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OSCILLATIONS AND CONCENTRATIONS GENERATED
BY A-FREE MAPPINGS AND WEAK LOWER SEMICONTINUITY

OF INTEGRAL FUNCTIONALS

Irene Fonseca1 and Martin Kruž́ık2, 3

Abstract. DiPerna’s and Majda’s generalization of Young measures is used to describe oscillations
and concentrations in sequences of maps {uk}k∈N ⊂ Lp(Ω; Rm) satisfying a linear differential constraint
Auk = 0. Applications to sequential weak lower semicontinuity of integral functionals on A-free
sequences and to weak continuity of determinants are given. In particular, we state necessary and

sufficient conditions for weak* convergence of det∇ϕk
∗
⇀ det∇ϕ in measures on the closure of Ω ⊂ R

n

if ϕk ⇀ ϕ in W 1,n(Ω; R
n). This convergence holds, for example, under Dirichlet boundary conditions.

Further, we formulate a Biting-like lemma precisely stating which subsets Ωj ⊂ Ω must be removed to
obtain weak lower semicontinuity of u �→ ∫

Ω\Ωj
v(u(x)) dx along {uk} ⊂ Lp(Ω; Rm)∩ker A. Specifically,

Ωj are arbitrarily thin “boundary layers”.
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1. Introduction

Oscillations and concentrations appear naturally in many problems in the calculus of variations, partial
differential equations, and optimal control theory. While Young measures [39] successfully capture oscillatory
behavior of sequences, they completely miss concentration effects. These may be dealt with appropriate general-
izations of Young measures, as in DiPerna’s and Majda’s treatment of concentrations [9], following Alibert’s and
Bouchitté’s approach [1] (see also [13,25,26]), etc. Detailed overviews of this subject may be found in [33,36].

We are interested in the interplay of oscillation and concentration effects generated by sequences {uk}k∈N ⊂
Lp(Ω; Rm) which satisfy a linear differential constraint Auk = 0, or Auk → 0 in W−1,p(Ω; Rd), 1 < p < +∞,
where A is a first-order linear differential operator. An explicit characterization of Young measures generated
by sequences fulfilling Auk = 0 (A-free sequences) was completely given in [15], following earlier works by
Kinderlehrer and Pedregal [19,21] in the special case A := curl, the so-called gradient Young measures (see
also [30,32]). The complete study of oscillations and concentrations when A = curl can be found in [16]
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(see also [18] for a more general setting). Another particularly interesting situation, that will be a corollary of
the theory developed in this paper, is A := div which is relevant in the theory of micromagnetics [8,31,32].

Here we will use DiPerna’s and Majda’s generalization of Young measures, the so-called DiPerna-Majda
measures [9,33], to address oscillations and concentrations features in sequences {gv(uk)} where v agrees at
infinity with a positively p-homogeneous function and g ∈ C(Ω̄).

The main results may be found in Section 2. First, we will state necessary and sufficient conditions for a
DiPerna-Majda measure to be generated by an A-free sequence that admits an A-free p-equiintegrable extension,
see Theorem 2.1. Secondly, we formulate necessary conditions for a DiPerna-Majda measure to be generated
by a general A-free sequence, see Theorem 2.2. New sequential weak lower semicontinuity theorems issue from
this analysis (cf. Thms. 2.3 and 2.4). We further state a necessary and sufficient condition ensuring weak L1

convergence of {det∇ϕk}k∈N if {ϕk} ⊂W 1,n(Ω; Rn) and det ∇ϕk ≥ 0 for all k ∈ N, see Proposition 2.6. In the
absence of the sign assumption, the same condition is equivalent to the weak* convergence det∇ϕk

∗
⇀ det∇ϕ in

measures supported on the closure of Ω̄, cf. Proposition 2.8. In particular, this holds if ϕk = ϕ on ∂Ω for some
ϕ ∈ W 1,n(Ω; Rm). Finally, we formulate a Biting-like Lemma for A-quasiconvex functions, see Lemma 2.10,
showing that sets which must be bitten to recover weak lower semicontinuity are only arbitrarily thin “boundary
layers”.

1.1. Preliminaries and Young measures

We recall some measure theory results and set the notation [10]. Let X be a topological space. We denote by
C(X) the space of real-valued continuous functions in X . If X is a locally compact space then C0(X) denotes
the closure of the subspace of C(X) of functions with the compact support. By the Riesz Representation
Theorem, the dual space to C0(X), C0(X)′, is isometrically isomorphic with M(X), the linear space of finite
Radon measures supported on X , normed by the total variation. Moreover, if X is compact then the dual space
to C(X), C(X)′, is isometrically isomorphic with M(X). A positive Radon measure μ ∈ M(X) with μ(X) = 1
is called a probability measure, and the set of all probability measures is denoted P(X).

If not said otherwise, we will work with a bounded Lipschitz domain Ω ⊂ Rn equipped with the Euclidean
topology and the n-dimensional Lebesgue measure Ln. By Lp(Ω, μ), 1 ≤ p ≤ +∞, we denote the space of
p-integrable functions with respect to the measure μ ∈ M(Ω). Further, W 1,p(Ω; Rm), 1 ≤ p < +∞, stands
for the usual space of measurable mappings, which together with their first (distributional) derivatives, are
integrable with the p-th power. The closer of C0(Ω; Rm) in W 1,p(Ω; Rm) is denoted W 1,p

0 (Ω; Rm). If 1 < p <

+∞ then W−1,p(Ω; Rm) denotes the dual space to W 1,p′
0 (Ω; Rm), where p′−1 + p−1 = 1. If μ ∈ M(Ω) then

L1(Ω, μ;C0(X))′ may be identified with L∞
w (Ω, μ;M(X)), the space of weakly* μ-measurable mappings η : Ω →

M(X). We recall η : Ω → M(X) is weakly* μ-measurable if, for all v ∈ C0(X), the mapping x ∈ Ω 	→ 〈η(x), v〉
is μ-measurable. If X is compact then L1(Ω̄, μ;C(X))′ may be identified with L∞

w (Ω̄, μ;M(X)). We drop the
reference to μ in this notation if μ := LnLΩ.

The support of a measure μ ∈ M(Ω) is the smallest closed set S such that μ(A) = 0 if S ∩ A = ∅. Finally,
if μ ∈ M(Ω) we write μs and dμ for, respectively, the singular part and the density of μ with respect to the
Lebesgue measure, i.e., using the Radon-Nikodým theorem [12]

μ =
dμ
dLn

LnLΩ + μs and dμ :=
dμ
dLn

Ln.

For p ≥ 0 we define
Cp(Rm) := {v ∈ C(Rm): v(s) = o(|s|p) for |s| → ∞}·

The Young measures in a domain Ω ⊂ Rn with values in P(Rm) are the weakly* measurable mappings ν :
Ω → P(Rm). In what follows, and when there is no possibility of confusion, we write νx in place of ν(x) and
abbreviate ν := {νx}x∈Ω. We denote the set of all such Young measures by Y(Ω; Rm). Obviously, Y(Ω; Rm) is
a convex subset of L∞

w (Ω;M(Rm)). A classical result [13,35,38,39] is that, for every sequence {yk}k∈N bounded
in L∞(Ω; Rm), there exists a subsequence (not relabeled) and a Young measure ν = {νx}x∈Ω ∈ Y(Ω; Rm) such
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that for all v ∈ C(Rm)

lim
k→∞

v ◦ yk = vν weakly* in L∞(Ω), (1.1)

vν(x) :=
∫

Rm

v(s)dνx(s) for a.e. x ∈ Ω. (1.2)

We say that {yk} generates ν if (1.2) holds. We denote by Y∞(Ω; Rm) the set of all Young measures generated
in this way, i.e., all Young measures attained by bounded sequences in L∞(Ω; Rm).

A generalization of this result was formulated by Schonbek [34] for the case 1 ≤ p < +∞ (cf. [2] where
further results in this direction have been obtained; see also [23]): If {yk}k∈N is bounded in Lp(Ω; Rm) then
there exists a subsequence (not relabeled) and a Young measure ν := {νx}x∈Ω ∈ Y(Ω; Rm) such that for all
v ∈ Cp(Rm)

lim
k→∞

v ◦ yk = vν weakly in L1(Ω). (1.3)

As before, we say that {yk} generates ν if (1.3) holds. We denote by Yp(Ω; Rm) the set of all Young measures
which are generated in this way.

1.2. The operator A and A-quasiconvexity

Following [5,15], we consider linear operators A(i) : Rm → Rd, i = 1, . . . , n, and define A : Lp(Ω; Rm) →
W−1,p(Ω; Rd) by

Au :=
n∑

i=1

A(i) ∂u

∂xi
, where u : Ω → R

m,

i.e., for all w ∈ W 1,p′
0 (Ω; Rd)

〈Au,w〉 = −
n∑

i=1

∫
Ω

A(i)u(x) · ∂w(x)
∂xi

dx.

For w ∈ Rn we define the linear map

A(w) :=
n∑

i=1

wiA
(i) : R

m → R
d,

and assume that there is r ∈ N ∪ {0} such that

rank A(w) = r for all w ∈ Rn, |w| = 1,

i.e., A has the so-called constant-rank property.
Let Q be the unit cube (−1/2, 1/2)n in Rn. We say that u : Rn → Rm is Q-periodic if for all x ∈ Rn and

all z ∈ Z

u(x+ z) = u(x).
If u ∈ Lp(Rn; Rm) then we say that u ∈ ker A when for all open bounded sets Ω ⊂ Rn, Au = 0 in W−1,p(Ω; Rd),
i.e.,

ker A := {u ∈ Lp(Ω; Rm): 〈Au,w〉 = 0 for all w ∈W 1,p′
0 (Ω; Rd)}·
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Although the definition of A depends on the domain Ω we will omit specifying it whenever it is obvious from
the context. Let us finally define

Lp
#(Rn; Rm) := {u ∈ Lp

loc(R
n; Rm): u is Q-periodic}·

We will use the following lemmas proved in [15], Lemmas 2.14, and [15], Lemma 2.15, respectively.

Lemma 1.1. If A has the constant rank property then there is a linear bounded operator T : Lp
#(Rn; Rm) →

Lp
#(Rn; Rm) that vanishes on constant mappings, T(Tu) = Tu for all u ∈ Lp

#(Rn; Rm), and Tu ∈ ker A.
Moreover, for all u ∈ Lp

#(Rn; Rm) with
∫

Q
u(x) dx = 0 it holds that

‖u− Tu‖Lp
#(Rn;Rm) ≤ C‖Au‖W−1,p(Rn;Rd),

where C > 0 is a constant independent of u.

Lemma 1.2 (decomposition lemma). Let Ω ⊂ Rn be bounded and open, 1 < p < +∞, and let {uk} ⊂ Lp(Ω; Rm)
be bounded and such that Auk → 0 in W−1,p(Ω; Rd) strongly, uk ⇀ u in Lp(Ω; Rm) weakly, and assume that
{uk} generates ν ∈ Yp(Ω; Rm). Then there is a sequence {zk}k∈N ⊂ Lp(Ω; Rm)∩ker A, {|zk|p} is equiintegrable
in L1(Ω), {zk} generates the Young measure ν, and uk − zk → 0 in measure in Ω.

Definition 1.3 (see [15], Defs. 3.1 and 3.2). We say that a continuous function v : Rm → R, |v| ≤ C(1 + | · |p)
for some C > 0, is A-quasiconvex if for all s0 ∈ Rm and all ϕ ∈ Lp(Q; Rm)∩ ker A with

∫
Q
ϕ(x) dx = 0 it holds

v(s0) ≤
∫

Q

v(s0 + ϕ(x)) dx.

The A-quasiconvex of v we define its A-quasiconvex envelope as

QAv(s0) := inf
{∫

Q

v(s0 + ϕ(x)) dx : ϕ ∈ Lp(Q; Rm) ∩ ker A and
∫

Q

ϕ(x) dx = 0
}

for all s0 ∈ Rm.

If v is A-quasiconvex then v = QAv.

Definition 1.4. Let {uk}k∈N ⊂ Lp(Ω; Rm)∩ker A. We say that {uk} has an A-free p-equiintegrable extension
if for every domain Ω̃ ⊂ R

n such that Ω ⊂ Ω̃, there is a sequence {ũk}k∈N ⊂ Lp(Ω̃; Rm) ∩ ker A such that
(i) ũk = uk a.e. in Ω for all k ∈ N;
(ii) {|ũk|p}k∈N is equiintegrable on Ω̃ \ Ω; and
(iii) there is C > 0 such that ‖ũk‖Lp(Ω̃;Rm) ≤ C‖uk‖Lp(Ω;Rm) for all k ∈ N.

Example 1.5. If A := curl and {ϕk} ⊂ W 1,p(Ω; Rm), ϕk ⇀ ϕ weakly in W 1,p(Ω; Rm) then {uk} := {∇ϕk}
has a curl free p-equiintegrable extension if {ϕk − ϕ} ⊂W 1,p

0 (Ω; Rm).

Other examples of A-free mappings include solenoidal fields where A = div, higher-order gradients where
Au = 0 if and only if u = ∇(s)ϕ for some ϕ ∈ W s,p(Ω; R�), and some s ∈ N, or symmetrized gradients where
Au = 0 if and only if u = (∇ϕ+ (∇ϕ)�)/2 for some ϕ ∈ W 1,p(Ω; R�).

1.3. DiPerna-Majda measures

Consider a complete (i.e. containing constants, separating points from closed subsets and closed with respect
to the supremum norm), separable (i.e. containing a dense countable subset) ring R of continuous bounded
functions from Rm into R. Such ring always contains C0(Rm). It is known that there is a one-to-one corre-
spondence R 	→ βRRm between such rings and metrizable compactifications of Rm [11]; by a compactification
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we mean here a compact set, denoted by βRRm, into which Rm is embedded homeomorphically and densely.
For simplicity, we will not distinguish between Rm and its image in βRRm. We set

Υp
R := {v := v0(1 + | · |p) : v0 ∈ R}·

Let π ∈ M(Ω̄) be a finite positive Radon measure, and let λ ∈ L∞
w (Ω̄, π;M(βRRm)), λx := λ(x) ∈

P(βRRm), i.e. the parameterized measure λ := {λx}x∈Ω̄ is a Young measure on Ω̄ equipped with π see [39], and
also [2,33,35,37,38]). DiPerna and Majda [9] proved the following theorem:

Theorem 1.6. Let Ω be an open domain in Rn with Ln(∂Ω) = 0, and let {yk}k∈N ⊂ Lp(Ω; Rm), with 1 ≤ p <
+∞, be bounded. Then there exists a subsequence (not relabeled), a positive Radon measure π ∈ M(Ω̄) and a
mapping λ ∈ L∞

w (Ω̄, π;M(βRRm)), λx ∈ P(βRRm) for π-a.e. x ∈ Ω̄, such that for all g ∈ C(Ω̄) and all v ∈ Υp
R

lim
k→∞

∫
Ω

g(x)v(yk(x))dx =
∫

Ω̄

∫
βRRm

g(x)v0(s)dλx(s)dπ(x). (1.4)

Take v0 := 1 in (1.4) (recall that constants are elements of R) to get

lim
k→∞

(1 + |yk|p)LnLΩ = π weakly* in M(Ω̄). (1.5)

If (1.4) holds then we say that {yk}∈N generates (π, λ), and we denote by DMp
R(Ω; Rm) the set of all such pairs

(π, λ) ∈ M(Ω̄) × L∞
w (Ω̄, π;M(βRRm)), λx ∈ P(βRRm) for π-a.e. x ∈ Ω̄. Note that, taking v0 := 1 and g := 1

in (1.4), generating sequences must be necessarily bounded in Lp(Ω; Rm). We say that (π, λ) ∈ DMp
R(Ω; Rm)

is homogeneous if x 	→ λx is constant. In this case, the density of π with respect to the Lebesgue measure is
constant (see formula (A.1) below).

1.3.1. Compactification of Rm by the sphere

In what follows we will work mostly with a particular compactification of Rm, namely, with the compactifi-
cation by the sphere. We will consider the following ring R of continuous bounded functions

S :=
{
v0 ∈ C(Rm): there exist c ∈ R, v0,0 ∈ C0(Rm), and v0,1 ∈ C(Sm−1) s.t.

v0(s) = c+ v0,0(s) + v0,1

(
s

|s|
) |s|p

1 + |s|p if s �= 0 and v0(0) = c+ v0,0(0)
}
, (1.6)

where Sm−1 denotes the (m− 1)-dimensional unit sphere in R
m. Then βSR

m is homeomorphic to the unit ball
B(0, 1) ⊂ Rm via the mapping f : Rm → B(0, 1), f(s) := s/(1 + |s|) for all s ∈ Rm. Note that f(Rm) is dense
in B(0, 1).

For any v ∈ Υp
S there exists a continuous and positively p-homogeneous function v∞ : Rm → R, i.e.,

v∞(ts) = tpv∞(s) for all t ≥ 0 and s ∈ Rm, such that

lim
|s|→∞

v(s) − v∞(s)
|s|p = 0. (1.7)

Indeed, if v0 is as in (1.6) and v = v0(1 + | · |p) then set

v∞(s) :=

{ (
c+ v0,1

(
s
|s|
))

|s|p if s �= 0,
0 if s = 0.

By continuity we define v∞(0) := 0. It is easy to see that v∞ satisfies (1.7). Such v∞ is called the recession
function of v.
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Remark 1.7. Notice that S contains all functions v0 := v0,0 + v∞/(1 + | · |p) where v0,0 ∈ C0(Rm) and
v∞ : Rm → R is continuous and positively p-homogeneous.

2. Characterization of the set ADMp
S(Ω; Rm) and weak lower semicontinuity

In what follows we will denote by ADMp
S(Ω; Rm) the set of DiPerna-Majda measures from DMp

S(Ω; Rm)
which are generated by A-free mappings. We restrict ourselves to the compactification of Rm by the sphere,
although our results can be straightforwardly generalized to finer metrizable compactifications if the following
two conditions are satisfied:

(i) two (sub)sequences whose difference tends to zero in Lp(Ω; Rm) generate the same DiPerna-Majda
measure;

(ii) A-quasiconvex functions in Υp
R are separately convex. If this is the case, and if v ∈ Υp

R and QAv > −∞
then |QAv| ≤ C(1+ | · |p) for some C > 0; cf. [22] and, moreover, QAv is p-Lipschitz, see e.g. [27] or [7].
However, in general A-quasiconvex functions do not need to be even continuous; cf. [15].

Let Ω be an open bounded Lipschitz domain and 1 < p < +∞. While the case p = +∞ does not allow for
concentrations and was fully resolved in [15], the case p = 1 is much more complicated due to non-reflexivity of
L1(Ω; Rm).

Theorem 2.1. Let (π, λ) ∈ DMp
S(Ω; Rm). Then there exists {uk} ⊂ Lp(Ω; Rm) ∩ ker A, having an A-free

p-equiintegrable extension, and generating (π, λ) if and only if the following three conditions hold:
(i) there exists u ∈ Lp(Rn; Rm) ∩ ker A such that for a.e. x ∈ Ω

u(x) = dπ(x)
∫

Rm

s

1 + |s|p dλx(s);

(ii) for Ln-almost every x ∈ Ω and for all v ∈ Υp
S

QAv(u(x)) ≤ dπ(x)
∫

βSRm

v(s)
1 + |s|p dλx(s); (2.1)

(iii) for π-almost every x ∈ Ω̄ and all positively p-homogeneous v ∈ Υp
S with QAv(0) = 0 it holds that

0 ≤
∫

βSRm\Rm

v(s)
1 + |s|p dλx(s). (2.2)

The next theorem characterizes DiPerna-Majda measures generated by an arbitrary sequence of A-free map-
pings, i.e., there may not exist a generating sequence with an A-free p-equiintegrable extension. Then inequal-
ity (2.2) does not have to hold on ∂Ω.

Theorem 2.2. Let (π, λ) ∈ ADMp
S(Ω; Rm) be generated by {uk}k∈N ⊂ Lp(Ω; Rm) ∩ ker A. Then (i) and (ii)

of Theorem 2.1 are satisfied but (2.2) in (iii) may hold only for π-a.e. x ∈ Ω.

The proof of the necessary conditions in Theorems 2.1 and 2.2 is the subject of Section 3 (see Prop. 3.5).
Section 4 establishes the sufficient conditions (see Prop. 4.6).

The following two sequential weak lower semicontinuity theorems follow from Theorem 2.2. Their proofs may
be found in Section 5.

Theorem 2.3. Let 0 ≤ g ∈ C(Ω̄), let v ∈ Υp
S(Rm) be A-quasiconvex, and let 1 < p < +∞. Let {uk} ⊂

Lp(Ω; Rm) ∩ ker A, uk ⇀ u weakly, and assume that at least one of the following conditions is satisfied:
(i) for any subsequence of {uk} (not relabeled) such that |uk|pLnLΩ ⇀ π weakly* in M(Ω̄), it holds

π(∂Ω) = 0;
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(ii) lim|s|→∞
v−(s)
1+|s|p = 0 where v− := max{0,−v};

(iii) {uk} has an A-free p-equiintegrable extension;
(iv) g ∈ C0(Ω).

Then I(u) ≤ lim infk→∞ I(uk), where

I(u) :=
∫

Ω

g(x)v(u(x)) dx. (2.3)

Theorem 2.4. Let 0 ≤ g ∈ C(Ω̄), let v ∈ Υp
S(Rm) be A-quasiconvex, and let 1 < p < +∞. Then I

is sequentially weakly lower semicontinuous in Lp(Ω; Rm) ∩ ker A if and only if for any bounded sequence
{uk} ⊂ Lp(Ω; Rm) ∩ ker A such that uk → 0 in measure

lim inf
k→∞

I(uk) ≥ I(0).

2.1. Weak/in measure continuity of determinants

As an application of our results, we give necessary and sufficient conditions for weak sequential continuity of
ϕ ∈ W 1,n(Ω; Rn) 	→ det ∇ϕ ∈ L1(Ω). Here n = p, d = n2,

Au = 0 if and only if curl u = 0,

and the notion of A-quasiconvexity reduces to the well-known notion of quasiconvexity, see [3,28]. We recall
(see [7,13]) that a Borel measurable function v : Rn×n → R is quasiconvex if for all s ∈ Rm×n and all
φ ∈ W 1,∞

0 (Q; Rn) it holds that

v(s) ≤
∫

Q

v(s+ ∇φ(x)) dx. (2.4)

If |v| ≤ C(1 + | · |n), a simple density argument shows that (2.4) remains valid if we take φ ∈W 1,n
Q−per(R

n; Rn),
see [3].

In particular, v(s) := ± det s is quasiconvex (see e.g. [7]) and, since it is n-homogeneous, ± det/(1+ | · |n) ∈ S
in view of Remark 1.7. Indeed, det(αs) = αndet s if α ≥ 0 and s ∈ Rn×n. Consider {ϕk}k∈N ⊂ W 1,n(Ω; Rn)
such that w-limk→∞ ϕk = ϕ in W 1,n(Ω; Rn). We extract a further subsequence, if necessary, such that {∇ϕ}k

generates ν ∈ Yn(Ω; Rn×n) and (π, λ) ∈ DMn
S(Ω; Rn×n), and so that (A.7) holds for v := det and yk := ∇ϕk,

i.e., if g ∈ C(Ω̄) then

lim
k→∞

∫
Ω

g(x)det ∇ϕk(x)dx =
∫

Ω

∫
Rn×n

det s dνx(s)g(x) dx+
∫

Ω̄

∫
βSRn×n\Rn×n

det s
1 + |s|n dλx(s)g(x)dπ(x). (2.5)

It is known that (see [21,30]) ∫
Ω

∫
Rn×n

det s dνx(s) dx =
∫

Ω

det∇ϕ(x) dx,

and, due to (2.2) applied to v := ± det
∫

βSRn×n\Rn×n

det s
1 + |s|n dλx(s) = 0 (2.6)
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for π-almost all x ∈ Ω. Therefore, we can rewrite (2.5) as

lim
k→∞

∫
Ω

g(x)det ∇ϕk(x)dx =
∫

Ω

det∇ϕ(x)g(x) dx +
∫

∂Ω

∫
βSRn×n\Rn×n

det s
1 + |s|n dλx(s)g(x)dπ(x), (2.7)

and, in particular, we have

lim
k→∞

∫
Ω

g(x)det ∇ϕk(x)dx =
∫

Ω

g(x)det∇ϕ(x) dx (2.8)

for all g ∈ C0(Ω), i.e., det∇ϕk
∗
⇀ det∇ϕ in the sense of measures [3]. Moreover, if

∫
βSRn×n\Rn×n

det s
1 + |s|n dλx(s) = 0

for π-almost all x ∈ ∂Ω, then (2.8) holds for all g ∈ C(Ω̄).
We will need the following lemma.

Lemma 2.5. Let 0 ≤ v0 ∈ R and let {uk}k∈N ⊂ Lp(Ω; Rm) generate (π, λ) ∈ DMp
R(Ω; Rm). Let v :=

v0(1 + | · |p). Then {v(uk)}k∈N is weakly relatively compact in L1(Ω) if and only if
∫

Ω̄

∫
βRRm\Rm

v0(s)dλx(s)dπ(x) = 0. (2.9)

Proof. We follow the proof of [33], Lemma 3.2.14(i). Suppose first that (2.9) holds. For � ≥ 0 define the function
ξ� : Rm → R

ξ�(s) :=

⎧⎨
⎩

0 if |s| ≤ �,
|s| − � if � ≤ |s| ≤ �+ 1,
1 if |s| ≥ �+ 1.

Note that always ξ� ∈ R, hence ξ�v0 ∈ R because R is closed under multiplication. We have due to the
Lebesgue Dominated Convergence Theorem

lim
�→∞

∫
Ω̄

∫
βRRm\B(0,�)

v0(s)dλx(s)dπ(x) =
∫

Ω̄

∫
βRRm\Rm

v0(s)dλx(s)dπ(x) = 0.

Let ε > 0 and � be large enough so that∫
Ω̄

∫
βRRm

ξ�(s)v0(s)dλx(s)dπ(x) ≤
∫

Ω̄

∫
βRRm\B(0,�)

v0(s)λx(s)dπ(x) ≤ ε

2
,

and choose k� ∈ N such that, if k ≥ k�, then

∣∣∣∣
∫

Ω̄

∫
βRRm

ξ�(s)v0(s)dλx(s)dπ(x) −
∫

Ω

ξ�
0 (uk(x))v(uk(x)) dx

∣∣∣∣ ≤ ε

2
·

Therefore, if k ≥ k� then
∫
Ω
ξ�
0 (uk(x))v(uk(x)) dx ≤ ε, and so

∫
{x∈Ω: |uk(x)|≥�+1}

v(uk(x)) dx ≤
∫

Ω

ξ�
0 (uk(x))v(uk(x)) dx ≤ ε.



OSCILLATIONS AND CONCENTRATIONS 9

As 0 ≤ v ≤ C(1 + | · |p) for some C > 0, we get for K ≥ C(1 + (�+ 1)p) that∫
{x∈Ω: |v(uk(x))|≥K}

v(uk(x)) dx ≤
∫
{x∈Ω: |uk(x)|≥�+1}

v(uk(x)) dx ≤ ε.

Clearly, the finite set {v(uk)}k�

k=1 is weakly relatively compact in L1(Ω), which means that for K0 > 0 sufficiently
large and 1 ≤ k ≤ k� ∫

{x∈Ω: |v(uk(x))|≥K0}
v(uk(x)) dx ≤ ε.

Hence,

sup
k∈N

∫
{x∈Ω: |v(uk(x))|≥max(K0,K)}

v(uk(x)) dx ≤ ε,

and {v(uk)} is relatively weakly compact in L1(Ω) by the Dunford-Pettis criterion. Consequently, if {v(uk)}
is relatively weakly compact in L1(Ω), then the limit of a (sub)sequence can be fully described by the Young
measure generated by {uk}, see e.g. [2,30,32]. Formula (2.9) then follows from (A.7). �

Suppose now that det∇ϕk ≥ 0 for all k ∈ N. Then Lemma 2.5 applied to v := |det|, together with (2.6),
implies that (notice that |det∇ϕk| = det∇ϕk, k ∈ N) if∫

∂Ω

∫
βSRn×n\Rn×n

det s
1 + |s|n dλx(s)dπ(x) = 0 (2.10)

then w-limk→∞ det∇ϕk = det∇ϕ in L1(Ω). On the other hand, if w-limk→∞ det∇ϕk = det∇ϕ in L1(Ω)
then (2.7) yields (2.10). We proved the following proposition, which is a generalization of Müller’s result [29];
cf. also [17,20].

Proposition 2.6. Let {ϕk}k∈N ⊂ W 1,n(Ω; Rn) be such that w-limk→∞ ϕk = ϕ in W 1,n(Ω; Rn), det∇ϕk ≥ 0
a.e. in Ω for all k ∈ N, and {∇ϕk}k∈N generates (π, λ) ∈ DMp

S(Ω; Rm). Then w-limk→∞ det∇ϕk = det∇ϕ in
L1(Ω) if and only if (2.10) holds.

Condition (2.10) can be ensured, for instance, if ϕk = ϕ on ∂Ω in the sense of traces [18]. The fact that
w-limk→∞ det∇ϕk = det∇ϕ in L1(Ω) if det∇ϕk ≥ 0 and ϕk = ϕ on ∂Ω was already mentioned in [20],
Theorem 4.1. However, (2.10) also holds if {ϕk} has an extension to Ω̃ ⊃ Ω such that {|∇ϕk|p|Ω̃\Ω} is weakly
relatively compact in L1(Ω), see (iii) in Theorem 2.1.

Corollary 2.7. Let {ϕk}k∈N ⊂ W 1,n(Ω; Rn) be such that w-limk→∞ ϕk = ϕ in W 1,n(Ω; Rn), ϕk ∈ ϕ +
W 1,n

0 (Ω; Rn), and det∇ϕk(x) ≥ 0 for all k ∈ N and a.e. x ∈ Ω. Then w-limk→∞ det∇ϕk = det∇ϕ in L1(Ω).

Removing the assumption det∇ϕk ≥ 0 from Proposition 2.6 substantially weakens the assertion. Its proof
follows again from (2.7).

Proposition 2.8. Let {ϕk}k∈N ⊂W 1,n(Ω; Rn) be such that w-limk→∞ ϕk = ϕ in W 1,n(Ω; Rn), and {∇ϕk}k∈N

generates (π, λ) ∈ DMp
S(Ω; Rm). Then w*-limk→∞ det∇ϕk = det∇ϕ in the sense of measures on Ω̄ if and only

if (2.10) holds.

Remark 2.9. Analogous variants of Propositions 2.6 and 2.8 clearly hold for A-quasiaffine functions, i.e., if v
and −v are both A-quasiconvex.

2.2. Biting lemma for A-quasiconvex functions

The next proposition can be seen as a version of the Biting Lemma [6] for A-quasiconvex functions. It
generalizes a result from [4]. It is known that if v ∈ Υp

S is A-quasiconvex then the functional I given in (2.3)
does not have to be sequentially weakly lower semicontinuous in Lp(Ω; Rm) ∩ ker A; cf. [3] for a particular
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example with the determinant. Our next lemma asserts that the weak lower semicontinuity is preserved if we
remove (bite) an arbitrarily thin “boundary layer” of Ω.

Lemma 2.10. Let Ω ⊂ R
n be a bounded Lipschitz domain and such that 0 ∈ Ω. Let uk ⇀ u weakly in

Lp(Ω; Rm)∩ker A, 1 < p < +∞. Let further 0 ≤ g ∈ C(Ω̄) and let v ∈ Υp
S be A-quasiconvex. Then there exists

a subsequence of {uk} (not relabeled) and {ε�}�∈N ⊂ (0, 1] such that

lim inf
k→∞

∫
εΩ

g(x)v(uk(x)) dx ≥
∫

εΩ

g(x)v(u(x)) dx, (2.11)

if ε �∈ {ε�}�∈N and εΩ := {εy : y ∈ Ω}.
The proofs of Theorems 2.3, 2.4, and of Lemma 2.10 can be found in Section 5. The next two sections will

be devoted to proving Theorems 2.1 and 2.2.

3. Theorems 2.1 and 2.2: Necessary conditions

The following result can be found in [18], Lemma 3.2. It follows by the approximation of the characteristic
function by continuous ones.

Lemma 3.1. Let (π, λ) ∈ DMp
R(Ω; Rm) and let ω ⊆ Ω be an open set such that π(∂ω) = 0. Let {uk}k∈N

generate (π, λ) in the sense of (1.4). Then for all v0 ∈ R and all g ∈ C(Ω̄)

lim
k→∞

∫
ω

v(uk)g(x) dx =
∫

ω

∫
βRRm

v0(s)dλx(s)g(x) dπ(x). (3.1)

Proposition 3.2. Let 1 < p < +∞, let {uk} ⊂ Lp(Ω; Rm) be such that Auk → 0 in W−1,p(Ω; Rd), uk ⇀ u
weakly in Lp(Ω; Rm). If {uk} generates a DiPerna-Majda measure (π, λ) ∈ DMp

S(Ω; Rm) with π absolutely
continuous with respect to the Lebesgue measure, then there is {wk}k∈N ⊂ Lp(Ω; Rm)∩ker A that also generates
(π, λ). Moreover,

∫
Ω(wk(x) − u(x)) dx = 0 for all k ∈ N.

Proof. We follow the proof of [15], Lemma 2.15. After an affine rescaling, we may assume that Ω ⊂ Q. Clearly
Au = 0, and by linearity and Lemma A.5 we may suppose that u = 0.

For any η ∈ C∞
0 (Ω), 0 ≤ η ≤ 1, it follows

A(ηuk) = ηAuk +
n∑

i=1

ukA
(i) ∂η

∂xi
→ 0 in W−1,p(Ω; Rd)

because Lp(Ω; Rm) is compactly embedded into W−1,p(Ω; Rm). Take ηk ∈ C∞
0 (Ω), 0 ≤ ηk ≤ 1 for any k ∈ N,

ηk → χΩ pointwise everywhere. Define wjk := ηjuk, j, k ∈ N. By Lemma A.7 extract a subsequence of {wjk}j,k,
denoted by {wk}k∈N, that generates (π, λ) with uk ⇀ 0 weakly in Lp(Ω; Rm) and Awk → 0 in W−1,p(Ω; Rd).
We extend wk by zero to Q \ Ω, and then periodically to the whole Rn. Define

w̃k := T

(
wk −

∫
Q

wk(x) dx
)
.

By Lemma 1.1 {w̃k} ⊂ Lp(Ω; Rm) ∩ ker A and we have due to the fact that
∫

Qwk(x) dx → 0 as k → ∞

lim
k→∞

‖wk − w̃k‖|Lp(Ω;Rm) = lim
k→∞

∥∥∥∥wk −
∫

Q

wk dx− T

(
wk −

∫
Q

wk(x) dx
)∥∥∥∥

Lp
#(Rn;Rm)

≤ lim
k→∞

C‖Awk‖W−1,p(Q;Rd) = 0.
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Therefore, by Lemma A.6 {ũk}k∈N generates the same DiPerna-Majda measure as {uk}. Finally, we set
wk := w̃k − Ln(Ω)−1

∫
Ω
w̃k(x) dx for any k. �

Proposition 3.3. Let 1 < p < +∞, let {uk}k∈N ⊂ Lp(Ω; Rm) be such that Auk → 0 in W−1,p(Ω; Rd) as
k → ∞, and let {uk} generate (π, λ) ∈ DMp

S(Ω; Rm). Let further uk ⇀ u weakly in Lp(Ω; Rm). Then for
almost every a ∈ Ω (λa, dπ(a)LnLΩ) is a DiPerna-Majda measure. Moreover, (λa, dπ(a)LnLΩ) is generated by
a sequence in Lp

#(Rn; Rm) ∩ ker A.

Proof. We remark that

dπ(a) =
(∫

Rm

dλa(s)
1 + |s|p

)−1

(3.2)

as follows from (A.1). Define γ := dπ(a)LnLΩ and μx := λa for a.e. x ∈ Ω. Notice that (γ, μ) ∈ DMp
S(Ω; Rm)

by Proposition A.1. We proceed as in [32], Theorem 7.2, and apply Lemma 3.1 to any ω := a+�Q with � small
enough and such that π(∂(a + �Q)) = 0. Define V̄�(y) := dπ(y)

∫
βSRm v�

0(s)dλy(s) where {v�
0}�∈N is a dense

subset of S. Consider a ∈ Ω a common Lebesgue point of u, dπ , V̄�, for any � ∈ N, and such that πs({a}) = 0.
The set of such points has full Lebesgue measure.

We recall that w∗ − limk→∞(1 + |uk|p) = π, i.e., for any ξ ∈ C(Ω̄)

lim
k→∞

∫
Ω

ξ(x)(1 + |uk(x)|p) dx =
∫

Ω̄

ξ(x) dπ(x).

Let ξa,� ∈ C0(Ω) be such that

0 ≤ χa+�Q(x) ≤ ξa,�(x) ≤ χa+2�Q(x), x ∈ Ω.

Then

lim sup
�→0

lim sup
k→∞

�−n

∫
Ω

(1 + |uk(x)|p)χa+�Q(x) dx ≤ lim sup
�→0

lim sup
k→∞

�−n

∫
Ω

(1 + |uk(x)|p)ξa,�(x) dx

= lim sup
�→0

�−n

∫
Ω

ξa,�(x) dπ(x)

≤ lim sup
�→0

�−n

∫
Ω

χa+2�Q(x) dπ(x) ≤ Cdπ(a).

Hence,

lim sup
�→0

lim sup
k→∞

�−n

∫
Ω

|uk(x)|pχa+�Q(x) dx = lim sup
�→0

lim sup
k→∞

∫
Ω

|uk(a+ �x)|p dx < +∞.

Define

ua
k,�(x) := uk(a+ �x), x ∈ Q, � > 0.

Taking v ∈ Υp
S and g ∈ C(Q̄), we have

∫
Q

v(ua
k,�(x))g(x) dx =

∫
Q

v(uk(a+ �x))g(x) dx = �−n

∫
Ω

v(uk(y))χa+�Q(y)g
(
y − a

�

)
dy.
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Using Lemma 3.1, we get for all v� := v�
0(1 + | · |p) and all g ∈ C(Q̄) that

lim
k→∞

∫
Q

v�(ua
k,�(x))g(x) dx = �−n

∫
Ω

V̄�(y)χa+�Q(y)g
(
y − a

�

)
dy

+ �−n

∫
Ω̄

∫
βRRm

v�
0(s)dλy(s)χa+�Q(y)g

(
y − a

�

)
dπs(y). (3.3)

Since πs({a}) = 0, we have

lim sup
�→0

�−n

∫
Ω̄

∫
βRRm

∣∣∣∣v�
0(s) dλy(s)χa+�Q(y)g

(
y − a

�

)∣∣∣∣ dπs(y) ≤ lim
�→0

C�−n

∫
a+�Q

dπs(y) = 0.

Thus,

lim
�→0

lim
k→∞

∫
Q

v�(ua
k,�(x))g(x) dx = lim

�→0

∫
Q

V̄�(a+ �x)g(x) dx = V̄�(a)
∫

Q

g(x) dx

=
∫

Q

∫
βSRm

v�
0(s)dλa(s)g(x)dπ(a) dx =

∫
Q

∫
βSRm

v�
0(s)dμx(s)g(x) dγ(x).

As S and C(Q̄) are separable, we use a diagonalization procedure to find {ua
k}k∈N such that for any v ∈ Υp

S
and any g ∈ C(Q̄)

lim
k→∞

∫
Q

v(ua
k(x))g(x) dx =

∫
Q̄

∫
βSRm

v0(s)dμx(s)g(x) dγ(x).

To modify the sequence such that it belongs to Lp
#(Rn; Rm)∩ ker A we follow the proof of Proposition 3.2. �

Lemma 3.4. Let (π, λ) ∈ ADMp
S(Ω; Rm), 1 < p < +∞. Then for π-almost every x ∈ Ω

∫
βSRm\Rm

v(s)
1 + |s|p dλx(s) ≥ 0 (3.4)

for all positively p-homogeneous v ∈ Υp
S with QAv(0) = 0.

Proof. By rescaling, we can assume that Ω ⊂ Q. Fix v, x0 ∈ Ω, a π-Lebesgue point of x 	→ ∫
βSRm\Rm

v(s)
1+|s|p dλx(s), and r > 0 such that B(x0, r) := {x ∈ Ω: |x − x0| < r} ⊂ Ω and π(∂B(x0, r)) = 0. Suppose
further that {uk} ⊂ Lp(Ω; Rm) ∩ ker A generates (π, λ) ∈ ADMp

S(Ω; Rm) and decompose uk = zk + wk using
Lemma 1.2 with zk ∈ Lp(Ω; Rm) ∩ ker A and wk → 0 in measure. By Lemma 3.1 and by (A.7)

lim
k→∞

∫
B(x0,r)

v(wk(x))g(x) dx =
∫

B(x0,r)

∫
βSRm\Rm

v0(s)dλx(s)g(x)dπ(x) (3.5)

for all v ∈ Υp
S positively p-homogeneous and all g ∈ C(Ω̄). As in the proof of Lemma A.7, we find a sequence

{ηk}k∈N ⊂ C∞
0 (B(x0, r)), ηk → χB(x0,r), ηk ∈ [0, 1] for all x ∈ B(x0, r), such that {ŵk} := {ηkwk} still

satisfies (3.5). Moreover, by the compact embedding of Lp(B(x0, r); Rm) into W−1,p(B(x0, r); Rm) and the
assumption that Awk = 0, we have that Aŵk → 0 in W−1,p(B(x0, r); Rm). We extend ŵk by zero to Q\B(x0, r)
and then periodically to the whole Rn. The extension is still denoted by ŵk ∈ Lp

#(Rn; Rm). We define

w̃k := T

(
ŵk −

∫
Q

ŵk

)
.
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By Lemma 1.1 {w̃k} ⊂ Lp
#(Rn; Rm) ∩ ker A and we have, due to the fact that

∫
Q ŵk dx→ 0 as k → ∞,

lim
k→∞

‖ŵk − w̃k‖|Lp
#(Rn;Rm) = lim

k→∞

∥∥∥∥ŵk −
∫

Q

ŵk dx− T

(
ŵk −

∫
Q

ŵk dx
)∥∥∥∥

Lp
#(Rn;Rm)

≤ lim
k→∞

C‖Aŵk‖W−1,p(Q;Rd) = 0.

Hence, for all v ∈ Υp
S , positively p-homogeneous and all g ∈ C(Ω̄) it holds that

lim
k→∞

∫
Q

v(w̃k(x))g(x) dx =
∫

Q

∫
βSRm\Rm

v(s)
1 + |s|p dλx(s)g(x)dπ(x).

Suppose that v ∈ Υp
S , positively p-homogeneous is such that QAv(0) = 0. By the definition of

A-quasiconvexity

0 ≤ lim
k→∞

∫
Q

v(w̃k(x)) dx = lim
k→∞

∫
B(x0,r)

v(w̃k(x)) dx =
∫

B(x0,r)

∫
βSRm\Rm

v(s)
1 + |s|p dλx(s)dπ(x),

and so

0 ≤ lim
r→0

1
π(B(x0, r))

∫
B(x0,r)

∫
βSRm\Rm

v(s)
1 + |s|p dλx(s)dπ(x) =

∫
βSRm\Rm

v(s)
1 + |s|p dλx0(s).

Proceeding as in [16], the previous calculation yields the existence of a π-null set Ev ⊂ Ω such that

0 ≤
∫

βSRm\Rm

v(s)
1 + |s|p dλx(s)

if x �∈ Ev. Let {vk
0}k∈N be a dense subset of S, so that {vk}k∈N = {vk

0 (1 + | · |p)}k∈N ⊂ Υp
S . We define

E :=
⋃
k

⋃
{j∈N; QA(vk

0 +1/j)(1+|·|p)(0)=0}
E(vk

0 +1/j)(1+|·|p).

Clearly π(E) = 0. Fix x ∈ (Ω \ E), a positively p-homogeneous v ∈ Υp
S such that QAv(0) = 0, and choose a

subsequence (not relabeled) {vk
0}k∈N such that

vk
0 → v0 in C(βSRm) and ‖vk

0 − v0‖C(βSRm) <
1
k
,

where k → ∞ if k → ∞. Denote v̂k := vk + 1
k (1 + | · |p). We have

v̂k(s) ≥ vk(s) + (1 + |s|p)‖vk
0 − v0‖C(βSRm)

≥ vk(s) + |vk
0 (s) − v0(s)|(1 + |s|p) ≥ v(s).

Finally, as x �∈ E then x �∈ E(vk
0 +1/k)(1+|·|p) and

0 ≤ lim
k→∞

∫
βSRm\Rm

v̂k(s)
1 + |s|p dλx(s) =

∫
βSRm\Rm

v(s)
1 + |s|p dλx(s). �
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Proposition 3.5. Let (π, λ) ∈ ADMp
S(Ω; Rm), 1 < p < +∞, be generated by {uk}k∈N ⊂ Lp(Ω; Rm) ∩ ker A.

Then the following conditions are satisfied:
(i) there exists u ∈ Lp(Ω; Rm) ∩ ker A such that uk ⇀ u and for a.e. x ∈ Ω

u(x) = dπ(x)
∫

βSRm

s

1 + |s|p dλx(s); (3.6)

and for all v ∈ Υp
S

QAv(u(x)) ≤ dπ(x)
∫

βSRm

v(s)
1 + |s|p dλx(s), (3.7)

for almost all x ∈ Ω;
(ii) for all v ∈ Υp

S such that QAv(0) = 0

0 ≤
∫

βSRm\Rm

v(s)
1 + |s|p dλx(s) (3.8)

for π-a.e. x ∈ Ω. Moreover, if {uk} has an A-free p-equiintegrable extension then (3.8) holds for π-a.e. x ∈ Ω̄
and u ∈ Lp(Rn; Rm) ∩ ker A.

Proof. Using (1.4) with v0(s) = si/(1 + |s|p) for i = 1, . . . ,m and g ∈ C(Ω̄) shows that (3.6) is the expression
of the weak limit of {uk}, u, in terms of DiPerna-Majda measures. Clearly, Au = 0 because uk ⇀ u and
uk ∈ ker A. In order to prove (3.7) we use Lemma 3.3 and consider for almost all a ∈ Ω a sequence {ua

k}x∈Ω ⊂
Lp

#(Rn; Rm) ∩ ker A generating (dπ(a)dx, λa) ∈ ADMp
S(Ω; Rm), and converging weakly to u(a). We define for

all k ∈ N

ũa
k(x) := ua

k(x) +
∫

Q

(u(a) − ua
k(x)) dx.

Notice that
∫

Q
ũa

k(x) dx = u(a) and that ‖ua
k − ũa

k‖Lp
#(Rn;Rm) → 0 as k → ∞, and therefore {ũa

k}k∈N also
generates (dπ(a)LnLΩ, λa). Then we have by (1.4) and the definition of A-quasiconvexity for any v ∈ Υp

S

QAv(u(a)) ≤ lim
k→∞

∫
Q

v(ũa
k(x)) dx = dπ(a)

∫
βSRm

v(s)
1 + |s|p dλa(s),

which proves (3.7). Finally, (3.8) follows from Lemma 3.4.
Assume now that {uk} has an A-free p-equiintegrable extension {ũk}k∈N with ũk ⇀ ũ weakly in Lp(Rn; Rm),

ũ ∈ ker A, and ũ = u a.e. in Ω.
Let Ω̃ be an arbitrary bounded domain such that Ω ⊂ Ω̃, and consider v ∈ Υp

S and g ∈ C(Ω̃), write∫
Ω̃

v(ũk(x))g(x)dx =
∫

Ω̃\Ω
v(ũ(x))g(x)dx +

∫
Ω

v(uk(x))g(x)dx.

Suppose that {ũk}k∈N restricted to Ω̃ \ Ω̄ generates a DiPerna-Majda measure (γ, μ) ∈ DMp
S(Ω̃ \ Ω̄; Rm). Since

{|ũk|p} is weakly relatively compact in L1(Ω̃ \ Ω̄) we have that γ(∂Ω̃ ∪ ∂Ω) = 0, see Lemma 2.5. Altogether,
{ũk} generates a DiPerna-Majda measure (π̃, λ̃) on Ω̃ such that

π̃ =
{
γ in Ω̃ \ Ω
π in Ω,

λ̃x =
{
μx if x ∈ Ω̃ \ Ω
λx if x ∈ Ω̄.

Using Lemma 3.4 applied to (π̃, λ̃) that (3.4) holds true for π̃-almost all x ∈ Ω̃. In particular, it holds true for
π-almost every x ∈ Ω. �
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4. Theorems 2.1 and 2.2: Sufficient conditions

We will follow [15]. Let us take λ ∈ P(βSRm) such that λ(Rm) > 0, and

0 =
∫

βSRm

s

1 + |s|p dλ(s). (4.1)

Define

dπ :=
(∫

βSRm

dλ(s)
1 + |s|p

)−1

· (4.2)

Consider a set of DiPerna-Majda measures η ∼= (π, λ) defined for all g ∈ C(Ω) and all v0 ∈ S by

〈η, g ⊗ v0〉 :=
∫

Ω̄×βSRm

v0(s)g(x)dλ(s) dπ(x), (4.3)

where π is absolutely continuous with respect to the Lebesgue measure with the density dπ. Here we used the
fact that the linear hull of {g ⊗ v0; v0 ∈ S, g ∈ C(Ω̄)} is dense in C(Ω̄ × βSR

m). We denote by H the set
of DiPerna-Majda measures of the form (4.3) with the first moment zero, i.e. (4.1) holds, and generated by
p-equiintegrable sequences in Lp

#(Rn; Rm) ∩ ker A.
There is an obvious one-to-one mapping from H to the Young measures in Yp(Q; Rm) generated by

p-integrable sequences in Lp
#(Rn; Rm) ∩ ker A; cf. (A.6). This is clear because any such sequence gener-

ates both a DiPerna-Majda measure as well as a Young measure. Let us denote by Y the set of homogeneous
Young measures from Yp(Q; Rm) generated by p-integrable sequences in Lp

#(Rn; Rm) ∩ ker A, and define

Ep :=
{
v ∈ C(Rm): lim

|s|→∞
v(s)

1 + |s|p ∈ R

}
·

It is well-known that Ep is a separable ring corresponding to a one-point compactification of Rm. The dual
space of Ep, E′

p, can thus be identified with M(βEpRm).

Lemma 4.1. H is convex.

Proof. We first show that H is convex. We follow [15], Proof of Proposition 4.2. Let {uk}, {ũk} ⊂ Lp
#(Rn; Rm)∩

ker A be p-equiintegrable and generating η, η̃ ∈ H and Young measures ν, ν̃ ∈ Yp(Ω; Rm), respectively. There
is a one-to-one correspondence between η and ν and η̃ and ν̃; cf. (A.6).

By mollification we may suppose that {uk}, {ũk} ⊂ C∞(Q; Rm), and because {uk}, {ũk} converge weakly
to 0 we may suppose that

∫
Q
uk(x) dx =

∫
Q
ũk(x) dx = 0. Fix θ ∈ (0, 1). As {uk} and {ũk} converge strongly

to zero in W−1,p(Q; Rm) we have for every ξ ∈ C∞
0 ((0, θ) ×Qn−1) with Qn−1 := (−1/2, 1/2)n−1 that

‖A(ξ(uk − ũk))‖W−1,p(Q;Rd) =

∥∥∥∥∥
n∑

i=1

∂ξ

∂xi
A(i)(uk − ũk)

∥∥∥∥∥
W−1,p(Q;Rd)

→ 0.

Hence, we may find a sequence {ϕk} ⊂ C∞
0 ((0, θ) ×Qn−1), ϕk → χ(0,θ)×Qn−1 pointwise, such that

‖A(ϕk(uk − ũk))‖W−1,p(Q;Rd) → 0.

We define

wk =: uk + T

(
ϕk(ũk − uk) −

∫
Q

ϕk(x)(ũk(x) − uk(x)
)

dx.
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Then {wk} ⊂ Lp
#(Rn; Rm) ∩ ker A,

∫
Q ϕk(x)(ũk(x) − uk(x)) dx→ 0, and by properties of T it holds

wk = uk + ϕk(ũk − uk) + hk,

where hk → 0 in Lp
#(Rn; Rm). In particular, {wk} is p-equiintegrable and generates a Young measure {μx}x∈Q

such that μx = νx if x1 ∈ (0, θ) and μx = ν̃x if x1 ∈ (θ, 1). Finally, we set w̄k,j := wk(jx) for j ∈ N. Then
{w̄k,j} ⊂ C∞(Q; Rm)∩ker A, {w̄k,j} is bounded in Lp

#(Rn; Rm), and it is equiintegrable for every j ∈ N. Hence
for any v ∈ Υp

S and any g ∈ C(Q)

lim
k→∞

lim
j→∞

∫
Q

g(x)v(w̄k,j(x)) dx = lim
k→∞

∫
Q

g(x)
(∫

Q

v(wk(y)) dy
)

dx

=
∫

Q

g(x) dx
(
θ

∫
Rm

v(s)dν̃(s) + (1 − θ)
∫

Rm

dν(s)
)

= θ 〈η̃, g ⊗ v〉 + (1 − θ) 〈η, g ⊗ v〉 ·

As S and C((Q) are separable we diagonalize to find a sequence {w̄k,j(k)} ⊂ C∞(Q; Rm) ∩ ker A generating
θ 〈η̃, g ⊗ v〉 + (1 − θ) 〈η, g ⊗ v〉, i.e., H is convex. �

Lemma 4.2. H is closed.

Proof. We follow [15], p. 1385. We show that Y is closed in the weak* topology of E′
p. Suppose that ν ∈ Y.

Let {fi}i∈N ⊂ C∞(Q) be dense in L1(Q) and {gj}j∈N be dense in C0(Rm). Moreover, we take f = 1 and
g0(s) = |s|p for any s ∈ Rm. By the definition of the weak* topology in E∗

p there is νk ∈ Y such that

| 〈νk − ν, gj〉 | ≤ 1
2k
, j = 0, . . . , k;

hence by the Fundamental Theorem of Young measures [2] we can find wk ∈ Lp
#(Rn; Rm) such that

∣∣∣∣〈ν, gj〉
∫

Q

fi(x) dx −
∫

Q

fi(x)gj(wk(x)) dx
∣∣∣∣ < 1

k
, 0 ≤ i, j ≤ k.

Taking i = j = 0 in the above formula we get that {wk} is bounded in Lp
#(Rn; Rm) and it generates a Young

measure in Yp(Q; Rm). Clearly, this Young measure is ν. Again, setting i = j = 0 yields

‖wk‖p
Lp

#(Rn;Rm)
→ 〈ν, | · |p〉 ,

as k → ∞. Hence, {wk} is p-equiintegrable. Therefore, ν ∈ Y. Correspondingly, H is closed. �

Take u ∈ Lp
#(Rn; Rm) ∩ ker A,

∫
Q u(x) dx = 0. It is well-known [3] that the sequence {uk}k∈N with uk(x) =

u(kx), x ∈ Q, k ∈ N, generates the homogeneous Young measure δu given, for any v ∈ Cp(Rm), by

∫
Rm

v(s)dδu(s) :=
∫

Q

v(u(x)) dx.

We can embed δu in DMp
S(Ω; Rm) as follows. Define ηu

∼= (π, ϑ) ∈ H where for any v ∈ Υp
S∫

βSRm

v0(s) dϑ(s) := d−1
π

∫
Q

v(u(x)) dx (4.4)
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and

dπ :=
∫

Q

(1 + |u(x)|p) dx, (4.5)

where dπ is the density with respect to the Lebesgue measure of the absolutely continuous measure π ∈ M(Ω̄).

Lemma 4.3. Let 1 < p < +∞ and let (π, λ) ∈ DMp
S(Ω; Rm) be such that λ is homogeneous, i.e., λx = λy for

all x, y ∈ Ω, and π is absolutely continuous with respect to the Lebesgue measure with the constant density

dπ =
(∫

Rm

dλ(s)
1 + |s|p

)−1

,

such that ∫
βSRm

s

1 + |s|p dλ(s) = 0

and for any v ∈ Υp
S

QAv(0) ≤ dπ

∫
βSRm

v(s)
1 + |s|p dλ(s). (4.6)

Then (π, λ) ∈ ADMp
S(Ω; Rm).

Proof. We define ξ ∈ M(βSRm) by

〈ξ, v0〉 := dπ

∫
βSRm

v0(s)dλ(s),

where v0 ∈ S. By (4.6)

〈ξ, v0〉 ≥ QAv(0). (4.7)

We will use the Hahn-Banach Theorem to prove that ξ cannot be separated from H in the weak* topology
by an element of C(βSRm). Suppose that ξ does not belong to H. Then it does not belong to co(H) by
Lemmas 4.1 and 4.2 and there is v0 ∈ S and α ∈ R such that 〈μ, v0〉 ≥ α for all μ ∈ H and 〈ξ, v0〉 < α, i.e.,
by (4.7) QAv(0) < α. Consider u ∈ Lp

#(Rn; Rm)∩ker A and ηu defined as in (4.4) and (4.5). Then we have that
〈ηu, 1 ⊗ v0〉 =

∫
Q v(u(x)) dx ≥ α, hence QAv(0) ≥ α, and we reached a contradiction. Therefore, ξ ∈ H. �

Lemma 4.4 (see [32], Lem. 7.9 for a more general case). Let Ω ⊂ Rn be an open domain with |∂Ω| = 0, and
let N ⊂ Ω be of the zero Lebesgue measure. For rk : Ω \N → (0,+∞) and {fk}k∈N ⊂ L1(Ω) there exists a set
of points {aik} ⊂ Ω \N and positive numbers {εik}, εik ≤ rk(aik) such that {aik + εikΩ̄} are pairwise disjoint
for each k ∈ N, Ω̄ = ∪i{aik + εikΩ̄} ∪Nk with Ln(Nk) = 0, and for any j ∈ N and any g ∈ L∞(Ω)

lim
k→∞

∑
i

fj(aik)
∫

aik+εikΩ

g(x) dx =
∫

Ω

fj(x)g(x) dx.

Proposition 4.5. Let (π, λ) ∈ DMp
S(Ω; Rm), 1 < p < +∞, be such that π is absolutely continuous with respect

to the Lebesgue measure and let dπ be its density. Set for almost every x ∈ Ω

u(x) := dπ(x)
∫

Rm

s

1 + |s|p dλx(s). (4.8)
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If u ∈ Lp(Rn; Rm) ∩ ker A and if for all v ∈ Υp
S and for almost every x ∈ Ω

QAv(u(x)) ≤ dπ(x)
∫

βSRm

v(s)
1 + |s|p dλx(s), (4.9)

then (π, λ) ∈ ADMp
S(Ω; Rm). Moreover, its generating sequence can be chosen to be A-free with a

p-equiintegrable extension.

Proof. Using a rescaling argument, we may assume that Ω ⊂ Q.
(i) Suppose first that u in (4.8) is zero. We are looking for a sequence {uk}k∈N ⊂ Lp(Ω; Rm)∩ker A satisfying

lim
k→∞

∫
Ω

v(uk(x))g(x) dx =
∫

Ω̄

∫
βSRm

v(s)
1 + |s|p dλx(s)g(x)dπ(x)

for all g ∈ Γ and all v = v0(1 + | · |p), v0 ∈ Σ, where Γ and Σ are countable dense subsets of C(Ω̄) and S,
respectively.

Take rk := 1/k and, using Lemma 4.4, find aik ∈ Ω \N , εik ≤ 1/k, such that for v0 ∈ Σ and g ∈ C(Ω̄)

lim
k→∞

∑
i

V̄ (aik)
∫

aik+εikΩ

g(x) dx =
∫

Ω

V̄ (x)g(x) dx, (4.10)

and

lim
k→∞

∑
i

|V̄ (aik)|
∫

aik+εikΩ

g(x) dx =
∫

Ω

|V̄ (x)|g(x) dx, (4.11)

where
V̄ (x) := dπ(x)

∫
βSRm

v0(s)dλx(s).

Notice that Ω̄ = ∪i{aik + εikΩ̄} ∪ Nk with Ln(Nk) = 0. By (4.9) and by Lemma 4.3, we can assume that
(dπ(aik)LnLΩ, λaik

) is a homogeneous A-free DiPerna-Majda measure in ADMp
S(Ω; Rm). Let {uik

j }j∈N ⊂
Lp

#(Rn; Rm)∩ ker A be a generating sequence. Recall that u = 0, so w-limj→∞ uik
j = 0 in Lp

#(Rn; Rm), and for
all g ∈ C(Ω̄) and all v ∈ Υp

S ,

lim
j→∞

∫
Ω

v(uik
j (x))g(x) dx = V̄ (aik)

∫
Ω

g(x) dx. (4.12)

We define a sequence of smooth cut-off functions {η�}�∈N ⊂ C∞
0 (Ω), 0 ≤ η� ≤ 1, such that η�(x) = 1 if

x ∈ Ω� := {x ∈ Ω: dist(x, ∂Ω) > �−1} and |∇η�| ≤ C� for some C > 0. Define

u�
k(x) :=

{
η�

(
x−aik

εik

)
uik

j

(
x−aik

εik

)
if x ∈ aik + εikΩ,

0 otherwise.

Let Γ×Σ = ∪kEk, with Ek ⊂ Ek+1, finite sets. For k, i, � fixed, take j = j(k, i, �) so large that for all (g, v0) ∈ Ek∣∣∣∣εnik
∫

Ω

g(aik + εiky)v(uik
j (y)) dy − V̄ (aik)

∫
aik+εikΩ

g(x) dx
∣∣∣∣ ≤ 1

2ik
(4.13)

and ∣∣∣∣∣εnik
∫

Ω\Ω�

g(aik + εiky)v(uik
j (y)) dy − εnikV̄ (aik)

∫
Ω\Ω�

g(aik + εiky) dy

∣∣∣∣∣ ≤ 1
2ik

· (4.14)
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Here we used (4.12) written for g̃(z) := g(aik + εikz) instead of g. Using this estimate and (4.10), we get for
any (g, v0) ∈ Γ × Σ

∫
Ω

g(x)v(u�
k(x)) dx =

∑
i

εnik

∫
Ω

g(aik + εiky)v(uik
j (y)) dy −

∑
i

εnik

∫
Ω\Ω�

g(aik + εiky)v(uik
j (y)) dy

+
∑

i

εnik

∫
Ω\Ω�

g(aik + εiky)v(u�
k(aik + εiky)) dy =: T 1

k� − T 2
k� + T 3

k�.

As T 1
k� is independent of �, (4.13) yields

lim
�→∞

lim
k→∞

T 1
k� = lim

k→∞

∑
i

V̄ (aik)
∫

aik+εikΩ

g(x) dx =
∫

Ω

V̄ (x)g(x) dx

=
∫

Ω

∫
βSRm

v0(s)dλx(s)g(x) dπ(x).

Applying (4.11) with g = 1, yields

lim
k→∞

∑
i

|V̄ (aik)|εnikLn(Ω) =
∫

Ω

|V̄ (x)| dx.

Therefore, we have due to (4.14)

lim
�→∞

lim
k→∞

|T 2
k�| = lim

�→∞
lim

k→∞

∣∣∣∣∣
∑

i

εnikV̄ (aik)
∫

Ω\Ω�

g(aik + εiky) dy

∣∣∣∣∣ (4.15)

≤ lim
�→∞

lim
k→∞

‖g‖C(Ω̄)

Ln(Ω \ Ω�)
Ln(Ω)

∑
i

εnikLn(Ω)|V̄ (aik)|

= lim
�→∞

Ln(Ω \ Ω�)
Ln(Ω)

‖g‖C(Ω̄)

∫
Ω

|V̄ (x)| dx = 0

because Ln(Ω \ Ω�) → 0. We show that also lim�→∞ limk→∞ T 3
k� = 0. Indeed,

∣∣∣∣∣
∑

i

εnik

∫
Ω\Ω�

g(aik + εiky)v(u�
k(aik + εiky)) dy

∣∣∣∣∣ ≤ C
∑

i

εnik

∫
Ω\Ω�

(1 + |η�u
ik
j (y)|p) dy

≤ C
∑

i

εnik

∫
Ω\Ω�

(1 + |uik
j (y)|p) dy =: Jkl.

But lim�→∞ limk→∞ Jkl = 0 because it is (4.15) written for v0 = 1. Altogether, we have

lim
�→∞

lim
k→∞

∫
Ω

g(x)v(u�
k(x)) dx =

∫
Ω

∫
βSRm

v0(s)dλx(s)g(x) dπ(x). (4.16)

Further, for φ ∈W 1,p′
0 (Ω; Rd), ‖∇φ‖Lp′(Ω;Rd×n) ≤ 1, we write

φik(y) := εn−1
ik φ(aik + εiky) − |Ω|−1

∫
Ω

εn−1
ik φ(aik + εiky) dy.
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In view of the Poincaré inequality {φik}i,k is uniformly bounded in W 1,p′
(Ω; Rm). Notice that

‖∇φik‖Lp′(Ω;Rd×n) =
(∫

aik+εikΩ

|∇φ(x)|p′
dx
)1/p′

≤ 1.

Hence,

∫
Ω

n∑
l=1

A(l)u�
k(x)

∂φ

∂xl
dx =

∑
i

∫
aik+εikΩ

n∑
l=1

A(l) ∂φ(x)
∂xl

η�

(
x− aik

εik

)
uik

j

(
x− aik

εik

)
dx

=
∑

i

εnik

∫
Ω

η�(y)u�
k(y)

n∑
l=1

A(l) ∂φ(aik + εiky)
∂yl

dy

=
∑

i

∫
Ω

η�(y)uik
j (y)

n∑
l=1

A(l) ∂φik(y)
∂yl

dy (4.17)

=
∑

i

∫
Ω

uik
j (y)

n∑
l=1

A(l) ∂(φik(y)η�(y))
∂yl

dy

−
∑

i

∫
Ω

uik
j (y)

n∑
l=1

A(l)φik(y)
∂(η�(y))
∂yl

dy.

On the other hand,
∫
Ω u

ik
j (y)

∑n
l=1A

(l) ∂(φik(y)η�(y))
∂yl

dy = 0 for all �, i, k, j because uik
j ∈ ker A. Moreover,

uik
j

∑n
l=1 A

(l) ∂(η�(y))
∂yl

⇀ 0 weakly in Lp(Ω; Rm) (and strongly in W−1,p(Ω; Rm)) as j → ∞. Thus, for j large
enough ∣∣∣∣∣

∫
Ω

uik
j (y)

n∑
l=1

A(l)φik(y)
∂(η�(y))
∂yl

dy

∣∣∣∣∣ ≤ 1
2ik

,

so that ∣∣∣∣∣
∑

i

∫
Ω

uik
j (y)

n∑
l=1

A(l)φik(y)
∂(η�(y))
∂yl

dy

∣∣∣∣∣ ≤ 1
k
·

Relying on the separability of S and C(Ω̄), and taking into account (4.16), we can choose a subsequence of
{u�

k(�)}�∈N, denoted by {uk}k∈N, such that

lim
k→∞

∫
Ω

g(x)v(uk(x)) dx =
∫

Ω

∫
βSRm

v0(s)dλx(s)g(x) dπ(x)

and
lim

k→∞
‖Auk‖W−1,p(Ω;Rd) = 0.

If we extend uk by zero on Q \ Ω and set for all k ∈ N

ũk := T

(
uk −

∫
Q

uk(x) dx
)

we have {ũk} ⊂ ker A and limk→∞ ‖uk − ũk‖Lp(Ω;Rm) = 0 and therefore by Lemma A.6 {ũk}k∈N generates
(π, λ).

It remains to show that the generating sequence has an A-free p-equiintegrable extension. We take a Lipschitz
domain Ω̂ ⊂ Rn such that Ω ⊂ Ω̂ ⊂ Q and extend (π, λ) to Ω̂ by (LnL(Ω̂\Ω), δ0). This extended DiPerna-Majda
measure satisfies (4.8) and (4.9) for almost every x ∈ Ω̂ and we denote it (π̂, λ̂). Hence, by our previous result,
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there is {ûk}k∈N ⊂ Lp(Ω̂; Rm) ∩ ker A generating it. Due to Lemma 3.1, {ûk|Ω̂\Ω} generates (LnL(Ω̂ \ Ω), δ0),
so it must be p-equiintegrable.

(ii) Suppose now that u �= 0 with Au = 0. We rewrite (4.8) using the Young measure ν ∈ Yp(Ω; Rm)
corresponding to (π, λ) ∈ DMp

S(Ω; Rm). A generating sequence of (π, λ), {uk}k∈N ⊂ Lp(Ω; Rm), can be
decomposed as uk = zk + wk by decomposition Lemma 1.2 applied for A := 0. Then {zk} is p-equiintegrable.
In view of Lemma A.5

QAv(u(x)) ≤
∫

Rm

v(s)dνx(s) + dπ(x)
∫

βSRm\Rm

v(s)
1 + |s|p dλx(s)

=
∫

Rm

v(s)dνx(s) + dπ(x)
∫

βSRm\Rm

v∞(s)
1 + |s|p dλx(s). (4.18)

For x ∈ Ω and all s ∈ Rm define f(s) := v(s+ u(x)). By Lemma A.4, f0 := f/(1 + | · |p) ∈ S, and (see the proof
of Lem. A.4) f∞ = v∞. In particular, f∞ does not depend on the choice of x ∈ Ω. Therefore, we write (4.18)
in the form

QAf(0) ≤
∫

Rm

f(s− u(x))dνx(s) + dπ(x)
∫

βSRm\Rm

f∞(s)
1 + |s|p dλx(s) (4.19)

=
∫

Rm

f(s)dμx(s) + dπ(x)
∫

βSRm\Rm

f∞(s)
1 + |s|p dλx(s),

where we used formula (A.12). This defines the Young measure μ := {μx}x∈Ω ∈ Yp(Ω; Rm) which is by
Lemma A.5 generated by the p-equiintegrable sequence {zk − u}k∈N ⊂ Lp(Ω; Rm). Altogether, using (A.10) for
{zk − u} instead of {zk} we have for all g ∈ C(Ω̄) and all v ∈ Υp

S

lim
k→∞

∫
Ω

g(x)v(zk(x) − u(x) + wk) dx = lim
k→∞

∫
Ω

g(x)v(zk(x) − u(x)) dx + lim
k→∞

∫
Ω

g(x)v(wk(x)) dx

=
∫

Ω

∫
Rm

v(s)dμx(s)g(x) dx +
∫

Ω̄

∫
βSRm\Rm

v∞(s)
1 + |s|p dλx(s)g(x)dπ(x) dx

=
∫

Ω̄

∫
βSRm

v(s)
1 + |s|p dαx(s)g(x)dκ(x)

=
∫

Ω

∫
βSRm

v(s)
1 + |s|p dαx(s)g(x)dκ(x) dx,

where (κ, α) ∈ DMp
S(Ω; Rm) is generated by {zk − u+wk}. As g ∈ C(Ω̄) is arbitrary, we get for a.e. x ∈ Ω and

all v ∈ Υp
S that

∫
Rm

v(s)dμx(s) + dπ(x)
∫

βSRm\Rm

v∞(s)
1 + |s|p dλx(s) = dκ(x)

∫
βSRm

v(s)
1 + |s|p dαx(s). (4.20)

By (4.20), (4.19) now reads

QAf(0) ≤ dκ(x)
∫

βSRm

f(s)
1 + |s|p dαx(s),

and therefore, by (i) (κ, α) is generated by an A-free sequence {ũk}k∈N ⊂ Lp(Ω; Rm) ∩ ker A, ũk ⇀ 0. Clearly,
{ũk + u} generates (π, λ). �

Finally, we prove the general result with π possibly having also a singular part.
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Proposition 4.6. Let 1 < p < +∞ and let (π, λ) ∈ DMp
S(Ω; Rm) be such that the following three conditions

hold:
(i) u ∈ Lp(Ω; Rm) ∩ ker A where for almost every x ∈ Ω

u(x) = dπ(x)
∫

Rm

s

1 + |s|p dλx(s); (4.21)

(ii) for almost every x ∈ Ω and for any v ∈ Υp
S

QAv(u(x)) ≤ dπ(x)
∫

βSRm

v(s)
1 + |s|p dλx(s); (4.22)

(iii) for π-almost all x ∈ Ω̄ and all positively p-homogeneous v ∈ Υp
S with QAv(0) = 0, it holds that

0 ≤
∫

βSRm\Rm

v(s)
1 + |s|p dλx(s). (4.23)

Then (π, λ) ∈ ADMp
S(Ω; Rm). Moreover, a generating sequence {uk}k∈N can be chosen so that it has an A-free

p-equiintegrable extension.

Proof. If the singular part of π vanishes, then the assertion follows from Proposition 4.5. Hence, we suppose
that πs �= 0. The proof is divided into two steps.

(i) We assume first that the singular part of π, πs, consists of a finite sum of atoms, i.e., πs =
∑n

i=1 aiδxi ,
where ai > 0 and xi ∈ Ω, 1 ≤ i ≤ N .

Note that by Lemma A.2 λxi(Rm) = 0 for 1 ≤ i ≤ N . Choose r > 0 sufficiently small and balls B(xi, r) ⊂ Ω,
such that B(xi, r) ∩B(xj , r) = ∅ if i �= j. We define, for i = 1, . . . , N ,

αi(r) :=
1
ai

∫
B(xi,r)

(1 + |u(x)|p) dx.

As limr→0 αi(r) = 0 we will only consider r < r0 for r0 > 0 so small that 0 < αi(r) < 1 for all i = 1, . . . , N .
Further, for a.e. x ∈ Ω we define

λr
x :=

{
λx if x ∈ Ω̄ \ ∪n

i=1B(xi, r),
αi(r)δu(x) + (1 − αi(r))λxi if x ∈ B(xi, r) for some 1 ≤ i ≤ N

and introduce the measure πr := dπrLnLΩ defined through its density dπr as

dπr (x) :=

{
dπ(x) if x ∈ Ω̄ \ ∪n

i=1B(xi, r),
1+|u(x)|p

αi(r) if x ∈ B(xi, r) for some 1 ≤ i ≤ N.

We claim that (πr , λ
r) ∈ DMp

S(Ω; Rm). For almost all x ∈ Ω

u(x) = dπr (x)
∫

Rm

s

1 + |s|p dλ
r
x(s).

Indeed, if x ∈ B(xi, r), then we get

dπr (x)
∫

Rm

s

1 + |s|p dλ
r
x(s) = u(x) +

(1 − αi(r))(1 + |u(x)|p)
αi(r)

∫
Rm

s

1 + |s|p dλxi(s) = u(x)
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and due to (4.23), for almost all x ∈ B(xi, r)

QAv(u(x)) ≤ v(u(x)) +
(1 − αi(r))(1 + |u(x)|p)

αi(r)

∫
βSRm\Rm

v(s)
1 + |s|p dλxi(s).

Altogether we have for any v ∈ Υp
S with QAv > −∞

QAv(u(x)) ≤ dπr(x)
∫

βSRm

v(s)
1 + |s|p dλ

r
x(s),

and by Proposition 4.5 there is {ur
k} ∈ Lp(Ω; Rm)∩ker A such that {ur

k}k∈N generates (πr , λ
r) ∈ ADMp

S(Ω; Rm).
We calculate for fixed v0 ∈ S and g ∈ C(Ω̄)

lim
r→0

∫
Ω̄

∫
βSRm

v0(s)dλr
x(s)g(x) dπr(x) = lim

r→0

∫
Ω̄\∪n

i=1B(xi,r)

∫
βSRm

v0(s)dλx(s)g(x)dπ(x) dx

+ lim
r→0

n∑
i=1

∫
B(xi,r)

v(u(x))g(x) dx + lim
r→0

n∑
i=1

1 − αi(r)
αi(r)

×
∫

B(xi,r)

g(x)(1 + |u(x)|p) dx
∫

βSRm

v0(s)dλxi(s) =: I + II + III.

Obviously, I + II =
∫
Ω̄

∫
βSRm v0(s)dλx(s)g(x)dπ(x) dx, while

III = lim
r→0

n∑
i=1

1
αi(r)

∫
B(xi,r)

g(x)(1 + |u(x)|p) dx
∫

βSRm

v0(s)dλxi (s)

=
n∑

i=1

ai

(∫
βSRm

v0(s)dλxi(s)
)

lim
r→0

1∫
B(xi,r)(1 + |u(x)|p) dx

∫
B(xi,r)

g(x)(1 + |u(x)|p) dx

=
n∑

i=1

aig(xi)
∫

βSRm

v0(s)dλxi(s) =
∫

Ω̄

∫
βSRm

v0(s)dλx(s)g(x) dπs(x).

We conclude that

lim
r→0

lim
k→∞

∫
Ω

v(ur
k(x))g(x) dx =

∫
Ω̄

∫
βSRm

v0(s)dλx(s)g(x) dπ(x).

A suitable diagonalization yields the existence of a bounded sequence {uk}k∈N ⊂ Lp(Ω; Rm) ∩ ker A such that

lim
k→∞

∫
Ω

v(uk(x))g(x) dx =
∫

Ω̄

∫
βSRm

v0(s)dλx(s)g(x) dπ(x),

whenever v ∈ Υp
S and g ∈ C(Ω̄).

(ii) Now we prove the general case. Take l ∈ N. There exists a finite partition Pl := {Ωl
j}J(l)

j=1 of Ω̄ such that
Ωl

j1

⋂
Ωj2

= ∅, 1 ≤ j1 < j2 ≤ J(l) and all Ωl
j are measurable with diam(Ωl

j) < 1/l. We suppose that, for any
l ∈ N, the partition Pl+1 is a refinement of Pl and that int(Ωl

j) �= ∅ for all j. Set al
i := πs(Ωl

i), and

N(l) := {1 ≤ j ≤ J(l); al
j �= 0}·
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If i ∈ N(l) then fix xi ∈ int(Ωl
i) and define a measure (πl, λl) with πl := dπLnLΩ +

∑
i∈N(l) a

l
iδxi and

λl
x :=

{
λx if x �= xi

λl
xi

if x = xi,

and for any v0 ∈ S ∫
βSRm

v0(s)dλl
xi

(s) :=
1

πs(Ωl
i)

∫
Ωl

i

∫
βRRm

v0(s)dλx(s) dπs(x). (4.24)

By Lemma A.2 and because supp λl
xi

⊂ βSRm \ Rm we can rewrite (4.24) as∫
βSRm\Rm

v0(s)λl
xi

(ds) =
1

πs(Ωl
i)

∫
Ωl

i

∫
βSRm\Rm

v0(s)dλx(s) dπs(x). (4.25)

Part (i) implies (πl, λl) ∈ ADMp
S(Ω; Rm). Indeed, Proposition A.1 ensures that (πl, λl) ∈ DMp

S(Ω; Rm)
Moreover, an easy verification shows that (4.21), (4.22), and (4.23) are also satisfied for (πl, λl), and (4.21)
holds with the same function u.

Let {ul
k}k∈N ⊂ Lp(Ω; Rm) ∩ ker A be such that {ul

k}k∈N generates (πl, λl) and, in addition, it has an A-free
p-equiintegrable extension. We have for any l ∈ N

lim
k→∞

∫
Ω

(1 + |ul
k(x)|p) dx = πl(Ω̄) = π(Ω̄),

and for any v0 ∈ S and any g ∈ C(Ω̄)

lim
l→∞

∣∣∣∣
∫

Ω̄

∫
βSRm

v0(s)dλl
x(s)g(x) dπl(x) −

∫
Ω̄

∫
βSRm

v0(s)dλx(s)g(x) dπ(x)
∣∣∣∣

= lim
l→∞

∣∣∣∣∣∣
∑

i∈N(l)

g(xi)πs(Ωl
i)
∫

βSRm\Rm

v0(s)dλl
xi

(s) −
∫

Ω̄

∫
βSRm\Rm

v0(s)dλx(s)g(x) dπs(x)

∣∣∣∣∣∣
= lim

l→∞

∣∣∣∣∣∣
∑

i∈N(l)

(∫
Ωl

i

∫
βSRm\Rm

v0(s)dλx(s)g(xi) dπs(x) −
∫

Ωl
i

∫
βSRm\Rm

v0(s)dλx(s)g(x) dπs(x)

)∣∣∣∣∣∣
≤ lim

l→∞

∑
i∈N(l)

∫
Ωl

i

∫
βSRm\Rm

|v0(s)|dλx(s)|g(x) − g(xi)| dπs(x) ≤ ‖v0‖C(Rm)πs(Ω̄) lim
l→∞

Mg

(
1
l

)
= 0,

where Mg is the modulus of continuity of the uniformly continuous g ∈ C(Ω̄). Hence, for any v ∈ Υp
S and any

g ∈ C(Ω̄) we obtain

lim
l→∞

lim
k→∞

∫
Ω

v(ul
k(x))g(x) dx =

∫
Ω̄

∫
βSRm

v0(s)dλx(s)g(x) dπ(x)

and we complete the proof using a diagonalization argument. �

5. Proof of Theorems 2.3, 2.4, and Lemma 2.10

Proof of Theorem 2.3. It follows from Theorem 2.1 that each of conditions (i)–(iv) ensures that∫
∂Ω

∫
βSRm\Rm

v(s)
1+|s|p dλx(s)g(x) dπ(x) ≥ 0 for v and g as in the statement of the theorem. Thus, it suffices

to integrate (2.1) and (2.2) with respect to π over Ω̄ and use (1.4). �
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Proof of Theorem 2.4. Let us first prove the “only if part”. We have from the assumption that wk ⇀ 0 in
Lp(Ω; Rm). By sequential weak lower semicontinuity of I we have lim infk→∞ I(wk) ≥ I(0).

Now we are going to prove the “if part”. Let us take any bounded {uk} ⊂ Lp(Ω; Rm) ∩ ker A such that
w-limk→∞ uk = u. Suppose that a subsequence of {uk} (not relabeled) generates (π, λ) ∈ ADMp

S(Ω; Rm). Using
Lemma 1.2, we decompose uk = zk+wk for any k ∈ N. Then (A.8) and the assumption lim infk→∞ I(wk) ≥ I(0)
imply that

∫
Ω̄

∫
βSRm\Rm

v(s)
1 + |s|p dλx(s)g(x) dπ(x) ≥ 0 (5.1)

for any subsequence of {wk} (not relabeled) such that {I(wk)} converges. Let {uk}k∈N∩ker A generate a Young
measure ν = {νx}x∈Ω ∈ Yp(Ω; Rm). We have using (1.4) and Lemma A.5

lim
k→∞

∫
Ω

g(x)v(uk(x))dx =
∫

Ω

∫
Rm

g(x)v(s)dνx(s) dx

+
∫

Ω̄

∫
βRRm\Rm

g(x)
v(s)

1 + |s|p dλx(s) dπ(x) ≥
∫

Ω

g(x)v(u(x)) dx.

The last inequality follows from (5.1) and from the characterization of A-free Young measures given in [15].
The theorem is proved. �

Proof of Lemma 2.10. Without loss of generality, we will assume that {uk} generates (π, λ) ∈
ADMp

S(Ω; Rm). Since, π(∂(εΩ)) > 0 only for at most countably many values of ε, which we denote ε�,
� ∈ N. Thus we take ε > 0 such that π(∂(εΩ)) = 0. Then using Lemma 3.1 we have that the restriction of {uk}
on εΩ has the property that {uk|εΩ} generates (π, λ)|εΩ, and now (2.11) follows from Theorem 2.3(i). �

A. Appendix

A.1. Characterization of DiPerna-Majda measures

The explicit description of the elements from DMp
R(Ω; Rm), called DiPerna-Majda measures, for uncon-

strained sequences was obtained in [24], Theorem 2.

Proposition A.1 (see [24]). Let Ω ⊂ Rn be an open bounded domain, let (π, λ) ∈ M(Ω̄)×L∞
w (Ω̄, π;M(βRRm)),

and let 1 ≤ p < +∞. Then the following two statements are equivalent:

(i) (π, λ) ∈ DMp
R(Ω; Rm);

(ii) The following properties hold:
(1) π is positive;
(2) πλ ∈ M(Ω̄), defined for all ψ ∈ C0(Rm) by

∫
Ω̄
ψ(x)dπλ(x) :=

∫
Ω̄
ψ(x)λx(Rm)dπ(x),

is absolutely continuous with respect to the Lebesgue measure (dπλ
will denote its

density);
(3) for a.e. x ∈ Ω it holds

λx(Rm) > 0, dπλ
(x) =

(∫
Rm

dλx(s)
1 + |s|p

)−1

λx(Rm);

(4) λx ∈ P(βRRm) for π-a.e. x ∈ Ω̄.

We will also use the following result, whose proof can be found in various contexts (see [24], Lem. 1, Thm. 1,2,
[33], Prop. 3.2.17), [1], Proposition 4.1, part (iii).
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Lemma A.2. Let Ω ⊂ Rn be a bounded Lipschitz domain and let (π, λ) ∈ DMp
R(Ω; Rm). Then for Ln-a.e.

x ∈ Ω

dπ(x) =
(∫

Rm

dλx(s)
1 + |s|p

)−1

(A.1)

and for πs-almost all x ∈ Ω̄ we have

λx(Rm) = 0.

Proof. Setting v0 := (1 + | · |p)−1 in (1.4) we get for all g ∈ C(Ω̄)∫
Ω

g(x) dx =
∫

Ω

g(x)
(∫

Rm

dλx(s)
1 + |s|p

)
dπ(x) dx+

∫
Ω̄

g(x)
(∫

Rm

dλx(s)
1 + |s|p

)
dπs(x). (A.2)

Here we used the fact that v0 = 0 on βRRm \ Rm. Hence, it follows from (A.2) that dπ(x)
(∫

Rm

dλx(s)
1+|s|p

)
= 1

a.e. in Ω and λx(Rm) = 0 for πs-a.a. x ∈ Ω̄. �

A.2. DiPerna-Majda measures on the sphere compactification

We start with an easy lemma from [16].

Lemma A.3. Let v ∈ C(Rm) be Lipschitz continuous on the unit sphere Sm−1 and p-homogeneous, p ≥ 1.
Then v is p-Lipschitz, i.e., there is a constant α > 0 such that for any s1, s2 ∈ Rm it holds

|v(s1) − v(s2)| ≤ α(|s1|p−1 + |s2|p−1)|s1 − s2|. (A.3)

Lemma A.4. Let v0 ∈ S, s0 ∈ R
m, and v(s) := v0(s)(1 + |s|p) for all s ∈ R

m. Then s 	→ v0(s) := v(s+s0)
1+|s|p also

belongs to S.

Proof. Since v∞ is continuous on Sm−1, using the Stone-Weierstrass theorem, we can uniformly approximate
v∞|Sm−1 by Lipschitz functions. Take a sequence {ψj}j∈N such that ψj : Sm−1 → R is Lipschitz continuous for
all j ∈ N and identify ψj with its positively p-homogeneous extension to the whole R

m. We assume that for
all j ∈ N

‖ψj − v∞‖C(Sm−1) := max
s∈Sm−1

|ψj(s) − v∞(s)| ≤ 1
j
· (A.4)

Then

lim
|s|→∞

|v∞(s+ s0) − v∞(s)|
|s|p ≤ lim

|s|→∞
|ψj(s+ s0) − ψj(s)|

|s|p + lim sup
|s|→∞

|v∞(s+ s0) − ψj(s+ s0)|
|s|p

+ lim sup
|s|→∞

|ψj(s) − v∞(s)|
|s|p ·

The first term on the right-hand side is zero due to Lemma A.3. By (A.4) and using the p-homogeneity, we
further estimate the remaining two terms

lim
|s|→∞

|v∞(s+ s0) − v∞(s)|
|s|p ≤ lim sup

|s|→∞

∣∣∣∣v∞
(
s+ s0
|s+ s0|

)
− ψj

(
s+ s0
|s+ s0|

)∣∣∣∣ |s+ s0|p
|s|p

+ lim sup
|s|→∞

∣∣∣∣ψj

(
s

|s|
)
− v∞

(
s

|s|
)∣∣∣∣ ≤ 2

j
·



OSCILLATIONS AND CONCENTRATIONS 27

As j ∈ N is arbitrary we deduce that

lim
|s|→∞

|v∞(s+ s0) − v∞(s)|
|s|p = 0. (A.5)

Hence, we have in view of (A.3)

lim
|s|→∞

|v(s+ s0) − v∞(s)|
|s|p ≤ lim

|s|→∞
|v(s+ s0) − v∞(s+ s0)|

|s|p + lim
|s|→∞

|v∞(s+ s0) − v∞(s)|
|s|p = 0,

which means that v(· + s0) has the recession function v∞. Denote ṽ0 := v(· + s0)/(1 + | · |p) and write

ṽ0(s) =
v(s+ s0) − v∞(s)

1 + |s|p +
v∞(s)
1 + |s|p ·

The first term on the right-hand side belongs to C0(Rm) and v∞ is positively p-homogeneous. Hence, ṽ0 ∈ S
in view of Remark 1.7. �

Given a bounded sequence in Lp(Ω; Rm) that generates a DiPerna-Majda measure (π, λ) ∈ DMp
R(Ω; Rm)

and that also generates an Lp-Young measure ν ∈ Yp(Ω; Rm) we have for all g ∈ C(Ω̄) and all v ∈ Cp(Rm) (i.e.
v = 0 on βRRm \ Rm)

∫
Ω

∫
Rm

g(x)v(s)dνx(s) dx =
∫

Ω̄

∫
Rm

g(x)
v(s)

1 + |s|p dλx(s)dπ(x). (A.6)

Observe that (A.6) holds in fact for all v ∈ Υp
R and all g ∈ C(Ω̄). Indeed, for any j ∈ N let aj ∈ C0(Rm)

be such that 0 ≤ aj ≤ 1, aj(s) = 1 if |s| ≤ j. Then vaj ∈ Cp(Rm) is admissible for (A.6) and the Lebesgue
Dominated Convergence Theorem finishes the argument. Therefore, for all g∈C(Ω̄) and all v ∈ Υp

R we have

lim
k→∞

∫
Ω

g(x)v(yk(x))dx =
∫

Ω

∫
Rm

v(s)dνx(s)g(x) dx +
∫

Ω̄

∫
βRRm\Rm

v0(s)dλx(s)g(x)dπ(x). (A.7)

We now show that oscillations and concentration effects, generated by a sequence bounded in Lp(Ω; Rm)
and encoded in (π, λ) ∈ DMp

S(Ω; Rm), can be separated. Suppose that {uk}k∈N ⊂ Lp(Ω; Rm), 1 < p < +∞,
is a bounded sequence generating (π, λ) ∈ DMp

S(Ω; Rm), ν ∈ Yp(Ω; Rm), and converging weakly to zero in
Lp(Ω; Rm). Notice that for all v ∈ Υp

S and all g ∈ C(Ω̄) we have

lim
k→∞

∫
Ω

g(x)v(uk(x)) dx = lim
k→∞

∫
Ω

g(x)(v − v∞)(uk(x)) dx + lim
k→∞

∫
Ω

g(x)v∞(uk(x)) dx. (A.8)

As (v−v∞) ∈ Cp(Rm) the first term on the right-hand side of (A.8) can be represented by the Young measure ν.
The second term on the right-hand side of (A.8) carries all concentrations and is described by (π, λ). Applying
Lemma 1.2 with A := 0 to the sequence {uk} we may decompose uk = zk + wk where {zk}k∈N, {wk}k∈N ⊂
Lp(Ω; Rm) are bounded, {zk}k∈N is p-equiintegrable and wk → 0 in measure. Moreover, {uk} and {zk} generate
the same Young measure ν ∈ Yp(Ω; Rm), see also [14], Corollary 8.8, and setting

Ωk := {x ∈ Ω: wk(x) �= 0},

we have that Ln(Ωk) → 0 as k → ∞. Thus, (A.8) can be written as

lim
k→∞

∫
Ω

g(x)v(uk(x)) dx = lim
k→∞

∫
Ω

g(x)(v − v∞)(zk(x)) dx + lim
k→∞

∫
Ω

g(x)v∞(uk(x)) dx. (A.9)
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Take the sequence {ψj}j∈N of Lipschitz functions on Sm−1 as in the proof of Lemma A.4 to get for all g ∈ C(Ω̄)
and all j ∈ N

lim
k→∞

∣∣∣∣
∫

Ω

g(x)(v∞(wk(x)) − (v∞(uk(x)) − v∞(zk(x)))) dx
∣∣∣∣

≤ lim
k→∞

∣∣∣∣
∫

Ω

g(x)(ψj(wk(x)) − (ψj(uk(x)) − ψj(zk(x)))) dx
∣∣∣∣

+ lim sup
k→∞

‖g‖C(Ω̄)

∫
Ω

∣∣∣∣v∞
(
wk(x)
|wk(x)|

)
− ψj

(
wk(x)
|wk(x)|

)∣∣∣∣ |wk(x)|p dx

+ lim sup
k→∞

‖g‖C(Ω̄)

∫
Ω

∣∣∣∣ψj

(
uk(x)
|uk(x)|

)
− v∞

(
uk(x)
|uk(x)|

)∣∣∣∣ |uk(x)|p dx

+ lim sup
k→∞

‖g‖C(Ω̄)

∫
Ω

∣∣∣∣v∞
(
zk(x)
|zk(x)|

)
− ψj

(
zk(x)
|zk(x)|

)∣∣∣∣ |zk(x)|p dx ≤ C

j

j→∞→ 0,

as C > 0 depends only on g and Lp bounds of {zk} and {wk}. Altogether we see that

lim
k→∞

∫
Ω

g(x)v(uk(x)) dx = lim
k→∞

∫
Ω

g(x)v(zk(x)) dx + lim
k→∞

∫
Ω

g(x)v∞(wk(x)) dx (A.10)

holds for all g ∈ C(Ω) and all v ∈ Υp
S .

If u ∈ Lp(Ω; Rm) then we have uk − u = (zk − u) + wk. Again {zk − u}k∈N is p-equiintegrable, so we get
by (A.10)

lim
k→∞

∫
Ω

g(x)v(uk(x) − u(x)) dx = lim
k→∞

∫
Ω

g(x)v(zk(x) − u(x)) dx+ lim
k→∞

∫
Ω

g(x)v∞(wk(x)) dx. (A.11)

Note that {zk − u} generates the Young measure μ ∈ Yp(Ω; Rm) given for almost all x ∈ Ω and all v ∈ Cp(Rm)
by the formula (see [15], Prop. 24)∫

Rm

v(s)dμx(s) :=
∫

Rm

v(s− u(x))dνx(s). (A.12)

Comparing (A.10) with (A.11) we see that {uk} and {uk − u} generate the same concentration effects, namely
those related to {wk}. The shift by u is recorded only in the first terms in the right-hand sides of (A.10) and
(A.11) which generates only oscillations but no concentrations. It will be occasionally convenient to assign to
a generating sequence a Young measure-DiPerna-Majda measure pair [ν, (π, λ)] ∈ Yp(Ω; Rm) × DMp

S(Ω; Rm).
We have the following result.

Lemma A.5. Let {uk} ⊂ Lp(Ω; Rm), 1 ≤ p < +∞, generate a DiPerna-Majda measure (π, λ) ∈ DMp
S(Ω; Rm)

and a Young measure ν ∈ Yp(Ω; Rm), and let u ∈ Lp(Ω; Rm). Then for all g ∈ C(Ω̄) and all v ∈ Υp
S it holds

lim
k→∞

∫
Ω

v(uk(x) − u(x))g(x) dx

=
∫

Ω

∫
Rm

v(s− u(x))dνx(s)g(x) dx +
∫

Ω̄

∫
βSRm\Rm

v∞(s)
1 + |s|p dλx(s)g(x)dπ(x)

=
∫

Ω

∫
Rm

v(s− u(x))dνx(s)g(x) dx +
∫

Ω̄

∫
βSRm\Rm

v(s)
1 + |s|p dλx(s)g(x)dπ(x).

Proof. We decompose uk = zk + wk using Lemma 1.2. In view of (A.11) and (A.12) and of the fact that {uk}
and {zk} generate the same Young measure, we have by (1.4) for all g ∈ C(Ω̄) and all v∞ : Rm → R positively
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p-homogeneous and continuous

lim
k→∞

∫
Ω

g(x)v(wk(x)) dx =
∫

Ω̄

∫
βSRm\Rm

v∞(s)
1 + |s|p dλx(s)g(x) dπ(x). (A.13)

Finally, it remains to prove that∫
Ω̄

∫
βSRm\Rm

v∞(s)
1 + |s|p dλx(s)g(x)dπ(x) =

∫
Ω̄

∫
βSRm\Rm

v(s)
1 + |s|p dλx(s)g(x)dπ(x). (A.14)

Let ε > 0. By (1.7), there is � > 0 such that |v(s) − v∞(s)|/(1 + |s|p) < ε whenever |s| > �. Thus, for π-a.e.
x ∈ Ω̄ ∫

βRRm\B(0,�)

|v(s) − v∞(s)|
1 + |s|p dλx(s) < ε

and we obtain (A.14). �
Lemma A.6. Let {uk}, {wk} ⊂ Lp(Ω; Rm) be bounded sequences such that limk→∞ ‖uk −wk‖Lp(Ω;Rm) = 0 and
{uk} generates (π, λ) ∈ DMp

S(Ω; Rm). Then {wk} also generates (π, λ).

Proof. Suppose that v ∈ Υp
S is such that v∞ is Lipschitz on Sm−1. By (A.3)∣∣∣∣

∫
Ω

g(x)v∞(uk(x)) dx −
∫

Ω

g(x)v∞(wk(x)) dx
∣∣∣∣ ≤ ‖g‖C(Ω̄)

∫
Ω

|v∞(uk(x)) − v∞(wk(x))| dx

≤ C‖g‖C(Ω̄)

∫
Ω

(|uk(x)|p−1 + |wk(x)|p−1)|uk(x) − wk(x)| dx

≤ C‖g‖C(Ω̄)(‖uk‖p−1
Lp(Ω;Rm)

+ ‖|wk‖p−1
Lp(Ω;Rm))‖uk − wk‖Lp(Ω;Rm) → 0

as k → ∞. By density, the result extends to any continuous v∞. Hence, the second term on the right-hand side
of (A.8) is the same for both sequences {uk} and {wk}. As limk→∞ ‖uk −wk‖Lp(Ω;Rm) = 0 then both sequences
generate the same Young measure ν ∈ Yp(Ω; Rm), thus the first term on the right-hand side of (A.8) is also the
same for both sequences. �
Lemma A.7. Let {uk}k∈N ⊂ Lp(Ω; Rm), 1 ≤ p < +∞, generate (π, λ) ∈ DMp

S(Ω; Rm) with π(∂Ω) = 0. Let
{ηj}j∈N ⊂ C0(Ω), 0 ≤ ηj ≤ 1, j ∈ N, be such that ηj(x) → χΩ everywhere in Ω. Then there is a subsequence of
{uk(j)ηj}j∈N generating (π, λ).

Proof. If v ∈ Υp
S , and if v∞ is Lipschitz on Sm−1, then∣∣∣∣

∫
Ω

g(x)v∞(uk(x)) dx −
∫

Ω

g(x)v∞(uk(x)ηj(x)) dx
∣∣∣∣ ≤ ‖g‖C(Ω̄)

∫
Ω

|v∞(uk(x)) − v∞(uk(x)ηj(x))| dx

≤ C‖g‖C(Ω̄)

∫
Ω

|uk(x)|p(1 + ηj(x)p−1)(1 − ηj(x)) dx.

Further, as π(∂Ω) = 0 we get

lim
j→∞

lim
k→∞

∫
Ω

|uk(x)|p(1 + ηj(x)p−1)(1 − ηj(x)) dx =

lim
j→∞

∫
Ω

∫
βSRm

|s|p
1 + |s|p dλx(s)(1 + ηj(x)p−1)(1 − ηj(x))dπ(x) = 0
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by the Lebesgue Dominated Convergence Theorem. Therefore

lim
j→∞

lim
k→∞

∫
Ω

g(x)v∞(uk(x)ηj(x)) dx =
∫

Ω

∫
βSRm

v∞(s)
1 + |s|p dλx(s)g(x)dπ(x). (A.15)

By density (A.15) holds for all continuous v∞. As S and C(Ω̄) are separable, we conclude by using a diago-
nalization argument. Similarly, the chosen subsequence generates the same Young measure as {uk}. Therefore,
the constructed sequence generates the same DiPerna-Majda measure as {uk} by (A.8). �
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Poincaré Anal. Non Linéaire 17 (2000) 193–217.
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