986) - this paper
contributes to that research. We build on Zeeman’s qualitative description, but instead of using his model we use a
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randomly perturbed version, and the primary aim of this research is to answer the question of whether stochastic
catastrophe models are capable of indicating stock market crashes.

The structure of this paper will be as follows. In the first part the basic principles of catastrophe theory will be
introduced. Stochastic catastrophe theory and a review of statistical testing methods will be discussed. These methods have
been crucial in the history of catastrophe theory, mainly in the hands of critics like Zahler and Sussman (1977) who widely
criticized catastrophe theory for non-existence of methods enabling its statistical testing. In the second part, we argue that
there exists a consistent theory for statistical testing and we discuss in detail Zeeman’s main hypotheses about the
instability of stock markets. The role of fundamentalists and chartists and their influence on stock market changes will also
be discussed.

What we regard as the most significant aspect of this paper is estimating a cusp catastrophe on real-world financial
data. Our key hypothesis is that the cusp catastrophe model is able to fit the data better than an alternative linear
regression model, and/or nonlinear(logistic) model. We fit the catastrophe model to the data of the October 19, 1987 crash,
known as Black Monday which was the greatest single-day loss (20.5%) that Wall Street has ever suffered in continuous
trading. For comparison, we use another large crash, that of September 11, 2001. The final part is devoted to the hypothesis
that while in 1987 the crash was caused by internal forces, in 2001 there were external forces, namely the 9/11 terrorist
attack, that caused the crash. Thus the catastrophe model should fit the data of 1987 well, as bifurcations leading to
instability are present. However, it should not perform better than linear regression does on the 2001 data. As Zeeman'’s
original model considers returns of the stock market rather than prices, we follow his analysis, and use Standard and Poor’s
500 index returns as the behavioral variable. As the control variables we use the measures of sentiment, precisely the OEX'
put/call ratio which appears to be a very good measure of speculative money (i.e. in Bates, 1991; Finucane, 1991; or Wang et
al., 2006) in the capital market, against the daily change of total trading volume, the ratio of advancing stocks volume and
declining stocks volume, the Dow Jones Composite Bond Index, and a one-day lag of S&P 500 returns as good proxy for
large, fundamental investors.

2. Catastrophe models

Catastrophe theory has been developed by the mathematician René Thom (1975) to help explain biological
morphogenesis as one of the great mysteries confronting mathematical biology. The range of potential applications is,
however, extremely broad as catastrophe theory is closely related to the theory of Taylor series approximations (Cobb and
Zacks, 1985). Zeeman (1974) was the first to propose its application to stock market behavior. Although his work focused on
qualitative descriptions rather than quantitative applications, his hypotheses were very interesting at that time.
Unfortunately, catastrophe theory had to wait until its time came, mainly due to the spreading criticism led by Zahler and
Sussman (1977) and Sussman and Zahler (1978a, b). Their arguments against catastrophe theories are based on excessive
reliance on qualitative methods, inappropriate quantization in some applications, use of excessively restrictive or narrow
mathematical assumptions, and nonexistence of statistical theory which would enable quantitative research to be
performed on real-world data. Perhaps, the discussion is also ignited by the very name of the theory, which seems rather
provocative; however, it has been chosen to emphasize one of the nontrivial aspects of the behavior of nonlinear dynamic
models.?

Although Sussman and Zahler made some good points, their criticism has initiated debates that have persisted through
several decades until now. The most recent contribution has been made by Rosser (2007), who in fact ridicules the previous
criticisms. He summarizes the discussion and shows that the arguments which have caused the main incomprehension are
at least petty. On the other hand, nonexistence of a statistical theory was clearly a problem in that time, which has led to
reliance on qualitative methods. Statistical methods have thus quickly started to be the focus of the research. Cobb (1981)
and Cobb and Watson (1980) provided a reliable method for estimation of the cusp catastrophe models based on maximum
likelihood estimation (MLE). Two other methods have been developed: one by Guastello (1984) who used a simple
regression technique, and the least-squares estimation method of Oliva et al. (1987) GEMCAT.? Finally, Hartelman (1997)
proposed a consistent invariant stochastic catastrophe theory for empirical verification and testing. Poston and Stewart
(1978), Guastello (1987) and Rosser (2007) provided a fairly comprehensive review of the related literature, while Rosser
(2007) provided a good review of those few papers applying the model to business, finance and economics.

2.1. Basic framework

A key idea in catastrophe theory is that the system under study is driven toward an equilibrium state. Wagenmakers
et al. (2005a) illustrated this by imagining the movement of a ball on a curved one-dimensional surface, as in Fig. 1. The ball
represents the state of the system, whereas gravity represents the driving force.

1 QEX are options with the Standard & Poor’s 100 index underlying.
2 Cobb and Zacks (1985).
3 A general multivariate methodology for estimating catastrophe models.
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Fig. 1. Potential function V(x) with two stable equilibrium points and one unstable equilibrium point.

Fig. 1 displays three possible equilibria. Two of the states are stable, meaning that the behavior of the system will remain
relatively unaffected when the system is perturbed. One state is unstable, which means that only a small perturbation will
drive the system toward a different state. Systems that are driven toward equilibrium values, such as the example using a
ball, may be classified according to their configuration of critical points, more precisely points at which the first or second
derivative equals zero. Qualitative behavior of the system is then driven by changes in critical points. Small changes in
independent or control variables may lead to abrupt, discontinuous changes in state variable.

The behavior of the dynamical systems we want to study is completely determined by a so-called potential function.
The potential function depends on behavioral and control variables. The behavioral variables describe the state of the
system, while control variables determine the behavior of the system. The behavior of catastrophe models can become
extremely complex, and according to the classification theory, we know seven different families of catastrophe models,
based on the number of control and dependent variables, as in Thom (1975). We will focus on the so-called cusp
catastrophe model as it is the simplest model that gives rise to sudden discontinuities. We use the phenomenological
(P-bifurcation) approach.*

Let us assume one dependent variable Y. Then y, represents the realization of a random variable Y;, which evolves in
time ¢ for t € (0,T). The example of a ball from Fig. 1 may be quantified by postulating that the state of the system will
change over time t according to

dy, _ dV(ys o f) (1)
dt — dy,

where V(y;; a, f5) is the potential function. When the right-hand side of (1) equals zero, the system is in equilibrium. The
concept of a potential function is very general. For instance a potential function that is quadratic, i.e.
V(o ) = —1y? + ay,, will yield the equilibria dy,/dt = y, — o« = 0 that describes a very simple response surface which
is flat in every direction.

In contrast, the cusp model is based on the nonlinear deterministic dynamical system described by (1), where the
behavior of y, (rate of change of the stock market index in our case) will change over time t according to the derivative of
the cusp potential function V(y;; o, ) defined as

Ve o, p) = _4113’? + %ﬁy? + oY, (2)
which has equilibria at
dV(y,; o,
WDy gy oo, (3)
dy,

where « and f are the control variables which determine the behavior of the system.
2.2. The cusp catastrophe response surface

The two dimensions of the control space, o and f, are factors which will depend upon the actual measured independent
variables. Thus we need to introduce the independent variables into the analysis. Let us assume a set of n independent
variables {X1,X>,...,Xy}. Then x; represents realizations of X;, and control variables oy and f,, also called normal and

4 Arnold (1998).
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Fig. 2. The manifold of the cusp catastrophe model. Control parameters are chartists (C) and fundamentalists (F), state variable is the rate of change of the
exchange market (J). There is also static example of equilibrium solution inside the cusp showing the bistability.

splitting factors, or asymmetry and bifurcation factors, respectively, are defined as a scalar-valued function of independent
variables:

Ox = Ol + i oiX;, (4)
i=1

ﬁx :ﬁ0+2ﬁixi' (5)
i=1

These factors then determine the predicted values of y, given x;, meaning that for each value x; there might be three
predicted values of the state variable. Assuming the cusp potential function V(y;; o, ) defined by (2), the predictions will be
roots of the equation

dV(y,; o,
kD) — 7+ oy + o =0, (6)
t

which describes the cusp catastrophe response surface containing a smooth pleat. Fig. 2 illustrates this surface referring to
Zeeman (1974) application of the cusp catastrophe theory to stock markets. A specific interpretation will be discussed later
in the empirical part of this paper.

In the case of three roots, the central root among these three roots is called an “anti-prediction.” In other words, it is the
least probable state of the system. This feature is also clear from the bimodality of the probability density function (PDF)
(Fig. 3) of y,. Bimodality is another important aspect of the cusp model. It means that for one value of the control variables,
two possible behavior points exist. The system might get into the hysteresis loop by jumping between these two possible
equilibria points. When moving along the normal axis toward higher values of the splitting variable shown in Fig. 2, the
jump from the upper sheet to the bottom sheet of the cusp surface occurs at a different value of the normal variable than
the sudden jump from the bottom to the upper sheet does.

In addition, Cobb (1981) used 4 and ¢ >0 as the location and scale parameters, respectively; thus, we will consider the
following form of equilibrium space:

dVys o, B (Ye—4 ’ Vi — 4 _
it = (57) o) e g

where o, and f, are of the following forms: ax = oo + > oux; and B, = Bo + >_i; fixi.- Hence, the statistical estimation
problem is to estimate the 2n + 4 parameters:

{)“’Gsa()a---:dﬂvﬁo""9ﬁn} (8)

from N observations of the n + 1 variables {y,x1,...,xn}.



1828 J. Barunik, M. Vosvrda / Journal of Economic Dynamics & Control 33 (2009) 1824-1836

Fig. 3. PDF with parameters « = —0.1,¢ = —1.23,4 = 0,0 = 1. The reader can observe how PDF changes from unimodal to bimodal with increasing
bifurcation parameter f.

2.3. Stochastic dynamics and probability density function

From a dynamic system’s point of view, (7) can be considered as the surface of the equilibrium points of a dynamic
system of the state variable y,, which follows the ordinary differential equation represented by (1)

_ dv(yt; O‘Xa ,Bx) dt
dy;
For real-world applications, it is necessary to add non-deterministic behavior into the system, as the current state of the
system usually does not determine its next states entirely. We may obtain a stochastic form by superimposing an additive
Gaussian white noise term.> The system is then described by a stochastic differential equation of the form

dy, = 7‘“’("27;‘?’59 dt + o, AW, (10)

dy, = (9)

where —dV(y; o, f)/dy; is called a drift or a deterministic part, representing the equilibrium state of the cusp catastrophe
model, and 05! is an instantaneous variance of the process y;. Here W, is a standard Wiener process and dW;~N(0, dt). Cobb
(1981), Cobb and Watson (1980), Hartelman (1997), Hartelman et al. (1998) and Wagenmakers et al. (2005) have
established a link between PDF corresponding to the solution from (10) and a PDF corresponding to a limiting stationary
stochastic process. They show that the PDF f(y,) converges in time to the PDF f(y|x) as the dynamics of y, are assumed to be
much faster than changes in x;. This has led to a definition of stochastic equilibrium state which is compatible with its
deterministic counterpart. Instead of fitting the deterministic process where the equilibrium points of the system are of
main interest, attention is drawn to the relative extremes of the conditional density function of y.
Following Hartelman (1997) and Wagenmakers et al. (2005), the limiting PDF of y is

fs(VX)zéexp<—l<y;y)')4+/;"(y;yi)2+o<x<y;y)'>>. (11)

The constant ¢ normalizes the PDF, meaning that the integral of a normalized PDF over its entire range equals one. The
modes and antimodes of the cusp catastrophe PDF can be obtained by solving the equation df s(y|x)/dy = 0, which will yield
exactly an implicit cusp surface Eq. (7). The parameters will be estimated by the estimation method developed by
Hartelman (1997) and Wagenmakers et al. (2005).

As f, changes from negative to positive, the PDF of y changes its shape from unimodal to bimodal, which is illustrated in
Fig. 3 . It is also the reason why the f, factor is called a bifurcation factor. For oy = 0, the PDF is symmetrical, while for other
values it is asymmetric; thus, oy is an asymmetry factor. By eliminating y from the canonical form (7) and its equation of
double roots, one can obtain the statistic that discriminates between the unimodal and the bimodal cases. It is referred to
as Cardan’s discriminant:

O\ 2 3
w=(3)- (%) =
The PDF is bimodal resp. unimodal if J, is negative or nonnegative, respectively. Eq. (12) also determines the shape of the

cusp, showing the locus of fold bifurcations which separate the region with two stable solutions from the region with one
stable solution.

5 Cobb and Watson (1980), Cobb (1981), Cobb and Zacks (1985), and Arnold (1998).
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3. Empirical investigation of stock market crashes

The thoughtful reader has certainly noted that catastrophe theory models represent an extension to traditional models,
i.e. linear ones, and therefore they have to satisfy the requirement of the empirical testability. In this part, we introduce
measures by which we test whether the catastrophe model fits the data statistically better than a simple linear regression
model, or alternative nonlinear models.

It should be noted that there is no single statistical test for rejection of the catastrophe model. Due to the multimodality
of cusp catastrophe, traditional measure for the goodness of fit cannot be used. Let {y;, X1, . .. ,in,i}f":] be the estimates from
empirical observations. Considered residual & = y, — y, can be determined only if the probability density function at time ¢
is one-peaked; as the model generally offers more than one predicted value, it is difficult to find a tractable definition for a
prediction error.

In testing, we follow Hartelman (1997), who created an application for estimating a cusp model, which we use in our
empirical testing.® A comparison between the cusp and the linear regression models is made by means of a likelihood ratio
test, which is asymptotically chi-squared distributed with degrees of freedom being equal to the difference in degrees of
freedom for two compared models. As it may not be sufficient to reliably distinguish between catastrophe and non-
catastrophe models, Hartelman (1997) also compares catastrophe model to a nonlinear logistic model:

g

_, 13
1 + e—/BD) (13)

y=7+
where ¢ >0. As the cusp catastrophe model and the logistic model are not nested, Akaike information criterion (AIC) and
Bayesian information criterion (BIC) statistics are used in a testing routine to compare the models. Thus the approval of our
hypothesis that the cusp catastrophe model better describes the data than the non-catastrophe model may be supported by
the following’:

(1) The chi-square test should show that the likelihood of the cusp is significantly higher than that of the linear regression
model.
(2) Akaike and Bayesian information criteria should be lower for the cusp catastrophe model.

Cobb (1992) also mentions Delay-R?, and Maxwell-R? as measures of the goodness of fit. These pseudo-R?> measures are
of the following form:

T =2
1— TZ[:OSt —, (14)
PO )]
where y is the empirical mean of the measured data y,, and Zf;oﬁf is sum of squared errors. The error variance using Delay
convention is determined by the mode that lies on the same side of the antimode as the observation. According to the
Maxwell convention, expected value would be the mode for which the value of the probability density function is maximal.

The pseudo-R? should be used with caution, because MLE does not really maximize it and asymptotic properties are not
known. Thus we will use the pseudo-R? as a complementary test.

3.1. Uncertain behavior of stock exchanges

In the following part we will introduce the possible application of the proposed model to stock market analysis, which
will later be tested on the data. Zeeman (1974) is the first who has clearly stated the hypothesis that the cusp catastrophe
models are capable of explaining uncertain behavior of the stock market.? He also has merit in popularizing the ideas of
catastrophe theory. After three decades, this paper is one of the first attempts to test® his qualitative description on the data
from stock exchanges. First of all, we will briefly summarize the main ideas.

One of Zeeman’s major hypotheses about market behavior is that there are two types of investors, namely
fundamentalists and chartists. Fundamentalists are investors who act on the basis of estimates of economic factors such as
supply and demand and before they invest in company stocks, they assess a growth potential. Chartists, on the other hand,
base their investments upon behavior of the market. They use the charts of historical prices to predict future behavior. In
other words, there are two variables C - chartists who represent the proportion of speculative money in the capital market,
and F - fundamentalists who represent excess demand for stock. The simplest way of measuring the state of the stock

6 The application is available at Han van der Maas's Website (http://users.fmg.uva.nl/hvandermaas/).

7 Hartelman (1997).

8 After the pioneering model of Zeeman (1974), a large amount of the literature on financial market models with fundamentalists and chartists has
developed, e.g. Day and Huang (1990), Brock and Hommes (1998) and, more recently, Boswijk et al. (2007), Georges (2008), Bauer et al. (2009) and
Evstigneev and Taksar (2009), among others. Recent state of the art surveys have been given in LeBaron (2006) and Hommes (2006).

9 First to actually apply the catastrophe theory to explain stock market returns behavior on the financial data.
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market is to choose an index I, in our analysis S&P 500 index. Let

- dl

J=1=7 (15)
be a rate of change of the stock market index I. Then J = 0 represents a static market, ] >0 represents a bull market, and J <0
represents a bear market. Let us apply Zeeman'’s hypothesis to (10). The state variable y, will be the rate of change of the
index, J; the fundamentalists, which are external driving forces, constitute an asymmetry control variable o, and chartists,
which are more like part of the internal mechanism of the stock market, constitute a bifurcation control variable f,.
Naturally, there are many other external factors affecting the index I; however, an application of a dynamic relation
between C, F and J described by the stochastic cusp catastrophe model (10) offers a solution to the matter. Zeeman also
argues that the rate of change of the stock market J responds to changes in C and F much faster than C and F respond to
changes in J. That is straightforward, as the change of speculative money in the stock market will have an immediate
impact on the rate of change of the stock index, while even large change in the J will take perhaps weeks or months to
change F due to research involved. Consequently, the flow lines will be nearly vertical almost everywhere. In other words,
fixing C and F will cause J to rapidly seek a stable equilibrium, even if the starting point of the system is not on a surface as
the dynamics will quickly find the equilibrium. As we will not test this relationship in this paper, we will not define the
nonlinear model which would describe it more precisely. Interested readers are advised to consult the original Zeeman
paper.

Also, when the number of chartists is small, J is a continuous monotonic increasing function of F; as the market is
dominated by well-informed investors, the demand for buying and selling is equal, and the only changes in J are caused by
excess demand or supply. On the contrary, a large number of chartists introduces instability into the market. That is also a
reason why they are on the bifurcation side of the control space. The larger C is, the less stable J is.

Another important observation is that C has the same sign as J since chartists follow the trend and are attracted by the
bull market. Fundamentalists, on the other hand, exit the market after large rises, even though it may continue to rise, and
enter the market after short falls. The model is illustrated in Fig. 2, and interested readers are encouraged to consult
Zeeman (1974) where it is suggested that all Zeeman’s hypotheses about the stock market behavior may be addressed by
the catastrophe model.

3.2. Data description

We primarily test the model on the set of daily returns data which contains the most discussed stock market crash of
October 19, 1987, known as Black Monday. The crash was the greatest single-day loss that Wall Street had ever suffered in
continuous trading, 20.5%. The reasons for Black Monday have been widely discussed among professional investors and
academics in many books and research papers. From many, Waldrop (1987) was the first who essayed to explain the causes
of the crash, Bates (1991) provided rigorous analysis, Gennotte and Leland (1990) proposed an explanation of the 1987
crash along the lines of catastrophe theory and finally Carlson (2007) gave a very comprehensive review of the causes and
events surrounding the crash. However, not even today is there a consensus on the cause; the most discussed potential
causes are computer trading, overvaluation, and problems with liquidity or market psychology. For comparison, we use
another large crash, that of September 11, 2001. Our hypothesis is that while in 1987 the crash was caused by internal
forces, the 2001 crash happened due to external forces, namely the terrorist attack on the Twin Towers. Therefore the
catastrophe model should fit the data of 1987 well, as bifurcations leading to instability should be present. However, this
model should not perform better than linear regression in the case of the 2001 data. Except for different forces which may
drive the stock market to crash, there is one more important difference in the two tested datasets: diverse distribution of
stock market participants. Naturally, the stock market changes over time. Accordingly, in the years of 1987-2001 changes
occurred internally in the stock market and behavior of investors, which may have led to different results.

According to Zeeman'’s interpretation we are modeling the rate of change of the stock index, which is the first difference
of its prices. The data thus represent the daily returns of S&P 500'° in the years 1987-1988 and 2001-2002 as the crashes
took place within these intervals. With the transformation of prices into the returns we also gain stationarity. Augmented
Dickey-Fuller statistics exceed the critical values on 1% level of significance; thus we can reject the null hypothesis of unit
root presence in the returns data. Tables 1 and 2 show!! the descriptive statistics of the data. It can be seen that the data are
leptokurtic. For illustration of bimodality, we use kernel densityestimation'? - see Figs. 4a and b.

Kernel density of the two-year returns of 1987 and 1988 indicates bimodality, and so does the kernel density of the
second set of the data, i.e. years 2001 and 2002. These periods of multimodality are our candidates for the testing of
bifurcations.

As control variables, we have chosen the daily change of total trading volume, ratio of advancing stocks volume and
declining stocks volume, OEX put/call ratio, Dow Jones Composite Bond Index, and a one-day lag of S&P 500 returns. The

10 Standard and Poor’s 500 index represents good approximation of the U.S. stock exchange.

11 See Appendix.

12 We use Epanechnikov kernel, which is of the following form: K(u) = 2(1 — u?)(lu| < 1). A smoother bandwidth was chosen so the bimodality can be
seen.
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Table 1
Descriptive statistics for 1987 data.

Volume Put/call S&P500
Mean 0.37082 0.02871 0.00036
Standard error 0.06927 0.01433 0.00087
Median 0.01277 0.00000 0.00102
Mode Multi 0 Multi
St. dev. 139928 0.28943 0.01764
Sample variance 1.95798 0.08377 0.00031
Kurtosis 50.54401 58.09584 47.26796
Skewness 5.41975 5.35765 —3.92644
Minimum —0.93786 —0.74005 —0.20457
Maximum 16.70808 3.54255 0.09099
Table 2
Descriptive statistics for 2001 data.

Volume Put/call S&P 500
Mean 0.24162 0.06894 —0.00108
Standard error 0.06161 0.01973 0.00072
Median 0.02315 0.01867 —0.00147
Mode Multi 0 Multi
St. dev. 1.24446 0.39850 0.01458
Sample variance 1.54868 0.15880 0.00021
Kurtosis 153.42761 2.36763 1.31866
Skewness 10.19473 1.09433 0.24263
Minimum —0.95221 —0.78571 —0.04922
Maximum 19.88924 2.05063 0.05728

a 1987 - 1988 b 2001 - 2002
-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1

Fig. 4. (a) Kernel density estimate of S&P 500 returns for years 1987-1988. (b) Kernel density estimate of S&P 500 returns for years 2001-2002.

trading volume represents a good measure of the fundament, as it correlates with the volatility, and more importantly good
measure of what the large funds, representing fundamental investors, are doing. Thus we suspect the total volume
indicator and the ratio of advancers and decliners volume to be on the asymmetry side of the model. The Dow Jones
Composite Index should also have an impact on fundamentals, thus we expect its contribution to be on the asymmetry
side. The lagged index returns are also added to see whether it might contribute to the model. Finally, OEX put/call ratio
represents a very good measure of speculative money. It is a ratio of daily put volume divided by daily call volume of the
options with the underlying Standard and Poor’s 100 index. As financial options provide the most popular vehicle for
speculation, they represent the data of speculative money, while extraordinarily biased volume or premium suggests
excessive fear or greed in the stock market. These should be internal forces which cause the bifurcation. Overall, we expect
this OEX put/call ratio and advancing stocks volume over declining stock volume to have greater impact on the bifurcation
and asymmetry side, respectively. In the next section we will discuss the results of our analysis.

3.3. Results

The first test we consider is Hartelman’s test for multimodality, which is similar to Silverman (1986) and can be used to
test the presence of bifurcation points in the data. It applies to two-dimensional cross-section data, control and behavioral
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Table 3
Catastrophe analysis of '87 data.

Model oo o oy Po P Pa 2 o LL par R? AIC BIC

1 1.60 0.00 0.00 3.79 0.00 0.00 —0.09 0.04 -516 4 0.32 1039 1055
2 1.60 0.00 0.00 3.99 0.00 —1.50 —0.09 0.04 —501 5 0.36 1011 1031
3 2.19 0.00 0.00 3.88 0.54 0.00 —-0.09 0.04 —352 5 0.66 713 733
4 229 0.00 0.00 3.92 0.53 -0.70 —0.09 0.04 —348 6 0.67 708 732
5 1.75 0.00 -0.43 3.71 0.00 0.00 —0.09 0.04 —514 5 0.33 1038 1058
6 4.81 0.00 6.81 1.85 0.00 -5.73 —-0.09 0.04 —483 6 039 977 1001
7 2.20 0.00 —0.09 3.88 0.54 0.00 —-0.09 0.04 —352 6 0.66 715 739
8 3.30 0.00 4.73 3.91 0.57 —2.99 —0.09 0.04 —-332 7 0.68 679 707
9 0.53 1.83 0.00 4.85 0.00 0.00 -0.09 0.04 -317 5 0.71 644 664
10 0.53 1.83 0.00 498 0.00 -0.66 -0.09 0.04 -314 6 0.72 639 663
1 0.60 1.83 0.00 4.86 0.07 0.00 -0.09 0.04 -315 6 0.72 641 665
12 0.62 1.83 0.00 4.90 0.06 —0.59 —0.09 0.03 —312 7 0.72 638 666
13 0.51 1.83 0.15 4.85 0.00 0.00 -0.09 0.04 -317 6 0.71 646 670
14 1.03 1.83 212 4.71 0.00 -1.68 -0.09 0.03 -309 7 0.72 631 659
15 0.58 1.83 0.22 4.85 0.07 0.00 —0.09 0.04 —315 7 0.72 643 671
16 1.03 1.83 212 4.88 0.08 -1.61 -0.09 0.03 -307 8 0.73 629 661
Linear —663 4 0.35 1334 1350
Logistic —410 5 0.56 830 850

There are 16 cusp models, two unconstrained linear and logistic models, o; and f3; are parameters for x; — volume, and o, and f3, are parameters for x, —
put/call option ratio, LL - log likelihood, AIC, BIC - Akaike and Bayes’s criterion.

variable, respectively. If present, a bifurcation point is assumed to occur with respect to the behavioral variable. This test
cannot be used for rigorous hypothesis testing with respect to complexity of the catastrophe model, but it serves us as an
indication of the presence of bifurcations. We are particularly interested in testing the S&P 500 returns for bimodality, as
the previous figures suggest that the returns might be bimodal. We have found that there is 75% probability that the
1987-1988 data contain at least one bifurcation point, and 26% probability that the 2001-2002 data contain at least one
bifurcation point. These results are not so statistically strong, but suggest that the first crisis was drawn by internal market
forces (cf. the presence of the bifurcations in the data), whereas the 2001 crash was caused mainly due to external forces,
the 9/11 attack (the presence of the bifurcations in the data is very weak).

Encouraged by the knowledge that the bifurcations might be present in our datasets we can now move to cusp fitting.
As we mentioned before, we use Hartelman’s cuspfit software'® for this purpose. In all experiments, the linear, the
nonlinear (logistic) and the cusp catastrophe models have been fitted to the data. Then we have tested whether the cusp
catastrophe model fits the data better than the other two models by the procedure described at previous sections. We look
at log likelihood, Akaike and Bayesian information criteria and we also use a simple chi-square test to compare the models.
Let us have a look at this analysis.

3.3.1. 1987 crash

First of all we will study the stock market crash of October 19, 1987, known as Black Monday. We begin the analysis
using only two variables which we suspect to have the greatest impact on the stock market returns, x; — advancing stocks
volume over declining stock volume, and x, - OEX put/call ratio. Thus we have control variables ¢y = o + ot1 X7 + 0i2x, and
By = Bo + B1%1 + Prx2 and we expect the put/call ratio to have more effect on bifurcation side, and volume ratio on
asymmetry side. Thus ¢, = f; = 0 should be the best model. To perform rigorous analysis we fix the parameters to zero one
by one to test their significance and the contribution of the variables. Since two different control variables were
manipulated, 16 different cusp models are possible. Table 3 shows the results. Most of the cusp models have performed
better than the alternative linear and logistic models. Among the cusp models, the best performing is unconstrained model
Cusp16. However, the unconstrained model is only slightly better than models Cusp14, Cusp12 and Cusp10, so we can see
that both variables also have an impact on both sides of control space, but this impact is deniable. Fixing parameters to zero
results in worse fits. We can conclude that our expectation that volume ratio drives the market more from the asymmetry
side and options data have more impact on the bifurcation side proved to be right.

We follow our analysis by adding other variables to see if they help to explain the data better. First of all we consider an
unconstrained model, meaning that all five variables we have chosen as control variables enter on both bifurcation and

asymmetry sides. The variables x1,...,x5 in ox = o + 01X1 + - - - + o5x5 and f, = By + f1X1 + - - + P55 are lagged returns
of S&P500, advancers/decliners volume, change of total volume, OEX put/call ratio and Dow Jones Bond Index, respectively.
Todetermine the best model we would need to fix the parameters oo, ..., %s, fi1,..., 5 to zero subsequently, so 1023 cusp

models would be possible. Instead of this exhausting analysis, we present results of the models where only parameters of

3 Applications are available at Han van der Maas’s Website (http://users.fmg.uva.nl/hvandermaas/).
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Table 4
Catastrophe analysis of '87 data using additional variables.

Model 17 18 19 20 21 22 23 24 25
fixed par. o B 1,64 o2 B %2, B o3 B3 o3, fi3
R? 0.76 0.76 0.75 0.72 0.75 0.39 0.76 0.75 0.75
LL —282 —288 —296 -300 —-289 —488 -282 -285 —288
No. of par. 13 13 12 13 13 12 13 13 12
AIC 590 601 615 300 603 1000 589 597 599
BIC 642 653 664 677 655 1012 641 649 647
Model 26 27 28 29 30 31 32 Lin Log
Fixed par. Oy Pa 04,4 o5 Ps 5,05

R? 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.44 0.58
LL -282 —282 -285 -285 —286 —286 -283 —691 -399
No. of par. 13 13 12 13 13 12 14 7 8
AIC 590 591 594 596 598 597 594 1395 813
BIC 642 643 642 648 650 645 650 1423 845

Results for fixed parameters of x; — returns of S&P 500 with 1-day lag, x, — up volume/down volume, x3 — change of total volume, x, - OEX put/call ratio,
xs — Dow Jones Bond Index.

one variable are fixed, i.e. «; =0,; =0 or oy = /; = 0 to test the contribution of the variable. In Table 4 we have the
results of all considered models.

We can see that most of the models perform better than a linear or logistic model. The unconstrained model is model
32; from the results we can see that the largest contribution has variable 2, advancers/decliners volume. When we fix its
parameters to zero, o, = f§, = 0, the model deteriorates (log likelihood of the model is substantially lower). Most of the
results represent a small improvement to the previous simpler cusp model with two variables. As all the models are nested,
we can use the y? test to verify whether the constrained model is significantly better than unconstrained one. The test
shows that the models are significantly different meaning that also other variables may play a role in the model. We can
conclude that cusp models explained the 1987 stock market crash significantly better than alternative linear and logistic
models, as all the cusp models performed much better than the linear and logistic models.

3.3.2. 2001 crash

In this section we will apply the methodology from the previous section to the data from September 11, 2001. We again
begin with two variables which we suspect to have the greatest impact on the stock market returns, x; — advancing stocks
volume over declining stock volume, and x, — OEX put/call ratio. Thus we have control variables oy = o + ot1X1 + 02x and
By = Bo + PB1X1 + P2x2 and we expect the put/call ratio to have greater effect on the bifurcation side, and volume ratio on
the asymmetry side. Thus a; = f/; = 0 should be the best model. We again fix the parameters to zero one by one in order to
test their significance and the contribution of the variables. Since two different control variables were manipulated, 16
different cusp models are possible. Table 5 shows the results. In this case the logistic model performed significantly better
than all 16 cusp models according to the log likelihood ratio test. Among the cusp models, models 11, 12, 15 and 16 do not
have significantly different results, and all others are significantly worse according to the chi-squared test.

As in the previous case we follow our analysis by adding more variables to the model. The variables xq,...,xs5 in
Ox = Olg + 01X1 + --- + 0sX5 and f3, = By + f1X1 + -+ + Psxs are lagged returns of S&P500, advancers/decliners volume,
change of total volume, OEX put/call ratio and Dow Jones Bond Index, respectively. To determine the best model we would
need to subsequently fix the parameters oy, ..., s, f1,..., 5 to zero, so 1023 cusp models would again be possible. Instead
of this exhausting analysis, wepresent models with only parameters of one variable fixed, i.e., «; =0,$; =0 and o; =
0, 8; = 0 to test the contribution of the variable. In Table 6 we have the results of all considered models.

We can see that none of the models performs better than the logistic model, but they all are better than the linear
model. Fixing the parameters of variables to zero gives us very similar results as in the case of 1987 data, but it does not
make an important contribution to the model; in other words, it does not lead to a better model than the logistic model.

The fact that the 2001 data are better fitted by an alternative logistic model leads us to the conclusion that this market
was not in the bifurcation area. The logistic model describes the data better, thus the market was outside of the cusp area
and there were no internal bifurcations which could lead to the market crash in 2001.

4. Conclusions

Uncertain behavior of stock markets has always been at the leading edge of research. Using Cobb and Zacks (1985),
Hartelman (1997), Hartelman et al. (1998) and Wagenmakers et al. (2005) stochastic methods we have managed to test
cusp catastrophe theory on financial data, and we have arrived at very interesting results which may help to advance the
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Table 5
Catastrophe analysis of '01 data.

Model oo o oy Po P B A o LL Par R? AIC BIC

1 —5.00 0.00 0.00 —5.00 0.00 0.00 0.03 0.04 -575 4 0.00 1158 1174
2 —5.00 0.00 0.00 —5.07 0.00 0.94 0.03 0.04 —572 5 0.01 1154 1174
3 -5.00 0.00 0.00 -5.02 2.98 0.00 0.03 0.04 -572 5 0.01 1152 1179
4 1.90 0.00 0.00 3.21 1.32 -0.45 —-0.07 0.03 -373 6 0.67 758 782
5 —4.95 0.00 -0.74 —5.00 0.00 0.00 0.03 0.04 —573 5 0.01 1155 1175
6 -5.02 0.00 0.33 -5.09 0.00 1.29 0.03 0.04 -572 6 0.01 1156 1180
7 2.23 0.00 -0.78 3.19 1.32 0.00 -0.07 0.03 -373 6 0.67 759 783
8 2.29 0.00 —0.46 3.20 1.33 -0.24 -0.07 0.03 —373 7 0.67 760 788
9 —4.95 -0.74 0.00 -5.00 0.00 0.00 0.03 0.04 -573 5 0.01 1155 1175
10 0.51 3.27 0.00 -3.36 0.00 —0.66 -0.02 0.02 -318 6 0.80 648 672
11 -8.18 2.32 0.00 -0.86 -3.01 0.00 0.02 0.02 -302 6 0.80 617 641
12 -8.21 2.34 0.00 —0.96 —-2.97 0.62 0.02 0.02 —300 7 0.80 615 643
13 0.56 3.27 —0.61 —3.54 0.00 0.00 -0.02 0.02 -317 6 0.80 647 671
14 0.55 3.27 -0.48 -3.50 0.00 -0.20 -0.02 0.02 -317 7 0.80 649 677
15 -8.17 2.34 -0.70 —0.91 -2.98 0.00 0.02 0.02 —301 7 0.80 615 643
16 -8.20 234 -0.29 -0.95 -2.97 0.41 0.02 0.02 -300 8 0.80 617 649
Linear -761 4 0.60 1531 1547
Logistic —245 5 0.80 499 519

There are 16 cusp models, two unconstrained linear and logistic models, ; and f3; are parameters for x; — volume, and o, and f3, are parameters for x, —
put/call option ratio, LL - log likelihood, AIC, BIC - Akaike and Bayes’s criterion.

Table 6
Catastrophe analysis of '01 data using additional variables.

Model 17 18 19 20 21 22 23 24 25
Fixed parameters o N 01,4 (%) fa 2,8, o3 f3 3,3

R? 0.82 0.81 0.82 0.7 0.82 0.05 0.81 0.81 0.80
LL —289 —285 —291 —363 —288 —553 —289 —291 —292
no. of par. 13 13 12 13 13 12 13 13 12
AIC 603 595 605 753 602 1129 605 609 609
BIC 655 647 653 805 654 1177 657 661 657
Model 26 27 28 29 30 31 32 Lin Log
Fixed parameters oy Pa 04,34 s Ps s,fs

R2 0.81 0.81 0.81 0.8077 0.81 0.81 0.81 0.60 0.81
LL —279 —278 —279 —278 —279 —279 —278 —762 —240
No. of par. 13 13 12 13 13 12 14 7 8
AIC 583 583 581 583 583 583 585 1538 495
BIC 635 635 630 635 635 631 641 1566 527

Results for fixed parameters of x; - returns of S&P 500 with 1-lag, x, - up volume/down volume, x3 - change of total volume, x4 - OEX put/call ratio, x5 -
Dow Jones Bond Index.

frontier of understanding stock market crashes. We may thus confirm that the stochastic catastrophe model explains the
stock market crash much better than alternative linear regression models, or a nonlinear logistic model. We have fitted the
data of the two stock market crashes, the first being the crash of October 19, 1987, and the second September 11, 2001. We
have used the sentiment measures to model the proportion of technical and fundamental players in the market. We have
chosen the daily change of total trading volume, the ratio of advancing stocks volume and declining stocks volume, the OEX
put/call ratio, the Dow Jones Composite Bond Index, and one lag of S&P 500 returns. We expected OEX put/call ratio to be a
very good measure of the technical players, as it represents speculative money in the market and the trading volume to be
the measure of fundamental players as it represents the excess demand.

Our most important result is that the data from the year 1987 contained bifurcation points. We have identified the
bimodality of the returns by the test for multimodality, which confirms that there is a 75% probability that there is at least
one bifurcation point in the data. More important, the cusp catastrophe models fit these data much better than other
models that have been used. Hence we conclude that the internal processes of the first dataset led to the crash in 1987. On
the other hand, the crash of September 11, 2001, can be better explained by the alternative logistic model. We have also
found only a 26% probability that there is at least one bifurcation point in these data, which is also in line with our second
hypothesis: that due to the fact that this crash was caused by external forces, the presence of bifurcations in the data is
much weaker.
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Our findings may advance the frontier of research, as it is the first attempt to quantitatively explain stock market crashes
by stochastic cusp catastrophe theory. We have also managed to show that not just the price information is important for
stock market analysis; other measures, such as the measures of sentiment of the stock markets, may also have a crucial
impact.

Finally, it is necessary to mention that the testing has been conducted only on the restricted datasets. Thus, further work
is needed to test on different data, in which the changes in speculative money in the stock market may lead to a crash. The
main significant question, whether cusp catastrophe theory may help as an early indication of stock market crashes, still
remains to be answered.
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