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Preface

These are the proceedings of the third European workshop on Probabilistic Graphical Models
(PGM’06) to be held in Prague, Czech Republic, September 12-15, 2006. The aim of this series
of workshops on probabilistic graphical models is to provide a discussion forum for researchers
interested in this topic. The first European PGM workshop (PGM’02) was held in Cuenca, Spain
in November 2002. It was a successful workshop and several of its participants expressed interest in
having a biennial European workshop devoted particularly to probabilistic graphical models. The
second PGM workshop (PGM’04) was held in Leiden, the Netherlands in October 2004. It was
also a success; more emphasis was put on collaborative work, and the participants also discussed
how to foster cooperation between European research groups.

There are two trends which can be observed in connection with PGM workshops. First, each
workshop is held during an earlier month than the preceding one. Indeed, PGM’02 was held in
November, PGM’04 in October and PGM’06 will be held in September. Nevertheless, I think this
is a coincidence. The second trend is the increasing number of contributions (to be) presented. I
would like to believe that this is not a coincidence, but an indication of increasing research interest
in probabilistic graphical models.

A total of 60 papers were submitted to PGM’06 and, after the reviewing and post-reviewing
phases, 41 of them were accepted for presentation at the workshop (21 talks, 20 posters) and
appear in these proceedings. The authors of these papers come from 17 different countries, mainly
European ones.

To handle the reviewing process (from May 15, 2006 to June 28, 2006) the PGM Program
Committee was considerably extended. This made it possible that every submitted paper was
reviewed by 3 independent reviewers. The reviews were handled electronically using the START
conference management system.

Most of the PC members reviewed around 7 papers. Some of them also helped in the post-
reviewing phase, if revisions to some of the accepted papers were desired. Therefore, I would like
to express my sincere thanks here to all of the PC members for all of the work they have done
towards the success of PGM’06. I think PC members helped very much to improve the quality of
the contributions. Of course, my thanks are also addressed to the authors.

Further thanks are devoted to the sponsor, the DAR ÚTIA research centre, who covered the
expenses related to the START system. I am also indebted to the members of the organizing
committee for their help, in particular, to my co-editor, Jirka Vomlel.

My wish is for the participants in the PGM’06 workshop to appreciate both the beauty of
Prague and the scientific program of the workshop. I believe there will be a fruitful discussion
during the workshop and I hope that the tradition of PGM workshops will continue.

Prague, June 26, 2006
Milan Studený
PGM’06 PC Chair
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Radim Jiroušek Academy of Sciences, Czech Republic
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Fero Matúš Academy of Sciences, Czech Republic
Seraf́ın Moral University of Granada, Spain
Thomas D. Nielsen Aalborg University, Denmark
Kristian G. Olesen Aalborg University, Denmark
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José M. Puerta University of Castilla La Mancha, Spain
Silja Renooij Utrecht University, Netherlands
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Irene Mart́ınez, Carmelo Rodŕıguez, and Antonio Salmerón

Learning Semi-Markovian Causal Models using Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Stijn Meganck, Sam Maes, Philippe Leray, and Bernard Manderick

Geometry of rank tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207
Jason Morton, Lior Pachter, Anne Shiu, Bernd Sturmfels, and Oliver Wienand

An Empirical Study of Efficiency and Accuracy of Probabilistic Graphical Models . . . . . . . . . . . . 215
Jens D. Nielsen and Manfred Jaeger

Adapting Bayes Network Structures to Non-stationary Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Søren H. Nielsen and Thomas D. Nielsen

Diagnosing Lyme disease - Tailoring patient specific Bayesian networks
for temporal reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Kristian G. Olesen, Ole K. Hejlesen, Ram Dessau, Ivan Beltoft, and Michael Trangeled

Predictive Maintenance using Dynamic Probabilistic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
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Some Variations on the PC Algorithm

J. Abellán, M. Gómez-Olmedo, and S. Moral
Department of Computer Science and Artificial Intelligence

University of Granada
18071 - Granada, Spain

Abstract

This paper proposes some possible modifications on the PC basic learning algorithm and
makes some experiments to study their behaviour. The variations are: to determine
minimum size cut sets between two nodes to study the deletion of a link, to make statistical
decisions taking into account a Bayesian score instead of a classical Chi-square test, to
study the refinement of the learned network by a greedy optimization of a Bayesian score,
and to solve link ambiguities taking into account a measure of their strength. It will be
shown that some of these modifications can improve PC performance, depending of the
objective of the learning task: discovering the causal structure or approximating the joint
probability distribution for the problem variables.

1 Introduction

There are two main approaches to learning
Bayesian networks from data. One is based on
scoring and searching (Cooper and Herskovits,
1992; Heckerman, 1995; Buntine, 1991). Its
main idea is to define a global measure (score)
which evaluates a given Bayesian network model
as a function of the data. The problem is solved
by searching in the space of possible Bayesian
network models trying to find the network with
optimal score. The other approach (constraint
learning) is based on carrying out several inde-
pendence tests on the database and building a
Bayesian network in agreement with tests re-
sults. The main example of this approach is PC
algorithm (Spirtes et al., 1993). It can be ap-
plied to any source providing information about
whether a given conditional independence rela-
tion is verified.

In the past years, searching and scoring pro-
cedures have received more attention, due to
some clear advantages (Heckerman et al., 1999).
One is that constraint based learning makes
categorical decisions from the very beginning.
These decisions are based on statistical tests
that may be erroneous and these errors will af-
fect all the future algorithm bahaviour. Another

one is that scoring and search procedures allow
to compare very different models by a score that
can be be interpreted as the probability of be-
ing the true model. As a consequence, we can
also follow a Bayesian approach considering sev-
eral alternative models, each one of them with
its corresponding probability, and using them
to determine posterior decisions (model averag-
ing). Finally, in score and searching approaches
different combinatorial optimization techniques
(de Campos et al., 2002; Blanco et al., 2003)
can be applied to maximize the evaluation of
the learned network. On the other hand, the PC
algorithm has some advantages. One of them is
that it has an intuitive basis and under some
ideal conditions it has guarantee of recovering a
graph equivalent to the one being a true model
for the data. It can be considered as an smart
selection and ordering of the questions that have
to be done in order to recover a causal structure.

The basic point of this paper is that PC al-
gorithm provides a set of strategies that can
be combined with other ideas to produce good
learning algorithms which can be adapted to dif-
ferent situations. An example of this is when
van Dijk et al. (2003) propose a combination of
order 0 and 1 tests of PC algorithm with an scor-
ing and searching procedure. Here, we propose



several variations about the original PC algo-
rithm. The first one will be a generalization of
the necessary path condition (Steck and Tresp,
1999); the second will be to change the statisti-
cal tests for independence by considering deci-
sions based on a Bayesian score; the third will be
to allow the possibility of refining the network
learned with PC by applying a greedy optimiza-
tion of a Bayesian score; and finally the last pro-
posal will be to delete edges from triangles in the
graph following an order given by a Bayesian
score (removing weaker edges first). We will
show the intuitive basis for all of them and we
will make some experiments showing their per-
formance when learning Alarm network (Bein-
lich et al., 1989). The quality of the learned
networks will be measured by the number or
missing-added links and the Kullback-Leibler
distance of the probability distribution associ-
ated to the learned network to the original one.

The paper is organized as follows: Section 2
is devoted to describe the fundamentals of PC
algorithm; Section 3 introduces the four varia-
tions of PC algorithm; in Section 4 the results
of the experiments are reported and discussed;
Section 5 is devoted to the conclusions.

2 The PC Algorithm

Assume that we have a set of variables X =
(X1, . . . , Xn) with a global probability distribu-
tion about them P . By an uppercase bold letter
A we will represent a subset of variables of X.
By I(A,B|C) we will denote that sets A and B

are conditionally independent given C.

PC algorithm assumes faithfulness. This
means that there is a directed acyclic graph, G,
such that the independence relationships among
the variables in X are exactly those represented
by G by means of the d-separation criterion
(Pearl, 1988). PC algorithm is based on the
existence of a procedure which is able of say-
ing when I(A,B|C) is verified in graph G. It
first tries to find the skeleton (underlying undi-
rected graph) and on a posterior step makes the
orientation of the edges. Our variations will be
mainly applied to the first part (determining the
skeleton). So we shall describe it with some de-

tail:

1. Start with a complete undirected graph G′

2. i = 0
3. Repeat

4. For each X ∈ X

5. For each Y ∈ ADJX

6.Test whether ∃S ⊆ ADJX − {Y }
with |S| = i and I(X,Y |S)

7. If this set exists
8. Make SXY = S

9. Remove X − Y link from G′

10. i = i + 1
11. Until |ADJX | ≤ i, ∀X

In this algorithm, ADJX is the set of nodes
adjacent to X in graph G′. The basis is that if
the set of independencies is faithful to a graph,
then there is not a link between X and Y , if
and only if there is a subset S of the adjacent
nodes of X such that I(X,Y |S). For each pair
of variables, SXY will contain such a set, if it
is found. This set will be used in the posterior
orientation stage.

The orientation step will proceed by looking
for sets of three variables {X,Y,Z} such that
edges X −Z, Y −Z are in the graph by not the
edge X − Y . Then, if Z 6∈ SXY , it orients the
edges from X to Z and from Y to Z creating a
v-structure: X → Z ← Y . Once, these orienta-
tions are done, then it tries to orient the rest of
the edges following two basic principles: not to
create cycles and not to create new v-structures.
It is possible that the orientation of some of the
edges has to be arbitrarily selected.

If the set of independencies is faithful to a
graph and we have a perfect way of determin-
ing whether I(X,Y |S), then the algorithm has
guarantee of producing a graph equivalent (rep-
resents the same set of independencies) to the
original one.

However, in practice none of these conditions
is verified. Independencies are decided at the
light of independence statistical tests based on
a set of data D. The usual way of doing these
tests is by means of a chi-square test based on
the cross entropy statistic measured in the sam-
ple (Spirtes et al., 1993). Statistical tests have
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errors and then, even if faithfulness hypothesis
is verified, it is possible that we do not recover
the original graph. The number of errors of sta-
tistical tests increases when the sample is small
or the cardinality of the conditioning set S is
large (Spirtes et al., 1993, p. 116). In both
cases, due to the nature of frequentist statisti-
cal tests, there is a tendency to always decide
independence (Cohen, 1988). This is one rea-
son of doing statistical tests in increasing order
of the cardinality of the sets to which we are
conditioning.

Apart from no recovering the original graph,
we can have another effects, as the possibility
of finding cycles when orienting v-structures. In
our implementation, we have always avoided cy-
cles by reversing the arrows if necessary.

3 The Variations

3.1 Necessary Path Condition

In PC algorithm it is possible that we delete
the link between X and Y by testing the inde-
pendence I(X,Y |S), when S is a set containing
nodes that do not appear in a path (without
cycles) from X to Y . The inclusion of these
nodes is not theoretically wrong, but statisti-
cal tests make more errors when the size of
the conditioning set increases, then it can be
a source of problems in practice. For this rea-
son, Steck and Tresp (1999) proposed to reduce
ADJX − {Y } in Step 6, by removing all the
nodes that are not in a path from X to Y . In
this paper, we will go an step further by consid-
ering any subset CUTX,Y disconnecting X and
Y in the graph in which the link X − Y has
been deleted, playing the role of ADJX − {Y }.
Consider that in the skeleton, we want to see
whether link X − Y can be deleted, then we
first remove it, and if the situation is the one
in Figure 1, we could consider CUTX,Y = {Z}.
However, in the actual algorithm (even with the
necessary path condition) we consider the set
ADJX−{Y }, which is larger, and therefore with
an increased possibility of error.

Our proposal is to apply PC algorithm, but
by considering in step 6 a cut set of mini-
mum size in the graph without X − Y link, as

X Z Y

Figure 1: An small cut set

Acid and de Campos (2001) did in a different
context. The computation of this set will need
some extra time, but it can be done in polyno-
mial time with a modification of Ford-Fulkerson
algorithm (Acid and de Campos, 1996).

3.2 Bayesian Statistical Tests

PC algorithm performs a chi-square statistical
test to decide about independence. However,
as shown by Moral (2004), sometimes statis-
tical tests make too many errors. They try
to keep the Type I error (deciding dependence
when there is independence) constant to the
significance level. However, if the sample is
large enough this error can be much lower by
using a different decision procedure, without
an important increase in Type II error (decid-
ing independence when there is dependence).
Margaritis (2003) has proposed to make statis-
tical tests of independence for continuous vari-
ables by using a Bayesian score after discretizing
them. Previously, Cooper (1997) proposed a
different independence test based on a Bayesian
score, but only when conditioning to 0 or 1 vari-
able. Here we propose to do all the statistical
tests by using a Bayesian Dirichlet score1 (Heck-
erman, 1995) with a global sample size s equal
to 1.0. The test I(X,Y |S) is carried out by com-
paring the scores of X with S as parents and of
X with S ∪ {Y } as parents. If the former is
larger than the later, the variables are consid-
ered independent, and in the other case, they

1We have chosen this score instead of the original
K2 score (Cooper and Herskovits, 1992) because this is
considered more correct from a theoretical point of view
(Heckerman et al., 1995).
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are considered dependent. The score of X with
a set of parents Pa(X) = Z is the logarithm of:

∏

z

(

Γ(s′)

Γ(Nz + s′)

∏

x

Γ(Nz,x + s′′)

Γ(s′′)

)

where Nz is the number of occurrences of
[Z = z] in the sample, Nz,x is the number of
occurrences of [Z = z, X = x] in the sample, s′

is s divided by the number of possible values of
Z, and s′′ is equal to s′ divided by the number
of values of X.

3.3 Refinement

If the statistical tests do not make errors and
the faithfulness hypothesis is verified, then PC
algorithm will recover a graph equivalent to the
original one, but this can never be assured with
finite samples. Also, even if we recover the origi-
nal graph, when our objective is to approximate
the joint distribution for all the variables, then
depending of the sample size, it can be more
convenient to use a simpler graph than the true
one. Imagine that the variables follow the graph
of Figure 2. This graph can be recovered by
PC algorithm by doing only statistical indepen-
dence tests of order 0 and 1 (conditioning to
none or 1 variable). However, when we are go-
ing to estimate the parameters of the network
we have to estimate a high number of probabil-
ity values. This can be a too complex model
(too many parameters) if the database is not
large enough. In this situation, it can be rea-
sonable to try to refine this network, taking into
account the actual orientation and the size of
the model. In this sense, the result of PC al-
gorithm can be used as an starting point for a
greedy search algorithm to optimize a concrete
metric.

In particular, our proposal is based on the
following steps:

1. Obtain an order compatible with the graph
learned by PC algorithm.

2. For each node, try to delete each one of
its parents or to add some of the non par-
ents preceding nodes as parent, measuring
the resulting Bayesian Dirichlet score. We

Figure 2: A too complex network.

X Y

Z

Figure 3: A simple network

make the movement with highest score dif-
ference while this is positive.

Refinement can also solve some of the prob-
lems associated with the non verification of
the faithfulness hypothesis. Assume for exam-
ple, that we have a problem with 3 variables,
X,Y,Z, and that the set of independencies is
given by the independencies of the graph in Fig-
ure 3 plus the independence I(Y,Z|∅). PC al-
gorithm will estimate a network, where the link
between Y and Z is lost. Even if the sample
is large we will estimate a too simple network
which is not an I-map (Pearl, 1988). If we ori-
ent the link X → Z in PC algorithm, refinement
can produce the network in Figure 3, by check-
ing that the Bayesian score is increased (as it
should be the case if I(Z, Y |X) is not verified).

The idea of refining a learned Bayesian net-
work by means of a greedy optimization of a
Bayesian score has been used in a different con-
text by Dash and Druzdzel (1999).

3.4 Triangles Resolution

Imagine that we have 3 variables, X,Y,Z,
and that no independence relationship involv-
ing them is verified: each pair of variables is de-
pendent and conditionally dependent giving the
third one. As there is a tendency to decide for
independence when the size of the conditioning
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set is larger, then it is possible that all order 0
tests produce dependence, but when we test the
independence of two variables with respect to a
third one, we obtain independence. In this sit-
uation, the result of PC algorithm, will depend
of the order in which tests are carried out. For
example, if we ask first for the independence,
I(X,Y |Z), then the link X − Y is deleted, but
not the other two links, which will be oriented in
a posterior step without creating a v-structure.
If we test first I(X,Z|Y ), then the deleted link
will be X − Z, but not the other two.

It seems reasonable that if one of the links
is going to be removed, we should choose the
weakest one. In this paper, for each 3 vari-
ables that are a triangle (the graph contains
the 3 links) after order 0 tests, we measure the
strength of link X − Y as the Bayesian score
of X with Y,Z as parent, minus the Bayesian
score of X with Z as parents. For each trian-
gle we delete the link with lowest strength (if
this value is lower than 0). This is done as an
intermediate step, between order 0 and order 1
conditional independence tests.

In this paper, it has been implemented only in
the case in which independence tests are based
on a Bayesian score, but it could be also consid-
ered in the case of Chi-square tests by consid-
ering the strength of a link equal to the p-value
of the statistical independence test.

A deeper study of this type of interdepen-
dencies between the deletion of links (the pres-
ence of a link depends of the absence of other
one, and vice versa) has been carried out by
Steck and Tresp (1999), but the resolution of
these ambiguities is not done. Hugin system
(Madsen et al., 2003) allows to decide between
the different possibilities by asking to the user.
Our procedure could be extended to this more
general setting, but at this stage the implemen-
tation has been limited to triangles, as it is, at
the sample time, the most usual and simplest
situation.

4 Experiments

We have done some experiments with the Alarm
network (Beinlich et al., 1989) for testing the

PC variations. In all of them, we have started
with the original network and we have gener-
ated samples of different sizes by logic sampling.
Then, we have tried to recover the original net-
work from the samples by using the different
variations of the PC algorithm including the ori-
entation step. We have considered the follow-
ing measures of error in this process: number of
missing links, number of added links, and the
Kullback-Leibler distance (Kullback, 1968) of
the learned probability distribution to the orig-
inal one2. Kullback-Leibler distance is a more
appropriate measure of error when the objective
is to approximate the joint probability distribu-
tion for all the variables and the measures of
number of differences in links is more appropri-
ate when our objective is to recover the causal
structure of the problem. We do not consider
the number of wrong orientations as our vari-
ations are mainly focused in the skeleton dis-
covery phase of PC algorithm. The number of
added or deleted links only depend of the first
part of the learning algorithm (selection of the
skeleton).

Experiments have been carried out in Elvira
environment (Consortium, 2002), where a local
computation of Kullback-Leibler distance is im-
plemented. The different sample sizes we have
used are: 100, 500, 1000, 5000, 10000, and for
each sample size, we have repeated the exper-
iment 100 times. The combinations of algo-
rithms we have tested are the following:

Alg1 This is the algorithm with minimal separat-
ing sets, score based tests, no refinement,
and triangle resolution.

Alg2 Algorithm with minimal separating sets,
score based tests, refinement, and triangle
resolution.

Alg3 Algorithm with adjacent nodes as separat-
ing sets, score based tests, no refinement,
and triangle resolution.

Alg4 Algorithm with minimal separating sets,
Chi-square tests, no refinement and no res-
olution of triangles.

2The parameters are estimated with a Bayesian
Dirichlet approach with a global sample size of 2.
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100 500 1000 5000 10000

Alg1 17.94 8.76 6.02 3.25 2.56
Alg2 16.29 8.16 5.59 3.7 3.28
Alg3 26.54 18.47 14.87 8.18 7.08
Alg4 29.07 11.49 8.42 3.53 2.14
Alg5 17.87 8.83 6.08 3.03 2.57

Table 1: Average number of missing links

100 500 1000 5000 10000

Alg1 10.42 4.96 2.87 2.2 1.98
Alg2 26.13 17.52 16.32 16.01 15.38
Alg3 3.06 0.63 0.14 0.03 0.01
Alg4 14.73 5.96 5.68 4.78 4.79
Alg5 10.46 4.99 3.21 1.92 1.9

Table 2: Average number of added links

Alg5 This is the algorithm with minimal separat-
ing sets, score based tests, no refinement,
and no resolution of triangles.

These combinations are designed in this way,
as we consider Alg1 our basic algorithm to re-
cover the graph structure, and then we want to
study the effect of the application of each one
of the variations to it.

Table 1 contains the average number of miss-
ing links, Table 2 the average number of added
links, Table 3 the average Kulback-Leibler dis-
tance, and finally Table 4 contains the average
running times of the different algorithms. In
these results we highlight the following facts:

Refinement (Alg2) increases the number of er-
rors in the recovering of the causal structure
(mainly more added links), but decreases the
Kullback-Leibler distance to the original distri-
bution. So, its application will depend of our
objective: approximate the joint distribution or
recover the causal structure. Refinement is fast

100 500 1000 5000 10000

Alg1 4.15 2.46 1.81 0.98 0.99
Alg2 2.91 0.96 0.56 0.19 0.11
Alg3 4.98 3.27 2.58 1.11 0.77
Alg4 5.96 2.19 1.49 1.05 0.91
Alg5 4.15 2.36 1.86 1.11 0.98

Table 3: Average Kullback-Leibler distance

100 500 1000 5000 10000

Alg1 2.16 4.1 5.88 21.98 42
Alg2 2.25 4.12 5.89 21.98 42.1
Alg3 0.33 1.56 3.34 20.73 44.14
Alg4 2.45 8.9 13.89 39.42 68.85
Alg5 2.21 4.15 6.02 22.95 44.4

Table 4: Average time

and it does not add a significant amount of extra
time.

When comparing Alg1 with Alg3 (minimum
size cut set vs set of adjacent nodes) we ob-
serve that with adjacent nodes fewer links are
added and more ones are missing. The total
amount of errors is in favour of Alg1 (minimum
size cut set). This is due to the fact that Alg3
makes more conditional independence tests and
with larger conditioning sets of variables, which
makes more possible to delete links. Kullback-
Leibler distance is better for Alg1 except for the
largest sample size. A possible explanation, is
that with this large sample size, we really do
not miss any important link of the network, and
added links can be more dangerous than deleted
ones (when we delete links we are averaging dis-
tributions). With smaller sample sizes, Alg3
had a worse Kullback-Leibler as it can be miss-
ing some important links. We do not have any
possible explanation to the fact that Alg1 does
not improve Kullback-Leibler distance when in-
creasing the sample size from 5000 to 10000.
When comparing the time of both algorithms,
we see that Alg1 needs more time (to compute
minimum size cut sets) however, when the sam-
ple size is large this extra time is compensated
by the lower number of statistical tests, being
the total time for size 10000 lower in the case of
Alg1 (with minimum size cut sets).

When comparing Alg1 and Alg4 (Score test
and triangle resolution vs Chi-square tests and
no triangle resolution) we observe than Alg4 al-
ways add more links and miss more links (except
for the largest sample size). The total number
of errors is lower for Alg1. It is meaningful the
fact that the number of added links do not de-
crease when going from a sample of 5000 to a
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sample of 10000. This is due to the fact that
the probability of considering dependence when
there is independence is fixed (the significance
level) for large the sample sizes. So all the ex-
tra information of the larger sample is devoted
to decrease the number of missing links (2.14 in
Alg4 against 2.56 in Alg1), but the difference in
added links is 4.79 in Alg4 against 1.98 in Alg1.
So the small decreasing in missing links is at the
cost of a more important error in the number of
added links. Bayesian scores tests are more bal-
anced in the two types of errors. When consid-
ering the Kullback-Leibler distance, we observe
again the same situation than when comparing
Alg1 and Alg2: a greater number of errors in
the structure does not always imply a greater
Kullback-Leibler distance. The time is always
greater for Alg4.

The differences between Alg1 and Alg4 are
not due to the triangles resolution in Alg1. As
we will see now, triangles resolution do not re-
ally implies important changes in Alg1 perfor-
mance. In fact, the effect of Chi-square tests
against Bayesian tests without any other addi-
tional factor, can be seen by comparing Alg5
and Alg4. In this case, we can observe the same
differences as when comparing Alg1 and Alg5.

When comparing Alg1 and Alg5 (no resolu-
tion of triangles) we see that there is not im-
portant differences in performance (errors and
time) when resolution of triangles is applied.
It seems that the total number of errors is de-
creased for intermediate sample sizes (500-1000)
and there are not important differences for the
other sample sizes, but more experiments are
necessary. Triangles resolution do not really
add a meaningful extra time. Applying this step
needs some time, but the graph is simplified and
posterior steps can be faster.

5 Conclusions

In this paper we have proposed four variations
of the PC algorithm and we have tested them
when learning the Alarm network. Our final
recommendation would be to use the PC algo-
rithm with score based tests, minimum size cut
sets, and triangle resolution. The application of

refinement step would depend of the final aim:
if we want to learn the causal structure, then re-
finement should not be applied, but if we want
to approximate the joint probability distribu-
tion, then refinement should be applied. We
recognize that more extensive experiments are
necessary to evaluate the application of these
modifications, specially the triangle resolution.
But we feel that this modification is intuitively
supported, and that it could have a more im-
portant role in other situations, specially if the
faithfulness hypothesis is not verified.

Other combinations could be appropriated if
the objective is different, for example if we want
to minimize the number of added links, then
Alg3 (with adjacent nodes as cut set) could be
considered.

In the future we plan to make more extensive
experiments testing different networks and dif-
ferent combinations of these modifications. At
the same time, we will consider another possible
variations, as for example an algorithm mixing
the skeleton and orientation steps. It is possible
that some of the independencies are tested con-
ditional to some sets, that after the orientation
do not separate the two links. We also plan to
study alternative scores and to study the efect
of using different sample sizes. Also partial ori-
entations can help to make the separating sets
even smaller as there can be some paths which
are not active without observations. This can
make algorithms faster and more accurate. Fi-
nally, we think that the use of PC and its vari-
ations as starting points for greedy searching
algorithms needs further research effort.
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Abstract

The increasing complexity of the models, the abundant electronic literature and the
relative scarcity of the data make it necessary to use the Bayesian approach to complex
queries based on prior knowledge and structural models. In the paper we discuss the
probabilistic semantics of such statements, the computational challenges and possible
solutions of Bayesian inference over complex Bayesian network features, particularly over
features relevant in the conditional analysis. We introduce a special feature called Markov
Blanket Graph. Next we present an application of the ordering-based Monte Carlo method
over Markov Blanket Graphs and Markov Blanket sets.

In the Bayesian approach to a structural fea-
ture F with values F (G) ∈ {fi}

R
i=1 we are

interested in the feature posterior induced by
the model posterior given the observations DN ,
where G denotes the structure of the Bayesian
network (BN)

p(fi|DN ) =
∑

G

1(F (G) = fi)p(G|DN ) (1)

The importance of such inference results from
(1) the frequently impractically high sample
and computational complexity of the complete
model, (2) a subsequent Bayesian decision-
theoretic phase, (3) the availability of stochastic
methods for estimating such posteriors, and (4)
the focusedness of the data and the prior on
certain aspects (e.g. by pattern of missing val-
ues or better understood parts of the model).
Correspondingly, there is a general expectation
that for small amount of data some properties
of complex models can be inferred with high
confidence and relatively low computation cost
preserving a model-based foundation.

The irregularity of the posterior over the
discrete model space of the Directed Acyclic
Graphs (DAGs) poses serious challenges when
such feature posteriors are to be estimated.
This induced the research on the application of
Markov Chain Monte Carlo (MCMC) methods

for elementary features (Madigan et al., 1996;
Friedman and Koller, 2000). This paper ex-
tends these results by investigating Bayesian in-
ference about BN features with high-cardinality,
relevant in classification. In Section 1 we
present a unified view of BN features enriched
with free-text annotations as a probabilistic
knowledge base (pKB) and discuss the corre-
sponding probabilistic semantics. In Section 2
we overview the earlier approaches to feature
learning. In Section 3 we discuss structural BN
features and introduce a special feature called
Markov Blanket Graph or Mechanism Bound-
ary Graph. Section 4 discusses its relevance in
conditional modeling. In Section 5 we report an
algorithm using ordering-based MCMC meth-
ods to perform inference over Markov Blanket
Graphs and Markov Blanket sets. Section 6
presents results for the ovarian tumor domain.

1 BN features in pKBs

Probabilistic and causal interpretations of BN
ensure that structural features can express a
wide range of relevant concepts based on condi-
tional independence statements and causal as-
sertions (Pearl, 1988; Pearl, 2000; Spirtes et
al., 2001). To enrich this approach with sub-
jective domain knowledge via free-text annota-
tions, we introduce the concept of Probabilistic
Annotated Bayesian Network knowledge base.



Definition 1. A Probabilistic Annotated
Bayesian Network knowledge base K for a fixed
set V of discrete random variables is a first-
order logical knowledge base including standard
graph, string and BN related predicates, rela-
tions and functions. Let Gw represent a target
DAG structure including all the target random
variables. It includes free-text descriptions for
the subgraphs and for their subsets. We assume
that the models M of the knowledge base vary
only in Gw (i.e. there is a mapping G ↔ M)
and a distribution p(Gw|ξ) is available.

A sentence α is any well-formed first-order
formula in K, the probability of which is defined
as the expectation of its truth

Ep(M|K)[α
M] =

∑

G

αM(G)p(G|K).

where αM(G) denotes its truth-value in the
model M(G). This hybrid approach defines a
distribution over models by combining a logi-
cal knowledge base with a probabilistic model.
The logical knowledge base describes the cer-
tain knowledge in the domain defining a set
of models (legal worlds) and the probabilistic
part (p(Gw|ξ)) expresses the uncertain knowl-
edge over these worlds.

2 Earlier works

To avoid the statistical and computational bur-
den of identifying complete models, related lo-
cal algorithms for identifying causal relations
were reported in (Silverstein et al., 2000) and in
(Glymour and Cooper, 1999; Mani and Cooper,
2001). The majority of feature learning algo-
rithms targets the learning of relevant variables
for the conditional modeling of a central vari-
able, i.e. they target the so-called feature sub-

set selection (FSS) problem (Kohavi and John,
1997). Such examples are the Markov Blanket
Approximating Algorithm (Koller and Sahami,
1996) and the Incremential Association Markov
Blanket algorithm (Tsamardinos and Aliferis,
2003). The subgraphs of a BN as features were
targeted in (Pe’er et al., 2001). The bootstrap
approach inducing confidence measures for fea-
tures such as compelled edges, Markov blanket

membership and pairwise precedence was inves-
tigated in (Friedman et al., 1999).

On the contrary, the Bayesian framework of-
fers many advantages such as the normative,
model-based combination of prior and data al-
lowing unconstrained application in the small
sample region. Furthermore the feature poste-
riors can be embedded in a probabilistic knowl-
edge base and they can be used to induce pri-
ors for other model spaces and for a subse-
quent learning. In (Buntine, 1991) proposed
the concept of a posterior knowledge base con-
ditioned on a given ordering for the analysis
of BN models. In (Cooper and Herskovits,
1992) discussed the general use of the poste-
rior for BN structures to compute the poste-
rior of arbitrary features. In (Madigan et al.,
1996) proposed an MCMC scheme over the
space of DAGs and orderings of the variables
to approximate Bayesian inference. In (Heck-
ermann et al., 1997) considered the applica-
tion of the full Bayesian approach to causal
BNs. Another MCMC scheme, the ordering-
based MCMC method utilizing the ordering of
the variables were reported in (Friedman and
Koller, 2000). They developed and used a
closed form for the order conditional posteri-
ors of Markov blanket membership, beside the
earlier closed form of the parental sets.

3 BN features

The prevailing interpretation of BN feature
learning assumes that the feature set is sig-
nificantly simpler than the complete domain
model providing an overall characterization as
marginals and that the number of features and
their values is tractable (e.g linear or quadratic
in the number of variables). Another interpre-
tation is to identify high-scoring arbitrary sub-
graphs or parental sets, Markov blanket sub-
sets and estimate their posteriors. A set of sim-
ple features means a fragmentary representation
for the distribution over the complete domain
model from multiple, though simplified aspects,
whereas using a given complex feature means a
focused representation from a single, but com-
plex point of view. A feature F is complex if
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the number of its values is exponential in the
number of domain variables. First we cite a
central concept and a theorem about relevance
for variables V = {X1, . . . ,Xn} (Pearl, 1988).

Definition 2. A set of variables MB(Xi)
is called the Markov Blanket of Xi w.r.t.
the distribution P (V ), if (Xi ⊥⊥ V \
MB(Xi)|MB(Xi)). A minimal Markov blanket
is called a Markov boundary.

Theorem 1. If a distribution P (V ) factorizes

w.r.t DAG G, then

∀ i = 1, . . . , n : (Xi ⊥⊥ V \ bd(Xi)|bd(Xi, G))P ,

where bd(Xi, G) denotes the set of parents, chil-

dren and the children’s other parents for Xi.

So the set bd(Xi, G) is a Markov blanket of
Xi. So we will also refer to bd(Xi, G) as a
Markov blanket of Xi in G using the notation
MB(Xi, G) implicitly assuming that P factor-
izes w.r.t. G.

The induced, symmetric pairwise rela-
tion is the Markov Blanket Membership
MBM(Xi,Xj , G) w.r.t. G between Xi and Xj

(Friedman et al., 1999)

MBM(Xi,Xj , G) ↔ Xj ∈ bd(Xi, G) (2)

Finally, we define the Markov Blanket Graph.

Definition 3. A subgraph of G is called the
Markov Blanket Graph or Mechanism Bound-
ary Graph MBG(Xi, G) of a variable Xi if it
includes the nodes from MB(Xi, G) and the in-
coming edges into Xi and into its children.

It is easy to show, that the characteristic
property of the MBG feature is that it com-
pletely defines the distribution P (Y |V \ Y ) by
the local dependency models of Y and its chil-
dren in a BN model G, in case of point pa-
rameters (G,θ) and of parameter priors satisfy-
ing global parameter independence (Spiegelhal-
ter and Lauritzen, 1990) and parameter modu-
larity (Heckerman et al., 1995). This property
offers two interpretations for the MBG feature.
From a probabilistic point of view the MBG(G)
feature defines an equivalence relation over the
DAGs w.r.t. P (Y |V \ Y ), but clearly the MBG

feature is not a unique representative of a condi-
tionally equivalent class of BNs. From a causal
point of view, this feature uniquely represents
the minimal set of mechanisms including Y . In
short, under the conditions mentioned above,
this structural feature of the causal BN domain
model is necessary and sufficient to support the
manual exploration and automated construc-
tion of a conditional dependency model.

There is no closed formula for the posterior
p(MBG(Y,G)), which excludes the direct use
of the MBG space in optimization or in Monte
Carlo methods. However, there exist a formula
for the order conditional posterior with polyno-
mial time complexity if the size of the parental
sets is bounded by k

p(MBG(Y,G) = mbg|DN ) =

p(pa(Y,mbg)|DN )
∏

Y ≺Xi

Y ∈pa(Xi,mbg)

p(pa(Xi,mbg)|DN )

∏

Y ≺Xi

Y /∈pa(Xi,mbg)

∑

Y /∈pa(Xi)

p(pa(Xi)|DN ).

(3)

The cardinality of the MBG(Y ) space is still
super-exponential (even if the number of par-
ents is bounded by k). Consider an order-
ing of the variables such that Y is the first
and all the other variables are children of it,
then the parental sets can be selected indepen-
dently, so the number of alternatives is in the
order of (n − 1)n

2

(or (n − 1)(k−1)(n−1)). How-
ever, if Y is the last in the ordering, then the
number of alternatives is of the order 2n−1 or
(n − 1)(k)). In case of MBG(Y,G), variable
Xi can be (1) non-occurring in the MBG, (2)
a parent of Y (Xi ∈ pa(Y,G)), (3) a child of
Y (Xi ∈ ch(Y,G)) and (4) (pure) other par-
ent ((Xi /∈ pa(Y,G) ∧ (Xi ∈ pa(ch(Y )j)))).
These types correspond to the irrelevant (1) and
strongly relevant (2,3,4) categories (see, Def. 4).
The number of DAG models G(n) compatible
with a given MBG and ordering ≺ can be com-
puted as follows: the contribution of the vari-
ables Xi ≺ Y without any constraint and the
contribution of the variables Y ≺ Xi that are
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not children of Y, which is still 2O((k)(n)log(n))

(note certain sparse graphs are compatible with
many orderings).

4 Features in conditional modeling

In the conditional Bayesian approach the rel-
evance of predictor variables (features in this
context) can be defined in an asymptotic,
algorithm-, model- and loss-free way as follows

Definition 4. A feature Xi is strongly rel-
evant iff there exists some xi, y and si =
x1, . . . , xi−1, xi+1, . . . , xn for which p(xi, si) > 0
such that p(y|xi, si) 6= p(y|si). A feature Xi is
weakly relevant iff it is not strongly relevant,
and there exists a subset of features S′

i of Si for
which there exists some xi, y and s′i for which
p(xi, s

′
i) > 0 such that p(y|xi, s

′
i) 6= p(y|s′i).

A feature is relevant if it is either weakly or
strongly relevant; otherwise it is irrelevant (Ko-
havi and John, 1997).

In the so-called filter approach to feature se-
lection we have to select a minimal subset X ′

which fully determines the conditional distri-
bution of the target (p(Y |X) = p(Y |X ′)). If
the conditional modeling is not applicable and
a domain model-based approach is necessary
then the Markov boundary property (feature)
seems to be an ideal candidate for identifying
relevance. The following theorem gives a suf-
ficient condition for uniqueness and minimality
(Tsamardinos and Aliferis, 2003).

Theorem 2. If the distribution P is stable

w.r.t. the DAG G, then the variables bd(Y,G)
form a unique and minimal Markov blanket of

Y , MB(Y ). Furthermore, Xi ∈ MB(Y ) iff Xi

is strongly relevant.

However, the MBG feature provides a more
detailed description about relevancies. As an
example, consider that a logistic regression (LR)
model without interaction terms and a Naive
BN model can be made conditionally equiva-
lent using a local and transparent parameter
transformation. If the distribution contains ad-
ditional dependencies, then the induced condi-
tional distribution has to be represented by a
LR model with interaction terms.

5 Estimating complex features

The basic task is the estimation of the expecta-
tion of a given random variable over the space
of DAGs with a specified confidence level in
Eq. 1. We assume complete data, discrete do-
main variables, multinomial local conditional
distributions and Dirichlet parameter priors. It
ensures efficiently computable closed formulas
for the (unnormalized) posteriors of DAGs. As
this posterior cannot be sampled directly and
the construction of an approximating distribu-
tion is frequently not feasible, the standard ap-
proach is to use MCMC methods such as the
Metropolis-Hastings over the DAG space (see
e.g. (Gamerman, 1997; Gelman et al., 1995)).

The DAG-based MCMC method for estimat-
ing a given expectation is generally applicable,
but for certain types of features such as Markov
blanket membership an improved method, the
so-called ordering-based MCMC method can be
applied, which utilizes closed-forms of the or-
der conditional feature posteriors computable
in O(nk+1) time, where k denotes the maximum
number of parents (Friedman and Koller, 2000).

In these approaches the problem is simplified
to the estimation of separate posteriors. How-
ever, the number of target features can be as
high as 104 − 106 even for a given type of pair-
wise features and moderate domain complex-
ity. This calls for a decision-theoretic report
of selection and estimation of the features, but
here we use a simplified approach targeting the
selection-estimation of the K most probable fea-
ture values. Because of the exponential num-
ber of feature values a search method has to
be applied either iteratively or in an integrated
fashion. The first approach requires the offline
storage of orderings and corresponding common
factors, so we investigated this latter option.
The integrated feature selection-estimation is
particularly relevant for the ordering-based MC
methods, because it does not generate implic-
itly “high-scoring” features and features that
are not part of the solution cause extra com-
putational costs in estimation.

The goal of search within the MC cycle at
step l is the generation of MBGs with high
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order conditional posterior, potentially using
the already generated MBGs and the posteri-
ors p(MBG| ≺l,DN ). To facilitate the search
we define an order conditional MBG state space
based on the observation that the order condi-
tionally MAP MBG can be found in O(nk+1)
time with a negligible constant increase only.
An MBG state is represented by an n′ dimen-
sional vector s, where n′ is the number of vari-
ables not preceding the target variable Y in the
ordering ≺:

n′ =

n∑

i=1

1(Y � Xi) (4)

The range of the values are integers si =
0, . . . , ri representing either separate parental
sets or (in case of Xi where Y ≺l Xi) a special
set of parental sets not including the target vari-
able. The product of the order conditional pos-
teriors of the represented sets of parental sets
gives the order conditional posterior of the rep-
resented MBG state in Eq. 3. We ensure that
the conditional posteriors of the represented sets
of parental sets are monotone decreasing w.r.t.
their indices:

∀si < s′i : p(si|DN ,≺) ≥ p(s′i|DN ,≺) (5)

which can be constructed in
O(nk+1 log(maxi ri)) time, where k is the
maximum parental set size.

This MBG space allows the application of ef-
ficient search methods. We experimented with
a direct sampling, top-sampling and a deter-
ministic search. The direct sampling was used
as a baseline, because it does need the MBG
space. The top-sampling method is biased to-
wards sampling MBGs with high order condi-
tional posterior, by sampling only from the L
most probable sets of parental sets for each
Y - Xi. The uniform-cost search constructs
the MBG space, then performs a uniform-cost
search to a maximum number of MBGs or to
threshold p(MBGMAP,≺| ≺,DN )/ρS .

The pseudo code of searching and estimat-
ing MAP values for the MBG feature of a given
variable is shown in Alg. 1 (for simplicity the

estimation of simple classification features such
as edge and MBM relations, and the estimation
of the MB features of a given variable using the
estimated MAP MBG collection is not shown).

Algorithm 1 Search and estimation of classifi-
cation features using the MBG-ordering spaces

Require: p(≺),p(pa(Xi)| ≺),k,R,ρ,LS ,ρS ,LT ,M;
Ensure: K MAP feature value with estimates

Cache order-free parental posteriors Π =
{∀ i, |pa(Xi)| ≤ k : p(pa(Xi)|DN )}
Initialize MCMC, the MBG-tree T , MBM
and edge posterior matrices R, E ;
Insert a priori specified MBGs in T ;
for l = 0 to M do {the sampling cycle}

Draw next ordering;
Cache order specific common factors Ψ for
|pa(Xi)| ≤ k:
p(pa(Xi)| ≺l) for all Xi

p(Y /∈ pa(Xi)| ≺l) for Y ≺l Xi;
Compute p(≺l |DN );
Construct order conditional MBG-
Subspace(Π,Ψ, R, ρ)=Φ
SS=Search(Φ,LS , ρS);
for all mbg ∈ SS do

if mbg /∈ T then

Insert(T ,mbg)
if LT < |T | then

T =PruneToHPD(T ,LT );
for all mbg ∈ T do

p̂(mbg|DN )+ = p(mbg| ≺l,DN );
Report K MAP MBGs from T ;
Report K’ MAP MBs using the MBGs in T ;

Parameters R, ρ allow the restriction of the
MBG subspace separately for each dimension to
a less than R values by requiring that the corre-
sponding posteriors are above the exp(−ρ) ratio
of the respective MAP value. The uniform-cost
search starts from the order conditional MAP
MBG, and stops after the expansion of LS num-
ber of states or if the most probable MBG in its
search list drops below exp(ρS) ratio of the or-
der conditional posterior of the starting MBG.

Generally, the expansion phase has high com-
putational costs, but for large LT the update of
the MBGs in T is high as well. In order to
maintain tractability the usage of more refined
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methods such as partial updating are required.
Within the explored OC domain however the
full, exact update has acceptable costs if the
size of the estimated MBG set is LT ∈ [105, 106].
This LT ensures that the newly inserted MBGs
are not pruned before their estimates can re-
liable indicate their high-scoring potential and
still allows an exact update. In larger domains
this balance can be different and the analysis of
this question in general is for future research.

The analysis of the MBG space showed that
the conditional posteriors of the ranked parental
sets after rank 10 are negligible, so subsequently
we will report results using values R = 20, ρ = 4
and LS = 104, ρS = 10−6. Note that the ex-
pansion with the LS conditionally most proba-
ble MBGs in each step does not guarantee that
the LS most probable MBGs are estimated, not
even the MAP MBG.

6 Results

We used a data set consisting of 35 discrete vari-
ables and 782 complete cases related to the pre-
operative diagnosis of ovarian cancer (see (Antal
et al., 2004)).

First we report the estimation-selection of
MB features for the central variable Pathology.
We applied the heuristic deterministic search-
estimation method in the inner cycle of the
MCMC method. The length of the burn-in
and MCMC simulation was 10000, the prob-
ability of the pairwise replace operator was
0.8, the parameter prior was the BDeu and
the structure prior was uniform prior for the
parental set sizes (Friedman and Koller, 2000).
The maximum number of parents was 4 (the
posteriors of larger sets are insignificant).
For preselected high-scoring MB values after
10000 burn-in the single-chain convergence
test from Geweke comparing averages has
z-score approximately 0.5, the R value of
the multiple-chain method of Gelman-Rubin
with 5 chains drops below 1.05 (Gamerman,
1997; Gelman et al., 1995). The variances
of the MCMC estimates of these preselected
test feature values drop below 10−2. We also
applied the deterministic search-estimation

method for a single ordering, because a total
ordering of the variables was available from an
expert. Fig. 1 reports the estimated posteriors
of the MAP MB sets for Pathology with their
MBM-based approximated values assuming
the independence of the MBM values and
Table 1 shows the members of the MB sets.
Note that the two monotone decreasing curves
correspond to independent rankings, one for
the expert’s total ordering and one for the
unconstrained case. It also reports the MB
set spanned by a prior BN specified by the
expert (E), the MB set spanned by the MAP
BN (BN) and the set spanned by the MAP
MBG (MBG) (see Eq. 6). Furthermore we
generated another reference set (LR) from a
conditional standpoint using the logistic regres-
sion model class and the SPSS 14.0 software
with the default setting for forward model
construction (Hosmer and Lemeshow, 2000).
MBp reports the result of the deterministic
select-estimate method using the total ordering
of the expert and the MB1,MB2,MB3 report
the result of the unconstrained ordering-based
MCMC with deterministic select-estimate
method. Variables FamHist,CycleDay,
HormTherapy, Hysterectomy, Parity
PMenoAge are never selected and the variables
V olume, Ascites, Papillation, PapF low,
CA125, WallRegularity are always selected,
so they are not reported.

The MBM-based approximation performs rel-
atively well, particularly w.r.t. ranking in the
case of the expert’s ordering ≺0, but it performs
poorly in the unconstrained case both w.r.t. es-
timations and ranks (see the difference of Mp set
to M1 w.r.t. variables Age, Meno, PI, TAMX,
Solid).

We compared the MBG(Y,GMAP ) and
MB(Y,GMAP ) feature values defined by the
MAP BN structure GMAP against the MAP
MBG feature value MBG(Y )MAP and the
MAP MB feature value MB(Y )MAP including
the MB feature value defined by the MAP MBG
feature value MB(Y,MBG(Y )MAP )
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Table 1: Markov blanket sets of Pathology
among the thirty-five variables.

E LR BN MG MBp MB1 MB2 MB3

Age 1 0 1 0 1 0 0 0
Meno 1 0 1 1 0 1 1 1
PMenoY 0 1 0 0 0 0 0 0
PillUse 1 0 0 0 0 0 0 0
Bilateral 1 0 1 1 1 1 1 1
Pain 0 1 0 0 0 0 0 0
Fluid 1 0 1 0 0 0 0 0
Septum 1 0 1 1 1 1 1 1
ISeptum 0 0 1 1 1 1 1 1
PSmooth 1 0 0 0 0 0 0 0
Loc. 1 1 0 0 0 1 0 1
Shadows 1 0 1 1 1 1 1 1
Echog. 1 0 1 1 1 1 1 1
ColScore 1 0 1 1 1 1 1 1
PI 1 1 0 0 1 0 0 0
RI 1 0 1 1 1 1 1 1
PSV 1 0 1 1 1 1 1 1
TAMX 1 1 0 1 1 0 0 0
Solid 1 1 1 1 1 0 1 0
FHBrCa 0 0 0 0 0 0 0 1
FHOvCa 0 0 0 1 0 0 0 0

GMAP = arg max
G

p(G|DN ) (6)

MBG(Y )MAP = arg max
mbg(Y )

p(mbg(Y )|DN )

MB(Y )MAP = arg max
mb(Y )

p(mb(Y )|DN )

We performed the comparison using the best
BN structure found in the MCMC simulation.
The MAP MBG feature value MBG(Y )MAP

differed significantly from the MAP domain
model, because of an additional Age and Fluid
variables in the domain model. The MAP
MB feature value MB(Y )MAP similarly differs
from the MB sets defined by the MAP domain
models for example w.r.t. the vascularization
variables such as PI. Interestingly, the MAP
MB feature value also differs from the MB fea-
ture value defined by the MAP MBG feature
value MB(Y,MBG(Y )MAP ), for example w.r.t.
TAMX, Solid variables. In conclusion these
results together with the comparison against
the simple feature-based analysis such as MBM-
based analysis reported in Fig. 1, show the rel-
evance of the complex feature-based analysis.

We also constructed an offline probabilistic
knowledge base containing 104 MAP MBGs. It
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Figure 1: The ranked posteriors and their
MBM-based approximations of the 20 most
probable MB(Pathology) sets for the sin-
gle/unconstrained orderings.

is connected with the annotated BN knowledge
base defined in Def. 1, which allows an offline
exploration of the domain from the point of view
of conditional modeling. The histogram of the
number of parameters and inputs for the MBGs
using only the fourteen most relevant variables
are reported in Fig. 2.
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Figure 2: The histogram of the number of pa-
rameters and inputs of the MAP MBGs.

7 Conclusion

In the paper we presented a Bayesian approach
for complex BN features, for the so-called
Markov Blanket set and the Markov Blanket
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Graph features. We developed and applied a
select-estimate algorithm using ordering-based
MCMC, which uses the efficiently computable
order conditional posterior of the MBG feature
and the proposed MBG space. The compari-
son of the most probable MB and MBG fea-
ture values with simple feature based approx-
imations and with complete domain modeling
showed the separate significance of the analy-
sis based on these complex BN features in the
investigated medical domain. The proposed al-
gorithm and the offline knowledge base in the
introduced probabilistic annotated BN knowl-
edge base context allows new types of analysis
and fusion of expertise, data and literature.
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Abstract

In biomedical domains, free text electronic literature is an important resource for knowl-
edge discovery and acquisition, particularly to provide a priori components for evaluating
or learning domain models. Aiming at the automated extraction of this prior knowledge
we discuss the types of uncertainties in a domain with respect to causal mechanisms,
formulate assumptions about their report in scientific papers and derive generative prob-
abilistic models for the occurrences of biomedical concepts in papers. These results allow
the discovery and extraction of latent causal dependency relations from the domain lit-
erature using minimal linguistic support. Contrary to the currently prevailing methods,
which assume that relations are sufficiently formulated for linguistic methods, our ap-
proach assumes only the report of causally associated entities without their tentative
status or relations, and can discover new relations and prune redundancies by providing
a domain-wide model. Therefore the proposed Bayesian network based text mining is an
important complement to the linguistic approaches.

1 Introduction

Rapid accumulation of biological data and the
corresponding knowledge posed a new challenge
of making this voluminous, uncertain and fre-
quently inconsistent knowledge accessible. De-
spite recent trends to broaden the scope of for-
mal knowledge bases in biomedical domains,
free text electronic literature is still the central
repository of the domain knowledge. This cen-
tral role will probably be retained in the near
future, because of the rapidly expanding fron-
tiers. The extraction of explicitly stated or the
discovery of implicitly present latent knowledge
requires various techniques ranging from purely
linguistic approaches to machine learning meth-
ods. In the paper we investigate a domain-
model based approach to statistical inference
about dependence and causal relations given
the literature using minimal linguistic prepro-
cessing. We use Bayesian Networks (BNs) as
causal domain models to introduce generative
models of publication, i.e. we examine the re-
lation of domain models and generative models
of the corresponding literature.

In a wider sense our work provides support
to statistical inference about the structure of
the domain model. This is a two-step process,
which consists of the reconstruction of the be-
liefs in mechanisms from the literature by model
learning and their usage in a subsequent learn-
ing phase. Here, the Bayesian framework is an
obvious choice. Earlier applications of text min-
ing provided results for the domain experts or
data analysts, whereas our aim is to go one step
further and use the results directly in the sta-
tistical learning of the domain models.

The paper is organized as follows. Section 2
presents a unified view of the literature, the
data and their models. In Section 3 we re-
view the types of uncertainties in biomedical do-
mains from a causal, mechanism-oriented point
of view. In Section 4 we summarize recent ap-
proaches to information extraction and liter-
ature mining based on natural language pro-
cessing (NLP) and “local” analysis of occur-
rence patterns. In Section 5 we propose gen-
erative probabilistic models for the occurrences
of biomedical concepts in scientific papers. Sec-
tion 6 presents textual aspects of the application



domain, the diagnosis of ovarian cancer. Sec-
tion 7 reports results on learning BNs given the
literature.

2 Fusion of literature and data

The relation of experimental data DN , proba-
bilistic causal domain models formalized as BNs
(G, θ), domain literature DL

N ′ and models of
publication (GL, θL) can be approached at dif-
ferent levels. For the moment, let us assume
that probabilistic models are available describ-
ing the generation of observations P (DN |(G, θ))
and literature P (DL

N ′ |(GL, θL)). This latter
may include stochastic grammars for modeling
the linguistic aspects of the publication, how-
ever, we will assume that the literature has a
simplified agrammatical representation and the
corresponding generative model can be formal-
ized as a BN (GL, θL) as well.

The main question is the relation of P (G, θ)
and P (GL, θL). In the most general approach
the hypothetical posteriors P (G, θ|DN , ξi) ex-
pressing personal beliefs over the domain mod-
els conditional on the experiments and the per-
sonal background knowledge ξi determine or
at least influence the parameters of the model
(GL, θL) in P (DL

N ′ |(GL, θL), ξi).

The construction or the learning of a full-
fledged decision theoretic model of publication
is currently not feasible regarding the state of
quantitative modeling of scientific research and
publication policies, not to mention the cogni-
tive and even stylistic aspects of explanation,
understanding and learning (Rosenberg, 2000).
In a severely restricted approach we will fo-
cus only on the effect of the belief in domain
models P (G, θ) on that in publication models
P (GL, θL). We will assume that this transfor-
mation is “local”, i.e. there is a simple proba-
bilistic link between the model spaces, specifi-
cally between the structure of the domain model
and the structure and parameters of the pub-
lication model p(GL, θL|G). Probabilistically
linked model spaces allow the computation of
the posterior over domain models given the lit-

erature(!) data as:

P (G|DL
N ′) =

P (G)
P (DL

N ′)

∑

GL

P (DL
N ′ |GL)P (GL|G).

The formalization (DN ← G → GL → DL
N ′)

also allows the computation of the posterior
over the domain models given both clinical and
the literature(!) data as:

P (G|DN , DL
N ′) = P (G)

P (DL
N ′ |G)

P (DL
N ′)

P (DN |G)
P (DN |DL

N ′)

∝ P (G)P (DN |G)
∑

GL

P (DL
N ′ |GL)P (GL|G),

The order of the factors shows that the prior
is first updated by the literature data, then by
the clinical data. A considerable advantage of
this approach is the integration of literature and
clinical data at the lowest level and not through
feature posteriors, i.e. by using literature pos-
teriors in feature-based priors for the (clinical)
data analysis (Antal et al., 2004).

We will assume that a bijective relation exists
between the domain model structures G and the
publication model structures GL (T (G) = GL),
whereas the parameters θL may encode addi-
tional aspects of publication policies and expla-
nation. We will focus on the logical link be-
tween the structures, where the posterior given
the literature and possibly the clinical data is:

P (G|DN , DL
N ′ , ξ) (1)

∝ P (G|ξ)P (DN |G)P (DL
N ′ |T (G)).

This shows the equal status of the literature
and the clinical data. In integrated learning
from heterogeneous sources however, the scal-
ing of the sources is advisable to express our
confidence in them.

3 Concepts, associations, causation

Frequently a biomedical domain can be charac-
terized by a dominant type of uncertainty w.r.t
the causal mechanisms. Such types of uncer-
tainty show certain sequentiality described be-
low, related to the development of biomedical
knowledge, though a strictly sequential view is
clearly an oversimplification.
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(1) Conceptual phase: Uncertainty over the
domain ontology, i.e. the relevant entities.

(2) Associative phase: Uncertainty over the
association of entities, reported in the literature
as indirect, associative hypotheses, frequently
as clusters of entities. Though we accept the
general view of causal relations behind associa-
tions, we assume that the exact causal functions
and direct relations are unknown.

(3) Causal relevance phase: (Existential) un-
certainty over causal relations (i.e. over mech-
anisms). Typically, direct causal relations are
theoretized as processes and mechanisms.

(4) Causal effect phase: Uncertainty over the
strength of the autonomous mechanisms em-
bodying the causal relations.

In this paper we assume that the target do-
main is already in the Associative or Causal
phase, i.e. that the entities are more or less
agreed, but their causal relations are mostly
in the discovery phase. This holds in many
biomedical domains, particularly in those link-
ing biological and clinical levels. There the As-
sociative phase is a crucial but lengthy knowl-
edge accumulation process, where wide range of
research methods is used to report associated
pairs or clusters of the domain entities. These
methods admittedly produce causally oriented
associative relations which are partial, biased
and noisy.

4 Literature mining

Literature mining methods can be classified into
bottom-up (pairwise) and top-down (domain
model based) methods. Bottom-up methods at-
tempt to identify individual relationships and
the integration is left to the domain expert. Lin-
guistic approaches assume that the individual
relations are sufficiently known, formulated and
reported for automated detection methods. On
the contrary, top-down methods concentrate on
identifying consistent domain models by analyz-
ing jointly the domain literature. They assume
that mainly causally associated entities are re-
ported with or without tentative relations and
direct structural knowledge. Their linguistic
formulation is highly variable, not conforming

to simple grammatical characterization. Conse-
quently top-down methods typically use agram-
matical text representations and minimal lin-
guistic support. They autonomously prune the
redundant, inconsistent, indirect relations by
evaluating consistent domain models and can
deliver results in domains already in the Asso-
ciative phase.

Until recently mainly bottom-up methods
have been analyzed in the literature: linguistic
approaches extract explicitly stated relations,
possibly with qualitative ratings (Proux et al.,
2000; Hirschman et al., 2002); co-occurrence
analysis quantifies the pairwise relations of vari-
ables by their relative frequency (Stapley and
Benoit, 2000; Jenssen et al., 2001); kernel sim-
ilarity analysis uses the textual descriptions or
the occurrence patterns of variables in publi-
cations to quantify their relation (Shatkay et
al., 2002); Swanson and Smalheiser (1997) dis-
cover relationships through the heuristic pat-
tern analysis of citations and co-occurrences; in
(Cooper, 1997) and (Mani and Cooper, 2000)
local constraints were applied to cope with pos-
sible hidden confounders, to support the discov-
ery of causal relations; joint statistical analysis
in (Krauthammer et al., 2002) fits a generative
model to the temporal pattern of corrobora-
tions, refutations and citations of individual re-
lations to identify “true” statements. The top-
down method of the joint statistical analysis of
de Campos (1998) learns a restricted BN the-
saurus from the occurrence patterns of words in
the literature. Our approach is closest to this
and those of Krauthammer et al. and Mani.

The reconstruction of informative and faith-
ful priors over domain mechanisms or models
from research papers is further complicated by
the multiple aspects of uncertainty about the ex-
istence, scope (conditions of validity), strength,
causality (direction), robustness for perturba-
tion and relevance of mechanism and the in-
completeness of reported relations, because they
are assumed to be well-known parts of common
sense knowledge or of the paradigmatic already
reported knowledge of the community.
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5 BN models of publications

Considering (biomedical) abstracts, we adopt
the central role of causal understanding and ex-
planation in scientific research and publication
(Thagard, 1998). Furthermore, we assume that
the contemporary (collective) uncertainty over
mechanisms is an important factor influenc-
ing the publications. According to this causal
stance, we accept the ‘causal relevance’ inter-
pretation, more specifically the ‘explained’ (ex-
planandum) and ‘explanatory’ (explanans), in
addition, we allow the ‘described’ status. This is
appealing, because in the assumed causal publi-
cations both the name occurrence and the pre-
processing kernel similarity method (see Sec-
tion 6) express the presence or relevance of the
concept corresponding to the respective vari-
able. This implicitly means that we assume
that publications contain either descriptions of
the domain concepts without considering their
relations or the occurrences of entities partici-
pating in known or latent causal relations. We
assume that there is only one causal mechanism
for each parental set, so we will equate a given
parental set and the mechanism based on it.

Furthermore, we assume that mainly positive
statements are reported and we treat negation
and refutation as noise, and that exclusive hy-
potheses are reported, i.e. we treat alternatives
as one aggregated hypothesis. Additionally, we
presume that the dominant type of publications
are causally (“forward”) oriented. We attempt
to model the transitive nature of causal expla-
nation over mechanisms, e.g. that causal mech-
anisms with a common cause or with a common
effect are surveyed in an article, or that subse-
quent causal mechanisms are tracked to demon-
strate a causal chain. On the other hand, we
also have to model the lack of transitivity, i.e.
the incompleteness of causal explanations, e.g.
that certain variables are assumed as explana-
tory, others as potentially explained, except for
survey articles that describe an overall domain
model. Finally, we assume that the reports of
the causal mechanisms and the univariate de-
scriptions are independent of each other.

5.1 The intransitive publication model

The first generative model is a two-layer BN.
The upper-layer variables represent the prag-
matic functions (described or explanandum) of
the corresponding concepts, while lower-layer
variables represent their observable occurrences
(described, explanatory or explained). Upper-
layer variables can be interpreted as the in-
tentions of the authors or as the property of
the given experimental technique. We assume
that lower-layer variables are influenced only by
the upper-layer ones denoting the correspond-
ing mechanisms, and not by any other external
quantities, e.g. by the number of the reported
entities in the paper. A further assumption is
that the belief in a compound mechanism is the
product of the beliefs in the pairwise dependen-
cies. Consequently we use noisy-OR canonic
distributions for the children in the lower layer.
In a noisy-OR local dependency (Pearl, 1988),
the edges can be labeled with a parameter, in-
hibiting the OR function, which can be inter-
preted also structurally as the probability of an
implicative edge.

This model extends the atomistic, individual-
mechanism oriented information extraction
methods by supporting the joint learning of all
the mechanisms, i.e. by the search for a domain-
wide coherent model. However it still cannot
model the dependencies between the reported
associations, and the presence of hidden vari-
ables considerably increase the computational
complexity of parameter and structure learning.

5.2 The transitive publication model

To devise a more advanced model, we relax the
assumption of the independence between the
variables in the upper layer representing the
pragmatic functions, and we adapt the mod-
els to the bag-of-word representation of publi-
cations (see Section 6). Consequently we an-
alyze the possible pragmatic functions corre-
sponding to the domain variables, which could
be represented by hidden variables. We assume
here that the explanatory roles of a variable are
not differentiated, and that if a variable is ex-
plained, then it can be explanatory for any other
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variable. We assume also full observability of
causal relevance, i.e. that the lack of occur-
rence of an entity in a paper means causal ir-
relevance w.r.t. the mechanisms and variables
in the paper and not a neutral omission. These
assumptions allow the merging of the explana-
tory, explained and described status with the
observable reported status, i.e. we can repre-
sent them jointly with a single binary variable.
Note that these assumptions remain tenable in
case of report of experiments, where the pattern
of relevancies has a transitive-causal bias.

These would imply that we can model only
full survey papers, but the general, uncon-
strained multinomial dependency model used in
the transitive BNs provides enough freedom to
avoid this. A possible semantics of the parame-
ters of a binary, transitive literature BN can be
derived from a causal stance that the presence
of an entity Xi is influenced only by the pres-
ence of its potential explanatory entities, i.e. its
parents. Consequently, P (Xi = 1|PaXi = paxi)
can be interpreted as the belief that the present
parental variables can explain the entities Xi

(PaXi denotes the parents of Xi and PaXi →
Xi denotes the parental substructure). In that
way the parameters of a complete network can
represent the priors for parental sets compatible
with the implied ordering:

P (Xi = 1|PaXi = paXi) = P (PaXi = paXi)
(2)

where for notational simplicity pa(Xi) denotes
both the parental set and a corresponding bi-
nary representation.

The multinomial model allows entity specific
modifications at each node, combined into the
parameters of the conditional probability model
that are independent of other variables (i.e. un-
structured noise). This permits the modeling
of the description of the entities (P (XD

i )), the
beginning of the transitive scheme of causal
explanation (P (XB

i )) and the reverse effect
of interrupting the transitive scheme (P (XI

i )).
These auxiliary variables model simplistic in-
terventions, i.e. authors’ intentions about pub-
lishing an observational model. Note that a
“backward” model corresponding to an effect-

to-cause or diagnostic interpretation and expla-
nation method has a different structure with op-
posite edge directions.

In the Bayesian framework, there is a struc-
tural uncertainty also, i.e. uncertainty over the
structure of the generative models (literature
BNs) themselves. So to compute the probabil-
ity of a parental set PaXi = paXi given a liter-
ature data set DL

N ′ , we have to average over the
structures using the posterior given the litera-
ture data:

P (PaXi = paXi |DL
N ′) (3)

=
∑

(paXi
→Xi)⊂G

P (Xi = 1|paXi , G)P (G|DL
N ′)

≈
∑

G

1((paXi → Xi) ⊂ G)P (G|DL
N ′) (4)

Consequently, the result of learning BNs from
the literature can be multiple, e.g. using a max-
imum a posteriori (MAP) structure and the cor-
responding parameters, or the posterior over the
structures (Eq. 3). In the first case, the param-
eters can be interpreted structurally and con-
verted into a prior for a subsequent learning. In
the latter case, we neglect the parametric infor-
mation focusing on the structural constraints,
and transform the posterior over the literature
network structures into a prior over the struc-
tures of the real-world BNs (see Eq. 1).

6 The literature data sets

For our research we used the same collection
of abstracts as that described in (Antal et al.,
2004), which was a preliminary work using pair-
wise methods. The collection contains 2256 ab-
stracts about ovarian cancer, mostly between
1980 and 2002. Also a name, a list of synonyms
and a text kernel is available for each domain
variable. The presence of the name (and syn-
onyms) of a variable in documents is denoted
with a binary value. Another binary represen-
tation of the publications is based on the kernel
documents:

RK
ij =

{
1 if 0.1 < sim(kj , di)
0 else

, (5)

which expresses the relevance of kernel doc-
ument kj to document di using the ‘term
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frequency-inverse document frequency’ (TF-
IDF) vector representation and the cosine sim-
ilarity metric (Baeza-Yates and Ribeiro-Neto,
1999). We use the term literature data to denote
both binary representations of the relevance of
concepts in publications, usually denoted with
DL

N ′ (containing N ′ publications).

7 Results

The structure learning of the transitive model is
achieved by an exhaustive evaluation of parental
sets up to 4 variables followed by the K2 greedy
heuristics using the BDeu score (Heckerman et
al., 1995) and an ordering of the variables from
an expert, in order to be compatible with the
learning of the intransitive model. The struc-
ture learning of the two-layer model has a higher
computational cost, because the evaluation of a
structure requires the optimization of parame-
ters, which can be performed e.g. by gradient-
descent algorithms. Because of the use of the
“forward” explanation scheme, only those vari-
ables in the upper layer can be the parents
of an external variable that succeed it in the
causal order. Note that beside the optional
parental edges for the external variables, we al-
ways force a deterministic edge from the cor-
responding non-external variable. During the
parameter learning of a fixed network structure
the non-zero inhibitory parameters of the lower
layer variables are adjusted according to a gradi-
ent descent method to maximize the likelihood
of the data (see (Russell et al., 1995)). After
having found the best structure, according to its
semantics, it is converted into a flat, real-world
structure without hidden variables. This con-
version involves the merging of the correspond-
ing pairs of nodes of the two layers, and then
reverting the edges (since in the explanatory in-
terpretation effects precede causes).

We compared the trained models to the ex-
pert model using a quantitative score based on
the comparison of the pairwise relations in the
model, which are defined w.r.t. the causal inter-
pretation as follows (Cooper and Yoo, 1999; Wu
et al., 2001): Causal edge (E) An edge between
the nodes. Causal path (P) A directed path

linking nodes. (Pure) Confounded (C) The two
nodes have a common ancestor. The relation
is pure, if there is no edge or path between the
nodes. Independent (I) None of the previous
(i.e. there is no causal connection).

The difference between two model structures
can be represented in a matrix containing the
number of relations of a given type in the expert
model and in the trained model (the type of the
relation in the expert model is the row index
and the type in the trained model is the col-
umn index). These matrices (i.e. the compari-
son of the transitive and the intransitive mod-
els to the expert’s) are shown in Table 1. Scalar

Table 1: Causal comparison of the intransitive
and the transitive domain models (columns with
‘i’ and ‘t’ in the subscript, respectively) to the
expert model (rows).

Ii Ci Pi Ei It Ct Pt Et

I 12 0 0 0 0 4 2 6
C 106 20 2 4 4 90 26 12
P 756 72 80 18 188 460 216 62
E 70 6 8 36 6 38 24 52

scores can be derived from this matrix, to evalu-
ate the goodness of the trained model, the stan-
dard choice is to sum the elements with differ-
ent weights (Cooper and Yoo, 1999; Wu et al.,
2001). One possibility e.g. if we take the sum of
the diagonal elements as a measure of similar-
ity. By this comparison, the intransitive model
achieves 148 points, while the transitive 358, so
the transitive reconstructs more faithfully the
underlying structure. Particularly important is
the (E, E) element according to which 52 of the
120 edges of the expert model remains in the
transitive model, on the contrary the intransi-
tive model preserves only 36 edges. Similarly
the independent relations of the expert model
are well respected by both models.

Another score, which penalizes only the incor-
rect identification of independence (i.e. those
and only those weights have a value of 1 which
belong to the elements (I, .) or (., I), the others
are 0), gives a score 210 and 932 for the tran-
sitive model and the intransitive respectively.
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Figure 1: The expert-provided (dotted), the MAP transitive (dashed) and the intransitive (solid)
BNs compatible with the expert’s total ordering of the thirty-five variables using the literature data
set (PMCOREL

R3
), the K2 noninformative parameter priors, and noninformative structure priors.

This demonstrates that the intransitive model
is extremely conservative in comparison with
both the other learning method and with the
knowledge of the expert, it is only capable of
detecting the most important edges; note that
the proportion of its false positive predictions
regarding the edges is only 38% while in the
transitive model it is 61%.

Furthermore, we investigated the Bayesian
learning of BN features, particularly using the
temporal sequence of the literature data sets.
An important feature indicating relevance be-
tween two variables is the so-called ‘Markov
Blanket Membership’ (Friedman and Koller,
2000). We have examined the temporal charac-
teristics of the posterior of this relation between
a target variable ‘Pathology’ and the other ones
using the approximation in Eq. 4. This feature
is a good representative for the diagnostic im-
portance of variables according to the commu-
nity. We have found four types of variables: the
posterior of the relevance increasing in time fast
or slowly, decreasing slowly or fluctuating. Fig-
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Figure 2: The probability of the relation
Markov Blanket Membership between Pathol-
ogy and the variables with a slow rise.

ure 2 shows examples for variables with a slow
rising in time.

8 Conclusion

In the paper we proposed generative BN mod-
els of scientific publication to support the con-
struction of real-world models from free-text lit-
erature. The advantage of this approach is its
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domain model based foundation, hence it is ca-
pable of constructing coherent models by au-
tonomously pruning redundant or inconsistent
relations. The preliminary results support this
expectation. In the future we plan to use the
evaluation methodology applied there including
rank based performance metrics and to investi-
gate the issue of negation and refutation partic-
ularly through time.
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Abstract

Loopy propagation provides for approximate reasoning with Bayesian networks. In pre-
vious research, we distinguished between two different types of error in the probabilities
yielded by the algorithm; the cycling error and the convergence error. Other researchers
analysed an equivalent algorithm for pairwise Markov networks. For such networks with
just a simple loop, a relationship between the exact and the approximate probabilities was
established. In their research, there appeared to be no equivalent for the convergence er-
ror, however. In this paper, we indicate that the convergence error in a Bayesian network
is converted to a cycling error in the equivalent Markov network. Furthermore, we show
that the prior convergence error in Markov networks is characterised by the fact that the
previously mentioned relationship between the exact and the approximate probabilities
cannot be derived for the loop node in which this error occurs.

1 Introduction

A Bayesian network uniquely defines a joint
probability distribution and as such provides
for computing any probability of interest over
its variables. Reasoning with a Bayesian net-
work, more specifically, amounts to comput-
ing (posterior) probability distributions for the
variables involved. For networks without any
topological restrictions, this reasoning task is
known to be NP-hard (Cooper 1990). For net-
works with specific restricted topologies, how-
ever, efficient algorithms are available, such as
Pearl’s propagation algorithm for singly con-
nected networks. Also the task of computing
approximate probabilities with guaranteed error
bounds is NP-hard in general (Dagum and Luby
1993). Although their results are not guaran-
teed to lie within given error bounds, various ap-
proximation algorithms are available that yield
good results on many real-life networks. One of
these algorithms is the loopy-propagation algo-

rithm. The basic idea of this algorithm is to ap-
ply Pearl’s propagation algorithm to a Bayesian
network regardless of its topological structure.
While the algorithm results in exact probabil-

ity distributions for a singly connected network,
it yields approximate probabilities for the vari-
ables of a multiply connected network. Good
approximation performance has been reported
for this algorithm (Murphy et al 1999).

In (Bolt and van der Gaag 2004), we stud-
ied the performance of the loopy-propagation
from a theoretical point of view and argued that
two types of error may arise in the approximate
probabilities yielded by the algorithm: the cy-

cling error and the convergence error. A cycling
error arises when messages are being passed
on within a loop repetitively and old informa-
tion is mistaken for new by the variables in-
volved. A convergence error arises when mes-
sages that originate from dependent variables
are combined as if they were independent.

Many other researchers have addressed the
performance of the loopy-propagation algo-
rithm. Weiss and his co-workers, more specif-
ically, investigated its performance by study-
ing the application of an equivalent algorithm
on pairwise Markov networks (Weiss 2000, and
Weiss and Freeman 2001). Their use of Markov
networks for this purpose was motivated by the
relatively easier analysis of these networks and



justified by the observation that any Bayesian
network can be converted into an equivalent
pairwise Markov network. Weiss (2000) derived
an analytical relationship between the exact and
the computed probabilities for the loop nodes
in a network including a single loop. In the
analysis of loopy propagation in Markov net-
works, however, no distinction between differ-
ent error types was made, and on first sight
there is no equivalent for the convergence er-
ror. In this paper we investigate this difference
in results; we do so by constructing the simplest
situation in which a convergence error may oc-
cur, and analysing the equivalent Markov net-
work. We find that the convergence error in
the Bayesian Markov network is converted to a
cycling error in the equivalent Markov network.
Furthermore, we find that the prior convergence
error in Markov networks is characterised by the
fact that the relationship between the exact and
the approximate probabilities, as established by
Weiss, cannot be derived for the loop node in
which this error occurs.

2 Bayesian Networks

A Bayesian network is a model of a joint prob-
ability distribution Pr over a set of stochas-
tic variables V, consisting of a directed acyclic
graph and a set of conditional probability dis-
tributions1. Each variable A is represented by
a node A in the network’s digraph2. (Condi-
tional) independency between the variables is
captured by the digraph’s set of arcs accord-
ing to the d-separation criterion (Pearl 1988).
The strength of the probabilistic relationships
between the variables is captured by the con-
ditional probability distributions Pr(A | p(A)),
where p(A) denotes the instantiations of the
parents of A. The joint probability distribution

1Variables are denoted by upper-case letters (A), and
their values by indexed lower-case letters (ai); sets of
variables by bold-face upper-case letters (A) and their
instantiations by bold-face lower-case letters (a). The
upper-case letter is also used to indicate the whole range
of values of a variable or a set of variables.

2The terms node and variable will be used inter-
changeably.

is presented by

Pr(V) =
∏

A∈V

Pr(A | p(A))

For the scope of this paper we assume all vari-
ables of a Bayesian network to be binary. We
will often write a for A = a1 and ā for A = a2.
Fig. 1 depicts a small binary Bayesian network.

A

B

C

Pr(a) = x

Pr(b | a) = p
Pr(b | ā) = q

Pr(c | ab) = r
Pr(c | ab̄) = s
Pr(c | āb) = t
Pr(c | āb̄) = u

Figure 1: An example Bayesian network.

A multiply connected network includes one or
more loops. We say that a loop is simple if none
of its nodes are shared by another loop. A node
that has two or more incoming arcs on a loop
will be called a convergence node of this loop.
Node C is the only convergence node in the net-
work from Fig. 1. Pearl’s propagation algorithm
(Pearl 1988) was designed for exact inference
with singly connected Bayesian networks. The
term loopy propagation used throughout the lit-
erature, refers to the application of this algo-
rithm to networks with loops.

3 The Convergence Error in

Bayesian Networks

When applied to a singly connected Bayesian
network, Pearl’s propagation algorithm results
in exact probabilities. When applied to a multi-
ply connected network, however, the computed
probabilities may include errors. In previous
work we distinguished between two different
types of error (Bolt and van der Gaag 2004).

The first type of error arises when messages
are being passed on in a loop repetitively and
old information is mistaken for new by the vari-
ables involved. The error that thus arises will
be termed a cycling error. A cycling error can
only occur if for each convergence node of a loop
either the node itself or one of its descendents
is observed. The second type of error originates
from the combination of causal messages by the
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convergence node of a loop. A convergence node
combines the messages from its parents as if the
parents are independent. They may be depen-
dent, however, and by assuming independence,
a convergence error may be introduced. A con-
vergence error may already emerge in a network
in its prior state. In the sequel we will denote
the probabilities that result upon loopy prop-
agation with P̃r to distinguish them from the
exact probabilities which are denoted by Pr.

Moreover, we studied the prior convergence
error. Below, we apply our analysis to the ex-
ample network from Figure 1. For the network
in its prior state, the loopy-propagation algo-
rithm establishes

fPr(c) =
X

A,B

Pr(c | AB) · Pr(A) · Pr(B)

as probability for node C. Nodes A and B, how-
ever, may be dependent and the exact probabil-
ity Pr(c) equals

Pr(c) =
X

A,B

Pr(c | AB) · Pr(B | A) · Pr(A)

The difference between the exact and approxi-
mate probabilities is

Pr(c) − P̃r(c) = x · y · z

where

x = Pr(c | ab) − Pr(c | ab̄) − Pr(c | āb) + Pr(c | āb̄)

y = Pr(b | a) − Pr(b | ā)

z = Pr(a) − Pr(a)2

The factors that govern the size of the prior
convergence error in the network from Figure 1,
are illustrated in Figure 2; for the construction
of this figure we used the following probabilities:
r = 1, s = 0, t = 0, u = 1, p = 0.4, q = 0.1 and
x = 0.5. The line segment captures the exact
probability Pr(c) as a function of Pr(a); note
that each specific Pr(a) corresponds with a spe-

cific Pr(b). The surface captures P̃r(c) as a func-
tion of Pr(a) and Pr(b). The convergence error
equals the distance between the point on the

Pr(c)

1
0

Pr(a) 0

1
Pr(b)

1

0.5

0.65

Figure 2: The probability of c as a function of
Pr(a) and Pr(b), assuming independence of the
parents A and B of C (surface), and as a func-
tion of Pr(a) (line segment).

line segment that matches the probability Pr(a)
from the network and its orthogonal projection
on the surface. For Pr(a) = 0.5, more specif-

ically, the difference between Pr(c) and P̃r(c)
is indicated by the vertical dotted line segment
and equals 0.65− 0.5 = 0.15. Informally speak-
ing:

• the more curved the surface is, the larger
the distance between a point on the line
segment and its projection on the surface
can be; the curvature of the surface is re-
flected by the factor x;

• the distance between a point on the seg-
ment and its projection on the surface de-
pends on the orientation of the line seg-
ment; the orientation of the line segment is
reflected by the factor y;

• the distance between a point on the line
segment and its projection on the surface
depends its position on the line segment;
this position is reflected by the factor z.

We recall that the convergence error originates
from combining messages from dependent nodes
as if they were independent. The factors y and
z now in essence capture the degree of depen-
dence between the nodes A and B; the factor x
indicates to which extent this dependence can
affect the computed probabilities.
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4 Markov Networks

Like a Bayesian network, a Markov network
uniquely defines a joint probability distribu-
tion over a set of statistical variables V. The
variables are represented by the nodes of an
undirected graph and (conditional) indepen-
dency between the variables is captured by the
graph’s set of edges; a variable is (conditionally)
independent of every other variable given its
Markov blanket. The strength of the probabilis-
tic relationships is captured by clique potentials.
Cliques C are subsets of nodes that are com-
pletely connected; ∪C = V. For each clique, a
potential function ψC(AC) is given that assigns
a non-negative real number to each configura-
tion of the nodes A of C. The joint probability
is presented by:

Pr(V) = 1/Z ·
∏

C

ψC(AC)

where Z =
∑

V

∏
C ψC(AC) is a normalising

factor, ensuring that
∑

V
Pr(V) = 1. A pair-

wise Markov network is a Markov network with
cliques of maximal two nodes.

For pairwise Markov networks, an algorithm
can be specified that is functionally equivalent
to Pearl’s propagation algorithm (Weiss 2000).
In this algorithm, in each time step, every node
sends a probability vector to each of its neigh-
bours. The probability distribution of a node is
obtained by combining the steady state values
of the messages from its neighbours.

In a pairwise Markov network, the transition
matrices MAB andMBA can be associated with
any edge between nodes A and B.

MAB
ji = ψ(A = ai, B = bj)

Note that matrix MBA equals MABT

.

Example 1 Suppose we have a Markov net-
work with two binary nodes A and B, and
suppose that for this network the potentials
ψ(ab) = p, ψ(ab̄) = q, ψ(āb) = r and ψ(āb̄) = s
are specified, as in Fig. 3 . We then as-

sociate the transition matrix M AB =

»
p r
q s

–

with the link from A to B and its transpose

MBA =

»
p q
r s

–
with the link from B to A. 2

A

B

[
p r
q s

][
p q
r s

]ψ(ab) = p

ψ(ab̄) = q

ψ(āb) = r

ψ(āb̄) = s

Figure 3: An example pairwise Markov network
and its transition matrices.

The propagation algorithm now is defined
as follows. The message from A to B equals
MAB ·v after normalisation, where v is the vec-
tor that results from the component wise mul-
tiplication of all message vectors sent to A ex-
cept for the message vector sent by B. The
procedure is initialised with all message vectors
set to (1,1,...,1). Observed nodes do not re-
ceive messages and they always transmit a vec-
tor with 1 for the observed value and zero for
all other values. The probability distribution for
a node, is obtained by combining all incoming
messages, again by component wise multiplica-
tion and normalisation.

5 Converting a Bayesian Network

into a Pairwise Markov Network

In this section, the conversion of a Bayesian net-
work into an equivalent pairwise Markov net-
work is described (Weiss 2000). In the con-
version of the Bayesian network into a Markov
network, for any node with multiple parents,
an auxiliary node is constructed into which the
common parents are clustered. This auxiliary
node is connected to the child and its parents
and the original arcs between child and parents
are removed. Furthermore, all arc directions in
the network are dropped. The clusters are all
pairs of connected nodes. For a cluster with an
auxiliary node and a former parent node, the
potential is set to 1 if the nodes have a simi-
lar value for the former parent node and to 0
otherwise. For the other clusters, the potentials
are equal to the conditional probabilities of the
former child given the former parent. Further-
more, the prior probability of a former root node
is incorporated by multiplication into one of the
potentials of the clusters in which it takes part.
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A

B

X

C

ψ(ab) = px

ψ(ab̄) = (1− p)x

ψ(āb) = q(1 − x)

ψ(āb̄) = (1− q)(1 − x)
ψ(a, a′b′) = 1

ψ(a, a′ b̄′) = 1

ψ(a, ā′b′) = 0

ψ(a, ā′ b̄′) = 0

ψ(ā, a′b′) = 0

ψ(ā, a′ b̄′) = 0

ψ(ā, ā′b′) = 1

ψ(ā, ā′ b̄′) = 1

ψ(a′b′, c) = r

ψ(a′b̄′, c) = s

ψ(ā′b′, c) = t

ψ(ā′b̄′, c) = u

ψ(b, a′b′) = 1

ψ(b, a′b̄′) = 0

ψ(b, ā′b′) = 1

ψ(b, ā′b̄′) = 0

ψ(b̄, a′b′) = 0

ψ(b̄, a′b̄′) = 1

ψ(b̄, ā′b′) = 0

ψ(b̄, ā′b̄′) = 1

ψ(a′b′, c̄) = (1− r)

ψ(a′ b̄′, c̄) = (1− s)

ψ(ā′b′, c̄) = (1− t)

ψ(ā′ b̄′, c̄) = (1− u)

Figure 4: A pairwise Markov network that rep-
resents the same joint probability distribution
as the Bayesian network from Figure 1.

Example 2 The Bayesian network from Figure
1 can be converted into the pairwise Markov
network from Figure 4 with clusters AB, AX,
BX and XC. Node X is composed of A′ and
B′ and has the values a′b′, a′b̄′, ā′b′ and ā′b̄′.
Given that the prior probability of root node
A is incorporated in the potential of cluster
AB, the network has the following potentials:
ψ(AB) = Pr(B | A) · Pr(A); ψ(XC) = Pr(C |
AB): ψ(AX) = 1 if A′ = A and 0 otherwise
and; ψ(BX) = 1 if B ′ = B and 0 otherwise.

6 The Analysis of Loopy

Propagation in Markov Networks

Weiss (2000) analysed the performance of the
loopy-propagation algorithm for Markov net-
works with a single loop and related the approx-
imate probabilities found for the nodes in the
loop to their exact probabilities. He noted that
in the application of the algorithm messages
will cycle in the loop and errors will emerge
as a result of the double counting of informa-
tion. The main idea of his analysis is that for a
node in the loop, two reflexive matrices can be
derived; one for the messages cycling clockwise
and one for the messages cycling counterclock-
wise. The probability distribution computed by
the loopy-propagation algorithm for the loop
node in the steady state, now can be inferred
from the principal eigenvectors of the reflexive

matrices plus the other incoming vectors. Sub-
sequently, he showed that the reflexive matrices
also include the exact probability distribution
and used those two observations to derive an an-
alytical relationship between the approximated
and the exact probabilities.

L1 L2

Ln

On

O1 O2

M1

M1T

Mn

MnT

D1 D2

Dn

Figure 5: An example Markov network with just
one loop.

More in detail, Weiss considered a Markov
network with a single loop with n nodes L1...Ln

and with connected to each node in the loop,
an observed node O1...On as shown in Figure 5.
During propagation, a node Oi will constantly
send the same message into the loop. This vec-
tor is one of the columns of the transition ma-
trix MOiLi

In order to enable the incorporation
of this message into the reflexive matrices, this
vector is transformed into a diagonal matrix Di,
with the vector elements on the diagonal. For

example, suppose that MOiLi

=

»
p r
q s

–
and

suppose that the observation Oi = oi
1

is made,

then Di =

»
p 0
0 q

–
. Furthermore, M 1 is the

transition matrix for the message from L1 to
L2 and M1T

the transition matrix for the mes-
sage from L2 to L1 etc. The reflexive matrix
C for the transition of a counterclockwise mes-
sage from node L1 back to itself is defined as
M1

T

D2...Mn−1
T

DnMnT

D1. The message that
L2 sends to L1 in the steady state now is in
the direction of the principal eigenvector of C.
The reflexive matrix C2 for the transition of a
clockwise message from node L1 back to itself
is defined as MnDnMn−1Dn−1...M1D1. The
message that node Ln sends to L1 in the steady
state is in the direction of the principal eigen-
vector of C2. Component wise multiplication of
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the two principal eigenvectors and the message
from O1 to L1, and normalisation of the result-
ing vector, yields a vector of which the com-
ponents equal the approximated values for L1

in the steady state. Furthermore, Weiss proved
that the elements on the diagonals of the re-
flexive matrices equal the correct probabilities
of the relevant value of L1 and the evidence, for
example, C1,1 equals Pr(l1

1
,o). Subsequently, he

related the exact probabilities for a node A in
the loop to its approximate probabilities by

Pr(ai) =
λ1P̃r(ai) +

∑
j=2

PijλjP
−1

ji∑
j λj

(1)

in which P is a matrix that is composed of the
eigenvectors of C, with the principal eigenvector
in the first column, and λ1...λj are the eigenval-
ues of the reflexive matrices, with λ1 the max-
imum eigenvalue. We note that from this for-
mula it follows that correct probabilities will be
found if λ1 equals 1 and all other eigenvalues
equal 0.

In the above analysis, all nodes Oi are con-
sidered to be observed. Note that given unob-
served nodes outside the loop, the analysis is
essentially the same. In that case a transition

matrix MOiLi

=

»
p r
q s

–
will result in the diag-

onal matrix Di =

»
p + r 0

0 q + s

–
.

7 The Convergence Error in Markov

Networks

As discussed in Section 3 in Bayesian networks,
a distinction could be made between the cycling
error and the convergence error. In the previ-
ous section it appeared that for Markov network
such a distinction does not exist. All errors re-
sult from the cycling of information and, on first
sight, there is no equivalent for the convergence
error. However, any Bayesian network can be
converted into an equivalent pairwise Markov
network on which an algorithm equivalent to
the loopy-propagation algorithm can be used.
In this section, we investigate this apparent in-
compatibility of results and indicate how the
convergence error yet is embedded in the anal-
ysis of loopy propagation in Markov networks.

We do so by constructing the simplest situation
in which a convergence error may occur, that is,
the Bayesian network from Figure 1 in its prior
state, and analysing this situation in the equiv-
alent Markov network. The focus thereby is on
the node that replaces the convergence node in
the loop. We then argue that the results have a
more general validity.

Consider the Bayesian network from Fig-
ure 1. In its prior state, there is no cy-
cling of information, and exact probabilities
will be found for nodes A and B. In node
C, however, a convergence error may emerge.
The network can be converted into the pair-
wise Markov network from Figure 4. For
this network we find the transition matrices

MXA =

»
1 1 0 0
0 0 1 1

–
, MXB =

»
1 0 1 0
0 1 0 1

–
,

MXC =

»
r s t u

1 − r 1 − s 1 − t 1 − u

–
, MAB =

»
px q(1 − x)

(1 − p)x (1 − p)(1 − x)

–
and their transposes.

In the prior state of the network, C will send the
message MCX · (1, 1) = (1, 1, 1, 1) to X. In or-
der to enable the incorporation of this message
into the reflexive loop matrices it is transformed
into DCX which, in this case, is the 4x4-identity
matrix.

We first evaluate the performance of the loopy
propagation algorithm for the regular loop node
A. This node has the following reflexive matri-
ces for its clockwise and counterclockwise mes-
sages respectively:

M
�A = M

XA · DCX · MBX · MAB =

»
x 1 − x
x 1 − x

–

with eigenvalues 1 and 0 and principal eigenvec-
tor (1,1) and

M
	A = M

BA ·MXB ·DCX ·MAX =

»
x x

1 − x 1 − x

–

with eigenvalues 1 and 0 and principal eigenvec-
tor (x, 1−x). Note that the correct probabilities
for node A indeed are found on the diagonal of
the reflexive matrices. Furthermore, λ1 = 1 and
λ2 = 0 and therefore correct approximations are
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expected. We indeed find that the approxima-
tions (1 · x, 1 · (1− x)) equal the exact probabil-
ities. Note also that, as expected, the messages
from node A back to itself do not change any
more after the first cycle. As in the Bayesian
network, for node A no cycling of information
occurs in the Markov network. For node B a
similar evaluation can be made.

We now turn to the convergence node C. In
the Bayesian network in its prior state a conver-
gence error may emerge in this node. In the con-
version of the Bayesian network into the Markov
network, the convergence node C is placed out-
side the loop and the auxiliary node X is added.
For X, the following reflexive matrices are com-
puted for the clockwise and counterclockwise
messages from node X back to itself respec-
tively:

M�X = MBX ·MAB ·MXA ·DCX =[
px px q(1 − x) q(1− x)

(1− p)x (1− p)x (1− q)(1 − x) (1− q)(1 − x)
px px q(1 − x) q(1− x)

(1− p)x (1− p)x (1− q)(1 − x) (1− q)(1 − x)

]

with eigenvalues 1, 0, 0, 0; principal eigenvector
((px+q(1−x))/((1−p)x+(1−q)(1−x)), 1, (px+
q(1 − x))/((1 − p)x + (1 − q)(1 − x)), 1) and
other eigenvectors (0, 0,−1, 1), (−1, 1, 0, 0) and
(0, 0, 0, 0).

M	X = MAX ·MBA ·MXB ·MCX =[
px (1− p)x px (1− p)x
px (1− p)x px (1− p)x

q(1 − x) (1− q)(1− x) q(1 − x) (1− q)(1 − x)
q(1 − x) (1− q)(1− x) q(1 − x) (1− q)(1 − x)

]

with eigenvalues 1, 0, 0, 0; principal eigenvector
(x/(1−x), x/(1−x), 1, 1) and other eigenvectors
(0,−1, 0, 1), (−1, 0, 1, 0) and (0, 0, 0, 0).

On the diagonal of the reflexive matrices of X
we find the probabilities Pr(AB). As the correct
probabilities for a loop node are found on the
diagonal of its reflexive matrices, these probabil-
ities can be considered to be the exact probabil-
ities for node X. The normalised vector of the
component wise multiplication of the principal
eigenvectors of the two reflexive matrices of X
equals the vector with the normalised probabil-
ities Pr(A) ·Pr(B). Likewise, these probabilities
can be considered to be the approximate prob-
abilities for node X.

A first observation is that λ1 equals 1 and the
other eigenvalues equal 0, but the exact and the
approximate probabilities of node X may differ.
This is not consistent with Equation 1. The ex-
planation is that for node X, the matrix P , is
singular and therefore, the matrix P−1, which
is needed in the derivation of the relationship
between the exact and approximate probabili-
ties, does not exist. Equation 1, thus isn’t valid
for the auxiliary node X. We note furthermore
that the messages from node X back to itself
may still change after the first cycle. We there-
fore find that, although in the Bayesian network
there is no cycling of information, in the Markov
network, for node X information may cycle, re-
sulting in errors computed for its probabilities.

The probabilities computed by the loopy-
propagation algorithm for node C equal the nor-
malised product MXC · v, where v is the vec-
tor with the approximate probabilities found at
node X. It can easily be seen that these ap-
proximate probabilities equal the approximate
probabilities found in the equivalent Bayesian
network. Furthermore we observe that if node
X would send its exact probabilities, that is,
Pr(AB), exact probabilities for node C would
be computed. In the Markov network we
thus may consider the convergence error to be
founded in the cycling of information for the
auxiliary node X.

In Section 3, a formula for the size of the prior
convergence error in the network from figure 1
is given. We there argued that this size is de-
termined by the factors y and z that capture
the degree of dependency between the parents
of the convergence node and the factor x, that
indicates to which extent the dependence be-
tween nodes A and B can affect the computed
probabilities. In this formula, x is composed
of the conditional probabilities of node C. In
the analysis in the Markov network we have a
similar finding. The effect of the degree of de-
pendence between A and B is reflected in the
difference between the exact and the approxi-
mate probabilities found for node X. The ef-
fect of the conditional probabilities at node C
emerges in the transition of the message vector
from X to C.
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We just considered the small example net-
work from Figure 1. Note, however, that for
any prior binary Bayesian networks with just
simple loops, the situation for any loop can be
’summarised’ to the situation in Figure 1 by
marginalisation over the relevant variables. The
results with respect to the manifestation of the
convergence error by the cycling of information
and the invalidity of Equation 1 for the auxil-
iary node, found for the network from Figure
1, therefore, apply to any prior binary Bayesian
networks with just simple loops.34

8 Discussion

Loopy propagation refers to the application of
Pearl’s propagation algorithm for exact reason-
ing with singly connected Bayesian networks to
networks with loops. In previous research we
identified two different types of error that may
arise in the probabilities computed by the algo-
rithm. Cycling errors result from the cycling of
information and arise in loop nodes as soon as
for each convergence node of the loop, either the
node itself, or one of its descendents is observed.
Convergence errors result from combining infor-
mation from dependent nodes as if they were in-
dependent and may arise at convergence nodes.
This second error type is found both in a net-
work’s prior and posterior state. Loopy prop-
agation has also been studied by the analysis
of the performance of an equivalent algorithm
in pairwise Markov networks with just a simple
loop. According to this analysis all errors result
from the cyling of information and on first sight
there is no equivalent for the convergence error.
We investigated how the convergence error yet is
embedded in the analysis of loopy propagation
in Markov networks. We did so by constructing
the simplest situation in which a convergence
error may occur, and analysing this situation in
the equivalent Markov network. We found that
the convergence error in the Bayesian network

3Given a loop with multiple convergence nodes, in the
prior state of the network, the parents of the convergence
nodes are independent and effectively no loop is present.

4Two loops in sequence may result in incorrect proba-
bilities entering the second loop. The reflexive matrices,
however, will have a similar structure as the reflexive
matrices derived in this section.

is converted to a cycling error in the equivalent
Markov network. Furthermore, we found that
the prior convergence error is characterised by
the fact that the relationship between the exact
probabilities and the approximate probabilities
yielded by loopy propagation, as established by
Weiss, can not be derived for the loop node in
which this error occurs. We then argued that
these results are valid for binary Bayesian net-
work with just simple loops in general.
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Abstract

The MAP problem for Bayesian networks is the problem of finding for a set of variables an
instantiation of highest posterior probability given the available evidence. The problem is
known to be computationally infeasible in general. In this paper, we present a method for
preprocessing the MAP problem with the aim of reducing the runtime requirements for
its solution. Our method exploits the concepts of Markov and MAP blanket for deriving
partial information about a solution to the problem. We investigate the practicability of
our preprocessing method in combination with an exact algorithm for solving the MAP
problem for some real Bayesian networks.

1 Introduction

Upon reasoning with a Bayesian network, of-
ten a best explanation is sought for a given
set of observations. Given the available evi-
dence, such an explanation is an instantiation of
highest probability for some subset of the net-
work’s variables. The problem of finding such
an instantiation has an unfavourable computa-
tional complexity. If the subset of variables for
which a most likely instantiation is to be found
includes just a single variable, then the prob-
lem, which is known as the Pr problem, is NP-
hard in general. A similar observation holds for
the MPE problem in which an instantiation of
highest probability is sought for all unobserved
variables. These two problems can be solved
in polynomial time, however, for networks of
bounded treewidth. If the subset of interest is a
non-singleton proper subset of the set of unob-
served variables, on the other hand, the prob-
lem, which is then known as the MAP problem,
remains NP-hard even for networks for which
the other two problems can be feasibly solved
(Park and Darwiche, 2002).

By performing inference in a Bayesian net-
work under study and establishing the most
likely value for each variable of interest sepa-
rately, an estimate for a solution to the MAP

problem may be obtained. There is no guar-
antee in general, however, that the values in
the resulting joint instantiation indeed corre-
spond to the values of the variables in a solu-
tion to the MAP problem. In this paper, we
now show that, for some of the variables of in-
terest, the computation of marginal posterior
probabilities may in fact provide exact informa-
tion about their value in a solution to the MAP
problem. We show more specifically that, by
building upon the concept of Markov blanket,
some of the variables may be fixed to a par-
ticular value; for some of the other variables of
interest, moreover, values may be excluded from
further consideration. We further introduce the
concept of MAP blanket that serves to provide
similar information.

Deriving partial information about a solution
to the MAP problem by building upon the con-
cepts of Markov and MAP blanket, can be ex-
ploited as a preprocessing step before the prob-
lem is actually solved with any available al-
gorithm. The derived information in essence
serves to reduce the search space for the prob-
lem and thereby reduces the algorithm’s run-
time requirements. We performed an initial
study of the practicability of our preprocess-
ing method by solving MAP problems for real
networks using an exact branch-and-bound al-



gorithm, and found that preprocessing can be
profitable.

The paper is organised as follows. In Sec-
tion 2, we provide some preliminaries on the
MAP problem. In Section 3, we present two
propositions that constitute the basis of our pre-
processing method. In Section 4, we provide
some preliminary results about the practicabil-
ity of our preprocessing method. The paper is
ended in Section 5 with our concluding obser-
vations.

2 The MAP problem

Before reviewing the MAP problem, we intro-
duce our notational conventions. A Bayesian
network is a model of a joint probability dis-
tribution Pr over a set of stochastic variables,
consisting of a directed acyclic graph and a set
of conditional probability distributions. We de-
note variables by upper-case letters (A) and
their values by (indexed) lower-case letters (ai);
sets of variables are indicated by bold-face
upper-case letters (A) and their instantiations
by bold-face lower-case letters (a). Each vari-
able is represented by a node in the digraph;
(conditional) independence between the vari-
ables is encoded by the digraph’s set of arcs
according to the d-separation criterion (Pearl,
1988). The Markov blanket B of a variable A

consists of its neighbours in the digraph plus the
parents of its children. Given its Markov blan-
ket, the variable is independent of all other vari-
ables in the network. The strengths of the prob-
abilistic relationships between the variables are
captured by conditional probability tables that
encode for each variable A the conditional dis-
tributions Pr(A | p(A)) given its parents p(A).

Upon reasoning with a Bayesian network, of-
ten a best explanation is sought for a given set
of observations. Given evidence o for a subset
of variables O, such an explanation is an instan-
tiation of highest probability for some subset M

of the network’s variables. The set M is called
the MAP set for the problem; its elements are
called the MAP variables. An instantiation m

of highest probability to the set M is termed a
MAP solution; the value that is assigned to a

MAP variable in a solution m is called its MAP

value. Dependent upon the size of the MAP set,
we distinguish between three different types of
problem. If the MAP set includes just a single
variable, the problem of finding the best expla-
nation for a set of observations reduces to es-
tablishing the most likely value for this variable
from its marginal posterior probability distribu-
tion. This problem is called the Pr problem as it
essentially amounts to performing standard in-
ference (Park and Darwiche, 2001). In the sec-
ond type of problem, the MAP set includes all

non-observed variables. This problem is known
as the most probable explanation or MPE prob-

lem. In this paper, we are interested in the third
type of problem, called the MAP problem, in
which the MAP set is a non-singleton proper
subset of the set of non-observed variables of the
network under study. This problem amounts to
finding an instantiation of highest probability
for a designated set of variables of interest.

We would like to note that the MAP problem
is more complex in essence than the other two
problems. The Pr problem and the MPE prob-
lem both are NP-hard in general and are solv-
able in polynomial time for Bayesian networks
of bounded treewidth. The MAP problem is
NPPP-hard in general and remains NP-hard for
these restricted networks (Park, 2002).

3 Fixing MAP values

By performing inference in a Bayesian network
and solving the Pr problem for each MAP vari-
able separately, an estimate for a MAP solu-
tion may be obtained. There is no guarantee
in general, however, that the value with highest
marginal probability for a variable corresponds
with its value in a MAP solution. We now show
that, for some variables, the computation of
marginal probabilities may in fact provide ex-
act information about their MAP values.

The first property that we will exploit in the
sequel, builds upon the concept of Markov blan-
ket. We consider a MAP variable H and its
associated Markov blanket. If a specific value
hi of H has highest probability in the marginal
distribution over H for all possible instantia-
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tions of the blanket, then hi will be the value of
H in a MAP solution for any MAP problem in-
cluding H. Alternatively, if some value hj never
has highest marginal probability, then this value
cannot be included in any solution.

Proposition 1. Let H be a MAP variable in a

Bayesian network and let B be its Markov blan-

ket. Let hi be a specific value of H.

1. If Pr(hi | b) ≥ Pr(hk | b) for all values

hk of H and all instantiations b of B, then

hi is the value of H in a MAP solution for

any MAP problem that includes H.

2. If there exist values hk of H with Pr(hi |
b) < Pr(hk | b) for all instantiations b

of B, then hi is not the MAP value of H

in any solution to a MAP problem that in-

cludes H.

Proof. We prove the first property stated in the
proposition; the proof of the second property
builds upon similar arguments.

We consider an arbitrary MAP problem with
the MAP set {H} ∪ M and the evidence o for
the observed variables O. Finding a solution to
the problem amounts to finding an instantiation
to the MAP set that maximises the posterior
probability Pr(H,M | o). We have that

Pr(hi,M | o) =

=
∑

b
Pr(hi | b,o) · Pr(M | b,o) · Pr(b | o)

For the posterior probability Pr(hk,M | o) an
analogous expression is found. Now suppose
that for the value hi of H we have that Pr(hi |
b) ≥ Pr(hk | b) for all values hk of H and all in-
stantiations b of B. Since B is the Markov blan-
ket of H, we have that Pr(hi | b) ≥ Pr(hk | b)
implies Pr(hi | b,o) ≥ Pr(hk | b,o) for all val-
ues hk of H and all instantiations b of B. We
conclude that Pr(hi,M | o) ≥ Pr(hk,M | o)
for all hk. The value hi of H thus is included
in a solution to the MAP problem under study.
Since the above considerations are algebraically
independent of the MAP variables M and of the
evidence o, this property holds for any MAP
problem that includes the variable H. �

H C

D

F

A B

E

G

I

Figure 1: An example directed acyclic graph.

The above proposition provides for preprocess-
ing a MAP problem. Prior to actually solving
the problem, some of the MAP variables may be
fixed to a particular value using the first prop-
erty. With the second property, moreover, var-
ious values of the MAP variables may be ex-
cluded from further consideration. By build-
ing upon the proposition, therefore, the search
space for the MAP problem is effectively re-
duced. We illustrate this with an example.

Example 1. We consider a Bayesian network
with the graphical structure from Figure 1.
Suppose that H is a ternary MAP variable with
the values h1, h2 and h3. The Markov blanket
B of H consists of the three variables A, C and
D. Now, if for any instantiation b of these vari-
ables we have that Pr(h1 | b) ≥ Pr(h2 | b) and
Pr(h1 | b) ≥ Pr(h3 | b), then h1 occurs in a
MAP solution for any MAP problem that in-
cludes H. By fixing the variable H to the value
h1, the search space of any such problem is re-
duced by a factor 3. We consider, as an exam-
ple, the MAP set {H,E,G, I} of ternary vari-
ables. Without preprocessing, the search space
includes 34 = 81 possible instantiations. By fix-
ing the variable H to h1, the search space of the
problem reduces to 33 = 27 instantiations. �

Establishing whether or not the properties from
Proposition 1 can be used for a specific MAP
variable, requires a number of computations
that is exponential in the size of the variable’s
Markov blanket. The computations required,
however, are highly local. A single restricted in-
ward propagation for each instantiation of the
Markov blanket to the variable of interest suf-
fices. Since the proposition moreover holds for
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any MAP problem that includes the variable,
the computational burden involved is amortised
over all future MAP computations.

The second proposition that we will exploit
for preprocessing a MAP problem, builds upon
the new concept of MAP blanket. We consider
a problem with the MAP variables {H} ∪ M.
A MAP blanket K of H now is a minimal sub-
set K ⊆ M such that K d-separates H from
M \ K given the available evidence. Now, if a
specific value hi of H has highest probability in
the marginal distribution over H given the ev-
idence for all possible instantiations of K, then
hi will be the MAP value of H in a solution to
the MAP problem under study. Alternatively, if
some value hj never has highest marginal prob-
ability, then this value cannot be a MAP value
in any of the problem’s solutions.

Proposition 2. Let {H} ∪M be the MAP set

of a given MAP problem for a Bayesian network

and let o be the evidence that is available for

the observed variables O. Let K be the MAP

blanket for the variable H given o, and let hi be

a specific value of H.

1. If Pr(hi | k,o) ≥ Pr(hk | k,o) for all values

hk of H and all instantiations k to K, then

hi is the MAP value of H in a solution to

the given MAP problem.

2. If there exist values hk of H with Pr(hi |
k,o) < Pr(hk | k,o) for all instantiations

k to K, then hi is not the MAP value of H

in any solution to the given MAP problem.

The proof of the proposition is relatively
straightforward, building upon similar argu-
ments as the proof of Proposition 1.

The above proposition again provides for pre-
processing a MAP problem. Prior to actually
solving the problem, the values of some vari-
ables may be fixed and other values may be ex-
cluded for further consideration. The proposi-
tion therefore again serves to effectively reduce
the search space for the problem under study.
While the information derived from Proposi-
tion 1 holds for any MAP problem including H,

however, Proposition 2 provides information for
any problem in which H has a subset of K for its
MAP blanket and with matching evidence for
the observed variables that are not d-separated
from H by K. The information derived from
Proposition 2, therefore, is more restricted in
scope than that from Proposition 1.

We illustrate the application of Proposition 2
for our example network.

Example 2. We consider again the MAP set
{H,E,G, I} for the Bayesian network from Ex-
ample 1. In the absence of any evidence, the
MAP blanket of the variable H includes just
the variable I. Now, if for each value i of
I we have that Pr(h1 | i) ≥ Pr(h2 | i) and
Pr(h1 | i) ≥ Pr(h3 | i), then the value h1 occurs
in a solution to the given MAP problem. The
search space for actually solving the problem
thus again is reduced from 81 to 27. �

Establishing whether or not the properties from
Proposition 2 can be used for a specific MAP
variable, requires a number of computations
that is exponential in the size of the vari-
able’s MAP blanket. The size of this blanket
is strongly dependent of the network’s connec-
tivity and of the location of the various MAP
variables and observed variables in the network.
The MAP blanket can in fact be larger in size
than the Markov blanket of the variable. The
computations required, moreover, are less local
than those required for Proposition 1 and can
involve full inward propagations to the variable
of interest. Since the proposition in addition
applies to just a restricted class of MAP prob-
lems, the computational burden involved in its
verification can be amortised over other MAP
computations to a lesser extent than that in-
volved in the verification of Proposition 1.

The general idea underlying the two propo-
sitions stated above is the same. The idea is
to verify whether or not a particular value of
H can be fixed or excluded as a MAP value by
investigating H’s marginal probability distribu-
tions given all possible instantiations of a collec-
tion of variables surrounding H. Proposition 1
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uses for this purpose the Markov blanket of H.
By building upon the Markov blanket, which in
essence is independent of the MAP set and of
the entered evidence, generally applicable state-
ments about the values of H are found. A dis-
advantage of building upon the Markov blanket,
however, is that maximally different distribu-
tions for H are examined, which decreases the
chances of fixing or excluding values.

By taking a blanket-like collection of variables
at a larger distance from the MAP variable H,
the marginal distributions examined for H are
likely to be less divergent, which serves to in-
crease the chances of fixing or excluding val-
ues of H as MAP values. A major disadvan-
tage of such a blanket, however, is that its size
tends to grow with the distance from H, which
will result in an infeasibly large number of in-
stantiations to be studied. For any blanket-like
collection, we observe that the MAP variables
of the problem have to either be in the blan-
ket or be d-separated from H by the blanket.
Proposition 2 builds upon this observation ex-
plicitly and considers only the instantiations of
the MAP blanket of the variable. The proposi-
tion thereby reduces the computations involved
in its application yet retains and even further
exploits the advantage of examining less diver-
gent marginal distributions over H. Note that
the values that can be fixed or excluded based
on the first proposition, will also be fixed or ex-
cluded based on the second proposition. It may
nevertheless still be worthwhile to exploit the
first proposition because, as stated before, with
this proposition values can be fixed or excluded
in general and more restricted and possibly less
computations are required.

So far we have argued that application of
the two propositions serves to reduce the search
space for a MAP problem by fixing variables to
particular values and by excluding other values
from further consideration. We would like to
mention that by fixing variables the graphical
structure of the Bayesian network under study
may fall apart into unconnected components,
for which the MAP problem can be solved sep-
arately. We illustrate the basic idea with our
running example.

Example 3. We consider again the MAP set
{H,E,G, I} for the Bayesian network from Fig-
ure 1. Now suppose that the variable H can be
fixed to a particular value. Then, by performing
evidence absorption of this value, the graphical
structure of the network falls apart into the two
components {A, I,H} and {B,C,D,E, F,G},
respectively. The MAP problem then decom-
poses into the problem with the MAP set {I}
for the first component and the problem with
the MAP set {E,G} for the second component;
both these problems now include the value of
H as further evidence. The search space thus is
further reduced from 27 to 3 + 9 = 12 instanti-
ations to be studied. �

4 Experiments

In the previous section, we have introduced a
method for preprocessing the MAP problem for
Bayesian networks. In this section, we perform
a preliminary study of the practicability of our
method by solving MAP problems for real net-
works using an exact algorithm. In Section 4.1
we describe the set-up of the experiments; we
review the results in Section 4.2.

4.1 The Experimental Set-up

In our experiments, we study the effects of our
preprocessing method on three real Bayesian
networks. We first report the percentages of
values that are fixed or excluded by exploit-
ing Proposition 1. We then compare the num-
bers of fixed variables as well as the numbers
of network propagations with and without pre-
processing, upon solving various MAP problems
with a state-of-the-art exact algorithm.

In our experiments, we use three real
Bayesian networks with a relatively high con-
nectivity; Table 1 reports the numbers of vari-
ables and values for these networks. The Wil-

son’s disease network (WD) is a small net-
work in medicine, developed for the diagnosis
of Wilson’s liver disease (Korver and Lucas,
1993). The classical swine fever network (CSF)
is a network in veterinary science, currently
under development, for the early detection of
outbreaks of classical swine fever in pig herds
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(Geenen and Van der Gaag, 2005). The ex-
tended oesophageal cancer network (OESO+) is
a moderately-sized network in medicine, which
has been developed for the prediction of re-
sponse to treatment of oesophageal cancer (Ale-
man et al, 2000). For each network, we compute
MAP solutions for randomly generated MAP
sets with 25% and 50% of the network’s vari-
ables, respectively; for each size, five sets are
generated. We did not set any evidence.

For solving the various MAP problems in our
experiments, we use a basic implementation of
the exact branch-and-bound algorithm available
from Park and Darwiche (2003). This algorithm
solves the MAP problem exactly for most net-
works for which the Pr and MPE problems are
feasible. The algorithm constructs a depth-first
search tree by choosing values for subsequent
MAP variables, cutting off branches using an
upper bound. Since our preprocessing method
reduces the search space by fixing variables and
excluding values, it essentially serves to decrease
the depth of the tree and to diminish its branch-
ing factor.

4.2 Experimental results

In the first experiment, we established for each
network the number of values that could be
fixed or excluded by applying Proposition 1,
that is, by studying the marginal distributions
per variable given its Markov blanket. For com-
putational reasons, we decided not to investi-
gate variables for which the associated blanket
had more than 45 000 different instantiations;
this number is arbitrarily chosen. In the WD,
CSF and OESO+ networks, there were 0, 8 and
15 of such variables respectively.

The results of the first experiment are pre-
sented in Table 1. The table reports, for each
network, the total number of variables, the to-
tal number of values, the number of variables
for which a value could be fixed, and the num-
ber of values that could be fixed or excluded;
note that if, for example, for a ternary variable
a value can be fixed, then also two values can
be excluded. We observe that 17.1% to 19.0%
of the variables could be fixed to a particular
value. The number of values that could be fixed

Table 1: The numbers of fixed and excluded
values.

network #vars. #vals. #vars.f. #vals.f.+e.
WD 21 56 4(19.0%) 13(23.2%)
CSF 41 98 7(17.1%) 15(15.3%)

OESO+ 67 175 12(17.9%) 27(15.4%)

or excluded ranges between 15.3% and 23.2%.
We would like to stress that whenever a variable
can be fixed to a particular value, this result is
valid for any MAP problem that includes this
variable. The computations involved, therefore,
have to be performed only once.

In the second experiment, we compared for
each network the numbers of variables that
could be fixed by the two different preprocess-
ing steps; for Proposition 2, we restricted the
number of network propagations per MAP vari-
able to four because of the limited applicabil-
ity of the resulting information. We further es-
tablished the numbers of network propagations
of the exact branch-and-bound algorithm that
were forestalled by the preprocessing.

The results of the second experiment are pre-
sented in Table 2. The table reports in the two
leftmost columns, for each network, the sizes
of the MAP sets used and the average num-
ber of network propagations performed with-
out any preprocessing. In the subsequent two
columns, it reports the average number of vari-
ables that could be fixed to a particular value
by using Proposition 1 and the average num-
ber of network propagations performed by the
branch-and-bound algorithm after this prepro-
cessing step. In the fifth and sixth columns, the
table reports the numbers obtained with Propo-
sition 2; the sixth column in addition shows, be-
tween parenthesis, the average number of prop-
agations that are required for the application
of Proposition 2. In the final two columns of
the table, results for the two preprocessing steps
combined are reported: the final but one column
again mentions the number of variables that
could be fixed to a particular value by Proposi-
tion 1; it moreover mentions the average num-
ber of variables that could be fixed to a partic-
ular value by Proposition 2 after Proposition 1

56          J. H. Bolt and L. C. van der Gaag



had been used. The rightmost column reports
the average number of network propagations re-
quired by the branch-and-bound algorithm. We
would like to note that the additional computa-
tions required for Proposition 2 are restricted
network propagations; although the worst-case
complexity of these propagations is the same
as that of the propagations performed by the
branch-and-bound algorithm, their runtime re-
quirements may be considerably less.

From Table 2, we observe that the number of
network propagations performed by the branch-
and-bound algorithm grows with the number
of MAP variables, as expected. For the two
smaller networks, we observe in fact that the
number of propagations without preprocessing
equals the number of MAP variables plus one.
For the larger OESO+ network, the number of
network propagations performed by the algo-
rithm is much larger than the number of MAP
variables. This finding is not unexpected since
the MAP problem has a high computational
complexity. For the smaller networks, we fur-
ther observe that each variable that is fixed
by one of the preprocessing steps translates di-
rectly into a reduction of the number of prop-
agations by one. For the OESO+ network, we
find a larger reduction in the number of net-
work propagations per fixed variable. Our ex-
perimental results thus indicate that the num-
ber of propagations required by the branch-and-
bound algorithm indeed is decreased by fixing
variables to their MAP value.

With respect to using Proposition 1, we ob-
serve that in all networks under study a rea-
sonably number of variables could be fixed to
a MAP value. We did not take the number of
local propagations required for this proposition
into consideration because the computational
burden involved is amortised over future MAP
computations. With respect to using Proposi-
tion 2, we observe that for all networks and all
MAP sets the additional computations involved
outweigh the number of network computations
that are forestalled for the algorithm. This ob-
servation applies to using just Proposition 2 as
well as to using the proposition after Proposi-
tion 1 has been applied. We also observe that

fewer variables are fixed in the step based on
Proposition 2 than in the step based on Propo-
sition 1. This can be attributed to the limited
number of propagations used in the step based
on Proposition 2. We conclude that, for the net-
works under study, it has been quite worthwhile
to use Proposition 1 as a preprocessing step be-
fore actually solving the various MAP problems.
Because of the higher computational burden in-
volved and its relative lack of additional value,
the use of Proposition 2 has not been worthwhile
for our networks and associated problems.

To conclude, in Section 3 we observed that
fixing variables to their MAP value could serve
to partition a MAP problem into smaller prob-
lems. Such a partition did not occur in our
experiments. We would like to note, however,
that we studied MAP problems without evi-
dence only. We expect that in the presence of
evidence MAP problems will more readily be
partitioned into smaller problems.

5 Conclusions and discussion

The MAP problem for Bayesian networks is
the problem of finding for a set of variables
an instantiation of highest posterior probabil-
ity given the available evidence. The problem
has an unfavourable computational complexity,
being NPPP-hard in general. In this paper, we
showed that computation of the marginal pos-
terior probabilities of a variable H given its
Markov blanket may provide exact information
about its value in a MAP solution. This infor-
mation is valid for any MAP problem that in-
cludes the variable H. We further showed that
computation of the marginal probabilities of H

given its MAP blanket may also provide exact
information about its value. This information
is valid, however, for a more restricted class of
MAP problems. We argued that these results
can be exploited for preprocessing MAP prob-
lems before they are actually solved using any
state-of-the-art algorithm for this purpose.

We performed a preliminary experimental
study of the practicability of the preprocessing
steps by solving MAP problems for three differ-
ent Bayesian networks using an exact branch-
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Table 2: The number of network propagations without and with preprocessing using Propositions
1 and 2.

Prop. 1 Prop. 2 Prop. 1+2
network #MAP #props. #vars. f. #props. #vars. f. #props. (add.) #vars. f. #props. (add.)
WD 5 6.0 1.2 4.8 0.0 6.0 (0.6) 1.2 + 0.0 4.8 (0.6)

10 11.0 2.4 8.6 1.0 10.0 (6.4) 2.4 + 0.2 8.4 (4.0)
CSF 10 11.0 2.0 9.0 1.0 10.0 (1.6) 2.0 + 0.4 8.6 (0.4)

20 21.0 3.4 17.6 1.6 19.4 (8.2) 3.4 + 0.6 17.0 (5.0)
OESO+ 17 24.8 3.4 18.4 0.8 22.0 (4.2) 3.4 + 0.0 18.4 (2.2)

34 49.8 5.8 40.8 1.8 47.4 (7.8) 5.8 + 0.4 40.0 (4.6)

and-bound algorithm. As expected, the num-
ber of network propagations required by the al-
gorithm is effectively decreased by fixing MAP
variables to their appropriate values. We found
that by building upon the concept of Markov
blanket for 17.1% to 19.0% of the variables a
MAP value could be fixed. Since the results of
this preprocessing step are applicable to all fu-
ture MAP computations and the computational
burden involved thus is amortised, we consid-
ered it worthwhile to perform this step for the
investigated networks. We would like to add
that, because the computations involved are
highly local, the step may also be feasibly ap-
plied to networks that are too large for the exact
MAP algorithm used in the experiments. With
respect to building upon the concept of MAP
blanket, we found that for the investigated net-
works and associated MAP problems, the com-
putations involved outweighed the reduction in
network propagations that was achieved. Since
the networks in our study were comparable with
respect to size and connectivity, further exper-
iments are necessary before any definitive con-
clusion can be drawn with respect to this pre-
processing step.

In our further research, we will expand the
experiments to networks with different numbers
of variables, different cardinality and diverging
connectivity. More specifically, we will investi-
gate for which types of network preprocessing is
most profitable. In our future experiments we
will also take the effect of evidence into account.
We will further investigate if the class of MAP
problems that can be feasibly solved can be ex-
tended by our preprocessing method. We hope
to report further results in the near future.
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Abstract

Hierarchical latent class(HLC) models are tree-structured Bayesian networks where leaf
nodes are observed while internal nodes are hidden. We explore the following two-stage
approach for learning HLC models: One first identifies the shallow latent variables –
latent variables adjacent to observed variables – and then determines the structure among
the shallow and possibly some other “deep” latent variables. This paper is concerned
with the first stage. In earlier work, we have shown how shallow latent variables can be
correctly identified from quartet submodels if one could learn them without errors. In
reality, one does make errors when learning quartet submodels. In this paper, we study
the probability of such errors and propose a method that can reliably identify shallow
latent variables despite of the errors.

1 Introduction

Hierarchical latent class (HLC) models (Zhang,
2004) are tree-structured Bayesian networks
where variables at leaf nodes are observed and
hence are called manifest variables (nodes),
while variables at internal nodes are hidden and
hence are called latent variables (nodes). HLC
models were first identified by Pearl (1988) as
a potentially useful class of models and were
first systematically studied by Zhang (2004) as
a framework to alleviate the disadvantages of
LC models for clustering. As a tool for cluster
analysis, HLC Models produce more meaningful
clusters than latent class models and they allow
multi-way clustering at the same time. As a tool
for probabilistic modeling, they can model high-
order interactions among observed variables and
help one to reveal interesting latent structures
behind data. They also facilitate unsupervised
profiling.

Several algorithms for learning HLC models
have been proposed. Among them, the heuris-
tic single hill-climbing (HSHC) algorithm devel-
oped by Zhang and Kočka (2004) is currently
the most efficient. HSHC has been used to
successfully analyze, among others, the CoIL

Challenge 2000 data set (van der Putten and
van Someren, 2004), which consists of 42 man-
ifest variables and 5,822 records, and a data
set about traditional Chinese medicine (TCM),
which consists of 35 manifest variables and
2,600 records.

In terms of running time, HSHC took 98
hours to analyze the aforementioned TCM data
set on a top-end PC, and 121 hours to analyze
the CoIL Challenge 2000 data set. It is clear
that HSHC will not be able to analyze data sets
with hundreds of manifest variables.

Aimed at developing algorithms more efficient
than currently available, we explore a two-stage
approach where one (1) identifies the shallow
latent variables, i.e. latent variables adjacent
to observed variables, and (2) determines the
structure among those shallow, and possibly
some other “deep”, latent variables. This pa-
per is concerned with the first stage.

In earlier work (Chen and Zhang, 2005), we
have shown how shallow latent variables can be
correctly identified from quartet submodels if
one could learn them without errors. In real-
ity, one does make errors when learning quartet-
submodels. In this paper, we study the proba-
bility of such errors and propose a method that



X1

X2 Y1 X3

Y2 Y3 Y4 Y5 Y6 Y7

(a)

X1

X2 Y1 X3

Y2 Y3 Y4 Y5 Y6 Y7

(b)

Figure 1: An example HLC model and the cor-
responding unrooted HLC model. The Xi’s are
latent nodes and the Yj’s are manifest nodes.

can reliably identify shallow latent variables de-
spite of the errors.

2 HLC Models and Shallow Latent

Variables

Figure 1 (a) shows an example HLC model.
Zhang (2004) has proved that it is impossible to
determine, from data, the orientation of edges
in an HLC model. One can learn only unrooted

HLC models, i.e. HLC models with all direc-
tions on the edges dropped. Figure 1 (b) shows
an example unrooted HLC model. An unrooted
HLC model represents a class of HLC models.
Members of the class are obtained by rooting
the model at various nodes. Semantically it is
a Markov random field on an undirected tree.
In the rest of this paper, we are concerned only
with unrooted HLC models.

In this paper, we will use the term HLC struc-

ture to refer to the set of nodes in an HLC
model and the connections among them. HLC
structure is regular if it does not contain latent
nodes of degree 2. Starting from an irregular
HLC structure, we can obtain a regular struc-
ture by connecting the two neighbors of each
latent node of degree 2 and then remove that
node. This process is known as regularization.
In this paper, we only consider regular HLC
structures.

In an HLC model, a shallow latent variable

(SLV) is one that is adjacent to at least one
manifest variable. Two manifest variables are
siblings if they are adjacent to the same (shal-
low) latent variable. For a given shallow la-
tent variable X, all manifest variables adjacent
to X constitute a sibling cluster. In the HLC
structure shown in Figure 1 (b), there are 3
sibling clusters, namely {Y1}, {Y2, Y3, Y4}, and
{Y5, Y6, Y7}. They correspond to the three la-

U WTV

(a)

U V T W

(b)

U T V W

(c)

U W V T

(d)

Figure 2: Four possible quartet substructures
for a quartet Q = {U, V, T,W}. The fork in (a)
is denoted by [UV TW ], the dogbones in (b), (c),
and (d) respectively by [UV |TW ], [UT |V W ],
and [UW |V T ].

tent variables in the model respectively.

3 Quartet-Based SLV Discovery:

The Principle

A shallow latent node is defined by its relation-
ship with its manifest neighbors. Hence to iden-
tify the shallow latent nodes means to identify
sibling clusters. To identify sibling clusters, we
need to determine, for each pair of manifest vari-
ables (U, V ), whether U and V are siblings. In
this section, we explain how to answer this ques-
tion by inspecting quartet submodels.

A quartet is a set of four manifest variables,
e.g., Q = {U, V, T,W}. The restriction of an
HLC model structure S onto Q is obtained from
S by deleting all the nodes and edges not in
the paths between any pair of variables in Q.
Applying regularization to the resulting HLC
structure, we obtain the quartet substructure for
Q, which we denote by S|Q. As shown in Figure
2, S|Q is either the fork [UV TW ], or one of the
dogbones [UV |TW ], [UT |V W ], and [UW |V T ].

Consider the HLC structure in Figure 1 (b).
The quartet substrcuture for {Y1, Y2, Y3, Y4}
is the fork [Y1Y2Y3Y4], while that for
{Y1, Y2, Y4, Y5} is the dogbone [Y1Y5|Y2Y4],
and that for {Y1, Y2, Y5, Y6} is the dogbone
[Y1Y2|Y5Y6].

It is obvious that if two manifest variables U
and V are siblings in the structure S, then they
must be siblings in any quartet substructure
that involves both of them. Chen and Zhang
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(2005) has proved the converse. So, we have

Theorem 1 Suppose S is a regular HLC struc-

ture. Let (U, V ) be a pair of manifest variables.

Then U and V are not siblings in S iff there ex-

ist two other manifest variables T and W such

that S|
{U,V,T,W}

is a dogbone where U and V are

not siblings.

Theorem 1 indicates that we can determine
whether U and V are siblings by examining
all possible quartets involving both U and V .
There are (n−2)(n−3)

2 such quartets, where n
is the number of manifest variables. We next
present a result that allows us to do the same
by examining only n− 3 quartets.

Let (U, V ) be a pair of manifest variables and
T be a third one. We use QUV |T to denote the
following collection of quartets:

QUV |T := {{U, V, T,W}|W∈Y\{U, V, T}},

where Y is the set of all manifest variables.
T appears in every quartet in QUV |T and thus
called a standing member of QUV |T . It is clear
that QUV |T consists of n−3 quartets. Chen and
Zhang (2005) has also proved the following:

Theorem 2 Suppose S is a regular HLC struc-

ture. Let (U, V ) be a pair of manifest variables

and T be a third one. U and V are not siblings

in S iff there exists a quartet Q ∈ QUV |T such

that S|Q is a dogbone where U and V are not

siblings.

In learning tasks, we do not know the struc-
ture of the generative model structure S. Where
do we obtain the quartet substructures? The
answer is to learn them from data. Let M be
an HLC model with a regular structure S. Sup-
pose that D is a collection of i.i.d samples drawn
from M. Each record in D contains values for
the manifest variables, but not for the latent
variables. Let QSL(D,Q) be a routine that takes
data D and a quartet Q as inputs, and returns
an HLC structure on the quartet Q. One can
use the HSHC algorithm to implement QSL, and
one can first project the data D onto the quartet
Q when learning the substructure for Q.

Suppose QSL is error-free, i.e. QSL(D,Q) =
S|Q for any quartet Q. By Theorem 2, we

can determine whether two manifest variables
U and V are siblings (in the generative model)
as follow:

• Pick a third manifest variable T .
• For each Q ∈ QUV |T , call QSL(D,Q).
• If U and V are not siblings in one of the

resulting substructures, then conclude that
they are not siblings (in the generative
model).
• If U and V are siblings in all the resulting

substructures, then conclude that they are
siblings (in the generative model).

We can run the above procedure on each pair
of manifest variables to determine whether they
are siblings. Afterwards, we can summarize all
the results using a sibling graph. The sibling
graph is an undirected graph over the manifest
variables where two variables U and V are ad-
jacent iff they are determined as siblings.

If QSL is error-free, then each connected com-
ponent of the sibling graph should be com-
pletely connected and correspond to one latent
variable. For example, if the structure of the
generative model is as Figure 3 (a), then the
sibling graph that we obtain will be as Fig-
ure 3 (b). There are four completely connected
components, namely {Y1, Y2, Y3}, {Y4, Y5, Y6},
{Y7, Y8, Y9}, {Y10, Y11, Y12}, which respectively
correspond to the four latent variables in the
generative structure.

4 Probability of Learning Quartet

Submodels Correctly

In the previous section, we assumed that QSL is
error-free. In reality, one does make mistakes
when learning quartet submodels. We have em-
pirically studied the probability of such errors.

For our experiments, QSL was implemented
using the HSHC algorithm. For model selection,
we tried each of the scoring functions, namely
BIC (Schwarz, 1978), BICe (Kočka and Zhang,
2002), AIC (Akaike, 1974), and the Cheeseman-
Stutz(CS) score (Cheeseman and Stutz, 1995).

We randomly generated around 20,000 quar-
tet models. About half of them are
fork-structured, while the rest are dogbone-
structured. The cardinalities of the variables
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range from 2 to 5. From each of the models,
we sampled data sets of size 500, 1,000, 2,500,
5,000. The QSL was then used to analyze the
data sets. In all the experiments, QSL produced
either forks or dogbones. Consequently, there
are only three classes of errors:

F2D: The generative model was a fork, and QSL

produced a dogbone.

D2F: The generative model was a dogbone, and
QSL produced a fork.

D2D: The generative model was a dogbone, and
QSL produced a different dogbone.

The statistics are shown in Table 5. To un-
derstand the meaning of the numbers, consider
the number 0.83% at the upper-left corner of
the top table. It means that, when the sample
size was 500, QSL returned dogbones in 0.83%
percent, or 83, of the 10,011 cases where the
generative models were forks. In all the other
cases, QSL returned the correct fork structure.

It is clear from the tables that: The probabil-
ity of D2F errors is large; the probability of F2D
errors is small; and the probability of D2D er-
rors is very small, especially when BIC or BICe
are used for model selection. Also note that
the probability of D2F decreases with sample
size, but that of F2D errors do not. In the next
section, we will use those observations when de-
signing an algorithm for identifying shallow la-
tent variables.

In terms of comparison among the scoring
functions, BIC and BICe are clearly preferred
over the other two as far as F2D and D2D er-
rors are concerned. It is interesting to observe
that BICe, although proposed as an improve-
ment to BIC, is not as good as BIC when it
comes to learning quartet models. For the rest
of this paper, we use BIC.

5 Quartet-Based SLV Discovery: An

Algorithm

The quartet-based approach to SLV discov-
ery consists of three steps: (1) learn quartet
submodels, (2) determine sibling relationships
among manifest variables and hence obtain a
sibling graph, and (3) introduce SLVs based on
the sibling graph. Three questions ensue:

Table 1: Percentage of times that QSL produced
the wrong quartet structure. The table on the
top is for the fork-structured generative models,
while the table at the bottom is for the dogbone-
structured generative models.

500(F2D) 1000(F2D) 2500(F2D) 5000(F2D)
BIC 0.83% 1.87% 3.70% 3.93%
BICe 1.42% 3.16% 6.58% 7.86%
AIC 12.8% 10.2% 6.81% 4.85%
CS 6.20% 5.05% 6.19% 6.41%

Total=10011

500 1000 2500 5000
D2F D2D D2F D2D D2F D2D D2F D2D

BIC 95.3%0.00% 87.0%0.00% 68.2%0.00% 51.5%0.00%
BICe 95.0%0.05% 86.8%0.00% 67.8%0.04% 50.6%0.04%
AIC 71.2%2.71% 60.5%1.58% 46.7%0.54% 39.0%0.38%
CS 88.5%1.93% 83.4%0.74% 67.0%0.30% 51.5%0.13%

Total=10023

i) Which quartets should we use in Step 1?
ii) How do we determine sibling relationships

in Step 2 based on results from Step 1?
iii) How do we introduce SLVs in Step 3 based

on the sibling graph constructed in Step 2?

Our answer to the second question is sim-
ple: two manifest variables are regarded as non-
siblings if they are not siblings in one of the
quartet submodels. In the next two subsections,
we discuss the other two questions.

5.1 SLV Introduction

As seen in Section 3, when QSL is error-free, the
sibling graph one obtains has a nice property:
every connected component is a fully connected
subgraph. In this case, the rule for SLV intro-
duction is obvious:

Introduce one latent variable for each
connected component.

When QSL is error-prone, the sibling graph one
obtains no longer has the aforementioned prop-
erty. Suppose data are sampled from a model
with the structure shown in Figure 3 (a). Then
what one obtains might be the graphs (c), (d),
or (e) instead of (b).

Nonetheless, we still use the above SLV in-
troduction rule for the general case. We choose
it for its simplicity, and for the lack of better
alternatives. This choice also endows the SLV
discovery algorithm being developed with error
tolerance abilities.
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Figure 3: Generative model (a), sibling graphs
(b, c, d, e), and shallow latent variables (f).

There are three types of mistakes that one
can make when introducing SLVs, namely latent

omission, latent commission, and misclustering.
In the example shown in Figure 3, if we intro-
duce SLVs based on the sibling graph (c), then
we will introduce three latent variables. Two of
them correspond respectively to the latent vari-
ables X1 and X2 in the generative model, while
the third corresponds to a “merge” of X3 and
X4. So, one latent variable is omitted.

If we introduce SLVs based on the sibling
graph (d), then we will introduce five latent
variables. Three of them correspond respec-
tively to X1, X3, and X4, while the other two
are both related to X2. So, one latent variable
is commissioned.

If we introduce SLVs based on the sibling
graph (e), then we will introduce four latent
variables. Two of them correspond respectively
to X1 and X4. The other two are related to X2

and X3, but there is not clear correspondence.

This is a case of misclustering.

We next turn to Question 1. There, the most
important concern is how to minimize errors.

5.2 Quartet Selection

To determine whether two manifest variables U
and V are siblings, we can consider all quartets
in QUV |T , i.e. all the quartets with a third vari-
able T as a standing member. This selection of
quartets will be referred to as the parsimonious

selection. There are only n − 3 quartets in the
selection.

When QSL were error-free, one can use QUV |T

to correctly determine whether U and V are sib-
lings. As an example, suppose data are sampled
from a model with the structure shown in Fig-
ure 3 (a), and we want to determine whether
Y9 and Y11 are siblings based on data. Further
suppose Y4 is picked as the standing member.
If QSL is error-free, we get 4 dogbones where
Y9 and Y11 are not sibling, namely [Y9Y7|Y11Y4],
[Y9Y8|Y11Y4], [Y9Y4|Y11Y10], [Y9Y4|Y11Y12], and
hence conclude that Y9 and Y11 are not siblings.

In reality, QSL does make mistakes. Accord-
ing to Section 4, the probability of D2F errors
is quite high. There is therefore good chance
that, instead of the aforementioned 4 dogbones,
we get 4 forks. In that case, Y9 and Y11 will be
regarded as siblings, resulting in a fake edge in
the sibling graph.

QUV |T represents one extreme when it comes
to quartet selection. The other extreme is to use
all the quartets that involve both U and V . This
selection of quartets will be referred to as the
generous selection. Suppose U and V are non-
siblings in the generative model. This gener-
ous choice will reduce the effects of D2F errors.
As a matter of fact, there are now many more
quartets, when compared with the case of par-
simonious quartet selection, for which the true
structures are dogbones with U and V being
non-siblings. If we learn one of those structures
correctly, we will be able to correctly identify U
and V as non-siblings.

The generous selection also comes with a
drawback. In our running example, consider
the task of determining whether Y1 and Y2 are
siblings based on data. There are 36 quartets
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that involve Y1 and Y2 and for which the true
structures are forks. Those include [Y1Y2Y4Y7],
[Y1Y2Y4Y10], and so on. According to the Sec-
tion 4, the probability for QSL to make an
F2D mistake on any one of those quartets is
small. But there are 36 of them. There is
good chance for QSL to make an F2D mistake
on one of them. If the structure QSL learned
for [Y1Y2Y4Y7], for instance, turns out to be the
dogbone [Y1Y4|Y2Y7], then Y1 and Y2 will be re-
garded as non-siblings, and hence the edge be-
tween Y1 and Y2 will be missing from the sibling
graph.

Those discussions point to the middle ground
between parsimonious and generous quartet se-
lection. One natural way to explore this middle
ground is to use several standing members in-
stead of one.

5.3 The Algorithm

Figure 4 shows an algorithm for discov-
ering shallow latent variables, namely
DiscoverSLVs. The algorithm first calls a
subroutine ConstructSGraph to construct a
sibling graph, and then finds all the connected
components of the graph. It is understood that
one latent variable is introduced for each of the
connected components.

The subroutine ConstructSGraph starts from
the complete graph. For each pair of manifest
variables U and V , it considers all the quartets
that involve U , V , and one of the m standing
members Ti (i = 1, 2, . . . ,m). QSL is called to
learn a submodel structure for each of the quar-
tets. If U and V are not siblings in one of the
quartet substructures, the edge between U and
V is deleted.

DiscoverSLVs has error tolerance mechanism
naturally built in. This is mainly because it re-
gards connected components in sibling graph as
sibling clusters. Let C be a sibling cluster in
the generative model. The vertices in C will be
placed in one cluster by DiscoverSLVs if they
are in the same connected component in the sib-
ling graph G produced by ConstructSGraph. It
is not required for variables in C to be pairwise
connected in G. Therefore, a few mistakes by
ConstructSGraph when determining sibling re-

Algorithm DiscoverSLVs(D,m):

1. G← ConstructSGraph(D,m).
2. return

the list of the connected components of G.

Algorithm ConstructSGraph(D,m):

1. G← complete graph over manifest nodes Y.
2. for each edge (U, V ) of G,
3. pick {T1, · · · , Tm} ⊆ Y\{U, V }
4. for each Q∈ ∪m

i=1 QUV |Ti
,

5. if QSL(D,Q)=[U ∗ |V ∗]
6. delete edge (U, V ) from G, break.
7. endFor.
8. endFor.
9. return G.

Figure 4: An algorithm for learning SLVs.

lationships are tolerated. When the set C is not
very small, it takes a few or more mistakes in
the right combination to break up C.

6 Empirical Evaluation

We have carried out simulation experiments to
evaluate the ability of DiscoverSLVs in discov-
ering latent variables. This section describes the
setup of the experiments and reports our find-
ings.

The generative models in the experiments
share the same structure. The structure con-
sists of 39 manifest variables and 13 latent vari-
ables. The latent variables form a complete 3-
ary tree of height two. Each latent variable in
the structure is connected to 3 manifest vari-
ables. Hence all latent variables are shallow.
The cardinalities of all variables were set at 3.

We created 10 generative models from the
structure by randomly assigning parameter val-
ues. From each of the 10 generative models, we
sampled 5 data sets of 500, 1,000, 2,500, 5,000
and 10,000 records. DiscoverSLVs was run on
each of the data sets three times, with the num-
ber of standing members m set at 1, 3 and 5
respectively. The algorithms were implemented
in Java and all experiments were run on a Pen-
tium 4 PC with a clock rate of 3.2 GHz.

The performance statistics are summarized in
Table 2. They consist of errors at three different
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Table 2: Performance statistics of our SLV discovery algorithm.
QSL-level Edge-level SLV-level

m D2F D2D F2D ME FE LO LCO MC

Sample size = 500

1 77.0%(4.5%) 0.06%(0.05%) 0.40%(0.13%) 1.0(1.1) 88.2(9.2) 11(3.0) 0(0) 0(0)

3 71.8%(4.0%) 0.05%(0.03%) 0.36%(0.14%) 2.9(1.3) 28.0(8.3) 9.3(3.1) 0(0) 0.1(0.3)

5 68.8%(3.0%) 0.05%(0.02%) 0.30%(0.14%) 3.3(1.6) 14.7(6.0) 5.1(1.9) 0.2(0.4) 0(0)

Sample size = 1000

1 65.3%(6.2%) 0.01%(0.03%) 0.17%(0.14%) 0.3(0.6) 55.3(15.7) 11.2(0.7) 0(0) 0(0)

3 58.3%(2.7%) 0.02%(0.02%) 0.10%(0.07%) 0.7(0.9) 10.1(6.5) 4.8(2.9) 0(0) 0(0)

5 56.6%(3.2%) 0.01%(0.01%) 0.10%(0.08%) 1.1(0.7) 6.2(3.8) 2.3(1.3) 0.1(0.3) 0(0)

Sample size = 2500

1 50.1%(2.3%) 0.00%(0.00%) 0.04%(0.07%) 0.2(0.4) 20.4(8.9) 8.6(2.3) 0(0) 0(0)

3 38.0%(4.6%) 0.00%(0.00%) 0.02%(0.04)% 0.2(0.4) 3.1(3.7) 1.4(1.4) 0(0) 0(0)

5 37.3%(3.8%) 0.00%(0.01%) 0.07%(0.08)% 1.1(1.4) 1.3(2.5) 1.5(0.9) 0.1(0.3) 0(0)

Sample size = 5000

1 32.6%(5.5%) 0.00%(0.00%) 0.03%(0.09%) 0(0) 7.7(6.0) 3.9(2.4) 0(0) 0(0)

3 25.2%(4.4%) 0.01%(0.01%) 0.04%(0.06%) 0.3(0.5) 1.5(2.7) 0.5(0.7) 0(0) 0(0)

5 25.7%(3.9%) 0.00%(0.01%) 0.10%(0.11%) 0.9(0.9) 0.9(2.7) 0.1(0.3) 0(0) 0(0)

Sample size = 10000

1 21.8%(5.9%) 0.00%(0.00%) 0.02%(0.07%) 0(0) 2.0(3.3) 1.2(1.8) 0(0) 0(0)

3 17.5%(3.9%) 0.00%(0.00%) 0.05%(0.06%) 0.2(0.4) 0.4(1.2) 0.1(0.3) 0(0) 0(0)

5 17.4%(4.1%) 0.00%(0.01%) 0.03%(0.04%) 0.6(0.8) 0.1(0.3) 0.1(0.3) 0(0) 0(0)

levels of the algorithm: the errors made when
learning quartet substructures (QSL-level), the
errors made when determining sibling relation-
ships between manifest variables (edge-level),
and the errors made when introducing SLVs
(SLV-level). Each number in the table is an
average over the 10 generative models. The
corresponding standard deviations are given in
parentheses.

QSL-level errors: We see that the proba-
bilities of the QSL-level errors are significantly
smaller than those reported in Section 4. This is
because we deal with strong dependency models
here, while the numbers in Section 4 are about
general models. This indicates that strong de-
pendency assumption does make learning easier.
On the other hand, the trends remain the same:
the probability of D2F errors is large, that of
F2D errors is small, and that of D2D errors are
very small. Moreover, the probability of D2F
errors decreases with sample size.

Edge-level errors: For the edge-level, the
numbers of missing edges (ME) and the number
of fake edges (FE) are reported. We see that the
number of missing edges is always small, and in
general it increases with the number of standing
members m. This is expected since the larger m
is, the more quartets one examines, and hence
the more likely one makes F2D errors.

The number of fake edges is large when the
sample size is small and m is small. In gen-
eral, it decreases with sample size and m. It
dropped to 1.3 when for the case of sample size

2,500 and m = 5. This is also expected. As m
increases, the number of quartets examined also
increases. For two manifest variables U and V
that are not siblings in the generative model,
the probability of obtaining a dogbone (despite
D2F errors) where U and V are not siblings also
increases. The number of fake edges decreases
with m because as m increases, the probability
of D2F errors decreases.

SLV-level errors: We now turn to SLV-
level errors. Because there were not many miss-
ing edges, true sibling clusters of the generative
models were almost never broken up. There are
only five exceptions. The first exception hap-
pened for one generative model in the case of
sample size 500 and m = 3. In that case, a man-
ifest variable from one true cluster was placed
into another, resulting in one misclustering er-
ror (MC).

The other four exceptions happened for the
following combinations of sample size and m:
(500, 5), (1000, 5), (2500, 5). In those cases,
one true sibling cluster was broken into two clus-
ters, resulting in four latent commission errors
(LCO).

Fake edges cause clusters to merge and hence
lead to latent omission errors. In our experi-
ments, the true clusters were almost never bro-
ken up. Hence a good way to measure latent
omission errors is to use the total number of
shallow latent variables, i.e. 13, minus the num-
ber of clusters returned by DiscoverSLVs. We
call this the number of LO errors. In Table 2,we
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see that the number of LO errors decreases with
sample size and the number of standing mem-
bers m. It dropped to 1.4 when for the case of
sample size 2,500 and m = 3. When the sample
size was increased to 10,000 and m set to 3 or
5, LO errors occurred only once for one of the
10 generative models.

Running time: The running times of
DiscoverSLVs are summarized in the following
table (in hours). For the sake of comparison, we
also include the times HSHC took attempting to
reconstruct the generative models based on the
same data as used by DiscoverSLVs. We see
that DiscoverSLVs took only a small fraction
of the time that HSHC took, especially in the
cases with large samples. This indicates that
the two-stage approach that we are exploring
can result algorithms significantly more efficient
than HSHC.

RunningTime(hrs) 500 1000 2500 5000 10000

m=1 1.05 1.06 0.92 0.89 0.84

m=3 1.57 1.52 1.49 1.79 1.91

m=5 1.85 2.07 2.17 2.72 3.02

HSHC 4.65 8.69 23.7 43.0 118.6

The numbers of quartets examined by
DiscoverSLVs are summarized in the follow-
ing table. We see that DiscoverSLVs exam-
ined only a small fraction of all the C4

39=82251
possible quartets. We also see that doubling m
does not imply doubling the number of quar-
tets examined, nor doubling the running time.
Moreover, the number of quartets examined de-
creases with sample size. This is because the
probability of D2F errors decrease with sample
size.

500 1000 2500 5000 10000

m=1 5552 4191 2861 2131 1816

m=3 8326 5939 4659 4292 4112

m=5 9801 8178 6776 6536 6496

Total: 82251

7 Related Work

Linear latent variable graphs (LLVGs) are a spe-
cial class of structural equation models. Vari-
ables in such models are continuous. Some are
observed, while others are latent. Sliva et al.

(2003) has studied the problem of identifying
SLVs in LLVGs. Their approach is based on the
Tetrad constraints (Spirtes et al., 2000), and its
complexity is O(n6).

Phylogenetic trees (PT) (St. John et al.,
2003) can be viewed as a special class of HLC

models. The quartet-based method for PT re-
construction first learn submodels for all C4

n

possible quartets and then use them to build
the overall tree ( St. John et al., 2003).

8 Conclusions

We have empirically studied the probability of
making errors when learning quartet HLC mod-
els and have observed some interesting regular-
ities. In particular, we observed the probability
of D2F errors is high and decreases with sample
size, while the probability of F2D errors is low.
Based on those observations, we have developed
an algorithm for discovering shallow latent vari-
ables in HLC models reliably and efficiently.
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7W.�0£^`a�fda�OQc£Rr7§OQo`^gS_^gUd,/RrOn,§Z\7>U>R�^gU�f]7>fda�c�OQZB^`a�^j7>U
U]7]cdOEcwf].	^gUdk�R	�dOEa�79ogf]R�^j7>UTPw�d,Wa�OE^gU�,45&Nil��)X p N�3
���]OÀ.�O?S�,W^gUdcdOB.®7WV§R	��^`a�P�,WP6OB.¡^`a�7W.	k9,9Ud^j©BOQc

,Wa�VI79o`oj7?�baQ3 ��OQZ\R�^j7>U�yªk9^j�WOQa­U]7WR�,/R�^j7>Uà,9Udcàc�OBV �
^gUd^jR�^j7>U�aB3 ��OQZ\R�^j7>UÇÌ¨cdOQa�Z\.<^`8�OQan79P6OB.	,/R�^j7>Uda¤fdarOQc
Rr7¥ar79oj�WOª5EN�ln�)X p N�Ñ�aB3Â��OQZ\R�^j7>U�z�Pd.�OQa�O?U9R�amR	�]O
5EN�l��)X�p¦N ar79ogf]R�^j7>U�Rr7®R	�dOªO\ud,9S_P�ojOªP�.�798�ojO?Sq3
��OQZ\R�^j7>U¡|§Pd.	7?�]^`cdOQa�Z\7>UdZBogf�a�^j7>UdaB3à�b�d^`a�P�,WP6OB.m^`a
O\u]Rr.	,WZ\RrOQc¥V¢.	7>S*,noj7>UdkWOB.��-7W.�á]^gU]k�P�,WP6OB.��Æ5-798�8�v
y/}W}9Í ��3

ÐY^jk>f].�O�y�Û p¦U]�6f]O?UdZ\O�c�^`,/kW.	,9S"V¢7W.�X!ud,9S_P�ojOTÃ/3

4 5ª¶æ´/66´9ºÆ¶�³76�³ ·98;:=<-³[º�´9ºÆ¶t³?>
@BADC EGF �?�d� H FJI
h�,/.	^`,W8wojOQaY�b^`o`o]8�O-cdO?U]7WRrOQcT8 04ZB,WP�^jR�,WodojOBRrRrOB.	aQv9OW3 kd3`v
K �L&M�ON�3Ç��OBR�am7WV��/,/.	^`,W8�ojOQa2�b^`o`o�86OncdO?U]7WRrOQc�8 0
8679o`cdVK,WZ\O¨ZB,WP�^jR�,Wo_ojOBRrRrOB.	aQv)P ^jV�,Wo`o_,/.�O¨cw^`a�Z\.�OBRrO
Z��d,9UdZ\O��/,/.	^`,W8�ojOQaBvRQ¨^jVY,Wo`ot,/.�O4Z\7>U>R�^gU f]7>f�abZ<��,9UdZ\O
�/,/.	^`,W8�ojOQaBvTSÉ^jVb,Wo`oE,/.�O�cdOQZB^`a�^j7>U¥�/,/.	^`,W8�ojOQaBv 7W.#U
^jVeR	�dO¡Z\7>S�P�7>UdO?U9R�a¥,/.�O�,ÂS�^�u�R	fd.�O®7WVncw^`a�Z\.�OBRrO
Z��d,9UdZ\OWv�Z\7>U9R�^gU�f]7>fdanZ<�d,9UdZ\OWv�,9U�càcdOQZB^`a�^j7>U��/,/.	^��
,W8�ojOQaQ3�p VTUÖ^`a�,�arOBR�7WV �{,/.	^`,W8wojOQaBvWV¥^`a�,mZ\7>U=X�k>f��
.	,/R�^j7>U�7WV�a�P6OQZB^2XwZ�arR�,/RrOQai7WV�R	�]79a�O��/,/.	^`,W8�ojOQaB3��b�]O
c�^`a	Z\.�OBRrOWv�Z\7>U>R�^gU fd7>fdaBvw7W.iS_^�u]OQcearR�,/RrO�a�P�,WZ\O�7WVTU
^`a)c�O?U]7WRrOQce8 0%Y[Zi3
l��)XÜP�.�798�,W8�^`o`^jR°0£P67WRrO?U>R�^`,Wo`aBv&c�^`a�Z\.�OBRrO�Pd.�798�,{�

8�^`o`^jR°0ÇP67WRrO?U>R�^`,Wo`aBv_,9UdcÎcdOBRrOB.�S_^gUd^`arR�^`Z£P67WRrO?U>R�^`,Wo`a
,/.�O�cdO?U]7WRrOQcn8 0qoj7?�-OB.r��ZB,WarO�kW.�OBOBáeojOBRrRrOB.	aBv�OW3 kd3`vW\ v
] v_^�3 ln�)X¨fdR�^`o`^jR�0mP67WRrO?U>R�^`,Wo`a),/.�O�cdO?U]7WRrOQc�8 0 �a` 3
prU¯kW.	,WPw�d^`ZB,Wo2.�OQPd.	OQarO?U9R�,/R�^j7>U�aBvecdOQZB^`a�^j7>U��/,/.	^��

,W8�ojOQa¿,/.�O .	OQPd.�OQarO?U>RrOQc 8 0 .�OQZ\R�,9U]k>fdo`,/. U]7]cdOQa
�I�b^jR	��,£a�^gUdk9ojOÈ8�7W.<cdOB.�V¢7W.ec�^`a	Z\.�OBRrOÈ,9Udc�,«cd7>f��
8�ojOi867W.	cdOB.-V¢7W.&Z\7>U>R�^gU fd7>fda\��vwZ��d,9UdZ\Oi�{,/.<^`,W8�ojOQa&,/.�O
.�OQP�.�OQarO?U>RrOQc¨8>0£7@�{,Wo`a¤�I�b^jR	�«,Èa	^gU]k9ojO�867W.	cdOB.TVI7W.
c�^`a	Z\.�OBRrOWv6,2cd7>fd8wojO�867W.	cdOB.�V¢7W.iZ\7>U9R�^gU�f]7>fdaQv6,9Udc­,
Rr.	^`PwojOi867W.	c�OB.-^jV�R	�]O�Z<�d,9UdZ\O��/,/.	^`,W8�ojO�^`a&c�OBRrOB.<S_^gU��
^`arR�^`Z{��v-,9Udc£f]R�^`o`^jR�0¥VKfwUdZ\R�^j7>Uda�,/.�O2.�OQPd.�OQarO?U>RrOQc«8 0
c�^`,9S_7>Udc�aB3
b V �dcfehgji CaA 5E7>Uda�^`cdOB.[R	�]Ob^gU]��fdO?UdZ\Obc�^`,/kW.	,9S¿^gU
ÐY^jk>f].�O)y�3YprU�R	�d^`a�ST7]cdOQoKv>ÝÔ^`a!,�cw^`a�Z\.�OBRrO&�/,/.	^`,W8�ojO
����^`Z<��ZB,9UTR�,/áWOb7>U��{,WogfdOQa[ÝßÞ�}i7W.[Ý ÞÂÃ/3!�b�]O
�/,/.	^`,W8�ojOQa�å ,9Udc�ã ,/.�O�Z\7>U>R�^gU f]7>f�a4Z<��,9UdZ\O��/,/.	^��
,W8�ojOQaQv��b^jR	�àã ,£cdOBRrOB.�S_^gUd^`arR�^`Z¤Z��d,9UdZ\O§�/,/.	^`,W8�ojO
�Æãä^`a�Z\7>Udc�^jR�^j7>Ud,Wo`oj0ªc�OBRrOB.<S_^gUd^`a�R�^`Z_k9^j�WO?U¥,e�/,Wogf]O
7WVYå���3 �b�]O4fdR�^`o`^jR�0qV�f�UdZ\R�^j7>UÈ� ��k �[^`a),_Z\7>U>R�^gU fd7>fda
V�f�UdZ\R�^j7>U�7WV�ã�3
@BAl@ m H V �on��oi�� Fdprq � n I �9�d�oi�s

b V e F�I i I �/HI��gI�
x¨S�^�u�R	f].	O 7WV�Rr.<fwUdZB,/RrOQc4O\udP67>U]O?U>R�^`,Wo`a)��ln�)X)��P67/�
RrO?U>R�^`,Wod^gU�,9U�^gU]��f]O?UdZ\OEc�^`,/kW.	,9SÎ��,Wa�R	�dO-VI79o`oj7?��^gU]k
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cdO X�U�^jR�^j7>U�v]���d^`Z<�2^`a&,TST7]c�^2XwZB,/R�^j7>Um7WV�R	�]O�cdO X�Ud^��
R�^j7>UeP�.�79P679arOQcq8>0�1�fwS �� ,9Udc��],WogS_OB. �7>U§��y/}W}9| ��3������� ;
	�JB»�	�GI½
� 3 stOBR'U 8�O",*S�^�u�OQc » �
c�^gS_O?Uda�^j7>Ud,Wo4�{,/.	^`,W8wojOW3 sæOBR P Þ ����� � . . . �����{��v
Q Þ ����� � . . . ��������v�,9Udc"S Þ ����� � . . . �������286O
R	�]O�c�^`a�Z\.	OBRrOiZ��d,9UdZ\OWv�Z\7>U>R�^gU fd7>fda)Z<��,9UdZ\OWv�,9Udc�cdO\�
ZB^`a�^j7>UÇ�/,/.	^`,W8�ojO¨P�,/.	R�a�7WVMU­v�.	OQa�P6OQZ\R�^j�WOQoj0WvT�b^jR	��! #"$ &% Þ('Y3¨x¬VKf�U�Z\R�^j7>U*)ÇÛ Y Z,+- .�/ ^`a
,9Unl��)X�P67WRrO?U9R�^`,Wo�^jVY7>U]O47WVYR	�]O�U]O\u]RbR	�].�OBO�Z\7>U��
c�^jR�^j7>Uda��]79o`c�aBÛ

Ã/3�P10MSäÞ32T,9U�c4)­ZB,9Ue86Oi�).	^jRrRrO?Ue,Wa
)��jVY��Þ&)���5]�YÞ , �6 879

`;: � , ` O\udP�<
�9= : �?>A@ =CB`ED =GF

�¦Ã{�
VI7W.�,Wo`o V*H Y Ziv����]OB.�O�, ` ��I-ÞÜ}_� . . . ��J ,9Udc> @ =KB` v
I�ÞÎÃ/� . . . ��J¤vML�ÞÂÃ/� . . .o� � ,/.�O[.�OQ,Wo>U�f�S��
86OB.	aQ3

y�3�P 09S Þ 2",9U�cÖR	�]OB.	O¿^`aÂ, P�,/.	R�^jR�^j7>U
YN�+� . . .o��YPO&7WVBYRQ_^gU>Rr74�>0�P6OB.	ZQfd86OQaYa	fdZ���R	�d,/R)�^`a�cdO X�U]OQcq,Wa

)��jVY�!Þ&)TS��jVY� ^jV VUHGYRS�� ��y �

���]OB.�O_OQ,WZ��V)TS_�XW£Þ×Ã/� . . . �XY¥ZB,9Uª86O_�b.	^jRrRrO?U
^gUeR	�]O�VI7W.<S#7WV!OQÊ]fd,/R�^j7>U¥�¦Ã{�i�K^K3 OW3EOQ,WZ<�Z)TS_^`a
,9Unln�)X�P67WRrO?U9R�^`,Wot7>U�YPS���3

Ì�3�P[0�S]\Þ32i,9Udc�VI7W.�OQ,WZ<�)Xdu]OQcT�{,WogfdO4�_^T� s ��H
YP`�acb�v�)�dfe g���5d�[ZB,9Ue86O�cdO X�UdOQcq,Wab^gUÈ��y ��3

prU«R	�]O­cdO X�Ud^jR�^j7>U®,W867?�WOWvhY¨^`a�R	�]O¤U fwS�86OB._7WV� G�J�:�JKi ve,9U�cjJ ^`a¥R	�]OÀU f�S�86OB.ª7WVnO\u]P67>U]O?U>R�^`,Wo	�JBA�Fki ^gUiOQ,WZ���P�^jOQZ\O[7WV R	�]O-ln�)X�P67WRrO?U9R�^`,WoK3YprUiR	�]O
R	�d^j.	c¥ZB,WarOWv!R	�]O2P67WRrO?U9R�^`,Woml A ½?¾9F_JB»n	_i )�dfe g���5d��VI7W.
,Wo`o!�_^T� s �6HGY ` e b Z\7>UdarR�^jR	fdRrO�R	�]Oil��)X«P67WRrO?U>R�^`,Wo
VI7W. � Pf�+Q �LS �93ÈprUªR	��^`a�Pw,WP�OB.?v�,Wo`o)ln�)XÎP�.�798�,{�
8�^`o`^jR°0�,9U�cnf]R�^`o`^jR�0qP67WRrO?U>R�^`,Wo`ab,/.�O�OQÊ]fd,Wo�Rr7T©BOB.	7�^gU
f�Uda	P�OQZB^2XwOQc�.�OBk9^j7>UdaB3�prUn5EN�l��)X�p¦N�Ñ�aBvw,Wo`oæP�.�798�,{�
8�^`o`^jR°0mc�^`arRr.<^`8wf]R�^j7>Uda-,9Udcqf]R�^`o`^jR�02V�f�UdZ\R�^j7>Uda-,/.�O�,WP]�
Pd.�7?u]^gS�,/RrOQce8 0�l��)X®P67WRrO?U>R�^`,Wo`aB3
�b�dO¤c�O X�Ud^jR�^j7>UàPd.	OQarO?U9RrOQcÀ�dOB.�OÈ,Wa�a	f�S_OQa2R	�d,/R

cdOQZB^`a�^j7>UÕ�{,/.	^`,W8wojOQaà,/.�OÜc�^`a�Z\.�OBRrOW3 �b�d^`a�P�,WP6OB.
Pd.�OQa�O?U9R�a!,�STOBR	�d7�c�VI7W.�cdOB�WOQoj79P�^gU]k�,�cdOQZB^`a	^j7>U�.<fdojO
VI7W.�,�Z\7>U>R�^gU�f]7>fda�cdOQZB^`a�^j7>Un�{,/.	^`,W8wojO�,Wa�,TVKfwUdZ\R�^j7>U

7WVT^jR�aeZ\7>U>R�^gU f]7>f�anP�,/.�O?U>R�aBÚ_�]7@�[OB�WOB.Qv4R	�]Oªln�bX
.�OQPd.	OQarO?U9R�,/R�^j7>U®7WV�R	�d^`amS_OBR	�]7�c X�.<arR�fdarOQa_,ªc�^`a¦�
Z\.�OBRrO�,WP�Pd.�7?u]^gS�,/R�^j7>U�Rr7mR	�]O�Z\7>U9R�^gU�f]7>fdaicdOQZB^`a	^j7>U
�/,/.	^`,W8�ojOW3
@WA;o m q bqp � F ���w�hH g H¢� ^fS i I �oH¢� Hji��
�dfdPwP�79a�Or)!s�^`a),9U�^gUdPwfdR&l��)X�P�7WRrO?U>R�^`,Wo�VI7W. U"Þ
Pj0�Qt0 S¬.�OQPd.�OQa�O?U9R�^gU]k_,TÏ[NiÐ�VI7W.u�#H Q£k9^j�WO?U
^jR�abPw,/.�O?U9R�a Uwv �x� �93 p°V��[O�ZB,9Uq�WOB.	^jVI0mR	��,/Ry
z�{ ) s �jV � D � " D ÞÂÃ � ��Ì �

VI7W.4,Wo`oTV[H Y Z6|~} vt�-O_arR�,/RrO�R	�d,/R�)Rs!^`a�,9UÈln�bX
cdO?Uda	^jR�0­V¢7W.k�43��§Om,Wa�a	f�S_O�R	�d,/R�,Wo`o ^gUdPwf]R�ln�bX
Pd.�798w,W8�^`o`^jR�0­P�7WRrO?U>R�^`,Wo`a�^gU­,�5&Nil��)X p N�,/.�OTU]7W.r�
S_,Wo`^j©BOQcnPd.	^j7W.)Rr7_R	�dO4ar79ogf]R�^j7>UnPw�d,WarOW3
@WA�� S i>� i]� cfH I HI�B� HI� p F � i I �/HI��g
x L>J�	�JBA�F�GI»�G�iK	�GK: � ;
	�JQ»n	�GK½
� cdOQa�Z\.<^`8�OQanR	�]O£o`^gU]OQ,/.
cdOBRrOB.<S�^gUd^`arR�^`Zb.�OQo`,/R�^j7>Uda	�d^`P�86OBR��-OBO?U2,4arOBR-7WV��/,/.	^��
,W8�ojOQa!Q¥Þ �x��� � . . .o����� �93ExÂcdOBRrOB.<S_^gU�^`arR�^`Z�P67WRrO?U��
R�^`,Wo��Æ5E798�8�,9Udc2�d�]O?U]7@0Wv�y/}W}9| �YV¢7W. Qª^`a cdO X�UdOQc_,Wa
,9U�OQÊ]fd,/R�^j7>U

� � ��5]� Þ¡}x��Þ ������� � � �w��5]�!Þ�}x� ���� : � � �Iz]�

���]OB.	O����]vr�¬Þ Ã/� . . . ��â�,/.	O£Z\7>U�arR�,9U9R�aQ3 �b�]O
OQÊ]fd,/R�^j7>U � ����5]�2Þ }¥cdO X�UdOQa_,�o`^gUdOQ,/.2cdOBRrOB.�S_^gU��
^`arR�^`Z2.�OQo`,/R�^j7>Uda<�d^`P�v!���]OB.	O � ����5]��Þ ,��
� D �  � � �  
, ��� D �  > � v�,9Udcà���dOB.�O , �
� � . . .o��, �A� ,9Udc > � ,/.�O.�OQ,Wo U�f�S�86OB.	aB3��b�]OTZ\7�O 1�ZB^jO?U9R#,A� ` 7>U�� ` H QÀ^`a
OQÊ]fd,WoERr7¨Ã����]O?U�R	�]OecdOBRrOB.�S_^gUd^`arR�^`Z�P67WRrO?U>R�^`,Wo)^`a
a�P6OQZB^2X�OQce,Wab,_Z\7>Udc�^jR�^j7>Ud,Wo�P67WRrO?U9R�^`,WotV¢7W.h� ` k9^j�WO?U
Q�vr� ` 3����]O�l ½9:�	Æ;WAXi ����� � � ����5]��Þ }x�-,/.�O�S_,W^gU��
R�,W^gU]OQc¨,WaT,§c�OQZ\7>S_P679arOQc£arOBRT7WV��[OQ^jk>�>RrOQc«OQÊ]fd,{�
R�^j7>UdaBv �b^jR	������.�OQPd.	OQarO?U9R�^gUdk­R	�dO�� JQGj¾
�?	_i VI7W.T,Wo`o
�¥ÞäÃ/� . . .<âT32�b�]OT�-OQ^jk>�9R�a��������bR°0�P�^`ZB,Wo`oj0§.	OQa	fdojR
VI.�7>S R	�]O�S_,/.�k9^gU�,Wo`^j©Q,/R�^j7>Un7WV�,mc�^`a�Z\.�OBRrO��{,/.<^`,W8�ojOWv
,Waba<�]7?��U�^gUeX!ud,9S_P�ojO4ÌT^gU���OQZ\R�^j7>UnÌ�3 y�3gÃ/3�§O RrOB.<S � � ��5]� Þ }x� , P67WRrO?U>R�^`,Wo
^gU R	�]O arO?U�arO R	�d,/R ,9U90 �/,/.	^`,W8�ojO � `
R�,/áWOQaÔ7>U R	�dO �/,Wogf]O D ` Þ � 	r,A�
� D ��	 � � �
	 , � e `_� � D `_� � 	 , � e ` / � D ` / � 	 � � ��	 , �A� D � 	 > � �G�/, � `�b^jR	�ÂPd.	798�,W8�^`o`^jR�0�Ã£,9UdcÎ,9U90�7WR	�]OB.§�/,Wogf]O£�b^jR	�
Pd.�798w,W8�^`o`^jR�0¨}]3Àx�a_�b^jR	��ln�bX�P67WRrO?U>R�^`,Wo`aBv�S�fdo��
R�^`P�ojO_VI.	,/k>S_O?U9R�a�7WVER	�]OTVI7W.<SÕ^gU��Iz]��ZB,9UÈc�O X�U]O_,
cdOBRrOB.<S�^gUd^`arR�^`Z�P67WRrO?U>R�^`,WoæVI7W.�,_a�OBR)7WVY�{,/.	^`,W8wojOQarU­3
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�b�dOTV¢.	,/k>S_O?U9R�a4ZB,9UÈ86O�P�,/.	,9S_OBRrOB.	^j©BOQcÈ8 0¤OQ^jR	�]OB.
arOBR�am7WV4c�^`a	Z\.�OBRrO­Z��d,9UdZ\O¤,9Udc¡cdOQZB^`a�^j7>U��{,/.<^`,W8�ojOQaBv
7W.È8 0ÇPw,/.�R�^jR�^j7>Uda§7WV��90]P6OB.	ZQfd86OQa­7WV2Z\7>U>R�^gU fd7>fda
Z��d,9UdZ\O��/,/.	^`,W8�ojOQaBv�,Waba	�]7@��Uq86OQoj7?�43
b V �dcfehgji @BA p¦UªR	�]Oq^gU]��fdO?UdZ\O2cw^`,/kW.	,9S 7WVbÐY^jk/�
f].	O®y�v2ãÔ^`a�Z\7>Udc�^jR�^j7>Ud,Wo`oj0Üc�OBRrOB.<S_^gUd^`a�R�^`Z«k9^j�WO?U
å�3q�b�d^`a4.�OQo`,/R�^j7>Uda	��^`P�^`a�.�OQPd.�OQa�O?U9RrOQc¥8>0¤R	�]O2cdO\�
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Abstract

We consider the problem of scoring Bayesian Network Classifiers (BNCs) on the basis of the
conditional loglikelihood (CLL). Currently, optimization is usually performed in BN parameter
space, but for perfect graphs (such as Naive Bayes, TANs and FANs) a mapping to an equivalent
Logistic Regression (LR) model is possible, and optimization can be performed in LR parameter
space. We perform an empirical comparison of the efficiency of scoring in BN parameter space,
and in LR parameter space using two different mappings. For each parameterization, we study two
popular optimization methods: conjugate gradient, and BFGS. Efficiency of scoring is compared
on simulated data and data sets from the UCI Machine Learning repository.

1 Introduction

Discriminative learning of Bayesian Network Clas-
sifiers (BNCs) has received considerable attention
recently (Greiner et al., 2005; Pernkopf and Bilmes,
2005; Roos et al., 2005; Santafé et al., 2005). In dis-
criminative learning, one chooses the parameter val-
ues that maximize theconditionallikelihood of the
class label given the attributes, rather then thejoint
likelihood of the class label and the attributes. It
is well known that conditional loglikelihood (CLL)
optimization, although arguably more appropriate
in a classification setting, is computationally more
expensive because there is no closed-form solution
for the ML estimates and therefore numerical op-
timization techniques have to be applied. Since in
structure learning of BNCs many models have to be
scored, the efficiency of scoring a single model is of
considerable interest.

For BNCs with perfect independence graphs
(such as Naive Bayes, TANs, FANs) a mapping
to an equivalent Logistic Regression (LR) model
is possible, and optimization can be performed in
LR parameter space. We consider two such map-
pings: one proposed in (Roos et al., 2005), and a
different mapping, that, although relatively straight-
forward, has to our knowledge not been proposed
before in discriminative learning of BNCs. We con-
jecture that scoring models in LR space using our

proposed mapping is more efficient than scoring in
BN space, because the logistic regression model has
fewer parameters than its BNC counterpart and be-
cause the LR model is known to have a strictly con-
cave loglikelihood function. To test this hypothesis
we perform experiments to compare the efficiency
of model fitting with both LR parameterizations,
and the more commonly used BN parameterization.

This paper is structured as follows. In section 2
we introduce the required notation and basic con-
cepts. Next, in section 3 we describe two map-
pings from BNCs with perfect graphs to equivalent
LR models. In section 4 we give a short descrip-
tion of the optimization methods used in the experi-
ments, and motivate their choice. Subsequently, we
compare the efficiency of discriminative learning in
LR parameter space and BN parameter space, us-
ing the optimization methods discussed. Finally, we
present the conclusions in section 7.

2 Preliminaries

2.1 Bayesian Networks

We use uppercase letters for random variables and
lowercase for their values. Vectors are written in
boldface. A Bayesian network (BN) (X, G =
(V,E),θ) consists of a discrete random vectorX =
(X0, . . . , Xn), a directed acyclic graph (DAG)G
representing the directed independence graph ofX,



and a set of conditional probabilities (parameters)θ.
V = {0, 1, . . . , n} is the set of nodes ofG, andE
the set of directed edges. Nodei in G corresponds
to random variableXi. With pa(i) (ch(i)) we de-
note the set of parents (children) of nodei in G. We
write XS , S ⊆ {0, . . . , n} to denote the projection
of random vectorX on components with index in
S. The parameter setθ consists of the conditional
probabilities

θxi|xpa(i)
= P (Xi = xi|Xpa(i) = xpa(i)), 0 ≤ i ≤ n

We useXi = {0, . . . , di − 1} to denote the set
of possible values ofXi, 0 ≤ i ≤ n. The set
of possible values of random vectorXS is denoted
XS = ×i∈SXi. We also useX−

i = Xi \ {0}, and
likewiseX−

S = ×i∈SX−
i

In a BN classifier there is one distinguished vari-
able called the class variable; the remaining vari-
ables are called attributes. We useX0 to denote
the class variable;X1, . . . , Xn are the attributes.
To denote the attributes, we also writeXA, where
A = {1, . . . , n}. We defineπ(i) = pa(i)\{0}, the
non-class parents of nodei, andφ(i) = {i} ∪ π(i).

Finally, we recall the definition of aperfectgraph:
a directed graph in which all nodes that have a com-
mon child are connected is calledperfect.

2.2 Logistic Regression

The basic assumption of logistic regression (Ander-
son, 1982) for binary class variableX0 ∈ {0, 1} is

ln
P (X0 = 1|Z)
P (X0 = 0|Z)

= w0 +
k∑

i=1

wiZi, (1)

where the predictorsZi (i = 1, . . . , k) can be sin-
gle attributes fromXA, but also functions of one or
more attributes fromXA. In words: the log poste-
rior odds are linear in the parameters, not necessar-
ily in the basic attributes.

Generalization to a non-binary class variable
X0 ∈ X0 gives

ln
P (X0 = x0|Z)
P (X0 = 0|Z)

= w
(x0)
0 +

k∑
i=1

w
(x0)
i Zi, (2)

for all x0 ∈ X−
0 . This model is often referred to

as the multinomial logit model or polychotomous
logistic regression model.

It is well known that the loglikelihood function
of the logistic regression model is concave and has
unique maximum (provided the data matrixZ is
of full column rank) attained for finitew except in
two special circumstances described in (Anderson,
1982).

2.3 Log-linear models

Let G = (V,E) be the (undirected) independence
graph of random vectorX, that isE is the set of
edges(i, j) such that whenever(i, j) is not inE, the
variablesXi andXj are independent conditionally
on the rest. The log-linear expansion of a graphical
log-linear model is

lnP (x) =
∑
C⊆V

uC(xC)

where the sum is taken over all complete subgraphs
C of G, and allxC ∈ X−

C , that is,uC(xC) = 0
for i ∈ C and xi = 0 (to avoid overparameteri-
zation). Theu-term u∅(x) is just a constant. It is
well known that for BN’s with perfect directed inde-
pendence graph, an equivalent graphical log-linear
model is obtained by simply dropping the direction
of the edges.

3 Mapping to Logistic Regression

In this section we discuss two different mappings
from BNCs with a perfect independence graph to
equivalent logistic regression models. Equivalent
here means that, assumingP (X) > 0, the BNC and
corresponding LR model, represent the same set of
conditional distributions of the class variable.

3.1 Mapping of Roos et al.

Roos et al. (Roos et al., 2005) define a map-
ping from BNCs whose canonical form is a per-
fect graph, to equivalent LR models. The canonical
form is obtained by (1) taking the Markov blanket
of X0 (2) marrying any unmarried parents ofX0.
This operation does clearly not change the condi-
tional distribution ofX0. They show that if this
canonical form is a perfect graph, then the BNC
can be mapped to an equivalent LR model. Their
mapping creates an LR model with predictors (and
corresponding parameters) as follows
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1. Zxpa(0)
= I(Xpa(0) = xpa(0)) with parameter

w
(x0)
xpa(0)

, for xpa(0) ∈ Xpa(0).

2. Zxφ(i)
= I(Xφ(i) = xφ(i)) with parameter

w
(x0)
xφ(i)

, for i ∈ ch(0) andxφ(i) ∈ Xφ(i).

For a given BNC with parameter valueθ an equiva-
lent LR model is obtained by putting

w
(x0)
xpa(0)

= ln θx0|xpa(0)
, w

(x0)
xφ(i)

= ln θxi|xpa(i)

3.2 Proposed mapping

Like in the previous section, we start from the
canonical graph which is assumed to be perfect.
Hence, we obtain an equivalent graphical log-linear
model by simply dropping the direction of the
edges. We then have

ln
P (X0 = x0|XA)
P (X0 = 0|XA)

= ln
P (X0 = x0,XA)/P (XA)
P (X0 = 0,XA)/P (XA)

= ln P (X0 = x0,XA) − lnP (X0 = 0,XA),

for x0 ∈ X−
0 . Filling in the log-linear expansion

for lnP (X0 = x0,XA) andlnP (X0 = 0,XA), we
see immediately thatu-terms that do not containX0

cancel, and furthermore thatu-terms withX0 = 0
are constrained to be zero by our identification re-
strictions. Hence we get

lnP (X0 = x0,xA)− lnP (X0 = 0,xA) =

u{0}(X0 = x0) +
∑
C

uC(X0 = x0,xC) =

w
(x0)
∅ +

∑
C

w
(x0)
xC

whereC is any complete subgraph ofG not con-
tainingX0. Hence, to map to a LR model, we create
variables

I(XC = xC), xC ∈ X−
C

to obtain the LR specification

ln
P (X0 = x0|Z)
P (X0 = 0|Z)

= w
(x0)
∅ +

∑
C

w
(x0)
xC I(XC = xC)

This LR specification models the same set of condi-
tional distributions ofX0 as the corresponding undi-
rected graphical model, see for example (Sutton and
McCallum, 2006).

0

1 2

3 4 5

0

1 2

3 4 5

Figure 1: Example BNC (left); undirected graph
with same conditional distribution of class (right).

3.3 Example

Consider the BNC depicted in figure 1. Assuming
all variables are binary, and using this fact to sim-
plify notation, this maps to the equivalent LR model
(with 9 parameters)

ln
P (X0 = 1|Z)
P (X0 = 0|Z)

= w∅ + w{1}X1 + w{2}X2+

w{3}X3 + w{4}X4 + w{5}X5+

w{1,2}X1X2 + w{1,3}X1X3 + w{3,4}X3X4

In the parameterization of (Roos et al., 2005), we
map to the equivalent LRRoos model (with 14 pa-
rameters)

ln
P (X0 = 1|Z)
P (X0 = 0|Z)

= w{1,2}=(0,0)Z{1,2}=(0,0)+

w{1,2}=(0,1)Z{1,2}=(0,1) +w{1,2}=(1,0)Z{1,2}=(1,0)+

w{1,2}=(1,1)Z{1,2}=(1,1) +w{1,3}=(0,0)Z{1,3}=(0,0)+

. . . + w{3,4}=(1,1)Z{3,4}=(1,1)+

w{5}=(0)Z{5}=(0) + w{5}=(1)Z{5}=(1)

In both cases we setw(0) = 0.

4 Optimization methods

In the experiments, we use two optimization meth-
ods: conjugate gradient(CG) and variable metric
(BFGS) algorithms (Nash, 1990). Conjugate Gra-
dient is commonly used for discriminative learning
of BN parameters, see for example (Greiner et al.,
2005; Pernkopf and Bilmes, 2005). In a study of
Minka (Minka, 2001), it was shown that CG and
BFGS are efficient optimization methods for the lo-
gistic regression task.

BFGS is a Hessian-based algorithm, which up-
dates an approximate inverse Hessian matrix of size
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r2 at each step, wherer is the number of param-
eters. CG on the other hand works with a vector
of sizer. This obviously makes each iteration less
costly, however, in general CG exhibits slower con-
vergence in terms of iterations.

Both algorithms at stepk compute an update di-
rection u(k), followed by a line search. This is
a one-dimensional search, which looks for a step
sizeα maximizingf(α) = CLL(w(k) + αu(k)),
wherew(k) is a vector of parameter values at step
k. It is argued in (Nash, 1990) that neither algo-
rithm benefits from too large a step being taken.
Even more, for BFGS it is not desirable that the in-
crease in the function value is different in magni-
tude from the one determined by the gradient value,
(w(k+1) − w(k))Tg(k). Therefore, simpleaccept-
able point search is suggested for both methods.
In case of CG an additional step is made. Once
an acceptable point has been found, we have suf-
ficient information to fit a parabola to the projec-
tion of the function on the search direction. The
parabola requires three pieces of information: the
function value at the end of the last iteration (or
the initial point), the projection of the gradient at
this point onto the search direction, and the new
function value at the acceptable point. If the CLL
value at the maximum of the parabola is larger than
the CLL value at the acceptable point, then the for-
mer becomes the starting point for the next iteration.
Another approach to CG line search is Brent’s line
search method (Press et al., 1992). It iteratively fits
a parabola to 3 points. The main difference with the
previous approach is that we do find an optimum in
the given update direction. This, however, requires
more function evaluations at each iteration.

In our experiments we use the implementation of
the CG and BFGS methods of theoptim function
of R (Venables and Ripley, 2002) which is based on
the source code from (Nash, 1990). In addition we
implemented CG with Brent’s line search (with rela-
tive precision for Brent’s method set to 0.0002). We
refer to this algorithm as CGB. The conjugate gra-
dient method may use different heuristic formulas
for computing the update direction. Our preliminary
study showed that the difference in performance be-
tween these heuristics is small. We use the Polak-
Ribiere formula, suggested in (Greiner et al., 2005)
for optimization in the BN parameter space.

In our study we compare the rates of convergence
for 9 optimization techniques: 3 optimization al-
gorithms (CG, CGB, BFGS) used in 3 parameter
spaces (LR, LRRoos, BN). We compare conver-
gence in terms of (1) iterations of the update di-
rection calculation, and (2) floating point operations
(flops). The number of flops provides a fair compar-
ison of the performance of the different methods,
but the number of iterations gives us additional in-
sight into the behavior of the methods.

Let costCLL and costgrad denote the costs in
flops of CLL and gradient evaluations respectively,
and let countCLL be the number of times CLL
is evaluated in a particular iteration. We estimate
the cost of one particular iteration of BFGS as
12r2 + 8r + (4r + costCLL)countCLL + costgrad;
the cost of one CG and CGB iteration is10r+(4r+
costCLL)countCLL+costgrad. These estimates are
obtained by inspecting the source code in (Nash,
1990).

5 Parameter learning

5.1 Logistic regression

Equation 2 can be rewritten as follows

P (X0 = x0|Z) =
ew(x0)T

Z∑d0−1
x′0=0 ew(x′0)T

Z
,

where we putZ0 = 1, which corresponds to the in-
tercept, and fixw(0) = 0. wT denotes the transpose
of w. The conditional loglikelihood of the parame-
ters given data is

CLL(w) = log
∏N

i=1 P (x(i)
0 |z(i))

=
∑N

i=1(w
(x

(i)
0 )

T
z(i) − log(

∑d0−1
x′0=0 ew(x′0)

T
z(i)

)),

whereN is the number of observations in the data
set. The gradient of the CLL is given by

∂CLL(w)

∂w
(x0)
k

=

∑N
i=1

1{x(i)
0 =x0}

z
(i)
k − ew

(x0)T
z(i)z

(i)
kPd0−1

x′0=0
ew

(x′0)T
z(i)


wherex0 ∈ X−

0 . We note here that the data ma-
trix Z is a sparse matrix of indicators with 1s in
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non-zero positions, thus the CLL and gradient func-
tions can be implemented very efficiently. We esti-
mate costs (in flops) according to above formulas:
costCLL = |Z|(d0 − 1) + N(d0 + 2), costgrad =
|Z|d0 + 2Nd0, where |Z| denotes number of 1s
in the data matrix. Here we used the fact that the
multiplication of two vectorsw(x0)Tz(i) requires
|z(i)|−1 flops. In case of LRRoos matrixZ always
contains exactly1 + n − |pa(0)| 1s irrespective of
graph complexity and dimension of attributes. For
our mapping|Z| depends on the sample. In the
experiments we used the following heuristic to re-
duce |Z|: for each attributeXi we code the most
frequent value as 0. We note that|Z| is smaller in
case of our mapping comparing to LRRoos map-
ping, when the structure is not very complex (with
regard to the number of parents and the domain size
of the attributes) and becomes bigger for more com-
plex structures.

5.2 Bayesian Network Classifiers

Here we follow the approach taken in (Greiner et
al., 2005; Pernkopf and Bilmes, 2005). We write

θj
i|k = P (xj = i|xpa(j) = k).

We have constraintsθj
i|k ≥ 0 and

∑dj−1
i=0 θj

i|k = 1.
We reparameterize to incorporate the constraints on
θj
i|k and use different parametersβj

i|k as follows

θj
i|k =

expβj
i|k∑dj−1

l=0 expβj
l|k

The CLL is given by

CLL(β) =
N∑

t=1

(log P (x(t))− log
d0−1∑

x
(t)
0 =0

P (x(t)))

Further expansion may be obtained using the factor-
ization ofP (x) and plugging in expressions forθj

i|k.
It is easy to see that

∂θj
i′|k

∂βj
i|k

= θj
i′|k(1{i=i′} − θj

i|k),

thus

∂P (x)

∂βj
i|k

= 1{xpa(j)=k}P (x)(1{xj=i} − θj
i|k)

Simple calculations result in

∂CLL(β)

∂βj
i|k

=

∑N
t=1

(
1{x(t)

j =i,x
(t)
pa(j)

=k} − 1{x(t)
pa(j)

=k}θ
j
i|k−Pd0−1

x
(t)
0 =0

[P (x(t))(1
{x

(t)
j

=i,x
(t)
pa(j)

=k}
−1

{x(t)
pa(j)

=k}
θj
i|k)]Pd0−1

x
(t)
0 =0

P (x(t))


Note that for eacht andj > 1 only d0dj gradient
values are to be considered. In order to obtainθ
from β we need3|β| flops, where|β| denotes the
number of components ofβ. From the formulas
above we estimatecostCLL = 3|β| + N(nd0 +
2d0 + 2) and costgrad = 3|β| + N(2nd0 + n +
(2d0 + 1)(3 + d1 + . . . + dn)).

Finally, we point out that the cost of the gradi-
ent is very close to the cost of the CLL in case of
LR and is by a factor2 + 2d larger in case of BN.
This suggests that CGB might be better than CG for
BN, but it is very unlikely that it will be better also
for LR and LRRoos parameter spaces. Note that
costCLL(BN) is very close tocostCLL(LR Roos),
which strongly supports the fairness of our cost es-
timates.

5.3 Convergence issues

It is well known that LR has a concave loglikeli-
hood function. Since BNCs whose canonical form
is a perfect graph are equivalent to the LR models
obtained by either mapping, it follows from the con-
tinuity of the mapping fromθ to w, that the CLL
function in the standard BN parameterization also
has only global optima (Roos et al., 2005). This im-
plies that all our algorithms should converge to the
maximal CLL value.

It is important to pick good initial values for the
parameters. The common approach to initialize BN
parameters is to use the (generative) ML estimates.
It is crucial for all three parameter spaces to avoid
zero probabilities, therefore we use Laplace’s rule,
and add one to each frequency. After the initial val-
ues ofθ are obtained, we can derive starting val-
ues forw as well. We simply apply the mappings
to obtain the initial values for the LRRoos and LR
parameters. This procedure guarantees that all algo-
rithms have the same initial CLL value.
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6 Experiments

For the experiments we used artificially generated
data sets and data sets from the UCI Machine Learn-
ing Repository (Blake and Merz, 1998). Artifi-
cial data were generated from Bayesian Networks,
where the parameter values were obtained by sam-
pling each parameter from a Dirichlet distribution
with α = 1. We generated data from both simple
and complex structures in order to evaluate perfor-
mance under different scenarios. We generated per-
fect graphs in the following way: for each attribute
we selecti parents: the class node andi − 1 previ-
ous nodes(whenever possible) according to index-
ing, wherei ∈ {1, 2, 3}.

Table 1 lists the UCI data sets used in the ex-
periments, and their properties. To discretize nu-
meric variables, we used the algorithm described in
(Fayyad and Irani, 1993). The? values in the votes
data set were treated as a separate value, not as a
missing value.

Table 1: Data sets and their properties
#Samples #Attr. #Class Max attr. dim.

Glass 214 9 6 4
Pima 768 8 2 4
Satimage 4435 36 7 2
Tic-tac-toe 958 9 2 3
Voting 435 16 2 3

The fitted BNC structures for the UCI data were
obtained by (1) connecting the class to all attributes,
(2) using a greedy generative structure learning al-
gorithm to add successive arcs. Step (2) was not
applied for the Satimage data set for which we fit-
ted the Naive Bayes model. All structures happened
to be perfect graphs, thus there was no need for ad-
justment. In figure 2 we show the structure fitted to
the Pima Indians data set. The other structures were
of similar complexity.

Figure 3 depicts convergence curves for 9 opti-
mization algorithms on the Pima Indians data.

Table 2 depicts statistics for different UCI and ar-
tificial data sets. For each data seti we have start-
ing CLL valueCLLi

ML and maximal (over all algo-
rithms) CLL valueCLLi

max. We define a threshold
ti = CLLi

max−5%∗(CLLi
max−CLLi

ML). For ev-
ery algorithm we computed the number of iterations
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Figure 2: Structure fitted to Pima Indians data. The
structure was constructed using a hill climber on the
(penalized) generative likelihood.
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Figure 3: Optimization curves on the Pima Indians
data.

(flops) needed to reach the threshold. For each data
set these numbers are scaled dividing by the small-
est value. The bound of5% was selected heuris-
tically. This bound is big enough, so all algorithms
were able to reach it before 200 iterations and before
satisfying the stopping criterion. The bound is small
enough, so algorithms make in general quite a few
iterations before achieving it. There are some data
sets, however, on which all algorithms converge fast
to a very high CLL value, and a clear distinction
in performance is visible using a very small bound.
Pima Indians is an example (5% threshold is set to
-337.037). We still see that table 2 contains a quite
fair comparison, except that BFGS methods are un-
derestimated for smaller bounds.

It is very interesting to notice that convergence
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Data Set LR LR Roos BN
CG CGB BFGS CG CGB BFGS CG CGB BFGS

Glass 2.1 1.9 1.0 3.0 2.0 1.1 2.4 1.9 1.0
Pima 1.3 1.5 1.8 1.5 1.2 1.8 1.0 1.0 1.8
Satimage 8.2 2.3 1.0 3.3 2.0 1.1 3.0 1.0 1.3
Tic-tac-toe 3.9 2.2 1.5 2.1 1.1 1.2 2.2 1.0 1.3
Voting 3.2 1.8 1.2 1.9 1.3 1.0 1.5 1.0 1.1
1.5.2-3.100 2.8 1.4 1.2 2.3 1.3 1.1 2.0 1.0 1.2
2.5.2-3.100 2.6 2.1 1.4 1.8 1.6 1.3 1.4 1.0 1.0
3.5.2-3.100 2.7 1.8 1.3 2.2 1.0 1.2 1.3 1.2 1.2
1.5.2-3.1000 2.2 2.2 2.2 1.5 1.5 2.5 1.0 1.0 1.5
2.5.2-3.1000 2.2 2.0 1.8 1.2 1.2 1.8 1.0 1.0 2.5
3.5.2-3.1000 3.6 2.2 1.0 1.8 1.6 1.0 1.3 1.3 1.0
1.30.2-3.1000 2.0 1.2 1.0 1.5 1.2 1.5 1.2 1.0 1.2
2.30.2-3.1000 2.0 1.8 2.2 1.6 1.2 1.4 1.4 1.0 1.2
3.30.2-3.1000 2.2 1.2 2.0 1.6 1.0 1.6 1.4 1.0 1.2
1.5.5.1000 3.1 3.2 1.8 2.3 2.3 1.5 1.1 1.1 1.0
2.5.5.1000 6.7 6.9 2.3 3.1 3.0 1.4 1.5 1.5 1.0
3.5.5.1000 4.8 4.2 1.8 2.3 2.2 1.1 1.7 1.7 1.0
mean 3.3 2.4 1.6 2.1 1.6 1.4 1.6 1.2 1.3

Data Set LR LR Roos BN
CG CGB BFGS CG CGB BFGS CG CGB BFGS

Glass 1.0 2.4 3.3 2.6 4.1 8.3 5.9 8.1 12.6
Pima 1.0 2.4 1.6 1.8 2.5 3.1 4.0 6.1 11.0
Satimage 4.6 3.0 1.0 4.6 7.1 3.3 11.5 6.1 7.6
Tic-tac-toe 2.0 3.2 1.0 1.3 1.7 1.3 6.1 4.0 6.0
Voting 1.2 1.9 1.9 1.0 1.8 3.5 3.6 4.2 15.8
1.5.2-3.100 1.0 1.7 1.0 1.2 2.1 1.8 2.9 2.9 5.1
2.5.2-3.100 1.2 2.8 3.5 1.0 2.6 7.4 2.1 3.2 13.2
3.5.2-3.100 1.0 2.4 2.3 1.1 1.4 5.3 2.1 4.4 21.2
1.5.2-3.1000 1.0 2.0 1.7 1.0 1.9 3.9 1.5 2.4 5.5
2.5.2-3.1000 1.5 3.2 2.2 1.0 2.0 4.6 2.3 3.6 25.0
3.5.2-3.1000 1.7 2.6 1.4 1.0 2.2 3.5 2.2 4.3 13.5
1.30.2-3.1000 1.9 3.7 1.0 3.4 8.4 4.3 12.1 17.4 16.6
2.30.2-3.1000 1.0 3.1 2.2 1.2 3.2 3.3 4.9 7.4 11.8
3.30.2-3.1000 1.2 2.3 5.8 1.0 2.4 12.5 4.1 7.6 36.6
1.5.5.1000 1.1 2.8 1.5 1.0 2.4 1.9 1.6 2.4 2.8
2.5.5.1000 2.3 5.6 11.1 1.0 2.2 10.1 1.7 2.4 11.6
3.5.5.1000 2.6 5.4 101.5 1.0 2.3 98.1 2.4 3.8 137.5
mean 1.6 3.0 8.5 1.5 3.0 10.4 4.2 5.3 20.8

Table 2: Convergence speed in terms of iterations (top) and flops (bottom). Artificial data sets are named
in the following way: [number of parents of each attribute].[number of attributes].[domain size of each
attribute].[sample size]. Domain size denoted as 2-3 is randomly chosen between 2 and 3 with equal proba-
bilities.

Discriminative Scoring of Bayesian Network Classifiers: a Comparative Study          81



with regard to iterations is faster in BN and
LR Roos parameter spaces. It seems that overpa-
rameterization is advantageous in this respect. This
might be explained by the fact that there is only a
single global optimum in the LR case, whereas there
are many global optima in case of BN and LRRoos.
Thus, in the latter case one can ’quickly’ converge to
the closest optimum. Overparameterization, how-
ever, is also an additional burden, as witnessed by
the flops count; this is especially true for the BFGS
method.

We observe that BFGS is generally winning, with
CGB being close, in terms of iterations. Consid-
ering flops, CGB is definitely losing to CG in all
parameterizations. CG seems to be the best tech-
nique, though it might be very advantageous to use
BFGS for simple (with respect to the number of par-
ents and the domain size of attributes) structures, in
combination with our LR mapping.

We have both theoretical and practical evidence
that our LR parameterization is the best for rela-
tively simple structures. So the general conclusion
is to use LR + BFGS, LR + CG and LRRoos + CG
in order of growing structure complexity. The size
of the domain and the number of parents mainly in-
fluence our choice. On the basis of flop counts, the
BN parameterization is never preferred in our ex-
periments. Finally, we note that our LR parameteri-
zation was the best on 4 out of 5 UCI data sets.

7 Conclusion

We have studied the efficiency of discriminative
scoring of BNCs using alternative parameteriza-
tions of the conditional distribution of the class vari-
able. In case the canonical form of the BNC is a per-
fect graph, there is a choice between at least three
parameterizations. We found out that it is wise to
exploit perfectness by optimizing in LR or LRRoos
spaces. Based on the experiments we have per-
formed, we would suggest to use LR + BFGS, LR +
CG and LRRoos + CG in order of growing struc-
ture complexity. If only one method is to be se-
lected, we suggest LRRoos + CG. It works pretty
well on any type of data set, plus the mapping is
very straightforward, which makes the initialization
step easy to implement.
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Abstract

Taking as an inspiration the so-called Explanation Tree for abductive inference in Bayesian
networks, we have developed a new clustering approach. It is based on exploiting the
variable independencies with the aim of building a tree structure such that in each leaf all
the variables are independent. In this work we produce a structure called Independency

tree. This structure can be seen as an extended probability tree, introducing a new
and very important element: a list of probabilistic single potentials associated to every
node. In the paper we will show that the model can be used to approximate a joint
probability distribution and, at the same time, as a hierarchical clustering procedure.
The Independency tree can be learned from data and it allows a fast computation of
conditional probabilities.

1 Introduction

In the last years the relevance of unsupervised
classification within data mining processing has
been remarkable. When dealing with large
number of cases in real applications, the iden-
tification of common features that allows the
formation of groups/clusters of cases seems to
be a powerful capability that both simplifies the
data processing and also allows the user to un-
derstand better the trend(s) followed in the reg-
istered cases.

In the data mining community this descrip-

tive task is known as cluster analysis (Ander-
berg, 1973; Duda et al., 2001; Kaufman and
Rousseeuw, 1990; Jain et al., 1999), that is,
getting a decomposition or partition of a data
set into groups in such a way that the objects
in one group are similar to each other but as
different as possible from the objects in other
groups. In fact, as pointed out in (Hand et al.,

2001, pg. 293), we could distinguish two differ-
ent objectives in this descriptive task: (a) seg-

mentation, in which the aim is simply to par-
tition the data in a convenient way, probably
using only a small number of the available vari-
ables; and (b) decomposition, in which the aim
is to see whether the data is composed (or not)
of natural subclasses, i.e., to discover whether
the overall population is heterogeneous. Strictly
speaking cluster analysis is devoted to the sec-
ond goal although, in general, the term is widely
used to describe both segmentation and cluster
analysis problems.

In this work we only deal with categorical or
discrete variables and we are closer to segmen-
tation than (strictly speaking) to cluster anal-
ysis. Our proposal is a method that in our
opinion has several good properties: (1) it pro-
duces a tree-like graphical structure that allows
us to visually describe each cluster by means
of a configuration of the relevant variables for



that segment of the population; (2) it takes ad-
vantage of the identification of contextual inde-
pendencies in order to build a decomposition of
the joint probability distribution; (3) it stores a
joint probability distribution about all the vari-
ables, in a simple way, allowing an efficient com-
putation of conditional probabilities. An exam-
ple of an independence tree is given in figure 1,
which will be thoroughly described in the fol-
lowing sections.

The paper is structured as follows: first, in
Section 2 we give some preliminaries in rela-
tion with our proposed method. Section 3 de-
scribes the kind of model we aim to look for,
while in Section 4 we propose the algorithm we
have designed to discover it from data. Section
5 describes the experiments carried out. Finally,
Section 6 is devoted to the conclusions and to
describe some possible lines in order to continue
our research.

2 Preliminaries

Different types of clustering algorithms can be
found in the literature differing in the type of
approach they follow. Probably the three main
approaches are: partition-based clustering, hi-
erarchical clustering, and probabilistic model-
based clustering. From them, the first two ap-
proaches yield a hard clustering in the sense that
clusters are exclusive, while the third one yields
a soft clustering, that is, an object can belong
to more than one cluster following a probability
distribution. Because our approach is somewhat
related to hierarchical and probabilistic model-
based clustering we briefly comment on these
types of clustering.

Hierarchical clustering (Sneath and Sokal,
1973) returns a tree-like structure called den-
drogram. This structure reflects the way in
which the objects in the data set have been
merged from single points to the whole set
or split from the whole set to single points.
Thus, there are two distinct types of hierar-
chical methods: agglomerative (by merging two
clusters) and divisive (by splitting a cluster).
Although our method does not exactly belong
to hierarchical clustering, it is closer to hierar-

chical divisive methods than to any other clus-
tering approach (known by us). In concrete,
it works as monothetic divisive clustering algo-
rithms (Kaufman and Rousseeuw, 1990), that
split clusters using one variable at a time, but
differs from classical divisive approaches in the
use of a Bayesian score to decide which variable
is chosen at each step, and because branches are
not completely developed.

With respect to probabilistic clustering, al-
though our method produces a hard clustering,
it is somehow related to it because probability
distributions are used to complete the informa-
tion about the discovered model. Probabilistic
model-based clustering is usually modelled as a
mixture of models (see e.g. (Duda et al., 2001)).
Thus, a hidden random variable is added to the
original observed variables and its states corre-
spond with the components of the mixture (the
number of clusters). In this way we move to a
problem of learning from unlabelled data and
usually EM algorithm (Dempster et al., 1977)
is used to carry out the learning task when the
graphical structure is fixed and structural EM
(Friedman, 1998) when the graphical structure
has also to be discovered (Peña et al., 2000).
Iterative approaches have been described in the
literature (Cheeseman and Stutz, 1996) in order
to discover also the number of clusters (compo-
nents of the mixture). Notice that although this
is not the goal of the learning task, the struc-
tures discovered can be used for approximate
inference (Lowd and Domingos, 2005), having
the advantage over general Bayesian networks
(Jensen, 2001) that the learned graphical struc-
ture is, in general, simple (i.e. naive Bayes) and
so inference is extremely fast.

3 Independency tree model

If we have the set of variables X =
{X1, . . . ,Xm} regarding a certain domain, an
independent probability tree for this set of vari-
ables is a tree such that (e.g. figure 1):

• Each inner node N is labelled by a vari-
able Var(N), and this node has a child for
each one of the possible values (states) of
Var(N).
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When a variable is represented by a node
in the tree it implies that this variable par-
titions the space from now on (from this
point to the farther branches in the tree)
depending on its (nominal) value. So, a
variable cannot appear again (deeper) in
the tree.

• Each node N will have an associated list
of potentials, List(N), with each of the po-
tentials in the list storing a marginal prob-
ability distribution for one of the variables
in X, including always a potential for the
variable Var(N).

This list appears in Figure 1 framed into a
dashed box.

• For any path from the root to a leaf, each
one of the variables in X appears uniquely
and exactly once in the the lists associated
to the nodes along the path. This poten-
tial will determine the conditional proba-
bility of the variables given the values of
the variables on the path from the root to
the list containing the potential.

A configuration is a subset of variables Y ⊆
{X1, . . . ,Xm} together with a concrete value
Yj = yj for each one of the variables Yj ∈ Y.
Each node N has an associated configuration
determined for the variables in the path from
the root to node N (excluding Var(N)) with the
values corresponding to the children we have to
follow to reach N . This configuration will be
denoted as Conf(N).

An independent probability tree represents a
joint probability distribution, p, about the vari-
ables in X. If x = (x1, . . . , xm), then

p(x) =
m∏

i=1

P
x(i)(xi)

where Px(i) is the potential for variable Xi which
is in the path from the root to a leaf determined
by configuration x (following in each inner node
N with variable Var(N) = Xj , the child corre-
sponding to the value of Xj ∈ x).

This decomposition is based on a set of inde-
pendencies among variables {X1, . . . ,Xm}. As-
sume that VL(N) is the set of variables of the

potentials in List(N), and that DVL(N)1 is the
union of sets VL(N ′), where N ′ is a node in
a path from N to a leaf, then the independen-
cies are generated from the following statement:
Each variable X in VL(N) - Var(N) is indepen-

dent of the variables (VL(N) − {X})∪DVL(N)
given the configuration Conf(N); i.e. each vari-
able in the list of a node is independent of the
other variables in that list and of the variables
in its descendants, given the configuration asso-
ciated to the node.

An independent probability tree also defines
a partition of the set of possible values of vari-
ables in X. The number of clusters is the num-
ber of leaves. If N is a leaf with associated
configuration Conf(N), then this group is given
by all set of values x that are compatible with
Conf(N) (they have the same value for all the
variables in Conf(N)). For example, in figure 1
the configuration X = {0, 1, 0, 1, 0} would fall
on the second leaf since X1=0 and X2=1. It
is assumed that the probability distribution of
the other variables in the cluster are given by
the potentials in the path defined by the config-
uration, for example, P(X3=0)=1.

In this way, with an independence tree we are
able of accomplishing two goals in one: (1)The
variables are partitioned in a hierarchical way
that gives us at the same time a clustering re-
sult; (2)The probability value of every configu-
ration of the variables.

X1

X2: "0" [1] "1" [0]
X3: "0" [1] "1" [0]

"1""0"

"1""0"

X5: "0" [0.5] "1" [0.5]
X4: "0" [0.5] "1" [0.5]

X1: "0" [0.67] "1" [0.33]

X3: "0" [0] "1" [1] X3: "0" [1] "1" [0]

X2

X2: "0" [0.5] "1" [0.5]

Figure 1: Illustrative independence tree struc-
ture learned from the exclusive dataset.

1D stands for “Descendants”.
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Our structure seeks to keep in leaves those
variables that remain independent. At the same
time, if the distribution of one variable is shared
by several leaves, we try to store it in their com-
mon ascendant, to avoid repeating it in all the
leaves. For that reason, when one variable ap-
pears in a list for a node Nj it means that this
distribution is common for all levels from here to
a leaf. For example, in figure 1, the binary vari-
able X4 has a uniform (1/2,1/2) distribution for
all leaf cases (also for intermediate ones), since
it is associated to the root node. On the other
hand, we can see how X2 distribution varies de-
pending on the branch (left or right) we take
from the root, that is, when X1 = 0 the be-
haviour of variable X2 is uniform whereas being
1 the value of X1, X2 is determined to be 0.

The intuition underlying this model is based
on the idea that inside each cluster the variables
are independent. When we have a set of data,
groups are defined by common values in certain
variables, having the other variables random
variations. Imagine that we have a database
with characteristics of different animals includ-
ing mammals and birds. The presence of these
two groups is based on the existence of depen-
dencies between the variables (two legs is re-
lated with having wings and feathers). Once
these variables are fixed, there can be another
variables (size, colour) that can have random
variations inside each group, but that they do
not define new subcategories.

Of course, there are some other possible al-
ternatives to define clustering. This is based
on the idea that when all the variables are inde-
pendent, then to subdivide the population is not
useful, as we have a simple method to describe
the joint behaviour of the variables. However,
if some of the variables are dependent, then the
values of some basic variables could help to de-
termine the values of the other variables, and
then it can be useful to divide the population
in groups according to the values of these basic
variables.

Another way of seeing it is that having inde-
pendent variables is the simplest model we can
have. So, we determine a set of categories such
that each one is described in a very simple way

(independent variables). This is exploited by
another clustering algorithms as EM-based Au-
toClass clustering algorithm (Cheeseman and
Stutz, 1996).

An important fact of this model is that it is a
generalisation of some usual models in classifi-
cation, the Naive Bayes model (a tree with only
one inner node associated to the class and in
its children all the rest of variables are indepen-
dent), and the classification tree (a tree in which
the list of each inner node only contains one po-
tential and the potential associated to the class
variable always appears in the leaves). This gen-
eralization means that our model is able of rep-
resenting the same conditional probability dis-
tribution of the class variable with respect to the
rest of the variables, taking as basis the same set
of associated independencies.

From this model one may want to apply two
kinds of operations:

• The production of clusters and their charac-

terisation. A simple in-depth from root until ev-
ery leaf node access of the tree will give us the
corresponding clusters, and also the potential
lists associated to the path nodes will indicate
the behaviour of the other variables not in the
path.

• The computation of the probability for a cer-
tain complete configuration with a value for
each variable: x = {x1, x2, . . . , xm}. This al-
gorithm is recursive and works as follows:

getProb(Configuration {x1, x2, . . . , xm},Node N)
Prob ← 1
1 For all Potential Pj ∈ List(N)

1.1. Xj ← Var(Pj)
1.2. Prob ← Prob · Pj(Xj = xj)

2 If N is a leaf then return Prob

3 Else
3.1. XN ← Var(N)
3.2. Next Node N

′ ← Branch child(XN = xN )
3.3. return Prob·getProb({x1, x2, . . . , xm},N

′)

If we have a certain configuration we should
go through the tree from root until leaves tak-
ing the corresponding branches. Every time we
reach a node, we have to use the single poten-
tials in the associated list to multiply the value
of probability by the values of the potentials
corresponding to this configuration.

It is also possible to compute the probabil-
ity for an interest variable Z conditioned to
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a generic configuration (a set of observations):
Y = y. This can be done in two steps: 1)
Transform the independent probability tree into
a probability tree (Salmerón et al., 2000); 2)
Make a marginalisation of the probability tree
by adding in all the variables except in Z as
describe in (Salmerón et al., 2000).

In the following we describe the first step.
It is a recursive procedure that visits all nodes
from root to leaves. Each node can pass to its
children a float, Prob (1 in the root) and a po-
tential P which depends of variable Z (empty
in the root). Each time a node is visited, the
following operations are carried out:
• All the potentials in List(N) are examined and
removed. For any potential, depending on its
variable Xj we proceed as follows:

- If Xj 6= Z, then if Xj = Yk is in the obser-
vations configuration, Prob is multiplied by the
value of this potential for Yk = yk.

- If Xj 6= Z and Xj does not appear in the
observations configuration, then the potential is
ignored.

- If Xj = Z and Xj is the one associated
to node N , then we transform each one of the
children of Z, but multiplying Prob by the value
of potential in Z = z, before transforming the
child corresponding to this value.

- If Xj = Z and Xj is not the one associated
to node N , then the potential of Xj is stored in
P.
• After examining the list of potentials, we pro-
ceed:

- If N is not a leaf node, then we transform
its children.

- If N is a leaf node and P = ∅, we assign the
value Prob to this node.

- If N is a leaf node and P 6= ∅, we make N
an inner node with variable Z: For each value
Z = z, build a node N ′

z which is a leaf node
with a value equal to Prob ⊙ P(z). Make N ′

z a
child of N .

This procedure is fast: it is linear in the the
size of the independent probability tree (consid-
ering the number of values of Z constant). The
marginalisation in the second step has the same
time complexity. In fact, this marginalization
can be done by adding for each value Z = z the

values of the leaves that are compatible with
this value (compatibility means that to follow
this path we do not have to assume Z = z′ with
z 6= z′), which is linear too.

4 Our clustering algorithm

In this section we are going to describe how
an independent probability tree can be learned
from a database D, with values for all the vari-
ables in X = {X1, . . . ,Xm}.

The basics of the algorithm are simple. It
tries to determine for each node, the variable
with a strongest degree of dependence with the
rest of remaining variables. This variable will
be assigned to this node, repeating the process
with its children until all the variables are inde-
pendent.

For this, we need a measure of the degree
of dependence of two variables Xi and Xj in
database D. The measure should be centered
around 0, in such a way that the variables are
considered dependent if and only if the measure
is greater than 0. In this paper, we consider the
K2 score (Cooper and Herskovits, 1992), mea-
suring the degree of dependence as the differ-
ence in the logarithm of the K2 score of Xj

conditioned to Xi minus the logarithm of K2
score of marginal Xj , i.e. the difference be-
tween the logarithms of the K2 scores of two
networks with two variables: one in which Xi

is a parent of Xj and other in which the two
variables are not connected. Let us call this
degree of dependence Dep(Xi,Xj |D). This is
a non-symmetrical measure and should be read
as the influence of Xi on Xj , however in prac-
tice the differences between Dep(Xi,Xj |D) and
Dep(Xj ,Xi|D) are not important.

In any moment, given a variable Xi and a
database D, we can estimate a potential Pi(D)
for this variable in the database. This potential
is the estimation of the marginal probability of
Xi. Here we assume that this is done by count-
ing the absolute frequencies of each one of the
values in the database.

The algorithm starts with a list of variables
L which is initially equal to {X1, . . . ,Xm} and
a database equal to the original one D, then it
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determines the root node N and its children in
a recursive way. For that, for any variable Xi

in the list, it computes

Dep(Xi|D) =
∑

Xj∈L

Dep(Xi,Xj |D)

Then, the variable Xk with maximum value
of Dep(Xi|D) is considered.

If Dep(Xk|D) > 0, then we assign variable
Xk to node N and we add potential Pk(D) to
the list List(N), removing Xk for L. For all
the remaining variables Xi in L, we compute
Dep(Xi,Xj |D) for Xj ∈ L(j 6= i), and Xj =
Xk. If all these values are less or equal than
0, then we add potential Pi(D) to List(N) and
remove Xi from L; i.e. we keep in this node
the variables which are independent of the rest
of variables, including the variable in the node.
Finally, we build a child of N for each one of
the values Xk = xk. This is done by calling
recursively to the same procedure, but with the
new list of nodes, and changing database D to
D[Xk = xk], where D[Xk = xk] is the subset
of D given by those cases in which variable Xk

takes the value xk.
If Dep(Xk|D) ≤ 0, then the process is

stopped and this is a leaf node. We build
List(N), by adding potential Pi(D) for any vari-
able Xi in L.

In this algorithm, the complexity of each node
computation is limited by O(m2.n) where m is
the number of variables and n is the database
size. The number of leaves is limited by the
database size n multiplied by the maximum
number of cases of a variable, as a leaf with only
one case of the database is never branched. But
usually the number of nodes is much lower.

In the algorithm, we make some approxima-
tions with respect to the independencies repre-
sented by the model. First, we only look at one-
to-one dependencies, and not to joint dependen-
cies. It can be the case that Xi is indepen-
dent of Xj and Xk and it is not independent of
(Xj ,Xk). However, testing these independents
is more costly and we do not have the possibility
of a direct representation of this in the model.
This assumption is made by other Bayesian net-
works learning algorithms such as PC (Spirtes

et al., 1993), where a link between two nodes is
deleted if these nodes are marginally indepen-
dent.

Another approximation is that it is assumed
that all the variables are independent in a leaf
when Dep(Xk|D) ≤ 0, even if some of the terms
we are adding are positive. We have found that
this is a good compromise criterion to limit the
complexity of learned models.

5 Experiments

To make an initial evaluation of the Indepen-

dence Tree (IndepT) model, we decided to com-
pare it with other well known unsupervised
classification techniques that are also based on
Probabilistic Graphical Models: learning of a
Bayesian network (by a standard algorithm as
PC) and also Expectation-Maximisation with
a Naive Bayes structure, which uses cross-
validation to decide the number of clusters. Be-
cause we produce a probabilistic description of
the dataset, we use the log-likelihood (logL) of
the data given the model to score a given clus-
tering. By using the logL as goodness measure
we can compare our approach with other algo-
rithms for probabilistic model-based unsuper-
vised learning: probabilistic model-based clus-
tering and Bayesian networks. This is a direct
evaluation of the procedures as methods to en-
code a complex joint probability distribution.
At the same time, it is also an evaluation of our
method from the clustering point of view, show-
ing whether the proposed segmentation is useful
for a simple description of the population.

Then, the basic steps we have followed
for the three procedures [IndepT,PC-Learn,EM-

Naive] are:

1. Divide the data cases into a training or data
set (SD) and a test set (ST ), using (2/3,1/3).

2. Build the corresponding model for the cases
in SD.

3. Compute the log-likelyhood of the obtained
model over the data in ST .

Among the tested cases, apart from easy syn-
thetical data bases created to check the ex-
pected and right clusters, we have looked for
real sets of cases. Some of them have been taken
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from the UCI datasets repository (Newman et
al., 1998) and others from real applications re-
lated to our current research environment.

We will indicate the main remarks about all
the evaluated cases:

• Case 1: exclusive: This is a very simple
dataset with five binary variables, from X1 to
X5. The three first variables have an exclusive

behaviour, that is, if one of them is 1 the other
two will be 0. On the other hand, X4 and X5

are independent with the three first ones and
also with each other. This example is interest-
ing not especially for the LogL comparison, but
mainly to see the interpretation of the tree given
in figure 1.

• Case 2: tic-tac-toe: Taken from UCI reposi-
tory and it encodes the complete set of possible
board configurations at the end of tic-tac-toe
games. It presents 958 cases and 9 attributes
(one per each game square).

• Cases 3: greenhouses: Data cases taken
from real greenhouses located in Almeŕıa
(Spain). There are four distinct sets of
cases, here we indicate them with denotation
(case)={num cases, num attributes}: (3A)=
{1240,8}, (3B)= {1465,17}, (3C)= {1318,33},
(3D)= {1465,6}.

• Cases 4: sheep: Datasets taken from the
work developed in (Flores and Gámez, 2005)
where the historical data of the different ani-
mals were registered and used to analyse their
genetic merit for milk production directed to
Manchego cheese. There are two datasets with
3087 cases, 4A with 24 variables/attributes and
4B, where the attribute breeding value (that
could be interpreted as class attribute) has been
removed.

• Case 5: connect4: Also downloaded from the
UCI repository and it contains all legal 8-play
positions in the game of connect-4 in which
neither player has won yet, and in which the
next move is not forced. There are 67557 cases
and 42 attributes, each corresponding to one
connect-4 square2.

The results of the experiments can be found
in figure 1 and in table 1. Figure 1 presents

2Actually, only the half of the cases have been used.

case IndepT PC-Learn EM-Naive

1 -61.33 -62.88 -119.67
2 -1073.94 -2947.85 -3535.11

3A -3016.92 -2644.38 -4297.21
3B -2100.40 -3584.06 -6266.71
3C -4956.04 -7630.98 -15145.15
3D -1340.04 -2770.15 -4223.45
4A -6853.12 -18074.69 -32213.29
4B -6802.94 -17357.80 -31244.28
5: -465790.73 -349631.35 -794415.07

Table 1: Comparison in terms of the log-
likelyhood value for all cases (datasets).

the tree learned in the exclusive case. As it
can be observed, the tree really captures what
is happening in the problem: X4 and X5 are
independent and placed in the list of root node
and then one of the other variables is looked up,
if its value is 1, then the values of the other two
variables is completely determined and we stop.
If its value is 0, then another variable has to be
examined.

With respect to the capacity of approximat-
ing the joint probability distribution, we can
see in table 1 that our method always provides
greater values of logL than EM-Naive in all the
datasets. With respect to PC algorithm, the
independent tree wins in all the situations ex-
cept in two of them (cases 3A and 5). This is
a remarkable result as our model has some lim-
itations in representing sets of independencies
that can be easily represented by a Bayesian
network (for example a Markov chain), however
its behaviour is usually better. We think that
this is due to two main aspects: it can represent
asymmetrical independencies and it is a simple
model (which is always a virtue).

6 Concluding remarks and future

work

In this paper we have proposed a new model for
representing a joint probability distribution in a
compact way, which can be used for fast compu-
tation of conditional probability distributions.
This model is based on a partition of the state
space, in such a way that in each group all the
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variables are independent. In this sense, it is at
the same time a clustering algorithm.

In the experiments with real and syntheti-
cal data we have shown its good behaviour as
a method of approximating a joint probability,
providing results that are better (except for two
cases for the PC algorithm) to the factorisa-
tion provided by an standard Bayesian networks
learning algorithm (PC) and by EM clustering
algorithm. In any case, more extensive experi-
ments are necessary in order to compare it with
another clustering and factorisation procedures.

We think that this model can be improved
and exploited in several ways: (1) Some of the
clusters can have very few cases or can be very
similar in the distributions of the variables. We
could devise a procedure to joint these clusters;
(2) we feel that the different number of values of
the variables can have some undesirable effects.
This problem could be solved by considering bi-
nary trees in which the branching is determined
by a partition of the set of possible values of a
variable in two parts. This could allow to extend
the model to continuous variables; (3) we could
determine different stepping branching rules de-
pending of the final objective: to approximate a
joint probability or to provide a simple (though
not necessarily exhaustive) partition of the state
space that could help us to have an idea of how
the variables take their values; (4) to use this
model in classification problems.
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Abstract

The Bayesian network formalism is becoming increasingly popular in many areas such
as decision aid or diagnosis, in particular thanks to its inference capabilities, even when
data are incomplete. For classification tasks, Naive Bayes and Augmented Naive Bayes
classifiers have shown excellent performances. Learning a Naive Bayes classifier from
incomplete datasets is not difficult as only parameter learning has to be performed. But
there are not many methods to efficiently learn Tree Augmented Naive Bayes classifiers
from incomplete datasets. In this paper, we take up the structural em algorithm principle
introduced by (Friedman, 1997) to propose an algorithm to answer this question.

1 Introduction

Bayesian networks are a formalism for proba-
bilistic reasoning increasingly used in decision
aid, diagnosis and complex systems control. Let
X = {X1, . . . , Xn} be a set of discrete random vari-
ables. A Bayesian network B =< G, Θ > is de-
fined by a directed acyclic graph G =< N, U >

where N represents the set of nodes (one node
for each variable) and U the set of edges, and
parameters Θ = {θijk}16i6n,16j6qi,16k6ri

the set
of conditional probability tables of each node
Xi knowing its parents’ state Pi (with ri and
qi as respective cardinalities of Xi and Pi).

If G and Θ are known, many inference algo-
rithms can be used to compute the probability
of any variable that has not been measured con-
ditionally to the values of measured variables.
Bayesian networks are therefore a tool of choice
for reasoning in uncertainty, based on incom-
plete data, which is often the case in real appli-
cations.

It is possible to use this formalism for clas-
sification tasks. For instance, the Naive Bayes
classifier has shown excellent performance. This
model is simple and only need parameter learn-
ing that can be performed with incomplete
datasets. Augmented Naive Bayes classifiers
(with trees, forests or Bayesian networks),

which often give better performances than the
Naive Bayes classifier, require structure learn-
ing. Only a few methods of structural learning
deal with incomplete data.

We introduce in this paper a method to learn
Tree Augmented Naive Bayes (tan) classifiers
based on the expectation-maximization (em)
principle. Some previous work by (Cohen et
al., 2004) also deals with tan classifiers and em
principle for partially unlabeled data. In there
work, only the variable corresponding to the
class can be partially missing whereas any vari-
able can be partially missing in the approach we
propose here.

We will therefore first recall the issues relat-
ing to structural learning, and review the vari-
ous ways of dealing with incomplete data, pri-
marily for parameter estimation, and also for
structure determination. We will then exam-
ine the structural em algorithm principle, before
proposing and testing a few ideas for improve-
ment based on the extension of the Maximum
Weight Spanning Tree algorithm to deal with
incomplete data. Then, we will show how to
use the introduced method to learn the well-
known Tree Augmented Naive Bayes classifier
from incomplete datasets and we will give some
experiments on real data.



2 Preliminary remarks

2.1 Structural learning

Because of the super-exponential size of the
search space, exhaustive search for the best
structure is impossible. Many heuristic meth-
ods have been proposed to determine the struc-
ture of a Bayesian network. Some of them rely
on human expert knowledge, others use real
data which need to be, most of the time, com-
pletely observed.

Here, we are more specifically interested in
score-based methods. Primarily, greedy search
algorithm adapted by (Chickering et al., 1995)
and maximum weight spanning tree (mwst)
proposed by (Chow and Liu, 1968) and ap-
plied to Bayesian networks in (Heckerman et al.,
1995). The greedy search carried out in directed
acyclic graph (dag) space where the interest of
each structure located near the current struc-
ture is assessed by means of a bic/mdl type
measurement (Eqn.1)1 or a Bayesian score like
bde (Heckerman et al., 1995).

BIC(G, Θ) = log P (D|G, Θ)− log N

2
Dim(G) (1)

where Dim(G) is the number of parameters used
for the Bayesian network representation and
N is the size of the dataset D.

The bic score is decomposable. It can be
written as the sum of the local score computed
for each node as BIC(G, Θ) =

P
i bic(Xi, Pi, ΘXi|Pi

)

where bic(Xi, Pi, ΘXi|Pi
) =X

Xi=xk

X
Pi=paj

Nijk log θijk −
log N

2
Dim(ΘXi|Pi

) (2)

with Nijk the occurrence number of {Xi =
xk and Pi = paj} in D.

The principle of the mwst algorithm is rather
different. This algorithm determines the best
tree that links all the variables, using a mutual
information measurement like in (Chow and
Liu, 1968) or the bic score variation when two
variables become linked as proposed by (Hecker-
man et al., 1995). The aim is to find an optimal
solution, but in a space limited to trees.

1As (Friedman, 1997), we consider that the bic/mdl
score is a function of the graph G and the parameters Θ,
generalizing the classical definition of the bic score which
is defined with our notation by BIC(G, Θ∗) where Θ∗

is obtained by maximizing the likelihood or BIC(G, Θ)
score for a given G.

2.2 Bayesian classifiers

Bayesian classifiers as Naive Bayes have shown
excellent performances on many datasets. Even
if the Naive Bayes classifier has underlying
heavy independence assumptions, (Domingos
and Pazzani, 1997) have shown that it is op-
timal for conjunctive and disjunctive concepts.
They have also shown that the Naive Bayes clas-
sifier does not require attribute independence to
be optimal under Zero-One loss.

Augmented Naive Bayes classifier appear as
a natural extension to the Naive Bayes classi-
fier. It allows to relax the assumption of inde-
pendence of attributes given the class variable.
Many ways to find the best tree to augment
the Naive Bayes classifier have been studied.
These Tree Augmented Naive Bayes classifiers
(Geiger, 1992; Friedman et al., 1997) are a re-
stricted family of Bayesian Networks in which
the class variable has no parent and each other
attribute has as parents the class variable and
at most one other attribute. The bic score of
such a Bayesian network is given by Eqn.3.

BIC(TAN , Θ) = bic(C, ∅, ΘC|∅) (3)

+
X

i

bic(Xi, {C, Pi}, ΘXi|{C,Pi})

where C stands for the class node and Pi could
only be the emptyset ∅ or a singleton {Xj}, Xj 6∈
{C, Xi}.

Forest Augmented Naive Bayes classifier
(fan) is very close to the tan one. In this
model, the augmented structure is not a tree,
but a set of disconnected trees in the attribute
space (Sacha, 1999).

2.3 Dealing with incomplete data

2.3.1 Practical issue

Nowadays, more and more datasets are avail-
able, and most of them are incomplete. When
we want to build a model from an incomplete
dataset, it is often possible to consider only the
complete samples in the dataset. But, in this
case, we do not have a lot of data to learn the
model. For instance, if we have a dataset with
2000 samples on 20 attributes with a probabil-
ity of 20% that a data is missing, then, only
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23 samples (in average) are complete. General-
izing from the example, we see that we cannot
ignore the problem of incomplete datasets.

2.3.2 Nature of missing data
Let D = {Xl

i}16i6n,16l6N our dataset, with
Do the observed part of D, Dm the missing part
and Dco the set of completely observed cases in
Do. Let also M = {Mil} with Mil = 1 if Xl

i is
missing, 0 if not. We then have the following
relations:
Dm = {Xl

i / Mil = 1}16i6n,16l6N

Do = {Xl
i / Mil = 0}16i6n,16l6N

Dco = {[Xl
1 . . . Xl

n] / [M1l . . . Mnl] = [0 . . . 0]}16l6N

Dealing with missing data depends on their
nature. (Rubin, 1976) identified several types
of missing data:

• mcar (Missing Completly At Random):
P (M|D) = P (M), the probability for data
to be missing does not depend on D,

• mar (Missing At Random): P (M|D) =

P (M|Do), the probability for data to be
missing depends on observed data,

• nmar (Not Missing At Random): the prob-
ability for data to be missing depends on
both observed and missing data.

mcar and mar situations are the easiest to
solve as observed data include all necessary in-
formation to estimate missing data distribution.
The case of nmar is trickier as outside informa-
tion has to be used to model the missing data
distribution.

2.3.3 Learning Θ with incomplete data
With mcar data, the first and simplest possi-

ble approach is the complete case analysis. This
is a parameter estimation based on Dco, the set
of completely observed cases in Do. When D is
mcar, the estimator based on Dco is unbiased.
However, with a high number of variables the
probability for a case [Xl

1 . . . Xl
n] to be completely

measured is low and Dco may be empty.
One advantage of Bayesian networks is that,

if only Xi and Pi = Pa(Xi) are measured, then
the corresponding conditional probability table
can be estimated. Another possible method
with mcar cases is the available case analy-
sis, i.e. using for the estimation of each con-
ditional probability P (Xi|Pa(Xi)) the cases in

Do where Xi and Pa(Xi) are measured, not only
in Dco (where all Xi’s are measured) as in the
previous approach.

Many methods try to rely more on all the ob-
served data. Among them are sequential updat-
ing (Spiegelhalter and Lauritzen, 1990), Gibbs
sampling (Geman and Geman, 1984), and ex-
pectation maximisation (EM) in (Dempster et
al., 1977). Those algorithms use the missing
data mar properties. More recently, bound
and collapse algorithm (Ramoni and Sebastiani,
1998) and robust Bayesian estimator (Ramoni
and Sebastiani, 2000) try to resolve this task
whatever the nature of missing data.

EM has been adapted by (Lauritzen, 1995)
to Bayesian network parameter learning when
the structure is known. Let log P (D|Θ) =

log P (Do,Dm|Θ) be the data log-likelihood.
Dm being an unmeasured random variable, this
log-likelihood is also a random variable function
of Dm. By establishing a reference model Θ∗, it
is possible to estimate the probability density of
the missing data P (Dm|Θ∗) and therefore to cal-
culate Q(Θ : Θ∗), the expectation of the previous
log-likelihood:

Q(Θ : Θ∗) = EΘ∗ [log P (Do,Dm|Θ)] (4)

So Q(Θ : Θ∗) is the expectation of the likelihood
of any set of parameters Θ calculated using a
distribution of the missing data P (Dm|Θ∗). This
equation can be re-written as follows.

Q(Θ : Θ∗) =

nX
i=1

X
Xi=xk

X
Pi=paj

N∗
ijk log θijk (5)

where N∗
ijk = EΘ∗ [Nijk] = N × P (Xi = xk, Pi =

paj |Θ∗)is obtained by inference in the network
< G, Θ∗ > if the {Xi,Pi} are not completely mea-
sured, or else only by mere counting.

(Dempster et al., 1977) proved convergence
of the em algorithm, as the fact that it was not
necessary to find the global optimum Θi+1 of
function Q(Θ : Θi) but simply a value which
would increase function Q (Generalized em).

2.3.4 Learning G with incomplete
dataset

The main methods for structural learning
with incomplete data use the em principle: Al-
ternative Model Selection em (ams-em) pro-
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posed by (Friedman, 1997) or Bayesian Struc-
tural em (bs-em) (Friedman, 1998). We can
also cite the Hybrid Independence Test pro-
posed in (Dash and Druzdzel, 2003) that can
use em to estimate the essential sufficient statis-
tics that are then used for an independence
test in a constraint-based method. (Myers et
al., 1999) also proposes a structural learning
method based on genetic algorithm and mcmc.
We will now explain the structural em algorithm
principle in details and see how we could adapt
it to learn a tan model.

3 Structural em algorithm

3.1 General principle

The EM principle, which we have described
above for parameter learning, applies more
generally to structural learning (Algorithm 1
as proposed by (Friedman, 1997; Friedman,
1998)).

Algorithm 1 : Generic em for structural learning

1: Init: i = 0
Random or heuristic choice of the initial
Bayesian network (G0, Θ0)

2: repeat
3: i = i + 1
4: (Gi, Θi) = argmax

G,Θ
Q(G, Θ : Gi−1, Θi−1)

5: until |Q(Gi, Θi : Gi−1, Θi−1)−
Q(Gi−1, Θi−1 : Gi−1, Θi−1)| 6 ε

The maximization step in this algorithm (step
4) has to be performed in the joint space
{G, Θ} which amounts to searching the best
structure and the best parameters correspond-
ing to this structure. In practice, these two
steps are clearly distinct2:

Gi = argmax
G

Q(G, • : Gi−1, Θi−1) (6)

Θi = argmax
Θ

Q(Gi, Θ : Gi−1, Θi−1) (7)

where Q(G, Θ : G∗, Θ∗) is the expectation of
the likelihood of any Bayesian network <

G, Θ > computed using a distribution of the
missing data P (Dm|G∗, Θ∗).

Note that the first search (Eqn.6) in the space
of possible graphs takes us back to the initial
problem, i.e. the search for the best structure in

2The notation Q(G, • : . . . ) used in Eqn.6 stands for
EΘ[Q(G, Θ : . . . )] for Bayesian scores or Q(G, Θo : . . . )
where Θo is obtained by likelihood maximisation.

Algorithm 2 : Detailed em for structural learning

1: Init: finished = false, i = 0
Random or heuristic choice of the initial
Bayesian network (G0, Θ0,0)

2: repeat
3: j = 0
4: repeat
5: Θi,j+1 = argmax

Θ
Q(Gi, Θ : Gi, Θi,j)

6: j = j + 1
7: until convergence (Θi,j → Θi,jo

)

8: if i = 0 or |Q(Gi, Θi,jo

: Gi−1, Θi−1,jo

) −
Q(Gi−1, Θi−1,jo

: Gi−1, Θi−1,jo

)| > ε then

9: Gi+1 = arg max
G∈VGi

Q(G, • : Gi, Θi,jo

)

10: Θi+1,0 = argmax
Θ

Q(Gi+1, Θ : Gi, Θi,jo

)

11: i = i + 1
12: else
13: finished = true
14: end if
15: until finished

a super-exponential space. However, with Gen-
eralised em it is sufficient to look for a better
solution rather than the best possible one, with-
out affecting the algorithm convergence proper-
ties. This search for a better solution can then
be done in a limited space, like for example VG,
the set of the neigbours of graph G that have
been generated by removal, addition or inver-
sion of an arc.

Concerning the search in the space of the pa-
rameters (Eqn.7), (Friedman, 1997) proposes
repeating the operation several times, using a
clever initialisation. This step then amounts to
running the parametric em algorithm for each
structure Gi, starting with structure G0 (steps 4
to 7 of Algorithm 2). The two structural em
algorithms proposed by Friedman can therefore
be considered as greedy search algorithms, with
EM parameter learning at each iteration.

3.2 Choice of function Q

We now have to choose the function Q that will
be used for structural learning. The likelihood
used for parameter learning is not a good indi-
cator to determine the best graph since it gives
more importance to strongly connected struc-
tures. Moreover, it is impossible to compute
marginal likelihood when data are incomplete,
so that it is necessary to rely on an efficient
approximation like those reviewed by (Chicker-
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ing and Heckerman, 1996). In complete data
cases, the most frequently used measurements
are the bic/mdl score and the Bayesian bde
score (see paragraph 2.1). When proposing the
ms-em and mwst-em algorithms, (Friedman,
1997) shows how to use the bic/mdl score with
incomplete data, by applying the principle of
Eqn.4 to the bic score (Eqn.1) instead of likeli-
hood. Function QBIC is defined as the bic score
expectation by using a certain probability den-
sity on the missing data P (Dm|G∗, Θ∗) :

QBIC(G, Θ : G∗, Θ∗) = (8)

EG∗,Θ∗ [log P (Do,Dm|G, Θ)]− 1

2
Dim(G) log N

As the bic score is decomposable, so is QBIC .

QBIC(G, Θ : G∗, Θ∗)=
X

i

Qbic(Xi, Pi, ΘXi|Pi
: G∗, Θ∗)

(9)where Qbic(Xi, Pi, ΘXi|Pi
: G∗, Θ∗) =X

Xi=xk

X
Pi=paj

N∗
ijk log θijk −

log N

2
Dim(ΘXi|Pi

) (10)

with N∗
ijk = EG∗,Θ∗ [Nijk] = N ∗ P (Xi = xk, Pi =

paj |G∗, Θ∗) obtained by inference in the network
{G∗, Θ∗} if {Xi,Pi} are not completely measured,
or else only by mere counting. With the same
reasoning, (Friedman, 1998) proposes the adap-
tation of the bde score to incomplete data.

4 TAN-EM, a structural EM for
classification

(Leray and François, 2005) have introduced
mwst-em an adaptation of mwst dealing with
incomplete datasets. The approach we propose
here is using the same principles in order to ef-
ficiently learn tan classifiers from incomplete
datasets.

4.1 MWST-EM, a structural EM in
the space of trees

Step 1 of Algorithm 2, like all the previous al-
gorithms, deals with the choice of the initial
structure. The choice of an oriented chain graph
linking all the variables proposed by (Friedman,
1997) seems even more judicious here, since this
chain graph also belongs to the tree space. Steps
4 to 7 do not change. They deal with the run-
ning of the parametric em algorithm for each
structure Bi, starting with structure B0.

There is a change from the regular structural
em algorithm in step 9, i.e. the search for a
better structure for the next iteration. With
the previous structural em algorithms, we were
looking for the best dag among the neighbours
of the current graph. With mwst-em, we can
directly get the best tree that maximises func-
tion Q.

In paragraph 2.1, we briefly recalled that the
mwst algorithm used a similarity function be-
tween two nodes which was based on the bic
score variation whether Xj is linked to Xi or
not. This function can be summed up in the
following (symmetrical) matrix:h

Mij

i
16i,j6n

=
h
bic(Xi, Xj , ΘXi|Xj

)− bic(Xi, ∅, ΘXi)
i

(11)

where the local bic score is defined in Eqn.2.
Running maximum (weight) spanning algo-

rithms like Kruskal’s on matrix M enables us to
obtain the best tree T that maximises the sum
of the local scores on all the nodes, i.e. function
BIC of Eqn.2.

By applying the principle we described in sec-
tion 3.2, we can then adapt mwst to incom-
plete data by replacing the local bic score of
Equn.11 with its expectation; to do so, we use a
certain probability density of the missing data
P (Dm|T ∗, Θ∗) :h

MQ
ij

i
i,j

=
h
Qbic(Xi, Pi = {Xj}, ΘXi|Xj

: T ∗, Θ∗)

−Qbic(Xi, Pi = ∅, ΘXi : T ∗, Θ∗)
i

(12)

With the same reasoning, running a maximum
(weight) spanning tree algorithm on matrix
MQ enables us to get the best tree T that max-
imises the sum of the local scores on all the
nodes, i.e. function QBIC of Eqn.9.

4.2 TAN-EM, a structural EM for
classification

The score used to find the best tan structure
is very similar to the one used in mwst, so we
can adapt it to incomplete datasets by defining
the following score matrix:h
MQ

ij

i
i,j

=
h
Qbic(Xi, Pi = {C, Xj}, ΘXi|XjC : T ∗, Θ∗)

−Qbic(Xi, Pi = {C}, ΘXi|C : T ∗, Θ∗)
i

(13)

Using this new score matrix, we can use the
approach previously proposed for mwst-em to
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get the best augmented tree, and connect the
class node to all the other nodes to obtain the
tan structure. We are currently using the same
reasoning to find the best forest ”extension”.

4.3 Related works

(Meila-Predoviciu, 1999) applies mwst algo-
rithm and em principle, but in another frame-
work, learning mixtures of trees. In this work,
the data is complete, but a new variable is intro-
duced in order to take into account the weight
of each tree in the mixture. This variable isn’t
measured so em is used to determine the corre-
sponding parameters.

(Peña et al., 2002) propose a change inside
the framework of the sem algorithm resulting
in an alternative approach for learning Bayes
Nets for clustering more efficiently.

(Greiner and Zhou, 2002) propose maximiz-
ing conditional likelihood for BN parameter
learning. They apply their method to mcar in-
complete data by using available case analysis
in order to find the best tan classifier.

(Cohen et al., 2004) deal with tan classifiers
and em principle for partially unlabeled data.
In there work, only the variable corresponding
to the class can be partially missing whereas any
variable can be partially missing in our tan-em
extension.

5 Experiments

5.1 Protocol

The experiment stage aims at evaluating the
Tree Augmented Naive Bayes classifier on
incomplete datasets from UCI repository3:
Hepatitis, Horse, House, Mushrooms and
Thyroid.

The tan-em method we proposed here is
compared to the Naive Bayes classifier with
em parameters learning. We also indicate the
classification rate obtained by three methods:
mwst-em, sem initialised with a random chain
and sem initialised with the tree given by
mwst-em (sem+t). The first two methods are

3http://www.ics.uci.edu/∼mlearn/MLRepository.
html

dedicated to classification tasks while the oth-
ers do not consider the class node as a specific
variable.

We also give an α confidence interval for each
classification rate, based on Eqn.14 proposed by
(Bennani and Bossaert, 1996):

I(α, N) =
T +

Z2
α

2N
± Zα

q
T (1−T )

N
+

Z2
α

4N2

1 +
Z2

α
N

(14)

where N is the number of samples in the dataset,
T is the classification rate and Zα = 1, 96 for α =

95%.

5.2 Results

The results are summed up in Table 1. First, we
could see that even if the Naive Bayes classifier
often gives good results, the other tested meth-
ods allow to obtain better classification rates.
But, where all runnings of nb-em give the same
results, as em parameter learning only needs
an initialisiation, the other methods do not al-
ways give the same results, and then, the same
classification rates. We have also noticed (not
reported here) that, excepting nb-em, tan-
em seems the most stable method concerning
the evaluated classification rate while mwst-em
seems to be the less stable.

The method mwst-em can obtain very good
structures with a good initialisation. Then, ini-
tialising it with the results of mwst-em gives us
stabler results (see (Leray and François, 2005)
for a more specific study of this point).

In our tests, except for this house dataset,
tan-em always obtains a structure that lead
to better classification rates in comparison with
the other structure learning methods.

Surprisingly, we also remark that mwst-em
can give good classification rates even if the
class node is connected to a maximum of two
other attributes.

Regarding the log-likelihood reported in Ta-
ble 1, we see that the tan-em algorithm finds
structures that can also lead to a good approx-
imation of the underlying probability distribu-
tion of the data, even with a strong constraint
on the graph structure.

Finally, the Table 1 illustrates that tan-
em and mwst-em have about the same com-
plexity (regarding the computational time) and
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Datasets N learn test #C %I NB-EM MWST-EM TAN-EM SEM SEM+T
Hepatitis 20 90 65 2 8.4 70.8 [58.8;80.5] 73.8 [62.0;83.0] 75.4 [63.6;84.2] 66.1 [54.0;76.5] 66.1 [54.0;76.5]

-1224.2 ; 29.5 -1147.6 ; 90.4 -1148.7 ; 88.5 -1211.5 ; 1213.1 -1207.9 ; 1478.5
Horse 28 300 300 2 88.0 75 [63.5;83.8] 77.9 [66.7;86.2] 80.9 [69.9;88.5] 66.2 [54.3;76.3] 66.2 [54.3;76.3]

-5589.1 ; 227.7 -5199.6 ; 656.1 -5354.4 ; 582.2 -5348.3 ; 31807 -5318.2 ; 10054
House 17 290 145 2 46.7 89.7 [83.6;93.7] 93.8 [88.6;96.7] 92.4 [86.9;95.8] 92.4 [86.9;95.8] 93.8 [88.6;96.7]

-2203.4 ; 110.3 -2518.0 ; 157.0 -2022.2 ; 180.7 -2524.4 ; 1732.4 -2195.8 ; 3327.2
Mushrooms 23 5416 2708 2 30.5 92.8 [91.7;93.8] 74.7 [73.0;73.4] 91.3 [90.2;92.4] 74.9 [73.2;76.5] 74.9 [73.2;76.5]

-97854 ; 2028.9 -108011 ; 6228.2 -87556 ; 5987.4 -111484 ; 70494 -110828 ; 59795
Thyroid 22 2800 972 2 29.9 95.3 [93.7;96.5] 93.8 [92.1;95.2] 96.2 [94.7;97.3] 93.8 [92.1;95.2] 93.8 [92.1;95.2]

-39348 ; 1305.6 -38881 ; 3173.0 -38350 ; 3471.4 -38303 ; 17197 -39749 ; 14482

Table 1: First line: best classification rate (on 10 runs, except Mushrooms on 5, in %) on test
dataset and its confidence interval, for the following learning algorithms: nb-em, mwst-em, sem,
tan-em and sem+t. Second line: log-likelihood estimated with test data and calculation time
(sec) for the network with the best classification rate. The first six columns give us the name of the
dataset and some of its properties : number of attributes, learning sample size, test sample size,
number of classes and percentage of incomplete samples.

are a good compromise between nb-em (clas-
sical Naive Bayes with em parameter learning)
and mwst-em (greedy search with incomplete
data).

6 Conclusions and prospects

Bayesian networks are a tool of choice for rea-
soning in uncertainty, with incomplete data.
However, most of the time, Bayesian network
structural learning only deal with complete
data. We have proposed here an adaptation of
the learning process of Tree Augmented Naive
Bayes classifier from incomplete datasets (and
not only partially labelled data). This method
has been successfuly tested on some datasets.

We have seen that tan-em was a good clas-
sification tool compared to other Bayesian net-
works we could obtained with structural em like
learning methods.

Our method can easily be extended to un-
supervised classification tasks by adding a new
step in order to determine the best cardinality
for the class variable.

Related future works are the adaptation of
some other Augmented Naive Bayes classifiers
for incomplete datasets (fan for instance), but
also the study of these methods with mar
datasets.

mwst-em, tan-em and sem methods are re-
spective adaptations of mwst, tan and greedy
search to incomplete data. These algorithms are

applying in (subspace of) dag space. (Chicker-
ing and Meek, 2002) proposed an optimal search
algorithm (ges) which deals with Markov equiv-
alent space. Logically enough, the next step
in our research is to adapt ges to incomplete
datasets. Then we could test results of this
method on classification tasks.
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Abstract

In this paper we propose using dependency networks (Heckerman et al., 2000), that is a
probabilistic graphical model similar to Bayesian networks, to model classifiers. The main
difference between these two models is that in dependency networks cycles are allowed, and
this fact has the consequence that the automatic learning process is much easier and can
be parallelized. These properties make dependency networks a valuable model especially
when it is needed to deal with large databases. Because of these promising characteristics
we analyse the usefulness of dependency networks-based Bayesian classifiers. We present
an approach that uses independence tests based on chi square distribution, in order to
find relationships between predictive variables. We show that this algorithm is as good
as some state-of the-art Bayesian classifiers, like TAN and an implementation of the BAN
model, and has, in addition, other interesting proprierties like scalability or good quality
for visualizing relationships.

1 Introduction

Classification is basically the task of assigning
a label to an instance formed by a set of at-
tributes. The automatic approach for this task
is one of the main parts in machine learning.
Thus, the problem consists on learning classi-
fiers from datasets in which each instance has
been previously labelled. Many methods have
been used for solving this problem based on var-
ious representations such as decision trees, neu-
ral networks, rule based systems, support vec-
tor machines among others. However a prob-
abilistic approach can be used for this pur-
pose, Bayesian classifiers (Duda and Hart, 1973;
Friedman et al., 1997). Bayesian classifiers
make use of a probabilistic graphical model such
as Bayesian networks, that have been a very
popular way of representing probabilistic rela-
tionships between variables in a domain. Thus a
Bayesian classifier takes advantage of probabil-
ity theory, especially the Bayes rule, in conjunc-
tion with a graphical representation for qual-

itative knowledge. The classification task can
be expressed as determining the probability for
the class variable knowing the value for all other
variables:

P (C|X1 = x1, X2 = x2, · · · , Xn = xn).

After this computation, the class variable’s
value with the highest probability is returned
as result. Obviously computing this probability
distribution for the class variable can be very
difficult and inefficient if it is carried out di-
rectly, but based on the independencies stated
by the selected model this problem can be sim-
plified enormously.

In this paper we present a new algorithm
for the automatic learning of Bayesian classi-
fiers from data, but using dependency network

classifiers instead of Bayesian networks. De-
pendency networks (DNs) were proposed by
Heckerman et al. (2000) as a new probabilistic
graphical model similar to BNs, but with a key
difference: the graph that encodes the model



structure does not have to be acyclic. As in BNs
each node in a DN has a conditional probability
distribution given its parents in the graph. Al-
though the presence of cycles can be observed
as the capability to represent richer models, the
price we have to pay is that usual BNs infer-
ence algorithms cannot be applied and Gibbs
sampling has to be used in order to recover the
joint probability distribution (see (Heckerman
et al., 2000)). An initial approach for introduc-
ing dependency networks in automatic classifi-
cation can be found in (Mateo, 2006).

Learning a DN from data is easier than learn-
ing a BN, especially because restrictions about
introducing cycles are not taken into account.
In (Heckerman et al., 2000) was presented a
method for learning DNs based on learning
the conditional probability distribution for each
node independently, by using any classification
or regression algorithm to discover the parents
of each node. Also a feature selection scheme
can be use in conjunction. It is clear that this
learning approach produces scalable algorithms,
because any learning algorithm with this ap-
proach can be easily parallelized just distribut-
ing groups of variables between all nodes avail-
able in a multi-computer system.

This paper is organized as follows. In section
2 dependency networks are briefly described. In
section 3 we review some notes about how classi-
fication task is done with probabilistic graphical
models. In section 4 we describe the algorithm
to learn dependency networks classifiers from
data by using independence tests. In section 5
we show the experimental results for this algo-
rithm and compare them with state-of-the-art
BN classifiers, like TAN algorithm and an im-
plementation of the BAN model. In section 6 we
present our conclusions and some open research
lines for the future.

2 Preliminaries

A Bayesian network (Jensen, 2001) B over the
domain X = {X1, X2, · · · , Xn}, can be defined
as a tuple (G,P) where G is a directed acyclic
graph, and P is a joint probability distribution.
Due to the conditional independence constraints

encoded in the model, each variable is indepen-
dent of its non-descendants given its parents.
Thus, P can be factorized as follows:

P (X) =
n∏

i=1

P (Xi|Pai) (1)

A dependency network is similar to a BN,
but the former can have directed cycles in its
associated graph. In this model, based on its
conditional independence constraints, each vari-
able is independent of all other variables given
its parents. A DN D can be represented by
(G,P) where G is a directed graph not necessar-
ily acyclic, and as in a BN P = {∀i, P (Xi|Pai)}
is the set of local probability distributions, one
for each variable. In (Heckerman et al., 2000)
it is shown that inference over DNs, recovering
joint probability distribution of X from the lo-
cal probability distributions, is done by means
of Gibbs sampling instead of the traditional in-
ference algorithms used for BNs due to the po-
tential existence of cycles.

A dependency network is said consistent if
P (X) can be obtained from P via its factoriza-
tion from the graph (equation 1). By this defi-
nition, can be shown that exists an equivalence
between a consistent DN and a Markov network.
This fact suggests an approach for learning DNs
from Markov network learned from data. The
problem with this approach is that can be com-
putationally inefficient in many cases.

Due to this inconvenient, consistent DNs be-
came very restrictive, so in (Heckerman et al.,
2000) the authors defined general DNs in which
consistency about joint probability distribution
is not required. General DNs are interesting for
automatic learning due to the fact that each lo-
cal probability distribution can be learned inde-
pendently, although this local way of processing
can lead to inconsistencies in the joint probabil-
ity distribution. Furthermore, structural incon-
sistencies (Xi ∈ pa(Xj) but not Xj ∈ pa(Xi))
can be found in general DNs. Nonetheless, in
(Heckerman et al., 2000) the authors argued
that these inconsistencies can disappear, or at
least be reduced to the minimum when a rea-
sonably large dataset is used to learn from. In
this work we only consider general DNs.
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An important concept in probabilistic graph-
ical models is Markov blanket. This concept is
defined for any variable as the set of variables
which made it independent from the rest of vari-
ables in the graph. In a BN the Markov blanket
is formed by the set of parents, children and par-
ent of the children for every variable. However,
in a DN, the Markov blanket for a variable is ex-
actly the parents set. That is the main reason
why DN are useful for visualizing relationships
among variables, because these relationships are
explicitly shown.

3 Probabilistic graphical models in

classification

As it has been said before, we can use Bayesian
models in order to perform a classification task.
Within this area, the more classical Bayesian
classifier is the one called naive (Duda and Hart,
1973; Langley et al., 1992). This model consid-
ers all predictive attributes independent given
the class variable. It has been shown that this
classifier is one of the most effective and com-
petitive in spite of its very restrictive model
since it does not allow dependencies between
predictive variables. However this model is used
in some applications and is employed as initial
point for other Bayesian classifiers. In the aug-
mented naive bayes family models, the learn-
ing algorithm begins with the structure pro-
posed by naive Bayesian classifier and then try
to find dependencies among variables using a
variety of strategies. One of this strategies can
be looking for relationships between predictive
variables represented by a simple structure like
a tree as is done in TAN (Tree Augmented Naive
Bayes) algorithm (Friedman et al., 1997). An-
other is to adapt a learning algorithm employed
in machine learning with general Bayesian net-
works. In this case the learning method is mod-
ified in order to take into account the relation-
ship between every variable and the class.

Apart from this approach to learn Bayesian
classifiers, it must be mentioned another one
based on the Markov blanket concept. These
methods focus their efforts in searching the set
of variables that will be the class variable’s

Markov blanket. Nonetheless, it has been shown
that methods based on extending Naive Bayes
classifier, in general, outperform the ones based
on the Markov blanket.

When the classifier model has been learned
is time to use inference in order to find what
class value has to be assigned for the values
of a given instance. To accomplish this task
the MAP (Maximum at posterior) hypothesis
is used, which returns as result the value for
the class variable that maximize the probabil-
ity given the values of predictive variables. This
is represented by the following expression:

cMAP = arg max
c∈ΩC

p(c|x1, . . . , xn)

= arg max
c∈ΩC

p(x1, . . . , xn|c) · p(c)

p(x1, . . . , xn)

= arg max
c∈ΩC

p(c, x1, . . . , xn)

Thus, the classification problem is reduced to
compute joint probability for every value of the
class variable with the values for the predictive
variables given by the instance to by classified.

When we deal with a classifier based on a
Bayesian network we can use joint probability
factorization shown in equation 1 in order to
recover these probabilities. Initially inference
with dependency networks must be done by
means of Gibbs sampling, but due to the fact
that we focus on classification, and under the
assumption of complete data (i.e. no missing
data neither in the training set nor in the test
set), we can avoid Gibbs sampling. This result
comes from the fact that we can use modified

ordered Gibbs sampling as designed in (Hecker-
man et al., 2000). This way of doing inference
over dependency networks is based on decom-
posing the inference task into a set of inference
tasks on single variables. For example, if we
consider a simple classifier based on dependency
network with two predictive variables, which
show dependency between them, so with the fol-
lowing graphical structure: X1 ←→ X2; C −→
X1; C −→ X2; its probability model will be:

P (C, X1, X2) = P (C)P (X1|C, X2)P (X2|C, X1).
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With this method joint probability can be ob-
tained by computing each term separately. The
determination of the first term does not requires
Gibbs sampling. The second and third terms
should be determined by using Gibbs sampling
but in this case we know all values for their con-
ditioning variables, so they can be determined
directly too by looking at their conditional prob-
ability tables. If we assume that the class vari-
able will be determined before other variables
(as it is the case), by this procedure we can com-
pute any joint probability avoiding the Gibbs
sampling process.

4 Finding dependencies

In this section we present our algorithm to build
a classifier model from data based on depen-
dency networks. Our idea is to use indepen-
dence tests in order to find dependencies be-
tween predictive variables Xi and Xj , but tak-
ing into account the class variable, and in this
way extend the Naive Bayes structure. It is
known that statistic

2 ·Nc · I(Xi; Xj |C = c)

follows a χ2 distribution with (|Xi|−1)·(|Xj |−1)
degrees of freedom under the null hypothesis of
independence, where Nc is the number of input
instances in which C = c and I(Xi; Xj |C = c)
is the mutual information between variables Xi

and Xj when the class variable C is equal to
c. Using this expression, for any variable can
be found all other variables (in)dependent given
the class.

But it is not this set what we are looking
for, we need a set of variables which made that
variable independent from the other, that is, its
Markov blanket. So, we try to discover this set
by carrying out an iterative process, for every
predictive variable independently, in which in
each step is selected as a new parent the vari-
able not still chosen which shows more depen-
dency with the variable under study (Xi). This
selection is done considering all the parents pre-
viously chosen. Thus the statistic used actually
is

2 ·Nc · I(Xi; Xj |C = c,Pai),

where Pai is the current set of Xi’s parents mi-
nus C. We assess the goodness of every candi-
date parent by the difference between the per-
centile of the χ2 distribution (with α = 0.025)
and the statistic value. Here the degrees of free-
dom must be

df = (|Xi| − 1) · (|Xj | − 1)
∏

Pai∈Pai

(|Pai|).

Obviously this process finishes when all can-
didate parents not selected yet shows indepen-
dence with Xi according to this test, and in or-
der to make search more efficient, every candi-
date parent that appear independent in any step
in the algorithm, is rejected and is not taken
into account in next iterations. The reason of
rejecting these variables is just for efficiency, al-
though we know that any of these rejected vari-
ables can become dependent in posterior inter-
ations.

Figure 1 shows the pseudo-code of this algo-
rithm called ChiSqDN.

I n i t i a l i z e s t r u c tu r e to Naive Bayes

For each va r i ab l e Xi

Pai = ∅
Cand = X \ {Xi} // Candidate parents
While Cand 6= ∅

For each va r i ab l e Xj ∈ Cand

Let val be assessment f o r Xj by χ
2

t e s t
I f val ≤ 0 Then

Remove Xj from Cand

Let Xmax be the best v a r i a b l e found
Pai = Pai ∪ Xmax

Remove Xmax from Cand

For each va r i ab l e Pai ∈ Pai

Make new l i n k Pai → Xi

Figure 1: Pseudo-code for ChiSqDN algorithm.

It is clear that determining degrees of free-
dom is critical in order to perform properly this
test. The scheme outlined before is the general
way for assessing this parameter, nonetheless,
in some cases, especially for deterministic or al-
most deterministic relationships, the tests car-
ried out using degrees of freedom in this way
can fail. Deterministic relationships are pretty
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common in automatic learning when input cases
are relatively few. Examining the datasets used
in the experiments (table 1) can be seen that
there are some of them with a low number of
instances. So, to make the tests in our algo-
rithm properly, we use a method for computing
degrees of freedom and handling this kind of re-
lationships proposed in (Yilmaz et al., 2002).
Basically and considering discrete variables and
its conditional probability tables (CPT), this
proposal reduces degrees of freedom based on
the level of determinism and this level is deter-
mined by the number of columns or rows which
are full of zeros.

For example, if we wanted to compute degrees
of freedom for variables Xi and Xj whose proba-
bility distribution is shown in figure 2, we should
use (3− 1) · (3− 1) = 4 as value for this param-
eter, as both variables have 3 states. Nonethe-
less, is clear that the relation between these two
variables is not probabilistic but deterministic,
because is similar to consider that variable Xi

has only one state. Thus, if we use this new
way for computing degrees of freedom we have
to take into account that this table has two rows
and a column full of zeros. Then the degrees of
freedom will be (3− 2− 1) · (3− 1− 1) = 0.

Xj MT

13 16 0 29
Xi 0 0 0 0

0 0 0 0

MT 13 16 0

Figure 2: Probability table for variables Xi and
Xj .

In these cases, i. e, when the degrees of free-
dom are zero, it does not make sense perform
the test because in this case it always holds.
In (Yilmaz et al., 2002), the authors propose
skipping the test and mark the relation in or-
der to be handled by human experts. In our
case, when this algorithm yields degrees of free-
dom equal to zero we prefer an automatic ap-
proach that is to accept dependence between
tested variables if statistic value is greater than
zero.

5 Experimental results

In order to evaluate our proposed algorithm and
to measure their quality, we have selected a set
of datasets from the UCI repository (Newman
et al., 1998). These datasets are described in
table 1. We have preprocessed these datasets
in order to remove missing values and to dis-
cretize continuous variables. Missing values for
each variable have been replaced by the mean or
mode depending on whether it is a continuous o
discrete variable respectively. For discretization
we have used the algorithm proposed in (Fayyad
and Irani, 1993), which is especially suggested
for classification.

Datasets inst. attrib. |C| cont.? missing?

australian 690 15 2 yes no

heart 270 14 2 yes no

hepatitis 155 20 2 yes yes

iris 150 5 3 yes no

lung 32 57 3 no yes

pima 768 9 2 yes no

post-op 90 9 3 yes yes

segment 2310 20 7 yes no

soybean 683 36 19 no yes

vehicle 846 19 4 yes no

vote 435 17 2 no yes

Table 1: Description of the datasets used in the
experiments.

We have chosen a pair of algorithms from the
state-of the-art in Bayesian classification which
allow relationships between predictive variables.
One of this algorithms is the one known as TAN
(Tree Augmented Naive Bayes). The other em-
ploys a general Bayesian network in order to
represent relationships between variables and is
based on BAN model (Bayesian network Aug-
mented Naive Bayes (Friedman et al., 1997)). In
our experiments we use B algorithm (Buntine,
1994) as learning algorithm with BIC (Schwarz,
1978) metric to guide the search. Both algo-
rithms use mutual information as base statistic
in order to determine relationships, directly in
TAN algorithm and a penalized version in BIC
metric.

The experimentation process consists on run-
ning each algorithm for each database in a 5x2
cross validation. This kind of validation is an
extension of the well known k-fold cross vali-
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dation in which a 2-fold cv is performed five
times and in any repetition a different partition
is used. With this process we have the valida-
tion power from the 10-fold cv but with less cor-
relation between each result (Dietterich, 1998).

Once we have performed our experiments in
that way, we have the results for each classifier
in table 2.

TAN BAN+BIC ChiSqDN

australian 0.838841 0.866957 0.843478

heart 0.819259 0.826667 0.823704

hepatitis 0.852930 0.872311 0.865801

iris 0.948000 0.962667 0.962667

lung 0.525000 0.525000 0.525000

pima 0.772135 0.773177 0.744531

post op 0.653333 0.673333 0.673333

segment 0.936970 0.909437 0.931169

soybean 0.898661 0.906893 0.903950

vehicle 0.719385 0.697163 0.698345

vote 0.945299 0.944840 0.931045

Table 2: Classification accuracy estimated for
algorithms tested.

5.1 Analysis of the results

The analysis done for the previous results con-
sists on carring out a statistical test. The test
selected is the paired Wilcoxon signed ranks,
that is a non parametric test which examines
two samples in order to decide whether the dif-
ferences shown by them can be assumed as not
significant. In our case, if this test holds, then
we can conclude that the classifiers which yield
the results analysed have similar classification
power.

Thus, this test is done with a level of sig-
nificance of 0.05 (α = 0.05) and it shows that
both reference classifiers do not differ signifi-
cantly from our classifier learned with ChiSqDN
algorithm. When we compare our algorithm
with TAN we obtain a p-value of 0.9188, and
for the comparison with BAN model the p-value
is 0.1415. Therefore ChiSqDN algorithm is as
good as the Bayesian classifier considered, in
spite of the approximation introduced in the fac-
torization of the joint probability distribution
due to the use of general dependency networks.
Nonetheless, also as consequence of the use of
dependency networks we can take advantage of

the ease of learning and possibility of doing this
process in parallel without introduce an extra
workload.

Apart from these characteristics that can be
exploited from a dependency network, we can
focus on its descriptive capability, i.e. how
good is the graph for each model to show re-
lations over the domain. Taking into account
pima dataset, in figures 3 and 4 are shown the
graphs yielded by the algorithms BAN+BIC
and ChiSqDN respectively.

Obviously, for every variable in these graphs,
those that form its Markov blanket are the more
informative or more related. The difference is
that for a Bayesian network graph the Markov
blanket set is formed by parents, children and
parent of children for every variable, but for a
dependency network graph the Markov blanket
set are all variables directly connected. Thus in
tables 3 and 4 we show the Markov blanket ex-
tracted from the corresponding graph for every
variable. Evidently the sets do not match due
to the automatic learning process but are quite
similar. Apart from that, it is clear that discov-
ering these relationships from the dependency
network graph is easier, especially for people not
used to deal with Bayesian networks, than doing
it from a Bayesian network. We think that this
point is an important feature of dependency net-
works because can lead us to a tuning process
helped by human experts after the automatic
learning.

Variable Markov blanket

mass skin, class

skin age, mass, insu, class

insu skin, plas, class

plas insu, class

age pres, preg, skin, class

pres age, class

preg age, class

pedi class

Table 3: Markov blanket for each predictive
variable from the BAN+BIC classifier.
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preg

plas

pres

skin

insu

mass

pedi

age

class

Figure 3: Network yielded by BAN algorithm with BIC metric for the pima dataset.

preg

plas

pres

skin

insu

mass

pedi

age

class

Figure 4: Network yielded by ChiSqDN algorithm for the pima dataset.

Variable Markov blanket

mass skin, pres, class

skin insu, mass, age, class

insu plas, skin, class

plas insu, class

age pres, preg, skin, class

pres age, mass, preg, class

preg age, pres, class

pedi class

Table 4: Markov blanket for each predictive
variable from the ChiSqDN classifier.

6 Conclusions and Future Work

We have shown how dependency networks can
be used as a model for Bayesian classifiers be-
yond their initial purpose. We have presented
a new learning algorithm which use indepen-
dence tests in order to find the structural model

for a classifier based on dependency networks.
By means of the analysis developed in this pa-
per, we have shown that the proposed classifier
model based on dependency networks can be as
good as some classifiers based on Bayesian net-
works. Besides this important feature, classi-
fiers obtained by our algorithm are visually eas-
ier to understand. We mean that relationships
automatically learned by the algorithm are eas-
ily understood if the classifier is modelled with
a dependency network. This characteristic is es-
pecially valuable because for people is often dif-
ficult discover all relationships inside a Bayesian
networks if they do not know their theory, how-
ever these relationships are clearly shown in a
dependency network. Besides, we can not forget
the main contributions of dependency networks:
ease of learning and possibility to perform this
learning in parallel.
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The ChiSqDN algorithm shown here learn
structural information for every variable inde-
pendently, so we plan to study a parallelized
version in the future. Also we will try to im-
prove this algorithm, in terms of complexity,
by using simpler statistics. Our idea is to use
an approximation for the mutual information
over multiples variables using a decomposition
in simpler terms (Roure Alcobé, 2004).
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Computing Systems Department

Intelligent Systems and Data Mining Group – i3A
University of Castilla-La Mancha

Albacete, 02071, Spain

Rafael Rumı́ and Antonio Salmerón
Department of Statistics and Applied Mathematics

Data Analysis Group
University of Almeŕıa
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Abstract

In this paper we propose a naive Bayes model for unsupervised data clustering, where
the class variable is hidden. The feature variables can be discrete or continuous, as the
conditional distributions are represented as mixtures of truncated exponentials (MTEs).
The number of classes is determined using the data augmentation algorithm. The proposed
model is compared with the conditional Gaussian model for some real world and synthetic
databases.

1 Introduction

Unsupervised classification, frequently known
as clustering, is a descriptive task with many
applications (pattern recognition, . . . ) and that
can be also used as a preprocessing task in the
so-called knowledge discovery from data bases
(KDD) process (population segmentation and
outlier identification).

Cluster analysis or clustering (Anderberg,
1973; Jain et al., 1999) is understood as a
decomposition or partition of a data set into
groups in such a way that the objects in one
group are similar to each other but as different
as possible from the objects in other groups.
Thus, the main goal of cluster analysis is to
detect whether or not the general population
is heterogeneous, that is, whether the data fall
into distinct groups.

Different types of clustering algorithms can
be found in the literature depending on the type
of approach they follow. Probably the three
main approaches are: partition-based cluster-

ing, hierarchical clustering, and probabilistic
model-based clustering. From them, the first
two approaches yield a hard clustering in the
sense that clusters are exclusive, while the third
one yield a soft clustering, that is, an object
can belong to more than one cluster following a
probability distribution.

In this paper we focus on probabilistic cluster-
ing, and from this point of view the data cluster-
ing problem can be defined as the inference of a
probability distribution for the given database.
In this work we allow nominal and numeric vari-
ables in the data set, and the novelty of the ap-
proach lies in the use of MTE (Mixture of Trun-

cated Exponential) (Moral et al., 2001) densities
to model the numeric variables. This model has
been shown as a clear alternative to the use of
Gaussian models in different tasks (inference,
classification and learning) but to our knowl-
edge its applicability to clustering remains to
be studied. This is precisely the goal of this pa-
per, to do an initial study of applying the MTE
model to the data clustering problem.



The paper is structured as follows: first, Sec-
tions 2 and 3 give, respectively, some prelim-
inaries about probabilistic clustering and mix-
tures of truncated exponentials. Section 4 de-
scribes the method we have developed in or-
der to obtain a clustering from data by using
mixtures of truncated exponentials to model
numerical variables. Experiments over several
datasets are described in Section 5. Finally, and
having in mind that this is a first approach, in
Section 6 we discuss about some improvements
and applications to our method, and also our
conclusions are presented.

2 Probabilistic model-based

clustering

The usual way of modeling data clustering in a
probabilistic approach is to add a hidden ran-
dom variable to the data set, i.e., a variable
whose value has been missed in all the records.
This hidden variable, normally referred to as
the class variable, will reflect the cluster mem-
bership for every case in the data set.

From the previous setting, probabilistic
model-based clustering is modeled as a mixture
of models (see e.g. (Duda et al., 2001)), where
the states of the hidden class variable corre-
spond to the components of the mixture (the
number of clusters), and the multinomial distri-
bution is used to model discrete variables while
the Gaussian distribution is used to model nu-
meric variables. In this way we move to a prob-
lem of learning from unlabeled data and usu-
ally the EM algorithm (Dempster et al., 1977)
is used to carry out the learning task when the
graphical structure is fixed and structural EM
(Friedman, 1998) when the graphical structure
also has to be discovered (Peña et al., 2000).
In this paper we focus on the simplest model
with fixed structure, the so-called Naive Bayes

structure (fig. 1) where the class is the only root
variable and all the attributes are conditionally
independent given the class.

Once we decide that our graphical model is
fixed, the clustering problem reduces to take
a dataset of instances and a previously speci-
fied number of clusters (k), and work out each

Class
(hidden)

Y1 Yn Z1 Zm

Figure 1: Graphical structure of the model.
Y1, . . . , Yn represent discrete/nominal variables
while Z1, . . . , Zm represent numeric variables.

cluster’s distribution (multinomial or gaussian)
and the population distribution between the
clusters. To obtain these parameters the EM
(expectation-maximization) algorithm is used.
The EM algorithm works iteratively by carrying
out the following two-steps at each iteration:

• Expectation.- Estimate the distribution of
the hidden variable C, conditioned on the
current setting of the parameter vector θk

(i.e. the parameters needed to specify the
non-hidden variables distributions).

• Maximization.- Taking into account the new
distribution of C, use maximum-likelihood
to obtain a new set of parameters θk+1 from
the observed data.

The algorithm starts from a given initial start-
ing point (e.g. random parameters for C or θ)
and under fairly general conditions it is guaran-
teed to converge to (at least) a local maximum
of the log-likelihood function.

Iterative approaches have been described in
the literature (Cheeseman and Stutz, 1996) in
order to discover also the number of clusters
(components of the mixture). The idea is to
start with k = 2 and use EM to fit a model, then
the algorithm tries with k = 3, 4, ... while the
log-likelihood improves by adding a new com-
ponent (cluster) to the mixture. Of course some
criteria has to be used in order to prevent over-
fitting.

To finish with this section we discuss about
how to evaluate the obtained clustering?. Obvi-
ously, a clustering is useful if it produces some
interesting insight in the problem we are analyz-
ing. However, in practice and specially in order
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to test new algorithms we have to use a differ-
ent way of measuring the quality of a clustering.
In this paper and because we produce a prob-
abilistic description of the dataset, we use the
log-likelihood (logL) of the dataset (D) given
the model to score a given clustering:

logL =
∑

x∈D

log p(x|{θ,C}).

3 Mixtures of Truncated

Exponentials

The MTE model is an alternative to Gaussian
models, and can be seen as a generalization
to discretization models. It is defined by its
corresponding potential and density as follows
(Moral et al., 2001):

Definition 1. (MTE potential) Let X be a
mixed n-dimensional random vector. Let Y =
(Y1, . . . , Yd) and Z = (Z1, . . . , Zc) be the dis-
crete and continuous parts of X, respectively,
with c + d = n. A function f : ΩX 7→ R

+
0 is

a Mixture of Truncated Exponentials potential

(MTE potential) if one of the next conditions
holds:

i. Y = ∅ and f can be written as

f(x) = f(z) = a0 +

m
∑

i=1

ai exp







c
∑

j=1

b
(j)
i zj







(1)
for all z ∈ ΩZ, where ai, i = 0, . . . ,m and

b
(j)
i , i = 1, . . . ,m, j = 1, . . . , c are real num-

bers.

ii. Y = ∅ and there is a partition D1, . . . ,Dk

of ΩZ into hypercubes such that f is de-
fined as

f(x) = f(z) = fi(z) if z ∈ Di ,

where each fi, i = 1, . . . , k can be written
in the form of equation (1).

iii. Y 6= ∅ and for each fixed value y ∈ ΩY,
fy(z) = f(y, z) can be defined as in ii.

Definition 2. (MTE density) An MTE poten-
tial f is an MTE density if

∑

y∈ΩY

∫

ΩZ

f(y, z)dz = 1 .

A univariate MTE density f(x), for a contin-
uous variable X, can be learnt from a sample as
follows (Romero et al., 2006):

1. Select the maximum number, s, of intervals
to split the domain.

2. Select the maximum number, t, of expo-
nential terms on each interval.

3. A Gaussian kernel density is fitted to the
data.

4. The domain of X is split into k ≤ s
pieces, according to changes in concav-
ity/convexity or increase/decrease in the
kernel density.

5. In each piece, an MTE potential with m ≤
t exponential terms is fitted to the kernel
density by iterative least squares estima-
tion.

6. Update the MTE coefficients to integrate
up to one.

When learning an MTE density f(y) from a
sample, if Y is discrete, the procedure is:

1. For each state yi of Y , compute the Max-
imium Likelihood Estimator of p(yi), which

is
#yi

sample size
.

A conditional MTE density can be specified
by dividing the domain of the conditioning vari-
ables and specifying an MTE density for the
conditioned variable for each configuration of
splits of the conditioning variables (Romero et
al., 2006).

In this paper, the conditional MTE densities
needed are f(x|y), where Y is the class vari-
able, which is discrete, and X is either a dis-
crete or continuous variable, so the potential is
composed by an MTE potential defined for X,
for each state of the conditioning variable Y .
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Example 1. The function f defined as

f(x|y) =































































5 + e2x + ex, y = 0,

0 < x < 2,

1 + e−x y = 0,

2 ≤ x < 3,
1

5
+ e−2x y = 1,

0 < x < 2,

4e3x y = 1,

2 ≤ x < 3.

is an MTE potential for a conditional x|y re-
lation, with X continuous, x ∈ (0, 3]. Observe
that this potential is not actually a conditional
density. It must be normalised to integrate up
to one.

In general, an MTE conditional density
f(x|y) with one conditioning discrete variable,
with states y1, . . . , ys, is learnt from a database
as follows:

1. Divide the database in s sets, according to
variable Y states.

2. For each set, learn a marginal density for
X, as shown above, with k and m constant.

4 Probabilistic clustering by using

MTEs

In the clustering algorithm we propose here, the
conditional distribution for each variable given
the class is modeled by an MTE density. In the
MTE framework, the domain of the variables is
split into pieces and in each resulting interval
an MTE potential is fitted to the data. In this
work we will use the so-called five-parameter
MTE, which means that in each split there are
at most five parameters to be estimated from
data:

f(x) = a0 + a1e
a2x + a3e

a4x . (2)

The choice of the five-parameter MTE is mo-
tivated by its low complexity and high fitting
power (Cobb et al., 2006). The maximum num-
ber of splits of the domain of each variable has

been set to four, again according to the results
in the cited reference.

We start the algorithm with two clusters with
the same probability, i.e., the hidden class vari-
able has two states and the marginal probability
of each state is 1/2. The conditional distribu-
tion for each feature variable given each of the
two possible values of the class is initially the
same, and is computed as the marginal MTE
density estimated from the train database ac-
cording to the estimation algorithm described
in section 3.

The initial model is refined using the data

augmentation method (Tanner and Wong,
1987):

1. First of all, we divide the train database
into two parts, one of them properly for
training and the other one for testing the
intermediate models.

2. For each record in the test and train
databases, the distribution of the class vari-
able is computed.

3. According to the obtained distribution, a
value for the class variable is simulated and
inserted in the corresponding cell of the
database.

4. When a value for the class variable for all
the records has been simulated, the con-
ditional distributions of the feature vari-
ables are re-estimated using the method de-
scribed in section 3, using as sample the
train database.

5. The log-likelihood of the new model is com-
puted from the test database. If it is
higher than the log-likelihood of the initial
model, the process is repeated. Otherwise,
the process is stopped, returning the best
model found for two clusters.

In order to avoid long cycles, we have lim-
ited the number of iterations in the procedure
above to 100. After obtaining the best model for
two clusters, the algorithm continues increasing
the number of clusters and repeating the proce-
dure above for three clusters, and so on. The
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algorithm continues to increase the number of
clusters while the log-likelihood of the model,
computed from the test database, is increased.

A model for n clusters in converted into a
model for n + 1 clusters as follows:

1. Let c1, . . . , cn be the states of the class vari-
able.

2. Add a new state, cn+1 to the class variable.

3. Update the probability distribution of the
class variable by re-computing the proba-
bility of cn and cn+1 (the probability of the
other values remains unchanged):

• p(cn) := p(cn)/2.

• p(cn+1) := p(cn)/2.

4. For each feature variable X,

• f(x|cn+1) := f(x|cn).

At this point, we can formulate the clustering
algorithm as follows. The algorithm receives as
argument a database with variables X1, . . . ,Xn

and returns a naive Bayes network with vari-
ables X1, . . . ,Xn, C, which can be used to pre-
dict the class of any object characterised by fea-
tures X1, . . . ,Xn.

Algorithm CLUSTER(D)

1. Divide the train database D into two parts:
one with the 80% of the records in D se-
lected at random, for estimating the pa-
rameters (Dp) and another one with the
remaining 20% (Dt) for testing the current
model.

2. Let net be the initial model obtained from
Dp as described above.

3. bestNet := net.

4. L0 :=log-likelihood(net,Dt).

5. Refine net by data augmentation from
database Dp.

6. L1 :=log-likelihood(net,Dt).

7. WHILE (L1 > L0)

(a) bestNet := net.

(b) L0 := L1.

(c) Add a cluster to net.

(d) Refine net by data augmentation.

(e) L1 :=log-likelihood(net,Dt).

8. RETURN(bestNet)

5 Experimental evaluation

In order to analyse the performance of the pro-
posed algorithm in the data clustering task, we
have selected a set of databases1 (see Table 1)
and the following experimental procedure has
been carried out:

• For comparison we have used the EM al-
gorithm implemented in the WEKA data
mining suite (Witten and Frank, 2005).
This is a classical implementation of the
EM algorithm in which discrete and nu-
merical variables are allowed as input at-
tributes. Numerical attributes are modeled
by means of Gaussian distributions. In this
implementation the user can specify, be-
forehand, the number of clusters or the EM
can decide how many clusters to create by
cross validation. In the last case, the num-
ber of clusters is initially set to 1, the EM
algorithm is performed by using a 10 folds
cross validation and the log-likelihood (av-
eraged the 10 folds) is computed. Then, the
number of clusters in increased by one and
the same process is carried out. If the log-
likelihood with the new number of clusters
has increased with respect to the previous
one, the execution continues, otherwise the
clustering obtained in the previous itera-
tion is returned.

• We have divided all the data sets into train
(80% of the instances) and test (20% of the
instances). Then the training set has been
used to learn the model but the test set is
used to assess the quality of the final model,
i.e., to compute the log-likelihood.

1In those datasets usually used for classification the
class variable has been removed.
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DataSet #instances #attributes discrete? classes source

returns 113 5 no – (Shenoy and Shenoy, 1999)

pima 768 8 no 2 UCI(Newman et al., 1998)

bupa 345 6 no 2 UCI(Newman et al., 1998)

abalone 4177 9 2 – UCI(Newman et al., 1998)

waveform 5000 21 no 3 UCI(Newman et al., 1998)

waveform-n 5000 40 no 3 UCI(Newman et al., 1998)

net15 10000 15 2 – (Romero et al., 2006)

sheeps 3087 23 5 – real farming data (Gámez, 2005)

Table 1: Brief description of the data sets used in the experiments. The column discrete means
if the dataset contains discrete/nominal variables (if so the number of discrete variables is given).
The column classes shows the number of class-labels when the dataset comes from classification
task.

• Two independent runs have been carried
out for each algorithm and data set:

– The algorithm proposed in this pa-
per is executed over the given training
set. Let #mteclusters be the number of
clusters it has decided. Then, the EM
algorithm is executed receiving as in-
puts the same training set and number
of clusters equal to #mteclusters.

– The WEKA EM algorithm is exe-
cuted over the given training set. Let
#emclusters be the number of clusters
it has decided. Then, our algorithm is
executed receiving as inputs the same
training set and number of clusters
equal to #emclusters.

In this way we try to compare the perfor-
mance of both algorithms over the same
number of clusters.

Table 2 shows the results obtained. Out of
the 8 databases used in the experiments, 7 re-
fer to real world problems, while the other one
(Net15) is a randomly generated network with
joint MTE distribution (Romero et al., 2006).
A rough analysis of the results suggest a better
performance of the EM clustering algorithm: in
5 out of the 8 problems, it obtains a model with
higher log-likelihood than the MTE-based algo-
rithm. However, it must be pointed out that the
number of clusters contained in the best mod-
els generated by the MTE-based algorithm is

significantly lower than the number of clusters
produced by the EM. In some cases, a model
with many clusters, all of them with low prob-
ability, is not as useful as a model with fewer
clusters but with higher probability, even if the
last one has lower likelihood.

Another fact that must be pointed out is that,
in the four problems where the exact number
of classes is known (pima, bupa, waveform and
waveform-n) the number of clusters returned by
the MTE-based algorithms is more accurate.
Besides, forcing the number of clusters in the
EM algorithm to be equal to the number of clus-
ters generated by the MTE method, the differ-
ences turn in favor of the MTE-based algorithm.

After this analysis, we consider the MTE-
based clustering algorithm a promising method.
It must be taken into account that the EM
algorithm implemented in Weka is very opti-
mised and sophisticated, while the MTE-based
method presented here is a first version in which
many aspects are still to be improved. Even in
these conditions, our method is competitive in
some problems. Models which are away from
normality (as Net15) are more appropriate for
applying the MTE-based algorithm rather than
EM.

6 Discussion and concluding remarks

In this paper we have introduced a novel unsu-
pervised clustering algorithm which is based on
the MTE model. The model has been tested
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DataSet #mteclusters MTE EM #emclusters MTE EM

returns 2 212 129 – – –

Pima 3 -4298 -4431 7 -4299 -3628

bupa 5 -1488 -1501 3 -1491 -1489

abalone 11 6662 7832 15 6817 8090

waveform 3 -38118 -33084 11 -38153 -31892

Waveform-n 3 -65200 -59990 11 -65227 -58829

Net15 4 -3418 -6014 23 -3723 -5087

Sheeps 3 -34214 -35102 7 -34215 -34145

Table 2: Results obtained. Columns 2-4 represents the number of clusters discovered by the
proposed MTE-based method, its result and the result obtained by EM when using that number
of clusters. Columns 5-7 represents the number of clusters discovered by EM algorithm, its result
and the result obtained by the MTE-based algorithm when using that number of clusters.

over 8 databases, 7 of them corresponding to
real-world problems and some of them com-
monly used for benchmarks. We consider that
the results obtained, in compares with the EM
algorithm, are at least promising. The algo-
rithm we have used in this paper can still be
improved. For instance, during the model con-
struction we have used a train-test approach for
estimating the parameters and validating the in-
termediate models obtained. However, the EM
algorithm uses cross validation. We plan to in-
clude 10-fold cross validation in a forthcoming
version of the algorithm.

Another aspect that can be improved is the
way in which the model is updated when the
number of clusters is increased. We have fol-
lowed a very simplistic approach: for the fea-
ture variables, we duplicate the same density
function conditional on the previous last clus-
ter, while for the class variable, we divide the
probability of the former last cluster with the
new one. We think that a more sophisticated
approach, based on component splitting and pa-
rameter reusing similar to the techniques pro-
posed in (Karciauskas, 2005) could improve the
performance of our algorithm.

The algorithm proposed in this paper can be
applied not only to clustering problems, but
also to construct an algorithm for approximate
probability propagation in hybrid Bayesian net-
works. This idea was firstly proposed in (Lowd
and Domingos, 2005), and is based on the sim-

plicity of probability propagation in naive Bayes
structures. A naive Bayes model with discrete
class variable, actually represents the condi-
tional distribution of each variable to the rest of
variables as a mixture of marginal distributions,
being the number of components in the mix-
ture equal to the number of states of the class
variable. So, instead of constructing a general
Bayesian network from a database, if the goal
is probability propagation, this approach can be
competitive. The idea is specially interesting for
the MTE model, since probability propagation
has a high complexity for this model.
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Abstract

In previous work we have introduced dynamic limited-memory influence diagrams (DLIM-
IDs) as an extension of LIMIDs aimed at representing infinite-horizon decision processes.
If a DLIMID respects the first-order Markov assumption then it can be represented by
2TLIMIDS. Given that the treatment selection algorithm for LIMIDs, called single policy
updating (SPU), can be infeasible even for small finite-horizon models, we propose two
alternative algorithms for treatment selection with 2TLIMIDS. First, single rule updating
(SRU) is a hill-climbing method inspired upon SPU which needs not iterate exhaustively
over all possible policies at each decision node. Second, a simulated annealing algorithm
can be used to avoid the local-maximum policies found by SPU and SRU.

1 Introduction

An important goal in artificial intelligence is to
create systems that make optimal decisions in
situations characterized by uncertainty. One
can think for instance of a robot that navigates
based on its sensor readings in order to achieve
goal states, or of a medical decision-support sys-
tem that chooses treatments based on patient
status in order to maximize life-expectancy.

Limited-memory influence diagrams (LIM-
IDs) are a formalism for decision-making un-
der uncertainty (Lauritzen and Nilsson, 2001).
They generalize standard influence diagrams
(Howard and Matheson, 1984) by relaxing the
assumption that the whole observed history is
taken into account when making a decision, and
by dropping the requirement that a complete or-
der is defined over decisions. This increases the
size and variety of decision problems that can
be handled, although possibly at the expense
of finding only approximations to the optimal

strategy. Often however, there is no predefined
time at which the process stops (i.e. we have
an infinite-horizon decision process) and in that
case the LIMID would also become infinite in
size. In previous work, we have introduced dy-
namic LIMIDs (DLIMIDs) and two-stage tem-
poral LIMIDs (2TLIMIDs) as an extension of
standard LIMIDs that allow for the representa-
tion of infinite-horizon decision processes (van
Gerven et al., 2006). However, the problem of
finding acceptable strategies for DLIMIDs has
not yet been addressed. In this paper we discuss
a number of techniques to approximate the opti-
mal strategy for infinite-horizon dynamic LIM-
IDs. We demonstrate the performance of these
algorithms on a non-trivial decision problem.

2 Preliminaries

2.1 Bayesian Networks

Bayesian networks (Pearl, 1988) provide for a
compact factorization of a joint probability dis-



tribution over a set of random variables by ex-
ploiting the notion of conditional independence.
One way to represent conditional independence
is by means of an acyclic directed graph (ADG)
G where vertices V (G) correspond to random
variables X and the absence of arcs from the
set of arcs A(G) represents conditional indepen-
dence. Due to this one-to-one correspondence
we will use vertices v ∈ V (G) and random vari-
ables X ∈ X interchangeably. A Bayesian net-

work (BN) is defined as B = (X, G, P ), such
that the joint probability distribution P over X

factorizes according to G:

P (X) =
∏

X∈X

P (X | πG(X))

where πG(X) = {X ′ | (X ′,X) ∈ A(G)} denotes
the parents of X. We drop the subscript G when
clear from context. We assume that (random)
variables X can take values x from a set ΩX and
use x to denote an element in ΩX = ×X∈X ΩX

for a set X of (random) variables.

2.2 LIMIDs

Although Bayesian networks are a natural
framework for probabilistic knowledge represen-
tation and reasoning under uncertainty, they
are not suited for decision-making under un-
certainty. Influence-diagrams (Howard and
Matheson, 1984) are graphical models that ex-
tend Bayesian networks to incorporate decision-
making but are restricted to the representation
of small decision problems. Limited-memory

influence diagrams (LIMIDs) (Lauritzen and
Nilsson, 2001) generalize standard influence-
diagrams by relaxing the no-forgetting assump-
tion, which states that, given a total ordering of
decisions, information present when making de-
cision D is also taken into account when making
decision D′, if D precedes D′ in the ordering. A
LIMID is defined as a tuple L = (C,D,U, G, P )
consisting of the following components. C rep-
resents a set of random variables, called chance

variables, D represents a set of decisions avail-
able to the decision maker, where a decision
D ∈ D is defined as a variable that can take on
a value from a set of choices ΩD, and U is a set
of utility functions, which represent the utility

of being in a certain state as defined by config-
urations of chance and decision variables. G is
an acyclic directed graph (ADG) with vertices
V (G) corresponding to C∪D∪U, where we use
V to denote C ∪ D. Again, due to this corre-
spondence, we will use nodes in V (G) and cor-
responding elements in C∪D∪U interchange-
ably. The meaning of an arc (X,Y ) ∈ A(G) is
determined by the type of Y . If Y ∈ C then
the conditional probability distribution associ-
ated with Y is conditioned by X. If Y ∈ D then
X represents information that is present to the
decision maker prior deciding upon Y . We call
π(Y ) the informational predecessors of Y . The
order in which decisions are made in a LIMID
should be compatible with the partial order in-
duced by the ADG and are based only on the
parents π(D) of a decision D. If Y ∈ U then
X takes part in the specification of the utility
function Y such that Y : Ωπ(Y ) → R. In this pa-
per, it is assumed that utility nodes cannot have
children and the joint utility function U is ad-
ditively decomposable such that U =

∑
U∈U

U .
P specifies for each d ∈ ΩD a distribution

P (C : d) =
∏

C∈C

P (C | π(C))

that represents the distribution over C when
we externally set D = d (Cowell et al., 1999).
Hence, C is not conditioned on D, but rather
parameterized by D, and if D is unbound then
we write P (C : D).

A stochastic policy for decisions D ∈ D is de-
fined as a distribution PD(D | π(D)) that maps
configurations of π(D) to a distribution over al-
ternatives for D. If PD is degenerate then we
say that the policy is deterministic. A strategy

is a set of policies ∆ = {PD : D ∈ D} which
induces the following joint distribution over the
variables in V:

P∆(V) = P (C : D)
∏

D∈D

PD(D | π(D)).

Using this distribution we can compute the ex-
pected utility of a strategy ∆ as E∆(U) =∑

v
P∆(v)U(v). The aim of any rational deci-

sion maker is then to maximize the expected
utility by finding the optimal strategy ∆∗ ≡
arg max∆ E∆(U).
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Figure 1: Chance nodes are shown as circles, decision nodes as squares and utility nodes as dia-
monds. The 2TLIMID (left) can be unrolled into a DLIMID (right), where large brackets denote
the boundary between subsequent times. Note that due to the definition of a 2TLIMID, the infor-
mational predecessors of a decision can only occur in the same, or the preceding time-slice.

2.3 Dynamic LIMIDs and 2TLIMIDs

Although LIMIDs can often represent finite-
horizon decision processes more compactly than
standard influence diagrams, they cannot rep-
resent infinite-horizon decision processes. Re-
cently, we introduced dynamic LIMIDs (DLIM-
IDs) as an explicit representation of decision
processes (van Gerven et al., 2006). To repre-
sent time, we use T ⊆ N to denote a set of time
points, which we normally assume to be an in-
terval {u | t ≤ u ≤ t′, {t, u, t′} ⊂ N}, also writ-
ten as t : t′. We assume that chance variables,
decision variables and utility functions are in-
dexed by a superscript t ∈ T, and use CT, DT

and UT to denote all chance variables, decision
variables and utility functions at times t ∈ T,
where we abbreviate CT ∪ DT with VT.

A DLIMID is simply defined as a LIMID
(CT,DT,UT, G, P ) such that for all pairs of
variables Xt, Y u ∈ VT ∪ UT it holds that if
t < u then Y u cannot precede Xt in the or-
dering induced by G. If T = 0 : N , where
N ∈ N is the (possibly infinite) horizon, then
we suppress T altogether, and we suppress in-
dices for individual chance variables, decision
variables and utility functions when clear from
context. If a DLIMID respects the Markov
assumption that the future is independent of
the past, given the present, then it can be
compactly represented by a 2TLIMID (see Fig.
1), which is a pair T = (L0,Lt) with prior

model L0 = (C0,D0,U0, G0, P 0) and transition

model Lt = (Ct−1:t,Dt−1:t,Ut, G, P ) such that

for all V t−1 ∈ Vt−1:t in the transition model
it holds that πGt(V t−1) = ∅. The transition
model is not yet bound to any specific t, but
if bound to some t ∈ 1 : N , then it is used
to represent P (Ct : Dt−1:t) and utility func-
tions U ∈ Ut, where both G and P do not
depend on t. The prior model is used to rep-
resent the initial distribution P 0(C0 : D0) and
utility functions U ∈ U0. The interface of the
transition model is the set It ⊆ Vt−1 such that
(V t−1

i , V t
j ) ∈ A(G) ⇔ V t−1

i ∈ It. Given a hori-
zon N , we may unroll a 2TLIMID for n time-

slices in order to obtain a DLIMID with the
following joint distribution:

P (C,D) = P 0(C0 : D0)

N∏

t=1

P (Ct : Dt−1:t).

Let ∆t = {P t
D(D | πG(D)) | D ∈ Dt} denote

the strategy for a time-slice t and let the whole
strategy be ∆ = ∆0 ∪ · · · ∪ ∆N . Given ∆0, L0

defines a distribution over the variables in V0:

P∆0(V0) = P 0(C0 : D0)
∏

D∈D
0

PD(D | πG0(D))

and given a strategy ∆t with t > 0, Lt defines
the following distribution over variables in Vt:

P∆t(Vt | It) = P (Ct : Du)
∏

D∈D
t

PD(D | πG(D))

with u = t − 1 : t. Combining both equations,
given a horizon N and strategy ∆, a 2TLIMID
induces a distribution over variables in V:

P∆(V) = P∆0(V0)

N∏

t=1

P∆t(Vt | It). (1)
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Let U0(V0) =
∑

U∈U
0 U(πG0(U)) denote the

joint utility for time-slice 0 and let U t(Vt-1:t) =∑
U∈U

t U(πG(U)) denote the joint utility for
time-slice t > 0. We redefine the joint utility
function for a dynamic LIMID as

U(V) = U0(V0) +

N∑

t=1

γtU t(Vt-1:t)

where γ with 0 ≤ γ < 1 is a discount factor,
representing the notion that early rewards are
worth more than rewards earned at a later time.

In this way, we can use DLIMIDs to represent
infinite-horizon Markov decision processes.

2.4 Memory variables

Figure 1 makes clear that the informational pre-
decessors of a decision variable Dt can only oc-
cur in time-slices t or t−1 (viz. Eq. 1). Observa-
tions made earlier in time will not be taken into
account and as a result, states that are qualita-
tively different can appear the same to the deci-
sion maker, which leads to suboptimal policies.
This phenomenon is known as perceptual alias-

ing (Whitehead and Ballard, 1991). We try to
avoid this problem by introducing memory vari-

ables that represent a summary of the observed
history. With each observable variable V ∈ V,
we associate a memory variable M ∈ C, such
that the parents of a memory variable are given
by π(M0) = {V 0} and π(M t) = {V t,M t−1}
for t ∈ {1, . . . ,N} and all children of M t, with
t ∈ {0, . . . ,N}, are decision variables D ∈ Dt.

Figure 2 visualizes the concept of a memory
variable, and is used as the running example
for this paper. It depicts a 2TLIMID for the
treatment of patients that may or may not have
a disease D. The disease can be identified by a
finding F , which is the result of a laboratory test

L, having an associated cost that is captured by
the utility function U2. The memory concern-
ing findings is represented by the memory vari-
able M , and based on this memory, we decide
whether or not to perform treatment T , which
has an associated cost, captured by the utility
function U3. Memory concerning past findings
will be used to decide whether or not to perform
the laboratory test. If the patient has the dis-
ease then this decreases the chances of patient
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U1

1
U0

2
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U0

3
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F 1
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Figure 2: A DLIMID for patient treatment as
specified by a 2TLIMID.

survival S. Patient survival has an associated
utility U1. An initial strategy, as for instance
suggested by a physician, might be to always

treat and never test.

There are various ways to define ΩM and
the distributions P (M0 | V 0) and P (M t |
V t,M t−1) for a memory variable M . The opti-
mal way to define our memory variables is prob-
lem dependent, and we assume that this defini-
tion is based on the available domain knowl-
edge. For our running example, we choose
ΩM = {a, n, p} × {a, n, p} × {a, n, p}, where
a stands for the absence of a finding, n for a
negative finding, and p for a positive finding,
which is evidence for the presence of the dis-
ease. M t = (z, y, x) then denotes the current
finding x, the finding in the previous time-slice
y, and the finding two time-slices ago z. If the
new finding is F t+1 = f then M t+1 = (y, x, f),
and since we have not yet observed any findings
at t = 0, the initial memory is (a, a, a) if we did
not test and (a, a, n) or (a, a, p) if the test was
performed.

3 Improving Strategies in

Infinite-Horizon DLIMIDs

Although DLIMIDs constructed from 2TLIM-
IDs can represent infinite-horizon Markov deci-
sion processes, to date, the problem of strategy
improvement using 2TLIMIDs has not been ad-
dressed. In this section, we explore techniques
for finding strategies with high expected utility.
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3.1 Single Policy Updating

One way to improve strategies in standard LIM-
IDs is to use an iterative procedure called single

policy updating or SPU for short (Lauritzen and
Nilsson, 2001). Let ∆0 = {p1, . . . , pn} be an or-
dered set representing the initial strategy where
pj, 1 ≤ j ≤ n stands for a (randomly initialized)
policy PDj

for a decision Dj . We say pj is the lo-

cal maximum policy for a strategy ∆ at decision
Dj if E∆(U) cannot be improved by changing
pj. Single policy updating proceeds by iterat-
ing over all decision variables (called a cycle)
to find local maximum policies, and to reiterate
until no further improvement in expected util-
ity can be achieved. SPU converges in a finite
number of cycles to a local maximum strategy ∆
where each pj ∈ ∆ is a local maximum policy.
Note that this local maximum strategy is not
necessarily the global maximum strategy ∆∗.

To find local maximum policies in standard
LIMIDs, Lauritzen and Nilsson (2001) use a
message passing algorithm, optimized for sin-
gle policy updating. In this paper, we re-
sort to standard inference algorithms for finding
strategies for (infinite-horizon) DLIMIDs. We
make use of the fact that given ∆, a LIMID
L = (C,D,U, G, P ) may be converted into a
Bayesian network B = (X, G′, P ′). Since ∆ in-
duces a distribution over variables in V (viz.
Eq. 1), we can use ∆ to convert decision vari-
ables D ∈ D to random variables X ∈ X with
parents πG(D) such that P (X | πG′(X)) =
PD(D | πG(D)). Additionally, utility functions
U ∈ U may be converted into random vari-
ables X by means of Cooper’s transformation
(Cooper, 1988), which allows us to compute
E∆(U). We use B(L,∆) to denote this conver-
sion of a LIMID into a Bayesian network.

Single policy updating cannot be applied di-
rectly to an infinite-horizon DLIMID since com-
puting E∆(U) would need an infinite number of
steps. In order to approximate the expected
utility given ∆, we assume that the DLIMID
can be represented as a 2TLIMID T = (L0,Lt)
and ∆ can be expressed as a pair (∆0,∆t), such
that ∆0 is the strategy at t = 0 and ∆t is a
stationary strategy at t ∈ 1 : ∞. Note that the

SPU(T ,∆0,ǫ):

∆ = ∆0, euMax = Eǫ
∆0

(U).
repeat

euMaxOld = euMax

for j = 1 to n do

for all policies p′j for ∆ at Dj do

∆′ = p′j ∗ ∆
if Eǫ

∆′(U) > euMax + ǫ then

∆ = ∆′ and euMax = Eǫ
∆′(U)

end if

end for

end for

until euMax = euMaxOld

return ∆

Figure 3: Single policy updating for 2TLIMIDs.

optimal strategy is deterministic and stationary
for infinite-horizon and fully observable Markov
decision processes (Ross, 1983). In the partially
observable case, we can only expect to find ap-
proximations to the optimal strategy by using
memory variables that represent part of the ob-
servational history (Meuleau et al., 1999).

We proceed by converting (L0,Lt) into
(B0,Bt) with B0 = B(L0,∆

0) and Bt =
B(Lt,∆

t), where (B0,Bt) is known as a two-

stage temporal Bayes net (Dean and Kanazawa,
1989). We use inference algorithms that oper-
ate on (B0,Bt) in order to compute an approx-
imation of the expected utility. In our work,
we have used the interface algorithm (Murphy,
2002), for which it holds that the space and time
taken to compute each P (Xt | Xt−1) does not
depend on the number of time-slices. The ap-
proximation Eǫ

∆(U) is made using a finite num-
ber of time-slices k, where k is such that γk < ǫ
with ǫ > 0. The discount factor γ ensures that
limt→∞ E∆(U) = 0. Let ∆0 = ∆0 ∪ ∆t be
the initial strategy with ∆0 = {p1, . . . , pm} and
∆t = {pm+1, . . . , pn}, where m is the number of
decision variables in L0 and n−m is the number
of decision variables in Lt. Following (Lauritzen
and Nilsson, 2001), we define p′j ∗∆ as the strat-
egy obtained by replacing pj with p′j in ∆. SPU
based on a 2TLIMID T with initial strategy ∆0

is then defined by the algorithm in Fig. 3.
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3.2 Single Rule Updating

An obstacle for the use of SPU for strategy
improvement is the fact that if the state-space
Ωπ(D) for informational predecessors π(D) of a
decision variable D becomes large, then it be-
comes impossible in practice to iterate over all
possible policies for D. The number of policies
that needs to be evaluated at each decision vari-
able D grows as kmr

, with k = |ΩD|, assuming
that |ΩVj

| = m for all Vj ∈ π(D), and r is the
number of informational predecessors of D. For
example, looking back for two time-slices within
our model leads to 2 policies for L0 and 227 poli-
cies for T 0, L1 and T 1, which is computationally
infeasible, even for this small example.

For this reason, we introduce a hill-climbing
search called single rule updating (SRU) that
is inspired upon single policy updating. A de-
terministic policy can be viewed as a mapping
pj : Ωπ(Dt

j
) → ΩDt

j
, describing for each config-

uration x ∈ Ωπ(Dt
j
) an action a ∈ ΩDt

j
. We

call (x, a) ∈ pj a decision rule. Instead of ex-
haustively searching over all possible policies for
each decision variable, we try to increase the
expected utility by local changes to the deci-
sion rules within the policy. I.e., at each step
we change one decision-rule within the policy,
accepting the change when the expected utility
increases. We use (x, a′) ∗ pj to denote the re-
placement of (x, a) by (x, a′) in pj . Similar to
SPU, we keep iterating until there is no further
increase in the expected utility (Fig. 4).

SRU decreases the number of policies that
need to be evaluated in each local cycle for a
decision variable to kmr, where notation is as
before. For our example, we only need to eval-
uate 2 policies for L0 and 54 policies for T 0,
L1 and T 1 in each local cycle, albeit at the ex-
pense of replacing the exhaustive search by a
hill-climbing strategy, increasing the risk of end-
ing up in local maxima, and having to run local
cycles until convergence.

3.3 Simulated Annealing

SPU and SRU both find local maximum strate-
gies, which may not be the optimal strategy ∆∗.
To see this, consider the proposed strategy for

SRU(T ,∆0,ǫ):

∆ = ∆0, euMax = Eǫ
∆0

(U)
repeat

euMaxOld = euMax

for j = 1 to n do

repeat

euMaxLocal = euMax

for all configurations x ∈ Ωπ(Dj) do

for all actions a′ ∈ ΩDj
do

p′j = (x, a′) ∗ pj

∆′ = p′j ∗ ∆
if Eǫ

∆′(U) > euMax + ǫ then

∆ = ∆′ and euMax = Eǫ
∆′(U)

end if

end for

end for

until euMax = euMaxLocal

end for

until euMax = euMaxOld

return ∆

Figure 4: Single rule updating for 2TLIMIDs.

our running example (Fig. 2) to never test and
always treat. Suppose this is our initial strategy
∆0 for either the SPU or SRU algorithm. Try-
ing to improve the policy for the laboratory test
L we find that performing the test will only de-
crease the expected utility since the test has no
informational value (we always treat) but does
have an associated cost. Conversely, trying to
improve the policy for treatment we find that
the test is never performed and therefore it is
more safe to always treat. Hence, SPU and SRU
will stop after one cycle, returning the proposed
strategy as the local optimal strategy.

In order to improve upon the strategies found
by SRU, we resort to simulated annealing (SA),
which is a heuristic search method that tries
to avoid getting trapped into local maximum
solutions that are found by hill-climbing tech-
niques such as SRU (Kirkpatrick et al., 1983).
SA chooses candidate solutions by looking at
neighbors of the current solution as defined by
a neighborhood function. Local maxima are
avoided by sometimes accepting worse solutions
according to an acceptance function.
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SA(T ,∆0,ǫ,τ0, T ):

∆ = ∆0, t = 0, eu = Eǫ
∆(U)

repeat

select a random decision variable Dj

select a random decision rule (x, a) ∈ pj

select a random action a′ ∈ ΩDj
, a′ 6= a

p′j = (x, a′) ∗ pj

∆′ = p′j ∗ ∆
eu’ = Eǫ

∆′(U)
if θ ≤ P (a(∆′)=yes | eu+ ǫ, eu′, t) then

∆ = ∆′ and eu = eu′

end if

t = t + 1
until T (t) < τ0

return SRU(T ,∆, ǫ)

Figure 5: Simulated annealing for 2TLIMIDs.

In this paper, we have chosen the acceptance
function P (a(∆′) = yes | eu, eu′, t) equal to 1
if eu′ > eu and equal to exp(eu’−eu

T (t) ) otherwise,

where a(∆′) stands for the acceptance of the
proposed strategy ∆′, eu’ = Eǫ

∆′(U), eu =
Eǫ

∆(U) for the current strategy ∆, and T is an
annealing schedule that is defined as T (t + 1) =
α · T (t) where T (0) = β with α < 1 and β > 0.

With respect to strategy finding in DLIMIDs,
we propose the simulated annealing scheme as
shown in Fig. 5, where θ is repeatedly chosen
uniformly at random between 0 and 1. Note
that after the annealing phase we apply SRU in
order to greedily find a local maximum solution.

4 Experimental Results

We have compared the solutions found by SRU
and SA to our running example based on twenty
randomly chosen initial strategies. Note that
SPU was not feasible due to the large number
of policies per decision variable. We have cho-
sen a discounting factor γ = 0.95 and a stop-
ping criterion ǫ = 0.01. After some initial ex-
periments we have chosen α = 0.995, β = 0.5
and tMin = 3.33 · 10−3 for the SA parame-
ters. In order to reduce computational load,
we assume that the parameters for P (T 0 | M0)
and P (T t | M t) are tied such that we need
only estimate three different policies for P (L0),

8

9

10

11

12

0 200 400 600 800 1000

Eǫ
∆(U)

cycle

Figure 6: Change in Eǫ
∆(U) for one run of SA.

The sudden increase at the end of the run is
caused by the subsequent application of SRU.

P (Lt | M t−1) and P (T 0 | M0) = P (T t | M t).

For the twenty experiments, SRU found
strategies with an average expected utility of
Eǫ

∆(U) = 11.23 with σ = 0.43. This required
the evaluation of 720 different strategies on av-
erage. SA found strategies with an average ex-
pected utility of Eǫ

∆(U) = 11.51 with σ = 0.14.
This required the evaluation of 1546 different
strategies on average. In 16 out of 20 exper-
iments, SA found strategies with higher ex-
pected utility than SRU. Furthermore, due to
the random behavior of the algorithm it avoids
the local maximum policies found by SRU. For
instance, SRU finds a strategy with expected
utility 10.29 three out of twenty times, which
is equal to the expected utility of the proposed
strategy to always treat and never test. The
best strategy was found by simulated anneal-
ing and has an expected utility of 11.67. The
subsequent values of Eǫ

∆(U), found during that
experiment, are shown in Fig. 6.

The found strategy can be represented by a
policy graph (Meuleau et al., 1999); a finite state
controller that depicts state transitions, where
states represent actions and transitions are in-
duced by observations. Figure 7 depicts the pol-
icy graph for the best found strategy. Starting
at the left arrow, each time slice constitutes a
test decision (circle) and a treatment decision
(double circle). Shaded circles stand for posi-
tive decisions (i.e., Lt = yes and T t = yes) and
clear circles stand for negative decisions (i.e.,
Lt = no and T t = no). If a test has two outgo-
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Figure 7: Policy graph for the best strategy
found by simulated annealing.

ing arcs, then these stand for a negative finding
(dashed arc) and positive finding (solid arc) re-
spectively. Most of the time, the policy graph
associates a negative test result with no treat-
ment and a positive test result with treatment.

5 Conclusion

In this paper we have demonstrated that reason-
able strategies can be found for infinite-horizon
DLIMIDs by means of SRU. Although compu-
tationally more expensive, SA considerably im-
proves the found strategies by avoiding local
maxima. Both SRU and SA do not suffer from
the intractability of SPU when the number of
informational predecessors increases. The ap-
proach does require that good strategies can be
found using a limited amount of memory, since
otherwise, found strategies will fail to approx-
imate the optimal strategy. This requirement
should hold especially between time-slices, since
the state-space of memory variables can become
prohibitively large when a large part of the ob-
served history is required for optimal decision-
making. Although this restricts the types of
decision problems that can be managed, DLIM-
IDs, constructed from a 2TLIMID, allow the
representation of large, or even infinite-horizon
decision problems, something which standard

influence diagrams cannot manage in principle.
Hence, 2TLIMIDs are particularly useful in the
case of problems that cannot be properly ap-
proximated by a short number of time slices.
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Abstract

We present the behavior of a sensitivity measure defined to evaluate the impact of
model inaccuracies over the posterior marginal density of the variable of interest, after the
evidence propagation is executed, for extreme perturbations of parameters in Gaussian
Bayesian networks. This sensitivity measure is based on the Kullback-Leibler divergence
and yields different expressions depending on the type of parameter (mean, variance or
covariance) to be perturbed. This analysis is useful to know the extreme effect of uncer-
tainty about some of the initial parameters of the model in a Gaussian Bayesian network.
These concepts and methods are illustrated with some examples.

Keywords: Gaussian Bayesian Network, Sensitivity analysis, Kullback-Leibler diver-
gence.

1 Introduction

Bayesian network is a graphical probabilistic
model that provides a graphical framework for
complex domains with lots of inter-related vari-
ables. Among other authors, Bayesian networks
have been studied, by Pearl (1988), Lauritzen
(1996), Heckerman (1998) and Jensen (2001).
A sensitivity analysis in a Bayesian network is
necessary to study how sensitive is the network’s
output to inaccuracies or imprecisions in the pa-
rameters of the initial network, and therefore to
evaluate the network robustness.
In recent years, some sensitivity analysis tech-
niques for Bayesian networks have been devel-
oped. In Discrete Bayesian networks Laskey
(1995) presents a sensitivity analysis based on

computing the partial derivative of a posterior
marginal probability with respect to a given pa-
rameter, Coupé, et al. (2002) develop an effi-
cient sensitivity analysis based on inference al-
gorithms and Chan, et al. (2005) introduce a
sensitivity analysis based on a distance measure.
In Gaussian Bayesian networks Castillo, et al.
(2003) present a sensitivity analysis based on
symbolic propagation and Gómez-Villegas, et
al. (2006) develop a sensitivity measure, based
on the Kullback-Leibler divergence, to perform
the sensitivity analysis.
In this paper, we study the behavior of the sensi-
tivity measure presented by Gómez-Villegas, et
al. (2006) for extreme inaccuracies (perturba-
tions) of parameters that describe the Gaussian
Bayesian network. To prove that this is a well-



defined measure we are interested in studying
the sensitivity measure when one of the param-
eters is different from the original value. More-
over, we want to proof that if the value of one
parameter is similar to the real value then the
sensitivity measure is close to zero.
The paper is organized as follows. In Section 2
we briefly introduce definitions of Bayesian net-
works and Gaussian Bayesian networks, review
how propagation in Gaussian Bayesian networks
can be performed, and present our working ex-
ample. In Section 3, we present the sensitiv-
ity measure and develop the sensitivity analysis
proposed. In Section 4, we obtain the limits
of the sensitivity measure for extreme pertur-
bations of the parameters giving the behavior
of the measure in the limit so as their interpre-
tation. In Section 5, we perform the sensitiv-
ity analysis with the working example for some
extreme imprecisions. Finally, the paper ends
with some conclusions.

2 Gaussian Bayesian Networks and
Evidence propagation

Definition 1 (Bayesian network). A Bayesian
network is a pair (G,P) where G is a directed
acyclic graph (DAG), which nodes correspond-
ing to random variables X={X1, ..., Xn} and
edges representing probabilistic dependencies,
and P={p(x1|pa(x1)), ..., p(xn|pa(xn))} is a set
of conditional probability densities (one for each
variable) where pa(xi) is the set of parents of
node Xi in G. The set P defines the associated
joint probability density as

p(x) =
n∏

i=1

p(xi|pa(xi)). (1)

As usual we work with a variable of inter-
est, so the network’s output is the information
about this variable of interest after the evidence
propagation.

Definition 2 (Gaussian Bayesian net-
work). A Gaussian Bayesian network is a
Bayesian network over X={X1, ..., Xn} with
a multivariate normal distribution N(µ,Σ),
then the joint density is given by f(x) =

= (2π)−n/2|Σ|−1/2 exp
{
−1

2
(x− µ)′Σ−1(x− µ)

}

where µ is the n-dimensional mean vector, Σ
n×n the covariance matrix and |Σ| the
determinant of Σ.

The conditional density associated with
Xi for i = 1, ..., n in equation (1), is the
univariate normal distribution, with density

f(xi|pa(xi)) ∼ N


µi +

i−1∑

j=1

βij(xj − µj), νi




where βij is the regression coefficient of Xj

in the regression of Xi on the parents of Xi,
and νi = Σii − ΣiPa(xi)Σ

−1
Pa(xi)Σ

′
iPa(xi)

is the
conditional variance of Xi given its parents.

Different algorithms have been proposed to
propagate the evidence of some nodes in Gaus-
sian Bayesian networks. We present an incre-
mental method, updating one evidential vari-
able at a time (see Castillo, et al. 1997) based
on computing the conditional probability den-
sity of a multivariate normal distribution given
the evidential variable Xe.
For the partition X = (Y, E), with Y the set of
non-evidential variables, where Xi ∈ Y is the
variable of interest, and E is the evidence vari-
able, then, the conditional probability distribu-
tion of Y, given the evidence E = {Xe = e}, is
multivariate normal with parameters

µY|E=e = µY + ΣYEΣ−1
EE(e− µE)

ΣY|E=e = ΣYY − ΣYEΣ−1
EEΣEY

Therefore, the variable of interest Xi ∈ Y after
the evidence propagation is

Xi|E = e ∼ N(µY|E=e
i , σ

Y|E=e
ii ) ≡

≡ N

(
µi +

σie

σee
(e− µe), σii − σ2

ie

σee

)
(2)

where µi and µe are the means of Xi and Xe

respectively before the propagation, σii and
σee the variances of Xi and Xe respectively
before propagating the evidence, and σie the
covariance between Xi and Xe before the
evidence propagation.
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Figure 1: DAG of the Gaussian Bayesian net-
work

We illustrate the concept of a Gaussian
Bayesian network and the evidence propagation
method with next example.

Example 1. Assume that we are interested in
how a machine works. This machine is made
up of 5 elements, the variables of the problem,
connected as the network in Figure 1. Let us
consider the time each element is working has
a normal distribution and we are interested in
the last element of the machine (X5).

Being X = {X1, X2, X3, X4, X5} normally dis-
tributed, X ∼ N(µ,Σ), with parameters

µ =




2
3
3
4
5




; Σ =




3 0 6 0 6
0 2 2 0 2
6 2 15 0 15
0 0 0 2 4
6 2 15 4 26




Considering the evidence E = {X2 = 4},
after evidence propagation we obtain that
X5|X2 = 4 ∼ N(6, 24) and the joint distribution
is normal with parameters

µY|X2=4 =




2
4
4
6


 ;

ΣY|X2=4 =




3 6 0 6
6 13 0 13
0 0 2 4
6 13 4 24




3 Sensitivity Analysis and
non-influential parameters

The Sensitivity Analysis proposed is as follows:
Let us suppose the model before propagating
the evidence is N(µ,Σ) with one evidential vari-
able Xe, whose value is known. After propagat-
ing this evidence we obtain the marginal density
of interest f(xi|e). Next, we add a perturbation
δ to one of the parameters in the model before
propagating the evidence (this parameter is sup-
posed to be inaccurate thus δ reflects this inac-
curacy) and perform the evidence propagation,
to get f(xi|e, δ). In some cases, the perturba-
tion δ has some restrictions to get admissible
parameters.
The effect of adding the perturbation is com-
puted by comparing those density functions by
means of the sensitivity measure. That measure
is based on the Kullback-Leibler divergence be-
tween the target marginal density obtained af-
ter evidence propagation, considering the model
with and without the perturbation

Definition 3 (Sensitivity measure). Let (G,P)
be a Gaussian Bayesian network N(µ,Σ). Let
f(xi|e) be the marginal density of interest af-
ter evidence propagation and f(xi|e, δ) the same
density when the perturbation δ is added to one
parameter of the initial model. Then, the sen-
sitivity measure is defined by

Spj (f(xi|e), f(xi|e, δ)) =

=
∫ ∞

−∞
f(xi|e) ln

f(xi|e)
f(xi|e, δ)dxi (3)

where the subscript pj is the inaccurate param-
eter and δ the proposed perturbation, being the
new value of the parameter pδ

j = pj + δ.

For small values of the sensitivity measure
we can conclude our Bayesian network is robust
for that perturbation.

3.1 Mean vector inaccuracy

Three different situations are possible depend-
ing on the element of µ to be perturbed, i.e.,
the perturbation can affect the mean of the
variable of interest Xi ∈ Y, the mean of the
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evidence variable Xe ∈ E, or the mean of any
other variable Xj ∈ Y with j 6= i. Developing
the sensitivity measure (3), we obtain next
propositions,

Proposition 1. For the perturbation δ ∈ < in
the mean vector µ, the sensitivity measure is as
follows
• When the perturbation is added to the mean
of the variable of interest, µδ

i = µi + δ, and
Xi|E = e, δ ∼ N(µY|E=e

i + δ, σ
Y|E=e
ii ),

Sµi(f(xi|e), f(xi|e, δ)) =
δ2

2σ
Y|E=e
ii

.

• If the perturbation is added to the mean
of the evidential variable, µδ

e = µe + δ,
the posterior density of the variable
of interest, with the perturbation, is
Xi|E = e, δ ∼ N(µY|E=e

i − σie

σee
δ, σ

Y|E=e
ii ),

then

Sµe(f(xi|e), f(xi|e, δ)) =
δ2

2σ
Y|E=e
ii

(
σie

σee

)2

.

• The perturbation δ added to the mean of any
other non-evidential variable, different from the
variable of interest, has no influence over Xi,
then f(xi|e, δ) = f(xi|e), and the sensitivity
measure is zero.

3.2 Covariance matrix inaccuracy

There are six possible different situations,
depending on the parameter of the covariance
matrix Σ to be changed; three if the pertur-
bation is added to the variances (elements
in the diagonal of Σ) and other three if the
perturbation is added to the covariances of Σ.
When the covariance matrix is perturbed, the
structure of the network can change. Those
changes are presented in the precision matrix
of the perturbed network, that is, the inverse
of the covariance matrix with perturbation δ.
To guarantee the normality of the network it
is necessary ΣY|E=e,δ to be a positive definite
matrix in all cases presented in next proposition

Proposition 2. Adding the perturbation δ ∈ <
to the covariance matrix Σ, the sensitivity
measure obtained is
• If the perturbation is added to the vari-
ance of the variable of interest, being

σδ
ii = σii + δ with δ > −σii +

σ2
ie

σee
, then

Xi|E = e, δ ∼ N(µY|E=e
i , σ

Y|E=e,δ
ii ) where

σ
Y|E=e,δ
ii = σii + δ − σ2

ie

σee
and

Sσii(f(xi|e), f(xi|e, δ)) =

=
1
2

[
ln

(
1 +

δ

σ
Y|E=e
ii

)
− δ

σ
Y|E=e,δ
ii

]
.

• When the perturbation is added to the
variance of the evidential variable, being
σδ

ee = σee + δ and δ > −σee(1− max
Xj∈Y

ρ2
je)

with ρje the corresponding correlation co-
efficient, the posterior density of inter-
est is Xi|E = e, δ ∼ N(µY|E=e,δ

i , σ
Y|E=e,δ
ii )

with µ
Y|E=e,δ
i = µi +

σie

σee + δ
(e− µe) and

σ
Y|E=e,δ
ii = σii − σ2

ie

σee + δ
therefore

Sσee(f(xi|e), f(xi|e, δ)) =
1
2

[
ln

(
σ

Y|E=e,δ
ii

σ
Y|E=e
ii

)
+

+
σ2

ie
σee

(
−δ

σee+δ

) (
1 + (e− µe)2

(
−δ

(σee+δ)σee

))

σ
Y|E=e,δ
ii


 .

• The perturbation δ added to the variance of
any other non-evidential variable Xj ∈ Y with
j 6= i, σδ

jj = σjj + δ, has no influence over Xi,
therefore f(xi|e, δ) = f(xi|e) and the sensitivity
measure is zero.

• When the covariance between the vari-
able of interest Xi and the evidential vari-
able Xe is perturbed, σδ

ie = σie + δ = σδ
ei

and −σie −√σiiσee < δ < −σie +
√

σiiσee,
then Xi|E = e, δ ∼ N(µY|E=e,δ

i , σ
Y|E=e,δ
ii )

with µ
Y|E=e,δ
i = µi +

(σie + δ)
σee

(e− µe) and

σ
Y|E=e,δ
ii = σii − (σie + δ)2

σee
the sensitivity

measure obtained is
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Sσie(f(xi|e), f(xi|e, δ)) =

=
1
2

[
ln

(
1− δ2 + 2σieδ

σeeσ
Y|E=e
ii

)
+

+
σ

Y|E=e
ii +

(
δ

σee
(e− µe)

)2

σ
Y|E=e,δ
ii

− 1


 .

• If we add the perturbation to any other
covariance, i.e., between the variable of interest
Xi and any other non-evidential variable Xj or
between the evidence variable Xe and Xj ∈ Y
with j 6= i, the posterior probability density of
the variable of interest Xi is the same as with-
out perturbation and therefore the sensitivity
measure is zero.

4 Extreme behavior of the
Sensitivity Measure

When using the sensitivity measure, that
describes how sensitive is the variable of
interest when a perturbation is added to a
inaccurate parameter, it would be interesting
to know how is the sensitivity measure when
the perturbation δ ∈ < is extreme. Then, we
study the behavior of that measure for extreme
perturbations so as the limit of the sensitivity
measure.
Next propositions present the results about the
limits of the sensitivity measures in all cases
given in Propositions 1 and 2,

Proposition 3. When the perturbation added
to the mean vector is extreme, the sensitivity
measure is as follows,

1. • lim
δ−→±∞

Sµi(f(xi|e), f(xi|e, δ)) = ∞
• lim

δ−→0
Sµi(f(xi|e), f(xi|e, δ)) = 0

2. • lim
δ−→±∞

Sµe(f(xi|e), f(xi|e, δ)) = ∞
• lim

δ−→0
Sµe(f(xi|e), f(xi|e, δ)) = 0.

Proof. It follows directly.

Proposition 4. When the extreme perturbation
is added to the elements of the covariance ma-
trix and the correlation coefficient of Xi and Xe

is 0 < ρ2
ie < 1, the results are,

1. • lim
δ−→∞

Sσii(f(xi|e), f(xi|e, δ)) = ∞ but

Sσii(f(xi|e), f(xi|e, δ)) = o(δ)

• lim
δ−→ Mii

Sσii(f(xi|e), f(xi|e, δ)) = ∞ with

Mii = −σii + σ2
ie

σee
= −σii(1− ρ2

ie)

• lim
δ−→0

Sσii(f(xi|e), f(xi|e, δ)) = 0

2. • lim
δ−→∞

Sσee(f(xi|e), f(xi|e, δ)) =

=
1
2

[
−ln(1− ρ2

ie)− ρ2
ie

(
1− (e− µe)2

σee

)]

• lim
δ−→ Mee

Sσee(f(xi|e), f(xi|e, δ)) =

=
1
2

[
ln

(
M∗

ee − ρ2
ie

M∗
ee(1− ρ2

ie)

)
+

ρ2
ie(1−M∗

ee)
M∗

ee − ρ2
ie(

1 +
(e− µe)2

σee

(
1−M∗

ee

M∗
ee

))]

where Mee = −σee(1 − M∗
ee) being

M∗
ee = maxXj ρ2

je

• lim
δ−→0

Sσee(f(xi|e), f(xi|e, δ)) = 0

3. • lim
δ−→M1

ie

Sσie(f(xi|e), f(xi|e, δ)) = ∞

• lim
δ−→M2

ie

Sσie(f(xi|e), f(xi|e, δ)) = ∞
with M1

ie = −σie − √
σiiσee and

M2
ie = −σie +

√
σiiσee

• lim
δ−→0

Sσie(f(xi|e), f(xi|e, δ)) = 0.

Proof. 1. • It follows directly.

• When σδ
ii = σii + δ the new variance of

Xi is σ
Y|E=e,δ
ii = σ

Y|E=e
ii + δ.

Being σ
Y|E=e,δ
ii > 0 then δ > −σ

Y|E=e
ii .

Naming Mii = −σ
Y|E=e
ii and considering

x = σ
Y|E=e
ii + δ we have
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lim
δ−→ Mii

Sσii(f(xi|e), f(xi|e, δ)) =

= lim
x−→0

1
2x

[
x ln(x)− x ln(σY|E=e

ii )− x+

+σ
Y|E=e
ii

]
= ∞.

• It follows directly.

2. • lim
δ−→∞

Sσee(f(xi|e), f(xi|e, δ)) =

=
1
2


ln

(
σii

σ
Y|E=e
ii

)
+

−σ2
ie

σee

(
1− (e−µe)2

σee

)

σii




with σ
Y|E=e
ii = σii(1− ρ2

ie) and

ρ2
ie =

σ2
ie

σiiσee
the limit is

=
1
2

[
−ln(1− ρ2

ie)− ρ2
ie

(
1− (e− µe)2

σee

)]
.

• When σδ
ee = σee + δ, the new conditional

variance for all non evidential variables is

σ
Y|E=e,δ
jj = σjj −

σ2
je

σee + δ
for all Xj ∈ Y.

If we impose σ
Y|E=e,δ
jj > 0 for all Xj ∈ Y

then δ must satisfy next condition
δ > −σee(1− max

Xj∈Y
ρ2

je).

Naming M∗
ee = maxXj ρ2

je and
Mee = −σee(1−M∗

ee) then we have
lim

δ−→ Mee

Sσee(f(xi|e), f(xi|e, δ)) =

= lim
δ−→ Mee

1
2


ln


σii − σ2

ie
σee+δ

σii − σ2
ie

σee


 +

σ2
ie

σee

(
−δ

σee+δ

) (
1 + (e− µe)2

(
−δ

(σee+δ)σee

))

σii − σ2
ie

σee+δ




with ρ2
ie = σ2

ie
σiiσee

=
1
2

[
ln

(
σiiσeeM

∗
ee − σ2

ie

M∗
ee(σiiσee − σ2

ie)

)
+

+
σ2

ie
σee

(
1−M∗

ee
M∗

ee

) (
1 + (e−µe)2

σee

(
1−M∗

ee
M∗

ee

))

M∗
ee − ρ2

ie


 =

=
1
2

[
ln

(
M∗

ee − ρ2
ie

M∗
ee(1− ρ2

ie)

)
+

ρ2
ie(1−M∗

ee)
M∗

ee − ρ2
ie(

1 +
(e− µe)2

σee

(
1−M∗

ee

M∗
ee

))]
.

• It follows directly.

3. • If we make σδ
ie = σie + δ, the new

conditional variance is

σ
Y|E=e,δ
ii = σ

Y|E=e
ii − δ2 + 2δσie

σee
.

Then, if we impose σ
Y|E=e,δ
ii > 0, δ must

satisfy the next condition
−σie −√σiiσee < δ < −σie +

√
σiiσee.

First, naming
M2

ie = −σie +
√

σiiσee, we calculate
lim

δ−→M2
ie

Sσie (f (xi | e) , f (xi | e, δ)).
But δ → M2

ie is equivalent to(
δ2 + 2δσie

) → σeeσ
Y|E=e
ii and given

that
Sσie (f (xi | e) , f (xi | e, δ)) =

=
1
2

[
ln

(
σeeσ

Y|E=e
ii − (

δ2 + 2δσie
)

σeeσ
Y|E=e
ii

)
+

+
σeeσ

Y|E=e
ii +

(
δ

σee
(e− µe)

)2

σeeσ
Y|E=e
ii − (δ2 + 2δσie)

− 1




and as lim
x−→0

[
lnx +

k

x

]
= ∞

for every k, then we get
lim

δ−→M2
ie

Sσie (f (xi | e) , f (xi | e, δ)) = ∞.

• Analogously, the other limit is also
lim

δ−→M1
ie

Sσie (f (xi | e) , f (xi | e, δ)) = ∞.

• It follows directly.

The behavior of the sensitivity measure is the
expected one, except when the extreme pertur-
bation is added to the evidential variance, be-
cause with known evidence, the posterior den-
sity of interest with the perturbation in the
model f(xi|e, δ) is not so different of the pos-
terior density of interest without the perturba-
tion f(xi|e), therefore although an extreme per-
turbation added to the evidential variance can
exist, the sensitivity measure tends to a finite
value.
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5 Experimental results

Example 2. Consider the Gaussian Bayesian
network given in Example 1. Experts disagree
with definition of the variable of interest X5,
then the mean could be µδ1

5 = 2 = µ5 + δ1 (with
δ1 = −3), the variance could be σδ2

55 = 24 with
δ2 = −2 and the covariances between X5 and
evidential variable X2 could be σδ3

52 = 3 with
δ3 = 1 (the same to σ25); with the variance
of the evidential variable being σδ4

22 = 4 with
δ4 = 2 and between X5 and other non-evidential
variable X3 that could be σδ5

53 = 13 with δ5 = −2
(the same to σ35); moreover, there are different
opinions about X3, because they suppose that
µ3 could be µδ6

3 = 7 with δ6 = 4, that σ33 could
be σδ7

33 = 17 with δ7 = 2, and that σ32 could be
σδ8

32 = 1 with δ8 = −1 (the same to σ23).

The sensitivity measure for those inaccuracy
parameters yields
Sµ5(f(x5|X2 = 4), f(x5|X2 = 4, δ1)) = 0.1875
Sσ55(f(x5|X2 = 4), f(x5|X2 = 4, δ2)) = 0.00195
Sσ52(f(x5|X2 = 4), f(x5|X2 = 4, δ3)) = 0.00895
Sσ22(f(x5|X2 = 4), f(x5|X2 = 4, δ4)) = 0.00541
Sσ53(f(x5|X2 = 4), f(x5|X2 = 4, δ5)) = 0
Sµ3(f(x5|X2 = 4), f(x5|X2 = 4, δ6)) = 0
Sσ33(f(x5|X2 = 4), f(x5|X2 = 4, δ7)) = 0
Sσ32(f(x5|X2 = 4), f(x5|X2 = 4, δ8)) = 0
As these values of the sensitivity measures are
small we can conclude that the perturbations
presented do not affect the variable of interest
and therefore the network can be considered
robust. Also, the inaccuracies about the
non-evidential variable X3 do not disturb the
posterior marginal density of interest, being
the sensitivity measure zero in all cases. If
experts think that the sensitivity measure
obtained for the mean of the variable of interest
is large enough then they should review the
information about this variable.
Moreover, we have implemented an algorithm
(see Appendix 1) to compute all the sensitivity
measures that can influence over the variable
of interest Xi; this algorithm compare those
sensitivity measures computed with a threshold
s fixed by experts. Then, if the sensitivity
measure is larger than the threshold, the
parameter should be reviewed.

Figure 2: Sensitivity measures obtained in the
example for any perturbation value

The extreme behavior of the sensitivity measure
for some particular cases, is given as follows
When δ1 = 20, the sensitivity measure is
Sµ5(f(x5|X2 = 4), f(x5|X2 = 4, δ1)) = 8.33
and with the perturbation δ1 = −25,
Sµ5(f(x5|X2 = 4), f(x5|X2 = 4, δ1)) = 13.02.
If the perturbation δ2 = 1000,
Sσ55(f(x5|X2 = 4), f(x5|X2 = 4, δ2)) = 1.39
therefore as the perturbation in-
creases to infinity the sensitivity
measure grows very slowly, in fact
Sσ55(f(x5|X2 = 4), f(x5|X2 = 4, δ2)) = o(δ)
as stated before. However if δ2 =
−23, the sensitivity measure is
Sσ55(f(x5|X2 = 4), f(x5|X2 = 4, δ2)) = 9.91.
We do not present the sensitivity measure when
δ3 is extreme because δ3 must be in (−√2,

√
2)

to keep the covariance matrix of the network
with the perturbation δ3 positive definite.
Finally, when δ4 = 100, the sensitivity measure
is Sσ22(f(x5|X2 = 4), f(x5|X2 = 4, δ4)) = 0.02
(where the limit of Sσ22 when δ tends to
infinity is 0.0208) and with δ4 = −1.73,
Sσ22(f(x5|X2 = 4), f(x5|X2 = 4, δ4)) = 2.026
(being the limit when δ tends to Mee 2.1212).
In Figure 2, we observed the sensitivity mea-
sures, considered as a function of δ; the graph
shows the behavior of the measure when δ ∈ <.
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6 Conclusions

In this paper we study the behavior of the sensi-
tivity measure, that compares the marginal den-
sity of interest when the model of the Gaussian
Bayesian network is described with and without
a perturbation δ ∈ <, when the perturbation is
extreme. Considering a large perturbation the
sensitivity measure is large too except when the
extreme perturbation is added to the evidence
variance. Therefore, although the evidence vari-
ance were large and different from the variance
in the original model, the sensitivity measure
would be limited by a finite value, that is be-
cause the evidence about this variable explains
the behavior of the variable of interest regard-
less its inaccurate variance.
Moreover, in all possible cases of the sensitivity
measure, if the perturbation added to a parame-
ter tends to zero, the sensitivity measure is zero
too.
The study of the behavior of the sensitivity
measure is useful to prove that this is a well-
defined measure to develop a sensitivity analy-
sis in Gaussian Bayesian networks even if the
proposed perturbation is extreme.
The posterior research is focused on perturbing
more than one parameter simultaneously so as
with more than one variable of interest.
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Abstract

This paper addresses the problem of learning a Bayes net (BN) structure from a database. We
advocate first searching the Markov networks (MNs) space to obtain an initial RB and, then, re-
fining it into an optimal RB. More precisely, it can be shown that under classical assumptions our
algorithm obtains the optimal RB moral graph in polynomial time. This MN is thus optimal w.r.t.
inference. The process is attractive in that, in addition to providing optimality guarrantees, the
MN space is substantially smaller than the traditional search spaces (those of BNs and equivalent
classes (ECs)). In practice, we face the classical shortcoming of constraint-based methods, namely
the unreliability of high-order conditional independence tests, and handle it using efficient con-
ditioning set computations based on graph triangulations. Our preliminary experimentations are
promising, both in terms of the quality of the produced solutions and in terms of time responses.

1 Introduction

Effective modeling of uncertainty is essential to
most AI applications. For fifteen years probabilis-
tic graphical models like Bayesian nets (BN) and
Markov nets (MN), a.k.a. Markov random fields,
(Cowell et al., 1999; Jensen, 1996; Pearl, 1988)
have proved to be well suited and computationally
efficient to deal with uncertainties in many practical
applications. Their key feature consists in exploit-
ing probabilistic conditional independences (CIs) to
decompose a joint probability distribution over a set
of random variables as a product of functions of
smaller sets, thus allowing a compact representation
of the joint probability as well as efficient inference
algorithms (Allen and Darwiche, 2003; Madsen and
Jensen, 1999). These independences are encoded in
the graphical structure of the model, which is di-
rected for BNs and undirected for MNs. In this pa-
per, we propose an algorithm to learn a BN structure
from a data sample of the distribution of interest.

There exist three main classes of algorithms for
learning BN from data. The first one tries to de-
termine the set of all probabilistic CIs using sta-
tistical independence tests (Verma and Pearl, 1990;
Spirtes et al., 2000). Such tests have been criti-
cized in the literature as they can only be applied
with small conditioning sets, thus ruling out com-

plex BNs. A more popular approach consists in
searching the BN structures space, optimizing some
score (BDeu, MDL, etc.) measuring how well the
structure fits data (Heckerman et al., 1995; Lam and
Bacchus, 1993). Unfortunately, the number of BNs
is super-exponential in the number of random vari-
ables (Robinson, 1973) and an exhaustive compar-
ison of all the structures is impossible. One way
out is to use local search algorithms parsing effi-
ciently the BN structure space, moving from one
BN to the next one by performing simple graphical
modifications (Heckerman et al., 1995). However,
these suffer from the existence of multiple BNs rep-
resenting the same set of CIs. This not only length-
ens the search but may also trap it into local op-
tima. To avoid these problems, the third class of
approaches (Munteanu and Bendou, 2001; Chick-
ering, 2002) searches the space of BN equivalence
classes (EC). In this space, equivalent BNs are rep-
resented by a unique partially directed graph. In ad-
dition to speeding-up the search by avoiding use-
less moves from one BN to an equivalent one, this
class of algorithms possesses nice theoretical prop-
erties. For instance, under DAG-isormorphism, a
classical hypothesis on the data generative distribu-
tion, and in the limit of a large database, the GES
algorithm is theoretically able to recover the opti-
mal BN structure (Chickering, 2002). This property



is remarkable as very few search algorithms are able
to guarantee the quality of the returned structure.

Although, in theory, the EC space seems more at-
tractive than the BN space, it suffers in practice from
two problems: i) its neighborhood is exponential in
the number of nodes (Chickering, 2002) and ii) the
EC space size is roughly equal to that of the BN
space (Gillispie and Perlman, 2001). It would thus
be interesting to find a space preserving the optimal-
ity feature of the EC space exploited by GES while
avoiding the above problems. For this purpose, the
MN space seems a good candidate as, like the EC
space, its equivalence classes are singletons. More-
over, it is exponentially smaller than the BN space
and, by its undirected nature, its neighborhood is
also exponentially smaller than that of EC. This sug-
gests that searching the MN space instead of the EC
space can lead to significant improvements.

To support this claim, we propose a learning al-
gorithm that mainly performs its search in the MN
space. More precisely, it is divided into three dis-
tinct phases. In the first one, we use a local search
algorithm that finds an optimal MN searching the
MN space. It is well-known that only chordal MNs
are precisely representable by BNs (Pearl, 1988).
As it is unlikely that the MN we find at the end of
the first phase is actually chordal, its transformation
into a BN must come along with the loss of some
CIs. Finding a set of CIs that can be dispensed with
to map the MN into a BN while fitting data as best
as possible is not a trivial task. Phase 2 exploits the
relationship between BNs and their moral graphs to
transform the MN into a BN whose moral graph is
not far from the MN obtained at the end of phase 1.
Then, in a third phase, this BN is refined into one
that better fits data. This last phase uses GES sec-
ond step. The whole learning algorithm preserves
GES theoretical optimality guarantee. Furthermore,
the BN at the end of phase 2, which possesses inter-
esting theoretical properties, is obtained in polyno-
mial time. Phase 3 is exponential but has an anytime
property. Preliminary experimental results suggest
that our learning algorithm is faster than GES and
produces better quality solutions.

The paper is organized as follows. Section 2 pro-
vides some background on MNs and BNs. Then,
Section 3 describes how we obtain the optimal MN.
Section 4 shows how it can be converted into a BN.

Finally Section 5 mentions some related work and
presents some experimental results.

2 Background

Let V be a set of random variables with joint prob-
ability distribution P (V). Variables are denoted by
capitalized letters (other than P ) and sets of vari-
ables (except V) by bold letters.

Markov and Bayes nets are both composed of:
i) a graphical structure whose nodes are the vari-
ables in V (hereafter, we indifferently refer to nodes
and their corresponding variables) and ii) a set of
numerical parameters. The structure encodes proba-
bilistic CIs among variables and then defines a fam-
ily of probability distributions. The set of parame-
ters, whose form depends on the structure, defines a
unique distribution among this family and assesses
it numerically. Once a structure is learned from
data, its parameters are assessed, generally by max-
imizing data likelihood given the model.

A MN structure is an undirected graph while a
BN one is a directed acyclic graph (DAG). MNs
graphically encode CIs by separation. In an undi-
rected graph G, two nodes X and Y are said to be
separated by a disjoint set Z, denoted by X ⊥G Y |
Z, if each chain between X and Y has a node in Z.
BNs criterion, called d-separation, is defined simi-
larly except that it distinguishes colliders on a chain,
i.e., nodes with their two adjacent arcs on the chain
directed toward them. In a DAG, X and Y are said
to be d-separated by Z, denoted by X ⊥B Y | Z, if
for each chain between X and Y there exists a node
S s.t. if S is a collider on the chain, then neither S

nor any of its descendant is in Z, else S is in Z. Ex-
tending Pearl’s terminology (Pearl, 1988), we will
say that a graph G, directed or not, is an I-map (I
standing for independency), implicitly relative to P ,
if X ⊥G Y | Z =⇒ X � PY | Z. We will also
say that a graph G is an I-map of another graph G ′

when X ⊥G Y | Z =⇒ X ⊥G′ Y | Z. When two
structures are I-maps of one another, they represent
the same family and are thus said to be equivalent.

The complete graph, which exhibits no separation
assertion, is a structure containing all the possible
distributions and is, as such, always an I-map. Of
course, in a learning prospect, our aim is to recover
from data an I-map as sparse as possible. More pre-
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cisely, in both MN and BN frameworks, an I-map G
is said to be optimal (w.r.t. inclusion) relatively to P

if there exists no other I-map G ′ such that i) G is an
I-map of G ′ and ii) G is not equivalent to G ′.

Though they are strongly related, BNs and MNs
are not able to represent precisely the same in-
dependence shapes. MNs are mostly used in the
image processing and computer vision community
(Pérez, 1998), while BNs are particularly used in
the AI community working on modeling and predic-
tion tools like expert systems (Cowell et al., 1999).
In the latter prospect, BNs are mostly preferred for
two reasons. First, the kind of independences they
can express using arcs orientations are considered
more interesting than the independence shapes only
representable by MNs (Pearl, 1988). Secondly, as
BNs parameters are probabilities (while those of
MNs are non-negative potential functions without
any real actual meaning), they are considered easier
to assess, to manipulate and to interpret. In BNs,
the direction is exploited only through V-structures,
that is, three-node chains whose central node is a
collider the neighbors of which are not connected by
an arc. This idea is expressed in a theorem (Pearl,
1988) stating that two BNs are equivalent if and
only if they have the same V-structures and the same
skeleton, where the skeleton of a DAG is the undi-
rected graph resulting from the removal of its arcs
direction.

MNs are unable to encode V-structure informa-
tion since it is a directed notion. As a DAG with-
out V-structure is chordal (i.e. triangulated), it is not
surprising that a result (Pearl et al., 1989) states that
independences of a family of distributions can be
represented by both MNs and BNs frameworks if
and only if the associated structure is chordal. In
the general case where the graph is not chordal, it is
possible to get an optimal MN from a BN by mor-
alization. The moral graph of a DAG is the undi-
rected graph obtained by first adding edges between
non adjacent nodes with a common child (i.e. the
extremities of V-structures) and then removing the
arcs orientations. It is easily seen that the moral
graph of a BN is an optimal undirected I-map of this
graph, even if some independences of the BN have
been necessarily loosed in the transformation. The
converse, i.e. getting a directed I-map from a MN,
is less easy and will be addressed in Section 4.

Like most works aiming to recover an optimal
structure from data, we will assume that the under-
lying distribution P is DAG-isomorph, i.e. that there
exists a DAG B∗ encoding exactly the indepen-
dences of P (s.t. X ⊥B∗ Y | Z⇐⇒ X � PY | Z).
Under this assumption, B∗ and equivalent BNs are
obviously optimal. Using the axiomatic in (Pearl,
1988), it can be shown that, in the MN frame-
work, the DAG-isomorphism hypothesis entails the
so-called intersection property, leading to the exis-
tence of a unique optimal MN, say G∗ (Pearl, 1988).
Moreover, G∗ is the moral graph of B∗.

3 Markov network search

Searching the BN or the EC space is often per-
formed as an optimization process, that is, the algo-
rithm looks for a structure optimizing some good-
ness of fit measure, the latter being a decomposable
scoring function that involves maximum likelihood
estimates. For MNs, the computation of these esti-
mates is hard and requires time-expensive methods
(Murray and Ghahramani, 2004) (unless the MN is
triangulated, which is not frequent). Hence score-
based exploration strategies seem inappropriate for
MN searches. Using statistical CI tests and com-
bining them to reveal the MN’s edges seems a more
promising approach. This is the one we follow here.

Algorithm LEARNMN
Input : database
Output : moral graph G = (V , E2)

1. E1 ← ∅
2. foreach edge (X, Y ) 6∈ E1 do

search, if necessary, a new SXY

s.t. X ⊥(V,E1) Y | SXY

3. if ∃ (X, Y ) 6∈ E1 s.t. X 6 � Y |SXY then
4. add edge (X, Y ) to E1 and go to line 2
5. E2 ← E1
6. foreach edge (X, Y ) ∈ E2 do

search, if necessary, a new SXY

s.t. X ⊥(V,E2\{(X,Y )}) Y | SXY

7. if ∃ (X, Y ) ∈ E2 s.t. X � Y |SXY then
8. remove edge (X, Y ) from E2 and go to line 6
9. return G = (V , E2)

End of algorithm

Unlike most works where learning a MN amounts
to independently learn the Markov blanket of all the
variables, we construct a MN in a local search man-
ner. Algorithm LEARNMN consists in two con-
secutive phases: the first one adds edges to the
empty graph until it converges toward a graph G1 =
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(V, E1). Then it removes from G1 as many edges as
possible, hence resulting in a graph G2 = (V, E2).

At each step of phase 1, we compute the depen-
dence of each pair of non-adjacent nodes (X,Y )
conditionally to any set SXY separating them in
the current graph. We determine the pair with the
strongest dependence (using a normalized differ-
ence to the χ2 critical value) and we add the cor-
responding edge to the graph and update separators.

Lemma 1. Assuming DAG-isomorphism and sound
statistical tests, graph G1 resulting for the first
phase of LEARNMN is an I-map.

Sketch of proof. At the end of phase 1, ∀ (X,Y ) 6∈
E1, there exists SXY s.t. X ⊥G1

Y | SXY and
X � Y | SXY . By DAG-isomorphism, it can be
shown that G1 contains the skeleton of B∗, and, then,
that it also contains its moralization edges. �

In the second phase, which takes an I-map G1 as
input, LEARNMN detects the superfluous edges in
G1 and iteratively removes them.

Proposition 1. Assuming DAG-isomorphism and
sound statistical tests, the graph G2 returned by
LEARNMN is the optimal MN G∗.

Sketch of proof. At the end of phase 2, ∀ (X,Y ) ∈
G2, there exists SXY s.t. X ⊥(V ,E2\{(X,Y )}) Y |
SXY and X 6 � Y | SXY . We show using DAG-
isomorphism that this phase cannot delete any edge
in G∗ and, then, that it discards all other edges. �

It is well known that the main shortcoming of in-
dependence test-based methods is the unreliability
of high-order tests, so we must keep sets SXY as
small as possible. Finding small SXY requires a
more sophisticated approach than simply using the
set of neighbors of one of X or Y . Actually, the best
set is the smallest one that cuts all the paths between
X and Y . This can be computed using a min-cut in
a max-flow problem (Tian et al., 1998). Although
the set computed is then optimal w.r.t. the quality
of the independence test, it has a major drawback:
computing a min-cut for all possible pairs of nodes
(X,Y ) is too prohibitive when the graph involves
numerous variables. Moreover, pairs of close nodes
require redundant computations. An attractive alter-
native results from the similarities between min-cuts
and junction trees: a min-cut separates the MN into
several connected components, just as a separator

cuts a junction tree into distinct connected compo-
nents. Hence, we propose a method, based on join
trees (Jensen, 1996), which computes the separators
for all pairs at the same time in O(|V|4), as com-
pared to O(|V|5) in (Tian et al., 1998). Although the
separators we compute are not guaranteed to be op-
timal, in practice they are most often small. Here is
the key idea: assume G0 is triangulated and a corre-
sponding join tree J0 is computed. Then two cases
can obtain: i) X and Y belong to the same clique, or
ii) they belong to different cliques of J0. In the sec-
ond case, let C0, . . . ,Ck be the smallest connected
set of cliques such that X ∈ C0 and Y ∈ Ck, i.e.,
C0 and Ck are the nearest cliques containing X and
Y . Then any separator on the path C0, . . . ,Ck cuts
all the paths between X and Y in G0 and, thus, can
act as an admissible set SXY . Assuming the trian-
gulation algorithm produces separators as small as
possible, selecting the smallest one should keep sets
SXY sufficiently small to allow independence tests.
As for the first case, there is no separator between X

and Y , so the junction tree is helpless. However, we
do not need assigning to SXY all the neighbors of X

or Y , but only those that belong to the same bicon-
nected component as X and Y (as only those can be
on the chains between X and Y ). Such components
can be computed quickly by depth first search algo-
rithms. However, as we shall see, the triangulation
algorithm we used determines them implicitly.

In order to produce triangulations in polynomial
time (determining an optimal one is NP-hard), we
used the simplicial and almost-simplicial rules ad-
vocated by (Eijkhof et al., 2002) as well as some
heuristics. These rules give high-quality triangula-
tions but are time-consuming. So, to speed-up the
process, we used incremental triangulations as sug-
gested by (Flores et al., 2003). The idea is to update
the triangulation only in the maximal prime sub-
graphs of G0 involved in the modifications resulting
from LEARNMN’s lines 4 and 8. In addition to the
join tree, a join tree of max prime subgraphs is thus
maintained by the algorithm. It turns out that merg-
ing in this tree the adjacent cliques that are linked
by a separator containing more than one node of V
precisely produces G0’s biconnected components.

Once the join tree constructed, extracting for each
pair of nodes (X,Y ) not belonging to the same
clique its minimal separator is achieved by the col-
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lect/distribute algorithms below. In the latter, mes-
sages Mij transmitted from a clique Cj to Ci are
vectors of pairs (X,S) such that the best condi-
tioning sets between nodes Y in Ci\(Ci ∩ Cj)
and X is S. An illustrative example is given on
Figure 1: messages near solid arrows result from
COLLECT({BCD},{BCD}) and those in dashed
arrows from DISTRIBUTE({BCD},{BCD},∅).

Algorithm COLLECT
Input : pair (Ci,Cj)
Output : message Mij

1. Mij ← an empty vector message
2. foreach neighbor Ck of Ci except Cj do
3. Mik ← Collect(Ck,Ci)
4. foreach pair (X,S) in Mik do
5. foreach node Y in Ci\(Ci ∩Ck) do
6. if SXY 6= S then
7. SXY ← S

8. done
9. add (X, min(Ci ∩Ck,S)) to Mij

10. done
11. done
12. foreach node X in Ci\(Ci ∩Cj) do
13. add (X,Ci ∩Cj) to Mij

14. return Mij

End of algorithm

Algorithm DISTRIBUTE
Input : pair (Ci,Cj), message Nij

Output :
1. foreach pair (X,S) in Nij do
2. foreach node Y in Ci\(Ci ∩Cj) do
3. if SXY 6= S then
4. SXY ← S

5. done
6. done
7. foreach neighbor Ck of Ci except Cj do
8. N← empty message vector
9. foreach pair (X,S) in Nij do

10. add (X, min(Ci ∩Ck,S)) to N

11. call Distribute (Ck,Ci,N)
12. N

′ ← message Mik sent during collect
13. foreach pair (X,S) in N

′ do
14. add (X, min(Ci ∩Ck,S)) to Nij

15. done

End of algorithm

BCDB

BD BDF

C CE

B BG

AB
(A, {B}), (E, {C})

(A, {B})

(A, {B}), (E, {C})

(G, {B})(G, {B}), (F, {B, D})

(A, {B})

∅

(E, {C})

Figure 1: Messages sent during Collect/diffusion.

Because we use a polynomial algorithm to tri-
angulate the maximal prime subgraphs, the com-
plexity of the whole process recovering the opti-
mal MN is also polynomial. Hence, under DAG-
isomorphism, we obtain the moral graph of the op-
timal BN in polynomial time. As the first step of
inference algorithms consists in moralizing the BN,
and triangulating this moral graph to produce a sec-
ondary structure well-suited for efficient computa-
tions, the MN we obtain is optimal w.r.t. inference.

4 From the Markov Net to the Bayes Net

Once the MN is obtained, we transform it into a BN
B0 using algorithm MN2BN.

Algorithm MN2BN
Input : UG G = (V , E)
Output : DAG B = (V ′,A)

1. A ← ∅ ; V ′ ← V
2. While |V| > 1 Do
3. Choose X ∈ V in a single clique of G
4. E← {Y ∈ V : (Y, X) ∈ E}
5. For all Y ∈ E Do
6. E ← E\{(Y, X)} and A ← A ∪ {(Y → X)}
7. V ← V\{X}
8. For all (Y, Z) ∈ E×E Do
9. G ← DEMORALIZE(G, (Y, Z))

10. Done
11. Return B = (V ′,A)

End of algorithm

Algorithm DEMORALIZE
Input : UG G = (V , E) ; Edge (X, Y ) ∈ E
Output : UG G′ = (V , E ′)

1. E ′ ← E\{(X, Y )}
2. Search Z ⊂ V s.t. X ⊥(V,E′) Y | Z
3. If X � Y |Z Then Return G′ = (V , E ′)
4. Else Return G′ = (V , E)

End of algorithm

Before stating the properties of MN2BN, let us
illustrate it with an example. Consider the graphs in
Figure 2. Assuming a DAG-isomorph distribution,
B∗ represents the optimal BN. Suppose we obtained
the optimal MN G∗: we now apply MN2BN to it. In
G = G∗, F and R belong to a single clique. Assume
MN2BN chooses F . After saving its neighbors set
in G (l.4), F is removed from G (l.7) as well as its
adjacent edges (l.6), which results in a new current
graph G = G1. The empty DAG B is altered by
adding arcs from these neighbors toward F , hence
resulting in the next current DAG B = B1. By di-
recting F ’s adjacent arcs toward F , we may create
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Figure 2: A MN2BN run example

V-structures, hence some of the edges remaining in
G between F ’s neighbors may correspond to mor-
alization edges and may thus be safely discarded.
To this end, for each candidate edge, DEMORALIZE

tests whether its deletion would introduce spurious
independence in the DAG by searching a separator
in the current remaining undirected graph G. If not,
we discard it from G. In our example, there is only
one candidate edge, (C, J). We therefore compute
a set separating C from J in G1 without (C, J), say
K , and test if C � J | K . As this independence
does not hold in a distribution exactly encoded by
B∗, the test fails and the edge is kept. For the second
iteration, only node R belongs to a single clique.
The process is similar but, this time, moralization
edge (K,L) can be discarded. The algorithm then
goes on similarly and finally returns B6 = B0. It
is easily seen that B0 is a DAG which is an I-map
of B∗ and that its moral graph is G∗. Note that by
mapping G∗ into B6, not all moralization edges have
been identified. For instance, (C,F ) was not.

Now, let us explain why MN2BN produces
DAGs closely related to the optimal BN we look for.

Proposition 2. Assuming a DAG-isomorph distri-
bution and sound statistical tests, if MN2BN is ap-
plied to G∗, the returned graph B0 is a DAG that is
an I-map of B∗, and its moral graph is G∗. More-
over, the algorithm runs in polynomial time.

Sketch of proof. By induction on V , we prove that,
at each iteration, G is the moral graph of a subgraph
of B∗. This entails the existence of a node in a single
clique at each iteration. Then we prove that given a

DAG B, its moral graph G and a node X belonging
to a single clique of G, there exists a DAG B ′ s.t.: i)
B′ is an I-map of B, ii) G is the moral graph of B ′

and iii) X has no child in B′. Finally, we prove the
proposition by induction on V . �

B0 encodes at least as many independences as G∗

and possibly more if some moralization edges have
been discarded. In the case where MN2BN selects
nodes in the inverse topological order of B∗, B0 is
actually B∗. However, this should not happen very
often and recovering B∗ requires in general to refine
B0 by identifying all remaining hidden V-structures.
Under DAG-isomorph distribution and sound statis-
tical tests, the second phase of GES (Chickering,
2002) is known to transform an I-map of the genera-
tive distribution into B∗. Applied to B0, it can there-
fore be used as the refinement phase of our algo-
rithm. This one has an exponential complexity but
benefits from an anytime property, in the sense that
it proceeds by constructing a sequence of BNs shar-
ing the same moral graph and the quality of which
converges monotonically from B0 to B∗. This last
phase preserves the GES score-based optimality.

With real-world databases, LEARNMN can fail
to recover precisely G∗. In this case, departing from
our theoretical framework, we lose our guarantee
of accuracy. We also lose the guarantee to always
find a node belonging to a single clique. However,
MN2BN can easily be modified to handle this situ-
ation: if no node is found on line 3, just add edges to
G so that a given node forms a clique with its neigh-
bors. Whatever the node chosen, B0 is guaranteed

152          C. Gonzales and N. Jouve



to be an I-map of the distribution represented by the
input MN. However, the node should be carefully
chosen to avoid deviating too much from the MN
passed in argument to MN2BN, as each edge addi-
tion hides conditional independences.

5 Related works and experiments

In this paper, we have presented an algorithm that
exploits attractive features of the MN space to
quickly compute an undirected I-map close to the
optimal one. This graph is then directed and fed to
GES second phase to obtain an optimal BN. The key
idea is to learn as much as possible the polynomi-
ally accessible information of the generative distri-
bution, namely its undirected part, and postpone to
the end the task concentrating the learning computa-
tional complexity, namely the V-structure recovery.
Most algorithms of the constraint-based approach,
like IC (Verma and Pearl, 1990) or PC (Spirtes et al.,
2000), deal at some stage with undirected learning
but they do not explicitly separate this stage from
the directed one. That is, they generally search a
power set to extract V-structures information before
achieving a whole undirected search. In (Dijk et al.,
2003), the two phases are disjoint but the authors are
more concerned with finding the skeleton (which is
not an I-map) rather than the moral graph. As they
only allow CI tests conditioned by a set of size no
greater than 1, the search is mostly delegated to a
directed score-based search. (Cheng et al., 2002)
makes much stronger distribution assumptions.

Like GES, under DAG-isomorphism and sound
CI test hypotheses, our method is able to find the
optimal BN it looks for. However, these hypothe-
ses probably do not hold in practice. To assess the
discrepancy between theory and real world, we per-
formed a series of experiments on classical bench-
marks of the Bayes Net Repository1 . For each BN,
we generated by logic sampling 10 databases of size
500, 2000 and 20000. For each database, we ran
LEARNMN, GES (the WinMine toolkit software)
and a K2 implemented with a BIC score and fed
with the original BN topological ordering. K2 is
thus already aware of some crucial learning infor-
mation that LMN and GES must discover. For GES,
we recorded as time response only the time required

1http://compbio.cs.huji.ac.il/Repository

for GES phase 1 but, as the toolkit does not provide
the network found at the end of phase 1, we used
the better one resulting from phase 2. For both GES
and K2, we did not consider directly the output BN
but its moral graph, to compare it with the MN out-
put by LMN. Note that the GES toolkit was unable
to handle some of the graphs. Both time and quality
results reported are means and standard deviations
for the 10 databases. The first table shows running
times in seconds for LMN and GES (on a 3.06GHz
PC). The second one shows for each algorithm the
number of edges spuriously added (+) and missed (-
) w.r.t. the original BN moral graph (whose number
of edges appears in the first row).

According to these preliminary tests, we consider
our approach as promising. W.r.t GES, we find
that LMN is not time-consuming, as GES running
time grows much faster than that of LMN when
database size increases. As for networks quality, it
is noticeable that, for all algorithms, the smaller the
database, the weaker the dependences represented
in the database and hence the fewer the edges recov-
ered. LMN finds clearly more edges than GES and
K2, despite the latter’s ordering knowledge which
gives it a strong advantage. LMN adds fewer spu-
rious edges than GES but more than K2 (which ex-
ploits its ordering knowledge). We think that LMN
did not detect some of the unnecessary edges be-
cause nodes involved had so many neighbors that
χ2 tests were meaningless, despite our efforts. This
suggests alternating multiple phases of edge addi-
tions and deletions, so as to avoid situations dete-
riorating due to big clusters of neighbors. We also
should try to tune the χ2 confidence probability.
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Abstract

Causal independence modelling is a well-known method both for reducing the size of prob-
ability tables and for explaining the underlying mechanisms in Bayesian networks. In this
paper, we propose an application of an extended class of causal independence models,
causal independence models based on the symmetric Boolean function, for classification.
We present an EM algorithm to learn the parameters of these models, and study con-
vergence of the algorithm. Experimental results on the Reuters data collection show the
competitive classification performance of causal independence models based on the sym-
metric Boolean function in comparison to noisy OR model and, consequently, with other
state-of-the-art classifiers.

1 Introduction

Bayesian networks (Pearl, 1988) are well-
established as a sound formalism for represent-
ing and reasoning with probabilistic knowledge.
However, because the number of conditional
probabilities for the node grows exponentially
with the number of its parents, it is usually
unreliable if not infeasible to specify the con-
ditional probabilities for the node that has a
large number number of parents. The task of as-
sessing conditional probability distributions be-
comes even more complex if the model has to in-
tegrate expert knowledge. While learning algo-
rithms can be forced to take into account an ex-
pert’s view, for the best possible results the ex-
perts must be willing to reconsider their ideas in
light of the model’s ‘discovered’ structure. This
requires a clear understanding of the model by
the domain expert. Causal independence mod-
els (Dı́ez, 1993; Heckerman and Breese, 1994;
Srinivas, 1993; Zhang and Poole, 1996) can both
limit the number of conditional probabilities to
be assessed and provide the ability for models to
be understood by domain experts in the field.
The main idea of causal independence models
is that causes influence a given common effect

through intermediate variables and interaction
function.

Causal independence assumptions are of-
ten used in practical Bayesian network mod-
els (Kappen and Neijt, 2002; Shwe et al.,
1991). However, most researchers restrict them-
selves to using only the logical OR and log-
ical AND operators to define the interaction
among causes. The resulting probabilistic sub-
models are called noisy OR and noisy AND ;
their underlying assumption is that the pres-
ence of either at least one cause or all causes
at the same time give rise to the effect. Sev-
eral authors proposed to expand the space of in-
teraction functions by other symmetric Boolean
functions: the idea was already mentioned but
not developed further in (Meek and Heckerman,
1997), analysis of the qualitative patterns was
presented in (Lucas, 2005), and assessment of
conditional probabilities was studied in (Jurge-
lenaite et al., 2006).

Even though for some real-world problems
the intermediate variables are observable (see
Visscher et al. (2005)), in many problems these
variables are latent. Therefore, conditional
probability distributions depend on unknown
parameters which must be estimated from data,



using maximum likelihood (ML) or maximum a
posteriori (MAP). One of the most widespread
techniques for finding ML or MAP estimates is
the expectation-maximization (EM) algorithm.
Meek and Heckerman (1997) provided a gen-
eral scheme how to use the EM algorithm to
compute the maximum likelihood estimates of
the parameters in causal independence mod-
els assumed that each local distribution func-
tion is collection of multinomial distributions.
Vomlel (2006) described the application of the
EM algorithm to learn the parameters in the
noisy OR model for classification.

The application of an extended class of causal
independence models, namely causal indepen-
dence models with a symmetric Boolean func-
tion as an interaction function, to classification
is the main topic of this paper. These mod-
els will further be referred to as the symmetric
causal independence models. We present an EM
algorithm to learn the parameters in symmet-
ric causal independence models, and study con-
vergence of the algorithm. Experimental results
show the competitive classification performance
of the symmetric causal independence models
in comparison with the noisy OR classifier and,
consequently, with other widely-used classifiers.

The remainder of this paper is organised as
follows. In the following section, we review
Bayesian networks and discuss the semantics of
symmetric causal independence models. In Sec-
tion 3, we state the EM algorithm for finding
the parameters in symmetric causal indepen-
dence models. The maxima of the log-likelihood
function for the symmetric causal independence
models are examined in Section 4. Finally, Sec-
tion 5 presents the experimental results, and
conclusions are drawn in Section 6.

2 Symmetric Boolean Functions for

Modelling Causal Independence

2.1 Bayesian Networks

A Bayesian network B = (G,Pr) represents a
factorised joint probability distribution on a set
of random variables V. It consists of two parts:
(1) a qualitative part, represented as an acyclic
directed graph (ADG) G = (V(G),A(G)),

C1 C2 . . . Cn

H1 H2 . . . Hn

E f

Figure 1: Causal independence model

where there is a 1–1 correspondence between
the vertices V(G) and the random variables
in V, and arcs A(G) represent the conditional
(in)dependencies between the variables; (2) a
quantitative part Pr consisting of local proba-
bility distributions Pr(V | π(V )), for each vari-
able V ∈ V given the parents π(V ) of the corre-
sponding vertex (interpreted as variables). The
joint probability distribution Pr is factorised ac-
cording to the structure of the graph, as follows:

Pr(V) =
∏

V ∈V

Pr(V | π(V )).

Each variable V ∈ V has a finite set of mutually
exclusive states. In this paper, we assume all
variables to be binary; as an abbreviation, we
will often use v+ to denote V = > (true) and
v− to denote V = ⊥ (false). We interpret >
as 1 and ⊥ as 0 in an arithmetic context. An
expression such as

∑

ψ(H1,...,Hn)=>

g(H1, . . . , Hn)

stands for summing g(H1, . . . , Hn) over all pos-
sible values of the variables Hk for which the
constraint ψ(H1, . . . , Hn) = > holds.

2.2 Semantics of Symmetric Causal

Independence Models

Causal independence is a popular way to spec-
ify interactions among cause variables. The
global structure of a causal independence model
is shown in Figure 1; it expresses the idea that
causes C1, . . . , Cn influence a given common ef-
fect E through hidden variables H1, . . . , Hn and
a deterministic function f , called the interac-
tion function. The impact of each cause Ci
on the common effect E is independent of each
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other cause Cj , j 6= i. The hidden variable Hi

is considered to be a contribution of the cause
variable Ci to the common effect E. The func-
tion f represents in which way the hidden ef-
fects Hi, and indirectly also the causes Ci, in-
teract to yield the final effect E. Hence, the
function f is defined in such a way that when
a relationship, as modelled by the function f ,
between Hi, i = 1, . . . , n, and E = > is sat-
isfied, then it holds that f(H1, . . . , Hn) = >.
It is assumed that Pr(e+ | H1, . . . , Hn) = 1 if
f(H1, . . . , Hn) = >, and Pr(e+ | H1, . . . , Hn) =
0 if f(H1, . . . , Hn) = ⊥.

A causal independence model is defined in
terms of the causal parameters Pr(Hi | Ci), for
i = 1, . . . , n and the function f(H1, . . . , Hn).
Most papers on causal independence models as-
sume that absent causes do not contribute to
the effect (Heckerman and Breese, 1994; Pearl,
1988). In terms of probability theory this im-
plies that it holds that Pr(h+

i | c
−
i ) = 0; as a

consequence, it holds that Pr(h−i | c
−
i ) = 1. In

this paper we make the same assumption.
In situations in which the model does not cap-

ture all possible causes, it is useful to introduce
a leaky cause which summarizes the unidentified
causes contributing to the effect and is assumed
to be always present (Henrion, 1989). We model
this leak term by adding an additional input
Cn+1 = 1 to the data; in an arithmetic context
the leaky cause is treated in the same way as
identified causes.

The conditional probability of the occurrence
of the effect E given the causes C1, . . . , Cn, i.e.,
Pr(e+ | C1, . . . , Cn), can be obtained from the
causal parameters Pr(Hl | Cl) as follows (Zhang
and Poole, 1996):

Pr(e+ | C1, . . . , Cn)

=
∑

f(H1,...,Hn)=>

n
∏

i=1

Pr(Hi | Ci). (1)

In this paper, we assume that the function f in
Equation (1) is a Boolean function. However,
there are 22

n

different n-ary Boolean functions
(Enderton, 1972; Wegener, 1987); thus, the po-
tential number of causal interaction models is
huge. However, if we assume that the order of

the cause variables does not matter, the Boolean
functions become symmetric (Wegener, 1987)
and the number reduces to 2n+1.

An important symmetric Boolean function is
the exact Boolean function εl, which has func-
tion value true, i.e. εl(H1, . . . , Hn) = >, if
∑n
i=1

ν(Hi) = l with ν(Hi) equal to 1, if Hi

is equal to true and 0 otherwise. A symmetric
Boolean function can be decomposed in terms
of the exact functions εl as (Wegener, 1987):

f(H1, . . . , Hn) =
n
∨

i=0

εi(H1, . . . , Hn) ∧ γi (2)

where γi are Boolean constants depending only
on the function f . For example, for the Boolean
function defined in terms of the OR operator we
have γ0 = ⊥ and γ1 = . . . = γn = >.

Another useful symmetric Boolean function is
the threshold function τk, which simply checks
whether there are at least k trues among the ar-
guments, i.e. τk(I1, . . . , In) = >, if

∑n
j=1

ν(Ij) ≥
k with ν(Ij) equal to 1, if Ij is equal to true
and 0 otherwise. To express it in the Boolean
constants we have: γ0 = ¢ ¢ ¢ = γk−1 = ⊥ and
γk = ¢ ¢ ¢ = γn = >. Causal independence model
based on the Boolean threshold function further
will be referred to as the noisy threshold models.

2.3 The Poisson Binomial Distribution

Using the property of Equation (2) of the sym-
metric Boolean functions, the conditional prob-
ability of the occurrence of the effect E given the
causes C1, . . . , Cn can be decomposed in terms
of probabilities that exactly l hidden variables
H1, . . . , Hn are true as follows:

Pr(e+ | C1, . . . , Cn)

=
∑

0 ≤ l ≤ n

γl

∑

εl(H1,...,Hn)

n
∏

i=1

Pr(Hi | Ci).

Let l denote the number of successes in n

independent trials, where pi is a probability
of success in the ith trial, i = 1, . . . , n; let
p = (p1, . . . , pn), then B(l;p) denotes the Pois-
son binomial distribution (Le Cam, 1960; Dar-
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roch, 1964):

B(l;p) =
n

∏

i=1

(1− pi)
∑

1≤j1<...<jl≤n

l
∏

z=1

pjz
1− pjz

.

Let us define a vector of probabilistic param-
eters p(C1, . . . , Cn) = (p1, . . . , pn) with pi =
Pr(h+

i | Ci). Then the connection between the
Poisson binomial distribution and the class of
symmetric causal independence models is as fol-
lows.

Proposition 1. It holds that:

Pr(e+ | C1, . . . , Cn) =
n

∑

i=0

B(i;p(C1, . . . , Cn))γi.

3 EM Algorithm

Let D = {x1, . . . ,xN} be a data set of indepen-
dent and identically distributed settings of the
observed variables in a symmetric causal inde-
pendence model, where

xj = (cj , ej) = (cj
1
, . . . , cjn, e

j).

We assume that no additional information
about the model is available. Therefore, to learn
the parameters of the model we maximize the
conditional log-likelihood

CLL(θθ) =
N

∑

j=1

ln Pr(ej | cj , θθ).

The expectation-maximization (EM) algo-
rithm (Dempster et al., 1977) is a general
method to find the maximum likelihood esti-
mate of the parameters in probabilistic models,
where the data is incomplete or the model has
hidden variables.

Let θθ = (θ1, . . . , θn) be the parameters of the
symmetric causal independence model where
θi = Pr(h+

i | c
+

i ). Then, after some calcula-
tions, the (z + 1)-th iteration of the EM algo-
rithm for symmetric causal independence mod-
els is given by:

Expectation step: For every data sample
xj = (cj , ej) with j = 1, . . . , N , we form

p(z,j) = (p
(z,j)
1

, . . . , p(z,j)
n ) where p

(z,j)

i = θ
(z)

i c
j
i .

Let us define

p
(z,j)

\k = (p
(z,j)
1

, . . . , p
(z,j)

k−1
, p

(z,j)

k+1
, . . . , p(z,j)

n ).

Subsequently, for all hidden variables Hk with
k = 1, . . . , n we compute the probability
Pr(h+

k | e
j , cj , θθ(z)) where

Pr(h+

k | e
j , cj , θθ(z))

=
p
(z,j)

k

∑n−1

i=0
B

(

i;p
(z,j)

\k

)

γi+1

∑n
i=0

B
(

i;p(z,j)
)

γi
if ej = 1,

and

Pr(h+

k | e
j , cj , θθ(z))

=
p
(z,j)

k

(

1−
∑n−1

i=0
B

(

i;p
(z,j)

\k

)

γi+1

)

1−
∑n
i=0

B
(

i;p(z,j)
)

γi
if ej = 0.

Maximization step: Update the parameter
estimates for all k = 1, . . . , n:

θk =

∑

1≤j≤N c
j
kPr(h+

k | e
j , cj , θθ(z))

∑

1≤j≤N c
j
k

.

4 Analysis of the Maxima of the

Log-likelihood Function

Generally, there is no guarantee that the EM
algorithm will converge to a global maximum of
log-likelihood. In this section, we investigate
the maxima of the conditional log-likelihood
function for symmetric causal independence
models.

4.1 Noisy OR and Noisy AND Models

In this section we will show that the conditional
log-likelihood for the noisy OR and the noisy
AND models has only one maximum. Since
the conditional log-likelihood for these models
is not necessarily concave we will use a mono-
tonic transformation to prove the absence of the
stationary points other than global maxima.

First, we establish a connection between the
maxima of the log-likelihood function and the
maxima of the corresponding composite func-
tion.
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Proposition 2. (Global optimality condi-
tion for concave functions (Boyd and
Vandenberghe, 2004))
Suppose h(q) : Q → < is concave and differen-
tiable on Q. Then q∗ ∈ Q is a global maximum
if and only if

∇h(q∗) =

(

∂h(q∗)

∂q1
, . . . ,

∂h(q∗)

∂qn

)T

= 0.

Further we consider the function

CLL(θθ) = h(q(θθ)).

Let CLL(θθ) and h(q(θθ)) be twice differentiable
functions, and let q(θθ) be a differentiable, in-
jective function where θθ(q) is its inverse. Then
the following relationship between the station-
ary points of the functions CLL and h holds.

Lemma 1. Suppose, θθ∗ is a stationary point of
CLL(θθ). Then there is a corresponding point
q(θθ∗), which is a stationary point of h(q(θθ)).

Proof. Since the function q(θθ) is differentiable

and injective, its Jacobian matrix ∂(q1,...,qn)

∂(θ1,...,θn)
is

positive definite. Therefore, from the chain
rule it follows that if ∇CLL(θθ∗) = 0, then
∇h(q(θθ∗)) = 0.

Proposition 3. If h(q(θθ)) is concave and θθ∗

is a stationary point of CLL(θθ), then θθ∗ is a
global maximum.

Proof. If θθ∗ is a stationary point, then from
Lemma 1 it follows that q(θθ∗) is also station-
ary. From the global optimality condition for
concave functions the stationary point q(θθ∗) is
a maximum of h(q(θθ)), thus from the definition
of global maximum we get that for all θθ

CLL(θθ) = h(q(θθ)) ≤ h(q(θθ∗)) = CLL(θθ∗).

Given Proposition 3 the absence of the lo-
cal optima can be proven by introducing such
a monotonic transformation q(θθ) that the com-
posite function h(q(θθ)) would be concave. As

it is a known result that the Hessian matrix of
the log-likelihood function for logistic regression
is negative-semidefinite, and hence the problem
has no local optima, we will use transformations
that allow us to write the log-likelihood for the
noisy OR and noisy AND models in a similar
form as that of the logistic regression model.

The conditional probability of the effect in a
noisy OR model can be written:

Pr(e+ | c, θθ) = 1−
n

∏

i=1

Pr(h−i | ci)

= 1−
n

∏

i=1

(1− θi)
ci = 1− exp

Ã

n
∑

i=1

ln(1− θi)ci

)

.

Let us choose a monotonic transformation qi =
− ln(1 − θi), i = 1, . . . , n. Then the conditional
probability of the effect in a noisy OR model
equals

Pr(e+ | c,q) = 1− e−q
T
c.

Let us define zj = qT cj and f(zj) = Pr(e+ |
cj ,q), then the function h reads

h(q) =
N

∑

j=1

ej ln f(zj) + (1− ej) ln(1− f(zj)). (3)

Since f ′(zj) = 1 − f(zj), the first derivative of
h is

∂h(q)

∂q
=

N
∑

j=1

f ′(zj)(ej − f(zj))

f(zj)(1− f(zj))
cj

=
N

∑

j=1

ej − f(zj)

f(zj)
cj .

To prove that the function h is concave we need
to prove that its Hessian matrix is negative
semidefinite. The Hessian matrix of h reads

∂2h(q)

∂q∂qT
= −

N
∑

j=1

1− f(zj)

f(zj)2
ejcjcj T .

As the Hessian matrix of h is negative semidefi-
nite, the function h is concave. Therefore, from
Proposition 3 it follows that every stationary
point of the log-likelihood function for the noisy
OR model is a global maximum.
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The conditional probability of the effect in a
noisy AND model can be written:

Pr(ej+ | c, θθ) =
n

∏

i=1

Pr(h+

i | ci)

=
n

∏

i=1

θ
ci
i = exp

Ã

n
∑

i=1

ln θici

)

.

Let us choose a monotonic transformation qi =
ln θi, i = 1, . . . , n. Then the conditional proba-
bility of the effect in a noisy AND model equals

Pr(ej+ | c,q) = eq
T
c.

Let us define zj = qT cj and f(zj) = Pr(e+ |
cj ,q). The function h is the same as for the
noisy OR model in Equation (3). Combined
with f ′(zj) = f(zj), it yields the first derivative
of h

∂h(q)

∂q
=

N
∑

j=1

f ′(zj)(ej − f(zj))

f(zj)(1− f(zj))
cj

=
N

∑

j=1

ej − f(zj)

1− f(zj)
cj

and Hessian matrix

∂2h(q)

∂q∂qT
= −

N
∑

j=1

f(zj)

(1− f(zj))2
(1− ej)cjcj T .

Hence, the function h is concave, and the log-
likelihood for the noisy AND model has no other
stationary points than the global maxima.

4.2 General Case

The EM algorithm is guaranteed to converge to
the local maxima or saddle points. Thus, we
can only be sure that the global maximum, i.e.
a point θθ∗ such that CLL(θθ∗) ≥ CLL(θθ) for all
θθ∗ 6= θθ, will be found if the log-likelihood has
neither saddle points nor local maxima. How-
ever, the log-likelihood function for a causal in-
dependence model with any symmetric Boolean
function does not always fulfill this requirement
as it is shown in the following counterexample.

Example 1. Let us assume a data set D =
{(1, 1, 1, 1), (1, 0, 1, 0)} and an interaction func-
tion ε1, i.e. γ1 = 1 and γ0 = γ2 = γ3 = 0. To

learn the hidden parameters of the model de-
scribing this interaction we have to maximize
the conditional log-likelihood function

CLL(θθ) = ln[θ1(1− θ2)(1− θ3)

+(1− θ1)θ2(1− θ3) + (1− θ1)(1− θ2)θ3]

+ ln[1− θ1(1− θ3)− (1− θ1)θ3].

Depending on a choice for initial parameter
settings θθ(0), the EM algorithm for symmetric
causal independence models converges to one of
the maxima:

CLL(θθ)max

=

{

0 at θθ = (0, 1, 0),

−1.386 at θθ ∈ {
(

θ1, 0,
1

2

)

,
(

1

2
, 0, θ3

)

}.

Obviously, only the point θθ = (0, 1, 0) is a global
maximum of the log-likelihood function while
the other obtained points are local maxima.

The discussed counterexample proves that in
general case the EM algorithm for symmetric
causal independence models does not necessar-
ily converge to the global maximum.

5 Experimental Results

For our experiments we use Reuters data collec-
tion, which allows us to evaluate the classifica-
tion performance of large symmetric causal in-
dependence models where the number of cause
variables for some document classes is in the
hundreds.

5.1 Evaluation Scheme

Since we do not have an efficient algorithm to
perform a search in the space of symmetric
Boolean functions, we chose to model the in-
teraction among cause and effect variables by
means of Boolean threshold functions, which
seem to be the most probable interaction func-
tions for the given domains.

Given the model parameters θθ, the testing
data Dtest and the classification threshold 1

2
, the

classifications and misclassifications for both
classes are computed. Let tp (true positives)
stand for the number of data samples (cj , ej+) ∈
Dtest for which Pr(e+ | cj , θθ) ≥ 1

2
and fp (false
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positives) stand for the number of data samples
(cj , ej+) ∈ Dtest for which Pr(e+ | cj , θθ) < 1

2
.

Likewise, tn (true negatives) is the number of
data samples (cj , ej−) ∈ Dtest for which Pr(e+ |
cj , θθ) < 1

2
and fp (false positives) is the num-

ber of data samples (cj , ej−) ∈ Dtest for which
Pr(e+ | cj , θθ) ≥ 1

2
. To evaluate the classifica-

tion performance we use accuracy, which is a
measure of correctly classified cases,

η =
tp+ tn

tp+ tn+ fn+ fp
,

and F-measure, which combines precision π =
tp

tp+fp
and recall ρ = tp

tp+fn
,

F =
2πρ

π + ρ
.

5.2 Reuters Data Set

We used the Reuters-21578 text categorization
collection containing the Reuters new stories
preprocessed by Karčiauskas (2002). The train-
ing set contained 7769 documents and the test-
ing set contained 3018 documents. For every
of the ten document classes the most informa-
tive features were selected using the expected
information gain as a feature selection criteria,
and each document class was classified sepa-
rately against all other classes. We chose to
use the same threshold for the expected infor-
mation gain as in (Vomlel, 2006), the number
of selected features varied from 23 for the corn
document class to 307 for the earn document
class. While learning the values of the hidden
parameters the EM algorithm was stopped af-
ter 50 iterations. The accuracy and F-measure
for causal independence models with the thresh-
old interaction function k = 1, . . . , 4 are given
in tables 1 and 2. Even though the threshold
to select the relevant features was tuned for the
noisy OR classifier, for 5 document classes the
causal independence models with other interac-
tion function than logical OR provided better
results.

The accuracy and F-measure of the noisy OR
model and a few other classifiers on the Reuters
data collection reported in (Vomlel, 2006) show
the competitive performance of the noisy OR
model.

Table 1: Classification accuracy for symmetric
causal independence models with the interac-
tion function τk, k = 1, . . . , 4 for Reuters data
set; NClass is number of documents in the cor-
responding class.

Class NClass τ1 τ2 τ3 τ4

earn 1087 96.3 97.2 97.2 96.8
acq 719 93.1 93.2 93.2 93.0
crude 189 98.1 98.1 97.6 97.7
money-fx 179 95.8 95.8 95.9 96.0

grain 149 99.2 99.0 98.2 97.9
interest 131 96.5 96.8 96.7 96.7
trade 117 96.6 97.0 97.3 97.3

ship 89 98.9 98.8 98.7 98.6
wheat 71 99.5 99.2 98.8 98.5
corn 56 99.7 99.4 99.1 98.8

6 Discussion

In this paper, we discussed the application of
symmetric causal independence models for clas-
sification. We developed the EM algorithm to
learn the parameters in symmetric causal inde-
pendence models and studied its convergence.
The reported experimental results indicate that
it is unnecessary to restrict causal independence
models to only two interaction functions, logical
OR and logical AND. Competitive classification
performance of symmetric causal independence
models present them as a potentially useful ad-
ditional tool to the set of classifiers.

The current study has only examined the
problem of learning conditional probabilities of
hidden variables. The problem of learning an
optimal interaction function has not been ad-
dressed. Efficient search in symmetric Boolean
function space is a possible direction for future
research.
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ful to Gytis Karčiauskas for the preprocessed
Reuters data. We would also like to thank Jǐŕı
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G. Karčiauskas. 2002. Text Categorization using Hi-
erarchical Bayesian Network Classifiers. Master
thesis, Aalborg University.

L. Le Cam. 1960. An approximation theorem for the
Poisson binomial distribution. Pacific Journal of
Mathematics, 10:1181–1197.

P.J.F. Lucas. 2005. Bayesian network modelling
through qualitative patterns. Artificial Intelli-
gence, 163:233–263.

C. Meek and D. Heckerman. 1997. Structure and
parameter learning for causal independence and
causal interaction models. In Proceedings of the
Thirteenth Conference on Uncertainty in Artifi-
cial Intelligence, pages 366–375.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kauffman Publishers.

M.A. Shwe, B. Middleton, D.E. Heckerman, M.
Henrion, E.J. Horvitz, H.P. Lehmann and G.F.
Cooper. 1991. Probabilistic diagnosis using a re-
formulation of the INTERNIST-1/QMR knowl-
edge base, I – the probabilistic model and in-
ference algorithms. Methods of Information in
Medicine, 30:241–255.

S. Srinivas. 1993. A generalization of the noisy-or
model. In Proceedings of the Ninth Conference on
Uncertainty in Artificial Intelligence, pages 208–
215.

S. Visscher, P.J.F. Lucas, M. Bonten and K.
Schurink. 2005. Improving the therapeutic perfor-
mance of a medical Bayesian network using noisy
threshold models. In Proceedings of the Sixth In-
ternational Symposium on Biological and Medical
Data Analysis, pages 161–172.

J. Vomlel. 2006. Noisy-or classifier. International
Journal of Intelligent Systems, 21:381–398.

I. Wegener. 1987. The Complexity of Boolean Func-
tions. John Wiley & Sons, New York.

N.L. Zhang and D. Poole. 1996. Exploiting causal in-
dependence in Bayesian networks inference. Jour-
nal of Artificial Intelligence Research, 5:301–328.

170          R. Jurgelenaite and T. Heskes



Complexity Results for Enhanced Qualitative Probabilistic
Networks

Johan Kwisthout and Gerard Tel
Department of Information and Computer Sciences

University of Utrecht
Utrecht, The Netherlands

Abstract

While quantitative probabilistic networks (QPNs) allow the expert to state influences
between nodes in the network as influence signs, rather than conditional probabilities,
inference in these networks often leads to ambiguous results due to unresolved trade-offs
in the network. Various enhancements have been proposed that incorporate a notion
of strength of the influence, such as enhanced and rich enhanced operators. Although
inference in standard (i.e., not enhanced) QPNs can be done in time polynomial to the
length of the input, the computational complexity of inference in such enhanced networks
has not been determined yet. In this paper, we introduce relaxation schemes to relate
these enhancements to the more general case where continuous influence intervals are
used. We show that inference in networks with continuous influence intervals is NP -hard,
and remains NP -hard when the intervals are discretised and the interval [−1, 1] is divided
into blocks with length of 1

4 . We discuss membership of NP, and show how these general
complexity results may be used to determine the complexity of specific enhancements to
QPNs. Furthermore, this might give more insight in the particular properties of feasible
and infeasible approaches to enhance QPNs.

1 Introduction

While probabilistic networks (Pearl, 1988) are
based on a intuitive notion of causality and
uncertainty of knowledge, elicitating the re-
quired probabilistic information from the ex-
perts can be a difficult task. Qualitative prob-
abilistic networks (Wellman, 1990), or QPNs,
have been proposed as a qualitative abstrac-
tion of probabilistic networks to overcome this
problem. These QPNs summarise the condi-
tional probabilities between the variables in the
network by a sign, which denotes the direction
of the effect. In contrast to quantitative net-
works, where inference has been shown to be
NP -hard (Cooper, 1990), these networks have
efficient (i.e., polynomial-time) inference algo-
rithms. QPNs are often used as an intermedi-
ate step in the construction of a probabilistic
network (Renooij and van der Gaag, 2002), as
a tool for verifying properties of such networks

(van der Gaag et al., 2006), or in applications
where the exact probability distribution is un-
known or irrelevant (Wellman, 1990).

Nevertheless, this qualitative abstraction
leads to ambiguity when influences with con-
trasting signs are combined. Enhanced QPNs
have been proposed (Renooij and van der Gaag,
1999) in order to allow for more flexibility in de-
termining the influences (e.g., weakly or strongly
positive) and partially resolve conflicts when
combining influences. Also, mixed networks
(Renooij and van der Gaag, 2002) have been
proposed, to facilitate stepwise quantification
and allowing both qualitative and quantitative
influences to be modelled in the network.

Although inference in quantitative networks
is NP -hard, and polynomial-time algorithms are
known for inference in standard qualitative net-
works, the computational complexity of infer-
ence in enhanced networks has not been deter-



mined yet. In this paper we recall the defini-
tion of QPNs in section 2, and we introduce a
framework to relate various enhancements, such
as enhanced, rich enhanced, and interval-based
operators in section 3. In section 4 we show that
inference in the general, interval-based case is
NP -hard. In section 5 we show that it remains
NP -hard if we use discrete - rather than contin-
uous - intervals. Furthermore, we argue that,
although hardness proofs might be nontrivial
to obtain, it is unlikely that there exist poly-
nomial algorithms for less general variants of
enhanced networks, such as the enhanced and
rich enhanced operators suggested by Renooij
and Van der Gaag (1999). Finally, we conclude
our paper in section 6.

2 Qualitative Probabilistic Networks

In qualitative probabilistic networks, a directed
acyclic graph G = (V,A) is associated with a set
∆ of qualitative influences and synergies (Well-
man, 1990), where the influence of one node to
another is summarised by a sign1. For example,
a positive influence of a node A on its succes-
sor B, denoted with S+(A,B), expresses that
higher values for A make higher values for B
more likely than lower values, regardless of in-
fluences of other nodes on B. In binary cases,
with a > ā and b > b̄, this can be summarised
as Pr(b | ax)−Pr(b | āx) ≥ 0 for any value of x
of other predecessors of B. Negative influences,
denoted by S−, and zero influences, denoted by
S0, are defined analogously. If an influence is
not positive, negative, or zero, it is ambiguous,
denoted by S?. Influences can be direct (causal
influence) or induced (inter-causal influence or
product synergy). In the latter case, the value
of one node influences the probabilities of values
of another node, given a third node (Druzdzel
and Henrion, 1993b).

Various properties hold for these qualitative
influences, namely symmetry, transitivity, com-
position, associativity and distribution (Well-
man, 1990; Renooij and van der Gaag, 1999). If

1Note that the network Q = (G, ∆) represents in-
finitely many quantitative probabilistic networks that re-
spect the restrictions on the conditional probabilities de-
noted by the signs of all arcs.

we define Ŝδ(A,B, ti) as the influence Sδ, with
δ ∈ {+,−, 0, ?}, from a node A on a node B
along trail ti, we can formalise these properties
as shown in table 1. The ⊗- and ⊕-operators
that follow from the transitivity and composi-
tion properties are defined in table 2.

symmetry Ŝδ(A, B, ti) ∈ ∆⇔

Ŝδ(B, A, t−1
i ) ∈ ∆

transitivity Ŝδ(A, B, ti) ∧ Ŝδ′
(B, C, tj)⇒

Ŝδ⊗δ′
(A, C, ti ◦ tj)

composition Ŝδ(A, B, ti) ∧ Sδ′
(A, B, tj)⇒

Sδ⊕δ′
(A, B, ti ◦ tj)

associativity S(δ⊕δ′)⊕δ′′
= Sδ⊕(δ′⊕δ′′)

distribution S(δ⊕δ′)⊗δ′′
= S(δ⊗δ′′)⊕(δ′⊗δ′′)

Table 1: Properties of qualitative influences

⊗ + − 0 ? ⊕ + − 0 ?

+ + − 0 ? + + ? + ?

− − + 0 ? − ? − − ?

0 0 0 0 0 0 + − 0 ?

? ? ? 0 ? ? ? ? ? ?

Table 2: The ⊗- and ⊕-operator for combining signs

Using these properties, an efficient (poly-
nomial time) inference algorithm can be con-
structed (Druzdzel and Henrion, 1993a) that
propagates observed node values to other neigh-
bouring nodes. The basic idea of the algorithm,
given in pseudo-code in figure 1, is as follows.
When entering the procedure, a node I is in-
stantiated with a ‘+’ or a ‘−’ (i.e., trail = ∅,
from = to = I and msign = ‘+’ or ‘−’ ). Then,
this node sign is propagated through the net-
work, following active trails and updating nodes
when needed. Observe from table 2 that a node
can change at most two times: from ‘0’ to ‘+’,
‘−’, or ‘?’, and then only to ‘?’. This algorithm
visits each node at most two times, and there-
fore halts after a polynomial amount of time.
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procedure PropagateSign(trail, from, to, msign):
sign[to] ← sign[to] ⊕ msign;
trail ← trail ∪ { to };
for each active neighbour Vi of to
do lsign ← sign of influence between to and Vi;

msign ← sign[to] ⊗ lsign;
if Vi 6∈ trail and sign[Vi] 6= sign[Vi] ⊕ msign
then PropagateSign(trail, to, Vi, msign).

Figure 1: The sign-propagation algorithm

3 Enhanced QPNs

These qualitative influences and synergies
can of course be extended to preserve a
larger amount of information in the abstrac-
tion (Renooij and van der Gaag, 1999).
For example, given a certain cut-off value
α, an influence can be strongly positive
(Pr(b | ax)− Pr(b | āx) ≥ α) or weakly negative
(−α ≤ Pr(b | ax)− Pr(b | āx) ≤ 0). The basic
‘+’ and ‘−’ signs are enhanced with signs for
strong influences (‘++’ and ‘−−’) and aug-
mented with multiplication indices to handle
complex dependencies on α as a result of tran-
sitive and compositional combinations. In addi-
tion, signs such as ‘+?’ and ‘−?’ are used to de-
note positive or negative influences of unknown
strength. Using this notion of strength, trade-
offs in the network can be modelled by compo-
sitions of weak and strong opposite signs.

Furthermore, an interval network can be con-
structed (Renooij and van der Gaag, 2002),
where each arc has an associated influence in-
terval rather than a sign. Such an influ-
ence is denoted as F [p,q](A,B), meaning that
Pr(b | ax)− Pr(b | āx) ∈ [p, q]. Note that, given
this definition, S+(A,B) ⇐⇒ F [0,1](A,B),
and similar observations hold for S−, S0 and
S?. We will denote the intervals [−1, 0], [0, 1],
[0, 0] and [−1, 1] as unit intervals, being special
cases that correspond to the traditional quali-
tative networks. The ⊗- and ⊕-operator, de-
noting transitivity and composition in interval
networks are defined in table 3. Note that it is
possible that a result of a combination of two
trails leads to an empty set, for example when
combining [12 , 1] with [34 , 1], which would denote
that the total influence of a node on another
node, along multiple trails, would be greater

than one, which is impossible. Since the indi-
vidual intervals might be estimated by experts,
this situation is not unthinkable, especially in
large networks. This property can be used to
detect design errors in the network.

Note, that the symmetry, associativity, and
distribution property of qualitative networks do
no longer apply in these enhancements. For ex-
ample, although a positive influence from a node
A to B along the direction of the arc also has a
positive influence in the opposite direction, the
strength of this influence is unknown. Also, the
outcome of the combination of a strongly pos-
itive, weakly positive and weakly negative sign
depends on the evaluation order.

⊗i [r, s]

[p, q] [min X, max X],

where X = {p · r, p · s, q · r, q · s}

⊕i [r, s]

[p, q] [p + r, q + s] ∩ [−1, 1]

Table 3: The ⊗i- and ⊕i-operators for interval multipli-
cation and addition

3.1 Relaxation schemes

If we take a closer look at the ⊕e, ⊕r, and
⊗e operators defined in (Renooij and van der
Gaag, 1999) and compare them with the
interval operators ⊕i and ⊗i, we can see that
the interval results are sometimes somehow
’relaxed’. We see that symbols representing
influences correspond to intervals, but after the
application of any operation on these intervals,
the result is extended to an interval that can
be represented by one of the available symbols.
For example, in the interval model we have
[α, 1] ⊕i [−1, 1] = [α − 1, 1], but, while [α, 1]
corresponds to ++ in the enhanced model and
[−1, 1] corresponds to ?, + +⊕e? =? ≡ [−1, 1].
The lower limit α− 1 is relaxed to −1, because
the actually resulting interval [α − 1, 1] does
not correspond to any symbol. Therefore, to
connect the (enhanced) qualitative and interval
models, we will introduce relaxation schemes
that map the result of each operation to the
minimal interval that can be represented by
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one of the available symbols:

Definition 1. (Relaxation scheme)
Rx will be defined as a relaxation scheme,
denoted as Rx([a, b]) = [c, d], if Rx maps the
outcome [a, b] of an ⊕ or ⊗ operation to an
interval [c, d], where [a, b] ⊆ [c, d].

In standard QPNs, the relaxation scheme
(which I will denote RI or the unit scheme) is
defined as in figure 2.

RI(a, b) =


[0, 1] if a ≥ 0 ∧ b > 0

[−1, 0] if a < 0 ∧ b ≤ 0

[0, 0] if a = b = 0

[−1, 1] otherwise

Figure 2: Relaxation scheme RI(a, b)

Similarly, the ⊕e, ⊕r, and ⊗e operators can
be denoted with the relaxation schemes in fig-
ure 3, in which m equals min(i, j) and α is an
arbitrary cut-off value. To improve readabil-
ity, in the remainder of this paper the ⊕- and
⊗-operators, when used without index, denote
operators on intervals as defined in table 3.

R⊗e(a, b) =

{
[−1, 1] if a < 0 ∧ b > 0

[a, b] otherwise

R⊕e(a, b) =



[αm, 1] if a = αi + αj ≤ b

[−1,−αm] if b = −(αi + αj) ≥ a

[0, 1] if a ≤ b = αi + αj

[−1, 0] if a = −(αi + αj) ≤ b

[0, 1] if a = (αi − αj)

and b ≥ 0 and i < j

[−1, 0] if a = −(αi − αj)

and b ≤ 0 and i < j

[−1, 1] if a ≤ 0 and b ≥ 0

[a, b] otherwise

R⊕r (a, b) =

{
[−1, 1] if a < 0 ∧ b > 0

[a, b] otherwise

Figure 3: Relaxation schemes R⊗e , R⊕e , and R⊕r

This notion of a relaxation scheme allows us
to relate various operators in a uniform way.
A common property of most of these schemes

is that the ⊕-operator is no longer associative.
The result of inference now depends on the or-
der in which various influences are propagated
through the network.

3.2 Problem definition

To decide on the complexity of inference of this
general, interval-based enhancements of QPNs,
a decision problem needs to be determined. We
state this problem, denoted as iPieqnetd2, as
follows.

iPieqnetd
Instance: Qualitative Probabilistic Net-
work Q = (G, ∆) with an instantiation
for A ∈ V (G) and a node B ∈ V \ {A}.
Question: Is there an ordering on the
combination of influences such that the
influence of A on B ⊂ [−1, 1]?

3.3 Probability representation

In this paper, we assume that the probabili-
ties in the network are represented by fractions,
denoted by integer pairs, rather than by reals.
This has the advantage, that the length of the
result of addition and multiplication of fractions
is polynomial in the length of the original num-
bers. We can efficiently code the fractions in
the network by rewriting them, using their least
common denominator. Adding or multiplying
these fractions will not affect their denomina-
tors, whose length will not change during the
inference process.

4 Complexity of the problems

We will prove the hardness of the inference
problem iPieqnetd by a transformation from
3sat. We construct a network Q using clauses
C and boolean variables U , and prove that,
upon instantiation of a node I to [1, 1], there
is an ordering on the combination of influences
such that the influence of I on a given node
Y ∈ Q \ {I} is a true subset of [−1, 1], if and
only if the corresponding 3sat instance is sat-
isfiable. In the network, the influence of a node

2An acronym for Interval-based Probabilistic Infer-
ence in Enhanced Qualitative Networks
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A on a node B along the arc (A,B) is given as
an interval; when the interval equals [1, 1] (i.e.,
Pr(b | a) = 1 and Pr(b | ā) = 0) then the in-
terval is omitted for readability. Note, that the
influence of B on A, against the direction of the
arc (A,B), equals the unit interval of the influ-
ence associated with (A,B).

As a running example, we will construct
a network for the following 3sat instance,
introduced in (Cooper, 1990):

Example 1. (3satex)
U = {u1, u2, u3, u4}, and C = {(u1 ∨ u2 ∨ u3),
(¬u1 ∨ ¬u2 ∨ u3), (u2 ∨ ¬u3 ∨ u4)}

This instance is satisfiable, for example with
the truth assignment u1 = T , u2 = F , u3 = F ,
and u4 = T .

4.1 Construct for our proofs

For each variable in the 3sat instance, our net-
work contains a ”variable gadget” as shown
in figure 4. After the instantiation of node
I with [1, 1], the influence at node D equals
[12 , 1]⊕[−1

2 , 1
2 ]⊕[−1,−1

2 ], which is either [−1, 1
2 ],

[−1
2 , 1] or [−1, 1], depending on the order of

evaluation. We will use the non-associativity
of the ⊕-operator in this network as a non-
deterministic choice of assignment of truth val-
ues to variables. As we will see later, an eval-
uation order that leads to [−1, 1] can be safely
dismissed (it will act as a ’falsum’ in the clauses,
making both x and ¬x false), so we will concen-
trate on [−1

2 , 1] (which will be our T assign-
ment) and [−1, 1

2 ] (F assignment) as the two
possible choices.

We construct literals ui from our 3sat in-
stance, each with a variable gadget Vg as
input. Therefore, each variable can have a
value of [−1, 1

2 ] or [−1
2 , 1] as influence, non-

deterministicly. Furthermore, we add clause-
networks Clj for each clause in the instance
and connect each variable ui to a clause-network
Clj if the variable occurs in Cj . The influence
associated with this arc (ui, Clj) is defined as
F [p,q](ui, Clj), where [p, q] equals [−1, 0] if ¬ui

is in Cj , and [0, 1] if ui is in Cj (figure 5). Note

I

A

[ 1
2
, 1] [−1,− 1

2
]

B

D

C[− 1
2
, 1

2
]

Vg

Figure 4: ”Variable gadget” Vg

that an ⊗-operation with [−1, 0] will transform
a value of [−1, 1

2 ] in [−1
2 , 1] and vice versa, and

[0, 1] will not change them. We can therefore
regard an influence F [−1,0] as a negation of the
truth assignment for that influence. Note, that
[−1, 1] will stay the same in both cases.

If we zoom in on the clause-network in figure
6, we will see that the three ‘incoming’ vari-
ables in a clause, that have a value of either
[−1, 1

2 ], [−1
2 , 1], or [−1, 1], are multiplied with

the arc influence Fi,j to form variables, and then
combined with the instantiation node (with a
value of [1, 1]), forming nodes wi. Note that
[−1, 1

2 ]⊕ [1, 1] = [−1, 1]⊕ [1, 1] = [0, 1] and that
[−1

2 , 1]⊕ [1, 1] = [12 , 1]. Since a [−1, 1] result in
the variable gadget does not change by multi-
plying with the Fi,j influence, and leads to the
same value as an F variable, such an assignment
will never satisfy the 3sat instance.

The influences associated with these nodes wi

are multiplied by [12 , 1] and added together in
the clause result Oj . At this point, Oj has a
value of [k4 , 1], where k equals the number of
literals which are true in this clause. The con-
secutive adding to [−1

4 , 1], multiplication with
[0, 1] and adding to [1, 1] has the function of a
logical or -operator, giving a value for Cj of [34 , 1]
if no literal in the clause was true, and [1, 1] if
one or more were true.

We then combine the separate clauses Cj into
a variable Y , by adding edges from each clause
to Y using intermediate variables D1 to Dn−1.
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I

Vg1

u1 u2 u3 u4

F1,1 F4,3

Cl1 Cl2 Cl3

F1,2 F3,3

Vg2 Vg3 Vg4

F3,2

F2,1

F2,2

F3,1F2,3

Figure 5: The literal-clause construction

u1 u2 u3 I

[ 12 , 1][ 12 , 1] [ 12 , 1]

[− 1
4 , 1]

F1,j F2,j
F3,j

w1

w2

w3

Oj

O′
j

Cj

[0, 1]

Clj

Figure 6: The clause construction

The use of these intermediate variables allows
us to generalise these results to more restricted
cases. The interval of these edges is [12 , 1], lead-
ing to a value of [1, 1] in Y if and only if all
clauses Cj have a value of [1, 1] (see figure 7).

The influence interval in Y has a value between
[34 , 1] and [2

k+1−1
2k+1 , 1], where k is the number of

clauses, if one or more clauses had a value of
[0, 1]. Note that we can easily transform the
interval in Y to a subset of [−1, 1] in Y ′ by con-
secutively adding it to [−1, 1] and [−1+ 1

2k+1 , 1].
This would result in a true subset of [−1, 1] if
and only Y was equal to [1, 1].

CnC2C1

[ 12 , 1]

Y

[ 12 , 1] [ 12 , 1]

D1

Ci

Di

[ 12 , 1]

[ 12 , 1]

[ 12 , 1]

Figure 7: Connecting the clauses

4.2 NP-hardness proof

Using the construct presented in the previous
section, the computational complexity of the
iPieqnetd can be established as follows.

Theorem 1. The iPieqnetd problem is NP-
hard.

Proof. To prove NP -hardness, we construct a
transformation from the 3sat problem. Let
(U,C) be an instance of this problem, and let
Q(U,C) be the interval-based qualitative proba-
bilistic network constructed from this instance,
as described in the previous section. When the
node I ∈ Q is instantiated with [1, 1], then I
has an influence of [1, 1] on Y (and therefore an
influence on Y ′ which is a true subset of [−1, 1])
if and only if all nodes Cj have a value of [1, 1],
i.e. there exists an ordering of the operators
in the ’variable-gadget’ such that at least one
literal in C is true. We conclude that (U,C)
has a solution with at least one true literal in
each clause, if and only if the iPieqnetd prob-
lem has a solution for network Q(U,C), instanti-
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ation I = [1, 1] and node Y ′. Since Q(U,C) can
be computed from (U,C) in polynomial time,
we have a polynomial-time transformation from
3sat to iPieqnetd, which proves NP -hardness
of iPieqnetd.

4.3 On the possible membership of NP

Although iPieqnetd has been shown to be NP -
hard, membership of the NP -class (and, as a
consequence, NP -completeness) is not trivial to
prove. To prove membership of NP, one has to
prove that if the instance is solvable, then there
exists a certificate, polynomial in length with
respect to the input of the problem, that can
be used to verify this claim. A trivial certifi-
cate could be a formula, using the ⊕- and ⊗-
operators, influences, and parentheses, describ-
ing how the influence of the a certain node can
be calculated from the instantiated node and
the characteristics of the network. Unfortu-
nately, such a certificate can grow exponentially
large.

In special cases, this certificate might also be
described by an ordering of the nodes in the net-
work and for each node an ordering of the in-
puts, which would be a polynomial certificate.
For example, the variable gadget from figure 4
can be described with the ordering I, A,B,C,D
plus an ordering on the incoming trails in D.
All possible outcomes of the propagation algo-
rithm can be calculated using this description.
Note, however, that there are other propagation
sequences possible that cannot be described in
this way. For example, the algorithm might first
explore the trail A → B → D → C, and after
that the trail A → C → D → B. Then, the
influence in D is dependent on the information
in C, but C is visited by D following the first
trail, and D is visited by C if the second trail
is explored. Nevertheless, this cannot lead to
other outcomes than [−1, 1

2 ], [−1
2 , 1], or [−1, 1].

However, it is doubtful that such a descrip-
tion exists for all possible networks. For exam-
ple, even if we can make a topological sort of
a certain network, starting with a certain in-
stantiation node X and ending with another
node Y , it is still not the case that a propa-
gation sequence that follows only the direction

of the arcs until all incoming trails of Y have
been calculated always yields better results than
a propagation sequence that doesn’t have this
property. This makes it plausible that there ex-
ist networks where an optimal solution (i.e., a
propagation sequence that leads to the small-
est possible subset of [−1, 1] at the node we are
interested in) cannot be described using such a
polynomial certificate.

5 Operator variants

In order to be able to represent every possi-
ble 3sat instance, a relaxation scheme must be
able to generate a variable gadget, and retain
enough information to discriminate between the
cases where zero, one, two or three literals in
each clause are true. Furthermore, the relax-
ation scheme must be able to represent the in-
stantiations [1, 1] (or >) and [−1,−1] (or ⊥),
and the uninstantiated case [0, 0]. With a re-
laxation scheme that effectively divides the in-
terval [−1, 1] in discrete blocks with size of a
multitude of 1

4 , (such as R 1
4
(a, b) = [ b4ac

4 , d4be
4 ])

the proof construction is essentially the same
as in the general case discussed in section 3.
This relaxation scheme does not have any effect
on the intervals we used in the variable gadget
and the clause construction of Q(U,C), the net-
work constructed in the NP -hardness proof of
the general case used only intervals (a, b) for
which R 1

4
(a, b) = (a, b). Furthermore, when

connecting the clauses, the possible influences
in Y are relaxed to [0, 1], [14 , 1], [12 , 1], [34 , 1], and
[1, 1], so we can onstruct Y ′ by consecutively
adding the interval in Y to [−1, 1] and [−3

4 , 1].
Thus, the problem - which we will denote as
relaxed-Pieqnetd - remains NP -hard for re-
laxation scheme R 1

4
.

The non-associativity of the ⊕e- and ⊕r-
operators defined in (Renooij and van der Gaag,
1999) suggest hardness of the inference problem
as well. Although ⊕e and ⊕r are not associa-
tive, they cannot produce results that can be
regarded as opposites. For example, the expres-
sion (++⊕e +⊕e−) can lead to a positive influ-
ence of unknown strength (‘+?’) when evaluated
as ((+ + ⊕e+) ⊕e −) or an unknown influence
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(‘?’) when evaluated as (+ + ⊕e(+ ⊕e −)), but
never to a negative influence. A transformation
from a 3sat variant might not succeed because
of this reason. However, it might be possible
to construct a transformation from relaxed-
Pieqnetd, which is subject of ongoing research.

6 Conclusion

In this paper, we addressed the computational
complexity of inference in enhanced Qualita-
tive Probabilistic Networks. As a first step,
we have ”embedded” both standard and en-
hanced QPNs in the interval-model using relax-
ation schemes, and we showed that inference in
this general interval-model is NP -hard and re-
mains NP -hard for relaxation scheme R 1

4
(a, b).

We believe, that the hardness of inference is due
to the fact that reasoning in QPNs is under-
defined: The outcome of the inference process
depends on choices during evaluation. Never-
theless, further research needs to be conducted
in order to determine where exactly the NP/P
border lies, in other words: which enhance-
ments to the standard qualitative model allow
for polynomial-time inference, and which en-
hancements lead to intractable results. Fur-
thermore, a definition of transitive and com-
positional combinations of qualitative influences
in which the outcome is independent of the or-
der of the influence propagation might reduce
the computational complexity of inference and
facilitate the use of qualitative models to de-
sign, validate, analyse, and simulate probabilis-
tic networks.
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Decision analysis with influence diagrams
using Elvira’s explanation facilities
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Abstract

Explanation of reasoning in expert systems is necessary for debugging the knowledge base,
for facilitating their acceptance by human users, and for using them as tutoring systems.
Influence diagrams have proved to be effective tools for building decision-support systems,
but explanation of their reasoning is difficult, because inference in probabilistic graphical
models seems to have little relation with human thinking. The current paper describes
some explanation capabilities for influence diagrams and how they have been implemented
in Elvira, a public software tool.

1 Introduction

Influence diagrams (IDs) are a probabilistic
graphical model for modelling decision prob-
lems. They constitute a simple graphical for-
malism that makes it possible to represent the
three main components of decision problems:
the uncertainty, due to the existence of variables
not controlled by the decision maker, the deci-
sions or actions under their direct control, and
their preferences about the possible outcomes.

In the context of expert systems, either prob-
abilistic or heuristic, the development of ex-
planation facilities is important for three main
reasons (Lacave and Dı́ez, 2002). First, be-
cause the construction of those systems with the
help of human experts is a difficult and time-
consuming task, prone to errors and omissions.
An explanation tool can help the experts and
the knowledge engineers to debug the system
when it does not yield the expected results and
even before a malfunction occurs. Second, be-
cause human beings are reluctant to accept the
advice offered by a machine if they are not able
to understand how the system arrived at those
recommendations; this reluctancy is especially
clear in medicine (Wallis and Shortliffe, 1984).
And third, because an expert system used as an
intelligent tutor must be able to communicate
to the apprentice the knowledge it contains, the

way in which the knowledge has been applied for
arriving at a conclusion, and what would have
happened if the user had introduced different
pieces of evidence (what-if reasoning).

These reasons are especially relevant in the
case of probabilistic expert systems, because the
elicitation of probabilities is a difficult task that
usually requires debugging and refinement, and
because the algorithms for the computation of
probabilities and utilities are, at least appar-
ently, very different from human reasoning.

Unfortunately, most expert systems and com-
mercial tools available today, either heuristic
or probabilistic, have no explanation capabili-
ties. In this paper we describe some explanation
methods developed as a response to the needs
that we have detected when building and debug-
ging medical expert systems (Dı́ez et al., 1997;
Luque et al., 2005) and when teaching proba-
bilistic graphical models to pre- and postgradu-
ate students of computer science and medicine
(Dı́ez, 2004). These new methods have been
implemented in Elvira, a public software tool.

1.1 Elvira

Elvira1 is a tool for building and evaluating
graphical probabilistic models (Elvira Consor-

1At http://www.ia.uned.es/∼elvira it is possible to
obtain the source code and several technical documents
about Elvira.



tium, 2002) developed as a join project of sev-
eral Spanish universities. It contains a graphi-
cal interface for editing networks, with specific
options for canonical models, exact and approx-
imate algorithms for both discrete and contin-
uous variables, explanation facilities, learning
methods for building networks from databases,
etc. Although some of the algorithms can work
with both discrete and continuous variables,
most of the explanation capabilities assume that
all the variables are discrete.

2 Influence diagrams

2.1 Definition of an ID

An influence diagram (ID) consists of a directed
acyclic graph that contains three kinds of nodes:
chance nodes VC , decision nodes VD and util-
ity nodes VU—see Figure 1. Chance nodes rep-
resent random variables not controlled by the
decision maker. Decision nodes correspond to
actions under the direct control of the deci-
sion maker. Utility nodes represent the deci-
sion maker’s preferences. Utility nodes can not
be parents of chance or decision nodes. Given
that each node represents a variable, we will use
the terms variable and node interchangeably.

In the extended framework proposed by
Tatman and Shachter (1990) there are two
kinds of utility nodes: ordinary utility nodes,
whose parents are decision and/or chance nodes,
and super-value nodes, whose parents are util-
ity nodes, and can be in turn of two types, sum
and product. We assume that there is a utility
node U0, which is either the only utility node or
a descendant of all the other utility nodes, and
therefore has no children.2

There are three kinds of arcs in an ID, de-
pending on the type of node they go into. Arcs
into chance nodes represent probabilistic depen-
dency. Arcs into decision nodes represent avail-
ability of information, i.e., an arc X → D means
that the state of X is known when making deci-

2An ID that does not fulfill this condition can be
transformed by adding a super-value node U0 of type
sum whose parents are the utility nodes that did not
have descendants. The expected utility and the optimal
strategy (both defined below) of the transformed dia-
gram are the same as those of the original one.

sion D. Arcs into utility nodes represent func-
tional dependence: for ordinary utility nodes,
they represent the domain of the associated util-
ity function; for a super-value node they in-
dicate that the associated utility is a function
(sum or product) of the utility functions of its
parents.

Figure 1: ID with two decisions (ovals), two
chance nodes (squares) and three utility nodes
(diamonds). There is a directed path including
all the decisions and node U0.

Standard IDs require that there is a directed
path that includes all the decision nodes and
indicates the order in which the decisions are
made. This in turn induces a partition of
VC such that for an ID having n decisions
{D0, . . . , Dn−1}, the partition contains n + 1
subsets {C0,C1, ...,Cn}, where Ci is the set
of chance variables C such that there is a link
C → Di and no link C → Dj with j < i; i.e.,
Ci represents the set of random variables known
for Di and unknown for previous decisions. Cn

is the set of variables having no link to any deci-
sion, i.e., the variables whose true value is never
known directly.

Given a chance or decision variable V , two
decisions Di and Dj such that i < j, and two
links V → Di and V → Dj , the former link
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is said to be a no-forgetting link. In the above
example, T → D would be a non-forgetting link.

The variables known to the decision maker
when deciding on Di are called informational
predecessors of Di and denoted by IPred(Di).
Assuming the no-forgetting hypothesis, we have
that IPred(Di) = IPred(Di−1) ∪ {Di−1} ∪Ci =
C0 ∪ {D0} ∪C1 ∪ . . . ∪ {Di−1} ∪Ci.

The quantitative information that defines an
ID is given by assigning to each random node
C a probability distribution P (c|pa(C)) for
each configuration of its parents, pa(C), as-
signing to each ordinary utility node U a func-
tion ψU (pa(U)) that maps each configuration
of its parents onto a real number, and assign-
ing a utility-combination function to each super-
value node. The domain of each function U is
given by its functional predecessors, FPred(U).
For an ordinary utility node, FPred(U) =
Pa(U), and for a super-value node FPred(U) =⋃

U ′∈Pa(U) FPred(U ′).
For instance, in the ID of Figure 1, we have

that FPred(U1) = {X, D}, FPred(U2) = {T}
and FPred(U0) = {X, D, T}.

In order to simplify our notation, we will
sometimes assume without loss of generality
that for any utility node U we have that
FPred(U) = VC ∪VD.

2.2 Policies and expected utilities

For each configuration vD of the decision vari-
ables VD we have a joint distribution over the
set of random variables VC :

P (vC : vD) =
∏

C∈VC

P (c|pa(C)) (1)

which represents the probability of configura-
tion vC when the decision variables are exter-
nally set to the values given by vD (Cowell et
al., 1999).

A stochastic policy for a decision D is a prob-
ability distribution defined over D and condi-
tioned on the set of its informational predeces-
sors, PD(d|IPred(D)). If PD is degenerate (con-
sisting of ones and zeros only) then we say the
policy is deterministic.

A strategy ∆ for an ID is a set of policies, one
for each decision, {PD|D ∈ VD}. A strategy

∆ induces a joint distribution over VC ∪ VD

defined by

P∆(vC ,vD)

= P (vC : vD)
∏

D∈VD

PD(d|IPred(D))

=
∏

C∈VC

P (c|pa(C))
∏

D∈VD

PD(d|pa(D)) (2)

Let I be an ID, ∆ a strategy for I and r
a configuration defined over a set of variables
R ⊆ VC ∪ VD such that P∆(r) 6= 0. The
probability distribution induced by strategy ∆
given the configuration r, defined over R′ =
(VC ∪VD) \R, is given by:

P∆(r′|r) =
P∆(r, r′)
P∆(r)

. (3)

Using this distribution we can compute the ex-
pected utility of U under strategy ∆ given the
configuration r as:

EUU (∆, r) =
∑

r′
P∆(r′|r)ψU (r, r′) . (4)

For the terminal utility node U0, EUU0(∆, r) is
said to be the expected utility of strategy ∆ given
the configuration r, and denoted by EU(∆, r).

We define the expected utility of U under
strategy ∆ as EUU (∆) = EUU (∆, ¨), where
¨ is the empty configuration. We also define
the expected utility of strategy ∆ as EU(∆) =
EUU0(∆). We have that

EUU (∆) =
∑
r

P∆(r)EUU (∆, r) . (5)

An optimal strategy is a strategy ∆opt that
maximizes the expected utility:

∆opt = arg max
∆∈∆∗

EU(∆) , (6)

where ∆∗ is the set of all strategies for I. Each
policy in an optimal strategy is said to be an
optimal policy. The maximum expected utility
(MEU) is

MEU = EU(∆opt) = max
∆∈∆∗

EU(∆) . (7)
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The evaluation of an ID consists in finding
the MEU and an optimal strategy. It can be
proved (Cowell et al., 1999; Jensen, 2001) that

MEU =
∑
c0

max
d0

. . .
∑
cn−1

max
dn−1

∑
cn

P (vC : vD)ψ(vC ,vD) . (8)

For instance, the MEU for the ID in Figure 1,
assuming that U0 is of type sum, is

MEU = max
t

∑
y

max
d

∑
x

P (x) · P (y|t, x)·

· (U1(x, d) + U2(t))︸ ︷︷ ︸
U0(x,d,t)

. (9)

2.3 Cooper policy networks

When a strategy ∆ = {PD|D ∈ VD} is de-
fined for an ID, we can convert this into a
Bayesian network, called Cooper policy net-
work (CPN), as follows: each decision D
is replaced by a chance node with probabil-
ity potential PD and parents IPred(D), and
each utility node U is converted into a chance
node whose parents are its functional predeces-
sors (cf. Sec. 2.1); the values of new chance
variables are {+u,¬u} and its probability is
PCPN (+u|FPred(U)) =normU (U(FPred(U))),
where normU is a bijective linear transforma-
tion that maps the utilities onto the interval
[0, 1] (Cooper, 1988).

For instance, the CPN for the ID in Figure 1 is
displayed in Figure 2. Please note the addition
of the non-forgetting link T → D and that the
parents of node U0 are no longer U1 and U2 but
T , X, and D, which were chance or decision
nodes in the ID.

The joint distribution of the CPN is:

PCPN (vC ,vD,vU )

= P∆(vC ,vD)
∏

U∈VU

PU (u|pa(U)) . (10)

For a configuration r defined over a set of vari-
ables R ⊆ VC ∪VD and U a utility node, it is
possible to prove that

PCPN (r) =P∆(r) (11)

 

X 

Y 

D 

T 

U2
 

U0 

U1 

Figure 2: Cooper policy network (PN) for the
ID in Figure 1.

PCPN (+u|r) = normU (EUU (∆, r)) . (12)

This equation allows us to compute EUU (∆, r)
as norm−1

U (PCPN (+u|r)); i.e., the expected util-
ity for a node U in the ID can be computed from
the marginal probability of the corresponding
node in the CPN.

3 Explanation of influence diagrams
in Elvira

3.1 Explanation of the model

The explanation of IDs in Elvira is based, to a
great extent, on the methods developed for ex-
planation of Bayesian networks (Lacave et al.,
2000; Lacave et al., 2006b). One of the meth-
ods that have proven to be more useful is the
automatic colorings of links. The definitions in
(Lacave et al., 2006b) for the sign of influence
and magnitude of influence, inspired on (Well-
man, 1990), have been adapted to incoming arcs
to ordinary utility nodes.

Specifically, the magnitude of the influence
gives a relative measure of how a variable is in-
fluencing an ordinary utility node (see (Lacave
et al., 2006a) for further details). Then, the in-
fluence of a link pointing to a utility node is
positive when higher values of A lead to higher
utilities. Cooper’s transformation normU guar-
antees that the magnitude of the influence is
normalized.

For instance, in Figure 1 the link X → Y is
colored in red because it represents a positive
influence: the presence of the disease increases
the probability of a positive result of the test.
The link X → U1 is colored in blue because it
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represents a negative influence: the disease de-
creases the expected quality of life. The link
D → U1 is colored in purple because the influ-
ence that it represents is undefined: the treat-
ment is beneficial for patients suffering from X
but detrimental for healthy patients.

Additionally, when a decision node has been
assigned a policy, either by optimization or im-
posed by the user (see Sec. 3.3), the correspond-
ing probability distribution PD can be used to
color the links pointing to that node, as shown
in Figure 1.

The coloring of links has been very useful in
Elvira for debugging Bayesian networks (Lacave
et al., 2006b) and IDs, in particular for detect-
ing some cases in which the numerical probabil-
ities did not correspond to the qualitative rela-
tions determined by human experts, and also for
checking the effect that the informational pre-
decessors of a decision node have on its policy.

3.2 Explanation of reasoning:
cases of evidence

In Section 2.3 we have seen that, given a strat-
egy, an ID can be converted into a CPN, which
is a true Bayesian network. Consequently, all
the explanation capabilities for BNs, such as
Elvira’s ability to manage evidence cases are
also available for IDs.

A finding states with certainty the value
taken on a chance or decision variable. A set of
findings is called evidence and corresponds to a
certain configuration e of a set of observed vari-
ables E. An evidence case is determined by an
evidence e and the posterior probabilities and
the expected utilities induced by it.

A distinguishable feature of Elvira is its abil-
ity to manage several evidence cases simultane-
ously. A special evidence case is the prior case,
which is the first case created and corresponds
to the absence of evidence.

One of the evidence cases is marked as the
current case. Its probabilities and utilities are
displayed in the nodes. For the rest of the cases,
the probabilities and utilities are displayed only
by bars, in order to visually compare how they
vary when new evidence is introduced.

The information displayed for nodes depends

on the kind of node. Chance and decision
nodes present bars and numbers correspond-
ing to posterior probabilities of their states,
P∆(v|e), as given by Equation 3. This is the
probability that a chance variable takes a cer-
tain value or the probability that the decision
maker chooses a certain option (Nilsson and
Jensen, 1998)—please note that in Equation 3
there is no distinction between chance and de-
cision nodes. Utility nodes show the expected
utilities, EUU (∆, e), given by Equation 4. The
guide bar indicates the range of the utilities.

Figure 3: ID in Elvira with two evidence cases:
(a) the prior case (no evidence); (b) a case with
the evidence e = {+y}.

Figure 3 shows the result of evaluating the
ID in Figure 1. The link T → D is drawn as
a discontinuous arrow to indicate that it has
been added by the evaluation of the diagram.
In this example, as there was no policy imposed
by the user (see below), Elvira computed the
optimal strategy. In this figure two evidence
cases are displayed. The first one is the prior
case, i.e., the case in which there is no evidence.
The second evidence case is given by e = {+y};
i.e., it displays the probabilities and utilities
of the subpopulation of patients in which the
test gives a positive result. Node Y is colored
in gray to highlight the fact that there is ev-
idence about it. The probability of +x, rep-
resented by a red bar, is 0.70; the green bar
close to it represents the probability of +x for
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the prior case, i.e., the prevalence of the disease;
the red bar is longer than the green one because
P (+x|+ y) > P (+x). The global utility for the
second case is 81.05, which is smaller than the
green bar close to it (the expected utility for the
general population) because the presence of the
symptom worsens the prognosis. The red bar
for Treatment=yes is the probability that a pa-
tient having a positive result in the test receives
the treatment; this probability is 100% because
the optimal strategy determines that all symp-
tomatic patients must be treated.

The possibility of introducing evidence in
Elvira has been useful for building IDs in medi-
cine: when we were interested in computing the
posterior probability of diagnoses given several
sets of findings, we need to manually convert the
ID into a Bayesian network by removing deci-
sion and utility nodes, and each time the ID was
modified we have to convert it into a Bayesian
network to compute the probabilities. Now the
probabilities can be computed directly on the
ID.

3.2.1 Clarifying the concept of
evidence in influence diagrams

In order to avoid confusions, we must men-
tion that Ezawa’s method (1998) for introduc-
ing evidence in IDs is very different from the
way that is introduced in Elvira. For Ezawa,
the introduction of evidence e leads to a differ-
ent decision problem in which the values of the
variables in E would be known with certainty
before making any decision. For instance, in-
troducing evidence {+x} in the ID in Figure 1
would imply that X would be known when mak-
ing decisions T and D. Therefore, the expected
utility of the new decision problem would be

max
t

∑
y

max
d

P (y|+x : t, d)·(U1(+x, d) + U2(t)︸ ︷︷ ︸)
U0(+x,d,t)

.

where P (y|+x : t, d) = P (+x, y : t, d)/P (+x) =
P (y|+x : t). In spite of the apparent similarity
of this expression with Equation 9, the optimal
strategy changes significantly to “always treat,
without testing”, because if we know with cer-
tainty that the disease X is present the result

of the test is irrelevant. The MEU for this de-
cision problem is U1(+x,+d).

In contrast, the introduction of evidence in
Elvira (which may include “findings” for deci-
sion variables as well) does not lead to a new de-
cision scenario nor to a different strategy, since
the strategy is determined before introducing
the “evidence”. Put another way, in Elvira we
adopt the point view of an external observer of a
system that includes the decision maker as one
of its components. The probabilities and ex-
pected utilities given by Equations 2 and 4 are
those corresponding to the subpopulation indi-
cated by e when treated with strategy ∆. For
instance, given the evidence {+x}, the probabil-
ity P∆(+t|+x) shown by Elvira is the probabil-
ity that a patient suffering from X receives the
test, which is 100% (it was 0% in Ezawa’s sce-
nario), and P∆(+d|+ x) is the probability that
he receives the treatment; contrary to Ezawa’s
scenario, this probability may differ from 100%
because of false negatives. The expected utility
for a patient suffering from X is

EU(∆, {+x}) =

=
∑

t,y,d

P∆(t, y, d|+ x) · (U1(+x, d) + U2(t)︸ ︷︷ ︸)
U0(+x,d,t)

.

where P∆(t, y, d| + x) = P∆(t) · P (y|t,+x) ·
P∆(d|t, y).

Finally, we must underlie that both ap-
proaches are not rivals. They correspond to
different points of view when considering evi-
dence in IDs and can complement each other in
order to perform a better decision analysis and
to explain the reasoning.3

3.3 What-if reasoning: analysis of
non-optimal strategies

In Elvira it is possible to have a strategy in
which some of the policies are imposed by the
user and the others are computed by maximiza-
tion. The way of imposing a policy consists
in setting a probability distribution PD for the
corresponding decision D by means of Elvira’s

3In the future, we will implement in Elvira Ezawa’s
method and the possibility of computing the expected
value of perfect information (EVPI).
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GUI; the process is identical to editing the con-
ditional probability table of a chance node. In
fact, such a decision will be treated by Elvira as
it were a chance node, and the maximization is
performed only on the rest of the decision nodes.

This way, in addition to computing the op-
timal strategy (when the user has imposed no
policy), as any other software tool for influence
diagrams, Elvira also permits to analyze how
the expected utilities and the rest of the policies
would vary if the decision maker chose a non-
optimal policy for some of the decisions (what-if
reasoning).

The reason for implementing this explanation
facility is that when we were building a cer-
tain medical influence diagram (Luque et al.,
2005) our expert wondered why the model rec-
ommended not to perform a certain test. We
wished to compute the a posteriori probability
of the disease given a positive result in the test,
but we could not introduce this “evidence”, be-
cause it was incompatible with the optimal pol-
icy (not to test). After we implemented the pos-
sibility of imposing non-optimal policies (in this
case, performing the test) we could see that the
posterior probability of the disease remained be-
low the treatment threshold even after a posi-
tive result in the test, and given that the result
of the test would be irrelevant, it is not worthy
to do it.

3.4 Decision trees

Elvira can expand a decision tree corresponding
to an ID, with the possibility of expanding and
contracting its branches to the desired level of
detail. This is especially useful when building
IDs in medicine, because physicians are used to
thinking in terms of scenarios and most of them
are familiar with decision trees, while very few
have heard about influence diagrams. One dif-
ference of Elvira with respect to other software
tools is the possibility of expanding the nodes in
the decision tree to explore the decomposition of
its utility given by the structure of super-value
nodes of the ID.

3.5 Sensitivity analysis

Recently Elvira has been endowed with some
well-known sensitivity analysis tools, such as
one-way sensitivity analysis, tornado diagrams,
and spider diagrams, which can be combined
with the above-mentioned methods for the ex-
planation of reasoning. For instance, given the
ID in Figure 1, one-way sensitivity analysis on
the prevalence of the disease X can be used to
determine the threshold treatment, and we can
later see whether the result of test Y makes the
probability of X cross that threshold. In the
construction of more complex IDs this has been
useful for understanding why some tests are nec-
essary or not, and why sometimes the result of
a test is irrelevant.

4 Conclusions

The explanation of reasoning in expert systems
is necessary for debugging the knowledge base,
for facilitating their acceptance by human users,
and for using them as tutoring systems. This is
especially important in the case of influence dia-
grams, because inference in probabilistic graph-
ical models seems to have little relation with
human thinking. Nevertheless, in general cur-
rent software tools for building and evaluating
decision trees and IDs offer very little support
for analyzing the “reasoning”: usually they only
permit to compute the value of information, to
perform some kind of sensitivity analysis, or to
expand a decision tree, which can be hardly con-
sidered as explanation capabilities.

In this paper we have described some facili-
ties implemented in Elvira that have been useful
for understanding the knowledge contained in
a certain ID, and why its evaluation has led to
certain results, i.e., the optimal strategy and the
expected utility. They can analyze how the pos-
terior probabilities, policies, and expected util-
ities would vary if the decision maker applied a
different (non-optimal) strategy. Most of these
explanation facilities are based on the construc-
tion of a so-called Cooper policy network, which
is a true Bayesian network, and consequently all
the explanation options that were implemented
for Bayesian networks in Elvira are also avail-

Decision analysis with influence diagrams using Elvira's explanation facilities         185



able for IDs, such as the possibility of handling
several evidence cases simultaneously. Another
novelty of Elvira with respect to most software
tools for IDs is the ability to include super-value
nodes in the IDs, even when expanding the de-
cision tree equivalent to an ID.

We have also mentioned in this paper how
these explanation facilities, which we have de-
veloped as a response to the needs that we
have encountered when building medical mod-
els, have helped us to explain the IDs to the
physicians collaborating with us and to debug
those models (see (Lacave et al., 2006a) for fur-
ther details).
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Abstract

Factorisation of probability trees is a useful tool for inference in Bayesian networks. Prob-
abilistic potentials some of whose parts are proportional can be decomposed as a product
of smaller trees. Some algorithms, like lazy propagation, can take advantage of this fact.
Also, the factorisation can be used as a tool for approximating inference, if the decompo-
sition is carried out even if the proportionality is not completely reached. In this paper we
propose the use of approximate factorisation as a means of controlling the approximation
level in a dynamic importance sampling algorithm.

1 Introduction

In this paper we propose an algorithm for up-
dating probabilities in Bayesian networks. This
problem is known to be NP-hard even in the ap-
proximate case (Dagum and Luby, 1993). There
exist several deterministic approximate algo-
rithms (Cano et al., 2000; Cano et al., 2002;
Cano et al., 2003; Kjærulff, 1994) as well as
algorithms based on Monte Carlo simulation.
The two main approaches are: Gibbs sam-
pling (Jensen et al., 1995; Pearl, 1987) and im-
portance sampling (Cheng and Druzdzel, 2000;
Hernández et al., 1998; Moral and Salmerón,
2005; Salmerón et al., 2000; Shachter and Peot,
1990).

A class of these simulation procedures is
composed by the importance sampling algo-
rithms based on approximate pre-computation
(Hernández et al., 1998; Moral and Salmerón,
2005; Salmerón et al., 2000). These methods
perform first a fast but non exact propagation,
consisting of a node removal process (Zhang and
Poole, 1996). In this way, an approximate ‘a

posteriori’ distribution is obtained. In the sec-
ond stage a sample is drawn using the approx-
imate distribution and the probabilities are es-
timated according to the importance sampling
methodology (Rubinstein, 1981). In the most
recent algorithm (Moral and Salmerón, 2005) a
dynamic approach is adopted, in which the sam-
pling distributions are updated according to the
information collected during the simulation.

Recently, a new approach to construct ap-
proximate deterministic algorithms was pro-
posed in (Mart́ınez et al., 2005), based on
the concept of approximate factorisation of the
probability trees used to represent the probabil-
ity functions.

The goal of this paper is to incorporate the
ideas contained in (Mart́ınez et al., 2005) to the
dynamic algorithm introduced in (Moral and
Salmerón, 2005), with the aim of showing that
the approximation level can be controlled by the
factorisation alternatively to pruning the trees.

The rest of the paper is organised as fol-
lows: in section 2 we analyse the main features
of the dynamic importance sampling algorithm



in (Moral and Salmerón, 2005). Section 3 ex-
plain the concept of approximate factorisation
of probability trees. Then, in section 4 we ex-
plain how both ideas can be combined in a new
algorithm. The performance of the new algo-
rithm is tested using three real-world Bayesian
networks in section 5 and the paper ends with
the conclusions in section 6.

2 Dynamic importance sampling in

Bayesian networks

Along this paper we will consider a Bayesian
network with variables X = {X1, . . . ,Xn}
where each Xi is a discrete variable taking val-
ues on a finite set ΩXi

. By ΩX we denote the
state space of the n-dimensional random vari-
able X.

Probabilistic reasoning in Bayesian networks
requires the computation of the posterior prob-
abilities p(xk|e), xk ∈ ΩXk

for each variable of
interest Xk, given that some other variables E

have been observed to take value e.

The posterior probability mentioned above
can be expressed as

p(xk|e) =
p(xk, e)

p(e)
∀xk ∈ ΩXk

,

and, since p(e) is a constant value, the prob-
lem of calculating the posterior probability of
interest is equivalent to obtaining p(xk, e) and
normalising afterwards. If we denote by p(x)
the joint distribution for variables X, then it
holds that

p(xk, e) =
∑

ΩX\({Xk}∪E)

p(x) ,

where we assume that the k-th coordinate of
x is equal to xk and the coordinates in x cor-
responding to observed variables are equal to
e. Therefore, the problem of probabilistic rea-
soning can be reduced to computing a sum, and
here is where the importance sampling technique
takes part.

Importance sampling is a well known method
for computing integrals (Rubinstein, 1981) or
sums over multivariate functions. A straight-
forward way to do that could be to draw a sam-

ple from p(x) and then estimate p(xk, e) from
it. However, p(x) is often unmanageable, due
to the large size of the state space of X, ΩX.

Importance sampling tries to overcome this
problem by using a simplified probability func-
tion p∗(x) to obtain a sample of ΩX. The es-
timation is carried out according to the next
procedure.

Importance Sampling

1. FOR j := 1 to m (sample size)

(a) Generate a configuration x(j) ∈ ΩX

using p∗.

(b) Compute a weight for the generated
configuration as:

wj :=
p(x(j))

p∗(x(j))
. (1)

2. For each xk ∈ ΩXk
, estimate p(xk, e) as

p̂(xk, e) obtained as the sum of the weights
in formula (1) corresponding to configura-
tions containing xk divided by m.

3. Normalise the values p̂(xk, e) in order
to obtain p̂(xk|e), i.e., an estimation of
p(xk|e).

In (Salmerón et al., 2000; Moral and
Salmerón, 2005), a sampling distribution is
computed for each variable, so that p∗ is equal
to the product of the sampling distributions
for all the variables. The sampling distribu-
tion for each variable can be obtained through
a process of variable elimination. Assume that
the variables are eliminated following the or-
der X1, . . . ,Xn, and that, before eliminating the
first variable, H is the set of conditional dis-
tributions in the network. Then, the next al-
gorithm obtains a sampling distribution for he
i-th variable.

Get Sampling Distribution(Xi,H)

1. Hi := {f ∈ H|f is defined for Xi}.

2. fi :=
∏

f∈Hi
f .

3. f ′
i :=

∑

x∈ΩXi

fi.
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4. H := H \ Hi ∪ {f ′
i}.

5. RETURN (fi).

Simulation is carried out in an order contrary
to the one in which variables are deleted. Each
variable Xi is simulated from its sampling distri-
bution fi. This function is defined for variable
Xi and other variables already sampled. The
potential fi is restricted to the already obtained
values of the variables for which it is defined,
except Xi, giving rise to a function which de-
pends only on Xi. Finally, a value for this vari-
able is obtained with probability proportional
to the values of this potential. If all the compu-
tations are exact, it was proved in (Hernández
et al., 1998) that, following this procedure, we
are really sampling with the optimal probability
p∗(x) = p(x|e). However, the result of the com-
binations in the process of obtaining the sam-
pling distributions may require a large amount
of space to be stored, and therefore approxima-
tions are usually employed, either using proba-
bility tables (Hernández et al., 1998) or proba-
bility trees (Salmerón et al., 2000) to represent
the distributions.

In (Moral and Salmerón, 2005) an alternative
procedure to simulate each variable was used.
Instead of restricting fi to the values of the
variables already sampled, all the functions in
Hi are restricted, resulting in a set of functions
depending only on Xi. The sampling distribu-
tion is then computed by multiplying all these
functions. If the computations are exact, then
both distributions are the same, as restriction
and combination commute. This is the basis
for the dynamic updating procedure proposed
in (Moral and Salmerón, 2005). Probabilistic
potentials are represented by probability trees,
which are approximated by pruning some of its
branches when computing fi during the calcula-
tion of the sampling distributions. This approx-
imation is somehow corrected according to the
information collected during the simulation: the
probability value of the configuration already
simulated provided by the product of the poten-
tials in Hi must be the same as the probability
value for the same configuration provided by f ′

i .

Otherwise, potential fi is re-computed in order
to correct the detected discrepancy.

3 Factorisation of probability trees

As mentioned in section 2, the approximation of
the probability trees used to represent the prob-
abilistic potentials consists of pruning some of
their branches, namely those that lead to simi-
lar leaves (similar probability values), that can
be substituted by the average, so that the error
of the approximation depends on the differences
between the values of the leaves corresponding
to the pruned branches. Another way of tak-
ing advantage of the use of probability trees is
given by the possible presence of proportional-
ity between different subtrees (Mart́ınez et al.,
2002). This fact is illustrated in figures 1 and
2. In this case, the tree in figure 1 can be repre-
sented, without loss of precision, by the product
of two smaller trees, shown in figure 2.

Note that the second tree in figure 2 does
not contain variable X. It means that, when
computing the sampling distribution for vari-
able X, the products necessary to obtain func-
tion fi would be done over smaller trees.

3.1 Approximate Factorisation of

Probability Trees

Factorisation of probability trees can be utilised
as a tool for developing approximate inference
algorithms, when the proportionality condition
is relaxed. In this case, probability trees can be
decomposed even if we find only almost propor-
tional, rather than proportional, subtrees. Ap-
proximate factorisation and its application to
Lazy propagation was proposed in (Mart́ınez et
al., 2005), and is stated as follows. Let T1 and
T2 be two sub-trees which are siblings for a given
context (i.e. both sub-trees are children of the
same node), such that both have the same size
and their leaves contain only strictly positive
numbers. The goal of the approximate factori-

sation is to find a tree T ∗
2 with the same struc-

ture than T2, such that T ∗
2 and T1 become pro-

portional, under the restriction that the poten-
tial represented by T ∗

2 must be as close as possi-
ble to the one represented by T2. Then, T2 can
be replaced by T ∗

2 and the resulting tree that

Dynamic importance sampling in Bayesian networks using factorisation of probability trees         189



W

X

0

Y

0

0.1

0

0.2

1

0.2

2

0.5

3

Y

1

0.2

0

0.4

1

0.4

2

1.0

3

Y

2

0.4

0

0.8

1

0.8

2

2.0

3

X

1

0.4

0

0.1

1

0.5

2

Figure 1: A probability tree proportional below X for context (W = 0).
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Figure 2: Decomposition of the tree in figure 1 with respect to variable X.

contain T1 and T2 can be decomposed by factori-
sation. Formally, approximate factorisation is
defined through the concept of δ-factorisability.

Definition 1. A probability tree T is δ-
factorisable within context (XC = xC), with
proportionality factors α with respect to a di-
vergence measure D if there is an xi ∈ ΩX and
a set L ⊂ ΩX \ {xi} such that for every xj ∈ L,
∃αj > 0 such that

D(T R(XC=xC ,X=xj), αj · T
R(XC=xC ,X=xi)) ≤ δ ,

where T R(XC=xC ,X=xi) denotes the subtree of
T which is reached by the branch where vari-
ables XC take values xC and Xi takes value xi.
Parameter δ > 0 is called the tolerance of the

approximation.

Observe that if δ = 0, we have exact factori-
sation. In the definition above, D and α =
(α1, . . . , αk) are related in such a way that α

can be computed in order to minimise the value
of the divergence measure D.

In (Mart́ınez et al., 2005) several divergence
measures are considered, giving the optimal α

in each case. In this work we will consider
only the measure that showed the best perfor-
mance in (Mart́ınez et al., 2005) that we will
describe now. Consider a probability tree T .
Let T1 and T2 be sub-trees of T below a vari-
able X, for a given context (XC = xc) with
leaves P = {pi : i = 1, . . . , n ; pi 6= 0} and Q =
{qi : i = 1, . . . , n} respectively. As we described
before, approximate factorisation is achieved by
replacing T2 by another tree T ∗

2 such that T ∗
2 is

proportional to T1. It means that the leaves of
T ∗

2 will be Q∗ = {αpi : i = 1, . . . , n}, where α
is the proportionality factor between T1 and T2.
Let us denote by {πi = qi/pi, i = 1, . . . , n} the
ratios between the leaves of T2 and T1.

The χ2 divergence, defined as

Dχ(T2,T
∗
2 ) =

n
∑

i=1

(qi − αpi)
2

qi
,
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is minimised for α equal to

αχ =

∑n
i=1 pi

∑n
i=1 pi/πi

.

In this work we will use its normalised version

Dχ∗(T2,T
∗
2 ) =

√

Dχ

Dχ + n
, (2)

which takes values between 0 and 1 and is min-
imised for the same α.

4 Dynamic importance sampling

combined with factorisation

As we mentioned in section 2, the complexity
of the dynamic importance sampling algorithm
relies on the computation of the sampling dis-
tribution. In the algorithm proposed in (Moral
and Salmerón, 2005), this complexity is con-
trolled by pruning the trees resulting from mul-
tiplications of other trees.

Here we propose to use approximate factori-
sation instead of tree pruning to control the
complexity of the sampling distributions com-
putation. Note that these two alternatives (ap-
proximate factorisation and tree pruning) are
not exclusive. They can be used in a combined
form. However, in order to have a clear idea of
how approximate factorisation affects the accu-
racy of the results, we will not mix it with tree
pruning in the algorithm proposed here.

The difference between the dynamic algo-
rithm described in (Moral and Salmerón, 2005)
and the method we propose in this paper is
in the computation of the sampling distribu-
tions. The simulation phase and the update of
the sampling distribution is carried out exactly
in the same way, except that we have estab-
lished a limit for the number of updates dur-
ing the simulations equal to 1000 iterations. It
means that, after iteration #1000 in the simu-
lation, the sampling distributions are no longer
updated. We have decided this with the aim of
avoiding a high increase in space requirements
during the simulation. Therefore, we only de-
scribe the part of the algorithm devoted to ob-
tain the sampling distribution for a given vari-
able Xi.

Get Sampling Distribution(Xi,H,D,δ)

1. Hi := {f ∈ H|f is defined for Xi}.

2. FOR each f ∈ Hi,

(a) IF there is a context XC for which
the tree corresponding to f is δ-
factorisable with respect to D,

• Decompose f as f1 × f2, where f1

is defined for Xi and f2 is not.

• Hi := (Hi \ {f}) ∪ {f1}.

• H := (H \ {f}) ∪ {f2}.

(b) ELSE

• H := H \ {f}.

3. fi :=
∏

f∈Hi
f .

4. f ′
i :=

∑

x∈ΩXi

fi.

5. H := H ∪ {f ′
i}.

6. RETURN (fi).

According to the algorithm above, the sam-
pling distribution for a variable Xi is computed
by taking all the functions which are defined
for it, but unlike the method in (Moral and
Salmerón, 2005), the product of all those func-
tions is postponed until the possible factorisa-
tions of all the intervening functions are tested.
Therefore, the product in step 3 is carried out
over functions with smaller domains than the
product in step 2 of the algorithm described in
section 2.

The accuracy of the sampling distribution is
controlled by parameter δ, so that higher values
of it result in worse approximations.

5 Experimental evaluation

In this section we describe a set of experiments
carried out to show how approximate factori-
sation can be used to control the level of ap-
proximation in dynamic importance sampling.
We have implemented the algorithm in java,
as a part of the Elvira system (Elvira Con-
sortium, 2002). We have selected three real-
world Bayesian networks borrowed from the
Machine Intelligence group at Aalborg Uni-
versity (www.cs.aau.dk/research/MI/). The
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three networks are called Link (Jensen et al.,
1995), Munin1 and Munin2 (Andreassen et al.,
1989). Table 1 displays, for each network, the
number of variables, number of observed vari-
ables (selected at random) and its size. By the
size we mean the sum of the clique sizes that re-
sulted when using HUGIN (Jensen et al., 1990)
for computing the exact posterior distributions
given the observed variables.

Table 1: Statistics about the networks used in
the experiments.

Vars. Obs. vars. Size

Link 441 166 23,983,962
Munin1 189 8 83,735,758
Munin2 1003 15 2,049,942

We have run the importance sam-
pling algorithm with tolerance values
δ = 0.1, 0.05, 0.01, 0.005 and 0.001 and
with different number of simulation iterations:
2000, 3000, 4000 and 5000. Given the random
nature of this algorithm, we have run each
experiment 20 times and the errors have been
averaged. For one variable Xl, the error in
the estimation in its posterior distribution is
measured as (Fertig and Mann, 1980):

G(Xl) =

√

√

√

√

1

|ΩXl
|

∑

al∈ΩXl

(p′(al|e) − p(al|e))2

p(al|e)(1 − p(al|e))

(3)

where p(al|e) is the true a posteriori probability,
p′(al|e) is the estimated value and |ΩXl

| is the
number of cases of variable Xl. For a set of
variables {X1, . . . ,Xn}, the error is:

G({X1, . . . ,Xn}) =

√

√

√

√

n
∑

i=1

G(Xi)
2 (4)

This error measure emphasises the differences
in small probability values, which means that is
more discriminant than other measures like the
mean squared error.

Figure 3: Results for Link with δ =
0.1, 0.05, 0.01, 0.005 and 0.001.

Figure 4: Results for Munin1 with δ =
0.1, 0.05, 0.01, 0.005 and 0.001.

5.1 Results discussion

The results summarised in figures 3, 4 and 5, in-
dicate that the error can be somehow controlled
by means of the δ parameter. There are, how-
ever, irregularities in the graphs, probably due
to the variance associated with the estimations,
due to the stochastic nature of the importance
sampling method.

The best estimations are achieved for the
Munin1 network. This is due to the fact
that few factorisations are actually carried out,
and therefore the number of approximations is
lower, what also decreases the variance of the
estimations.

Factorisation or even approximate factorisa-
tion are difficult to carry out over very extreme
distributions. In the approximate case, a high
value for δ would be necessary. This difficulty
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Figure 5: Results for Munin2 with δ =
0.1, 0.05, 0.01, 0.005 and 0.001.

also arises when using tree pruning as approx-
imation method, since this former method is
good to capture uniform regions.

Regarding the high variance associated with
the estimations suggested by the graphs in fig-
ures 3 and 5, it can be caused by multiple fac-
torisations of the same tree: A tree can be fac-
torised for some variable and afterwards, one
of the resulting factors, can be factorised again
when deleting another variable. In this case,
even if the local error is controlled by δ, there is
a global error due to the concatenations of fac-
torisations that is difficult to handle. Perhaps
the solution is to forbid that trees that result
from a factorisations be factorised again.

6 Conclusions

In this paper we have introduced a new version
of the dynamic importance sampling algorithm
proposed in (Moral and Salmerón, 2005). The
novelty consists of using the approximate fac-
torisation of probability trees to control the ap-
proximation of the sampling distributions and,
in consequence, the final approximations.

The experimental results suggest that the
method is valid but perhaps more difficult to
control than tree pruning.

Even though the goal of this paper was to
analyse the performance of tree factorisation as
a stand-alone approximation method, one im-
mediate conclusion that can be drawn from the
work presented here is that the joint use of ap-

proximate factorisation and tree pruning should
be studied. We have carried out some experi-
ment in this direction and the first results are
very promising: the variance in the estimations
and the computing time seems to be signifi-
cantly reduced. The main problem of combin-
ing both methods is that the difficulty of con-
trolling the final error of the estimation through
the parameters of the algorithm increases. We
leave for an extended version of this paper a de-
tailed insight on this issue. The experiments we
are currently carrying out suggest that the most
sensible way of combining both approximation
procedures is to use slight tree pruning and also
low values for the tolerance of the factorisation.
Otherwise, the error introduced by one of the
approximation method can affect the other.

It seems difficult to establish a general rule
for determining which approximation method
is preferable. Depending on the network and
the propagation algorithm, the performance of
both techniques may vary. For instance, ap-
proximate factorisation is appropriate for al-
gorithms that handle factorised potentials, as
Lazy propagation or the dynamic importance
sampling method used in this paper.

Finally, an efficiency comparison between
the resulting algorithm and the dynamic im-
portance sampling algorithm in (Moral and
Salmerón, 2005) will be one of the issues that
we plan to aim at.
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Abstract

Semi-Markovian causal models (SMCMs) are an extension of causal Bayesian networks for
modeling problems with latent variables. However, there is a big gap between the SMCMs
used in theoretical studies and the models that can be learned from observational data
alone. The result of standard algorithms for learning from observations, is a complete
partially ancestral graph (CPAG), representing the Markov equivalence class of maximal
ancestral graphs (MAGs). In MAGs not all edges can be interpreted as immediate causal
relationships. In order to apply state-of-the-art causal inference techniques we need to
completely orient the learned CPAG and to transform the result into a SMCM by removing
non-causal edges. In this paper we combine recent work on MAG structure learning from
observational data with causal learning from experiments in order to achieve that goal.
More specifically, we provide a set of rules that indicate which experiments are needed
in order to transform a CPAG to a completely oriented SMCM and how the results of
these experiments have to be processed. We will propose an alternative representation
for SMCMs that can easily be parametrised and where the parameters can be learned
with classical methods. Finally, we show how this parametrisation can be used to develop
methods to efficiently perform both probabilistic and causal inference.

1 Introduction

This paper discusses graphical models that can
handle latent variables without explicitly mod-
eling them quantitatively. For such problem do-
mains, several paradigms exist, such as semi-
Markovian causal models or maximal ances-
tral graphs. Applying these techniques to a
problem domain consists of several steps, typi-
cally: structure learning from observational and
experimental data, parameter learning, proba-
bilistic inference, and, quantitative causal infer-
ence.

A problem is that each existing approach only
focuses on one or a few of all the steps involved
in the process of modeling a problem includ-
ing latent variables. The goal of this paper is
to investigate the integral process from learning

from observational and experimental data unto
different types of efficient inference.

Semi-Markovian causal models (SMCMs)
(Pearl, 2000; Tian and Pearl, 2002) are specif-
ically suited for performing quantitative causal
inference in the presence of latent variables.
However, at this time no efficient parametrisa-
tion of such models is provided and there are no
techniques for performing efficient probabilistic
inference. Furthermore there are no techniques
for learning these models from data issued from
observations, experiments or both.

Maximal ancestral graphs (MAGs), devel-
oped in (Richardson and Spirtes, 2002) are
specifically suited for structure learning from
observational data. In MAGs every edge de-
picts an ancestral relationship. However, the
techniques only learn up to Markov equivalence



and provide no clues on which additional ex-
periments to perform in order to obtain the
fully oriented causal graph. See (Eberhardt et
al., 2005; Meganck et al., 2006) for that type
of results on Bayesian networks without latent
variables. Furthermore, no parametrisation for
discrete variables is provided for MAGs (only
one in terms of Gaussian distributions) and no
techniques for probabilistic and causal inference
have been developed.

We have chosen to use SMCMs in this pa-
per, because they are the only formalism that
allows to perform causal inference while taking
into account the influence of latent variables.
However, we will combine existing techniques
to learn MAGs with newly developed methods
to provide an integral approach that uses both
observational data and experiments in order to
learn fully oriented semi-Markovian causal mod-
els.

In this paper we also introduce an alterna-
tive representation for SMCMs together with a
parametrisation for this representation, where
the parameters can be learned from data with
classical techniques. Finally, we discuss how
probabilistic and quantitative causal inference
can be performed in these models.

The next section introduces the necessary no-
tations and definitions. It also discusses the se-
mantical and other differences between SMCMs
and MAGs. In section 3, we discuss structure
learning for SMCMs. Then we introduce a new
representation for SMCMs that can easily be
parametrised. We also show how both proba-
bilistic and causal inference can be performed
with the help of this new representation.

2 Notation and Definitions

We start this section by introducing notations
and defining concepts necessary in the rest of
this paper. We will also clarify the differences
and similarities between the semantics of SM-
CMs and MAGs.

2.1 Notation

In this work uppercase letters are used to rep-
resent variables or sets of variables, i.e., V =

{V1, . . . , Vn}, while corresponding lowercase let-
ters are used to represent their instantiations,
i.e., v1, v2 and v is an instantiation of all vi.
P (Vi) is used to denote the probability distribu-
tion over all possible values of variable Vi, while
P (Vi = vi) is used to denote the probability dis-
tribution over the instantiation of variable Vi to
value vi. Usually, P (vi) is used as an abbrevia-
tion of P (Vi = vi).

The operators Pa(Vi), Anc(Vi), Ne(Vi) de-
note the observable parents, ancestors and
neighbors respectively of variable Vi in a graph
and Pa(vi) represents the values of the parents
of Vi. Likewise, the operator LPa(Vi) represents
the latent parents of variable Vi. If Vi ↔ Vj

appears in a graph then we say that they are
spouses, i.e., Vi ∈ Sp(Vj) and vice versa.

When two variables Vi, Vj are independent we
denote it by (Vi⊥⊥Vj), when they are dependent
by (Vi 2Vj).

2.2 Semi-Markovian Causal Models

Consider the model in Figure 1(a), it is a prob-
lem with observable variables V1, . . . , V6 and la-
tent variables L1, L2 and it is represented by a
directed acyclic graph (DAG). As this DAG rep-
resents the actual problem, henceforth we will
refer to it as the underlying DAG.

The central graphical modeling representa-
tion that we use are the semi-Markovian causal
models (Tian and Pearl, 2002).

Definition 1. A semi-Markovian causal
model (SMCM) is a representation of a causal
Bayesian network (CBN) with observable vari-
ables V = {V1, . . . , Vn} and latent variables
L = {L1, . . . , Ln′}. Furthermore, every latent
variable has no parents (i.e., is a root node) and
has exactly two children that are both observed.

See Figure 1(b) for an example SMCM repre-
senting the underlying DAG in (a).

In a SMCM each directed edge represents an
immediate autonomous causal relation between
the corresponding variables. Our operational
definition of causality is as follows: a relation
from variable C to variable E is causal in a cer-
tain context, when a manipulation in the form
of a randomised controlled experiment on vari-
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Figure 1: (a) A problem domain represented by
a causal DAG model with observable and latent
variables. (b) A semi-Markovian causal model
representation of (a). (c) A maximal ancestral
graph representation of (a).

able C, induces a change in the probability dis-
tribution of variable E, in that specific context
(Neapolitan, 2003).

In a SMCM a bi-directed edge between two
variables represents a latent variable that is a
common cause of these two variables. Although
this seems very restrictive, it has been shown
that models with arbitrary latent variables can
be converted into SMCMs while preserving the
same independence relations between the ob-
servable variables (Tian and Pearl, 2002).

The semantics of both directed and bi-
directed edges imply that SMCMs are not max-
imal. This means that they do not represent all
dependencies between variables with an edge.
This is because in a SMCM an edge either rep-
resents an immediate causal relation or a latent
common cause, and therefore dependencies due
to a so called inducing path, will not be repre-
sented by an edge.

A node is a collider on a path if both its im-
mediate neighbors on the path point into it.

Definition 2. An inducing path is a path in
a graph such that each observable non-endpoint
node of the path is a collider, and an ancestor
of at least one of the endpoints.

Inducing paths have the property that their
endpoints can not be separated by conditioning
on any subset of the observable variables. For
instance, in Figure 1(a), the path V1 → V2 ←
L1 → V6 is inducing.

SMCMs are specifically suited for another
type of inference, i.e., causal inference.

Definition 3. Causal inference is the process
of calculating the effect of manipulating some
variables X on the probability distribution of
some other variables Y ; this is denoted as
P (Y = y|do(X = x)).

An example causal inference query in the
SMCM of Figure 1(b) is P (V6 = v6|do(V2 =
v2)).

Tian and Pearl have introduced theoretical
causal inference algorithms to perform causal
inference in SMCMs (Pearl, 2000; Tian and
Pearl, 2002). However these algorithms assume
that any distribution that can be obtained from
the JPD over the observable variables is avail-
able. We will show that their algorithm per-
forms efficiently on our parametrisation.

2.3 Maximal Ancestral Graphs

Maximal ancestral graphs are another approach
to modeling with latent variables (Richardson
and Spirtes, 2002). The main research focus in
that area lies on learning the structure of these
models.

Ancestral graphs (AGs) are complete under
marginalisation and conditioning. We will only
discuss AGs without conditioning as is com-
monly done in recent work.

Definition 4. An ancestral graph without
conditioning is a graph containing directed →
and bi-directed ↔ edges, such that there is no
bi-directed edge between two variables that are
connected by a directed path.

Pearl’s d-separation criterion can be extended
to be applied to ancestral graphs, and is called
m-separation in this setting. M -separation
characterizes the independence relations repre-
sented by an ancestral graph.

Definition 5. An ancestral graph is said to
be maximal if, for every pair of non-adjacent
nodes (Vi, Vj) there exists a set Z such that Vi

and Vj are independent conditional on Z.

A non-maximal AG can be transformed into
a MAG by adding some bi-directed edges (in-
dicating confounding) to the model. See Figure
1(c) for an example MAG representing the same
model as the underlying DAG in (a).

Learning Semi-Markovian Causal Models using Experiments         197



In this setting a directed edge represents an
ancestral relation in the underlying DAG with
latent variables. I.e., an edge from variable A

to B represents that in the underlying causal
DAG with latent variables, there is a directed
path between A and B.

Bi-directed edges represent a latent common
cause between the variables. However, if there
is a latent common cause between two variables
A and B, and there is also a directed path be-
tween A and B in the underlying DAG, then
in the MAG the ancestral relation takes prece-
dence and a directed edge will be found between
the variables. V2 → V6 in Figure 1(c) is an ex-
ample of such an edge.

Furthermore, as MAGs are maximal, there
will also be edges between variables that have no
immediate connection in the underlying DAG,
but that are connected via an inducing path.
The edge V1 → V6 in Figure 1(c) is an example
of such an edge.

These semantics of edges make causal infer-
ence in MAGs virtually impossible. As stated
by the Manipulation Theorem (Spirtes et al.,
2000), in order to calculate the causal effect of
a variable A on another variable B, the immedi-
ate parents (i.e., the pre-intervention causes) of
A have to be removed from the model. However,
as opposed to SMCMs, in MAGs an edge does
not necessarily represent an immediate causal
relationship, but rather an ancestral relation-
ship and hence in general the modeler does not
know which are the real immediate causes of a
manipulated variable.

An additional problem for finding the pre-
intervention causes of a variable in MAGs is that
when there is an ancestral relation and a latent
common cause between variables, then the an-
cestral relation takes precedence and the con-
founding is absorbed in the ancestral relation.

Complete partial ancestral graphs (CPAGs)
are defined in (Zhang and Spirtes, 2005) in the
following way.

Definition 6. Let [G] be the Markov equiva-
lence class for an arbitrary MAG G. The com-
plete partial ancestral graph (CPAG) for
[G], PG, is a graph with possibly the following

edges →,↔, o−o, o→, such that

1. PG has the same adjacencies as G (and
hence any member of [G]) does;

2. A mark of arrowhead > is in PG if and only
if it is invariant in [G]; and

3. A mark of tail − is in PG if and only if it
is invariant in [G].

4. A mark of o is in PG if not all members in
[G] have the same mark.

2.4 Assumptions

As is customary in the graphical modeling re-
search area, the SMCMs we take into account
in this paper are subject to some simplifying
assumptions:

1. Stability, i.e., the independencies in the
CBN with observed and latent variables
that generates the data are structural and
not due to several influences exactly can-
celing each other out (Pearl, 2000).

2. Only a single immediate connection per
two variables in the underlying DAG. I.e.,
we do not take into account problems where
two variables that are connected by an im-
mediate causal edge are also confounded
by a latent variable causing both variables.
Constraint based learning techniques such
as IC* (Pearl, 2000) and FCI (Spirtes et al.,
2000) also do not explicitly recognise mul-
tiple edges between variables. However, in
(Tian and Pearl, 2002) Tian presents an
algorithm for performing causal inference
where such relations between variables are
taken into account.

3. No selection bias. Mimicking recent work,
we do not take into account latent variables
that are conditioned upon, as can be the
consequence of selection effects.

4. Discrete variables. All the variables in our
models are discrete.
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3 Structure learning

Just as learning a graphical model in general,
learning a SMCM consists of two parts: struc-
ture learning and parameter learning. Both can
be done using data, expert knowledge and/or
experiments. In this section we discuss only
structure learning.

3.1 Without latent variables

Learning the structure of Bayesian networks
without latent variables has been studied by a
number of researchers (Pearl, 2000; Spirtes et
al., 2000). The results of applying one of those
algorithms is a representative of the Markov
equivalence class.

In order to perform probabilistic or causal in-
ference, we need a fully oriented structure. For
probabilistic inference this can be any repre-
sentative of the Markov equivalence class, but
for causal inference we need the correct causal
graph that models the underlying system. In or-
der to achieve this, additional experiments have
to be performed.

In previous work (Meganck et al., 2006), we
studied learning the completely oriented struc-
ture for causal Bayesian networks without la-
tent variables. We proposed a solution to min-
imise the total cost of the experiments needed
by using elements from decision theory. The
techniques used there could be extended to the
results of this paper.

3.2 With latent variables

In order to learn graphical models with la-
tent variables from observational data, the Fast
Causal Inference (FCI) algorithm (Spirtes et
al., 2000) has been proposed. Recently this re-
sult has been extended with the complete tail
augmentation rules introduced in (Zhang and
Spirtes, 2005). The results of this algorithm is
a CPAG, representing the Markov equivalence
class of MAGs consistent with the data.

As mentioned above for MAGs, in a CPAG
the directed edges have to be interpreted as
being ancestral instead of causal. This means
that there is a directed edge from Vi to Vj if
Vi is an ancestor of Vj in the underlying DAG
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Figure 2: (a) A SMCM. (b) Result of FCI, with
an i-false edge V3o−oV4.

and there is no subset of observable variables D

such that (Vi⊥⊥Vj |D). This does not necessarily
mean that Vi has an immediate causal influence
on Vj: it may also be a result of an inducing
path between Vi and Vj . For instance in Fig-
ure 1(c), the link between V1 and V6 is present
due to the inducing path V1, V2, L1, V6 shown in
Figure 1(a).

Inducing paths may also introduce an edge of
type o→ or o−o between two variables, indicating
either a directed or bi-directed edge, although
there is no immediate influence in the form of
an immediate causal influence or latent common
cause between the two variables. An example of
such a link is V3o−oV4 in Figure 2.

A consequence of these properties of MAGs
and CPAGs is that they are not suited for causal
inference, since the immediate causal parents of
each observable variable are not available, as is
necessary according to the Manipulation The-
orem. As we want to learn models that can
perform causal inference, we will discuss how to
transform a CPAG into a SMCM in the next
sections. Before we start, we have to men-
tion that we assume that the CPAG is correctly
learned from data with the FCI algorithm and
the extended tail augmentation rules, i.e., each
result that is found is not due to a sampling
error.

3.3 Transforming the CPAG

Our goal is to transform a given CPAG in or-
der to obtain a SMCM that corresponds to the
correspondig DAG. Remember that in general
there are three types of edges in a CPAG: →,
o→, o−o, in which o means either a tail mark
− or a directed mark >. So one of the tasks to
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obtain a valid SMCM is to disambiguate those
edges with at least one o as an endpoint. A
second task will be to identify and remove the
edges that are created due to an inducing path.

In the next section we will first discuss exactly
which information we obtain from performing
an experiment. Then, we will discuss the two
possibilities o→ and o−o. Finally, we will dis-
cuss how we can find edges that are created due
to inducing paths and how to remove these to
obtain the correct SMCM.

3.3.1 Performing experiments

The experiments discussed here play the role
of the manipulations that define a causal re-
lation (cf. Section 2.2). An experiment on a
variable Vi, i.e., a randomised controlled exper-
iment, removes the influence of other variables
in the system on Vi. The experiment forces
a distribution on Vi, and thereby changes the
joint distribution of all variables in the system
that depend directly or indirectly on Vi but
does not change the conditional distribution of
other variables given values of Vi. After the
randomisation, the associations of the remain-
ing variables with Vi provide information about
which variables are influenced by Vi (Neapoli-
tan, 2003). When we perform the experiment
we cut all influence of other variables on Vi.
Graphically this corresponds to removing all in-
coming edges into Vi from the underlying DAG.

All parameters besides those for the variable
experimented on, (i.e., P (Vi|Pa(Vi))), remain
the same. We then measure the influence of the
manipulation on variables of interest to get the
post-interventional distribution on these vari-
ables.

To analyse the results of the experiment we
compare for each variable of interest Vj the orig-
inal distribution P and the post-interventional
distribution PE , thus comparing P (Vj) and
PE(Vj) = P (Vj |do(Vi = vi)).

We denote performing an experiment at vari-
able Vi or a set of variables W by exp(Vi) or
exp(W ) respectively, and if we have to condition
on some other set of variables D while perform-
ing the experiment, we denote it as exp(Vi)|D
and exp(W )|D.

In general if a variable Vi is experimented on
and another variable Vj is affected by this ex-
periment, we say that Vj varies with exp(Vi),
denoted by exp(Vi)  Vj. If there is no varia-
tion in Vj we note exp(Vi) 6 Vj.

Although conditioning on a set of variables
D might cause some variables to become proba-
bilistically dependent, conditioning will not in-
fluence whether two variables vary with each
other when performing an experiment. I.e., sup-
pose the following structure is given Vi → D ←
Vj, then conditioning on D will make Vi depen-
dent on Vj , but when we perform an experiment
on Vi and check whether Vj varies with Vi then
conditioning on D will make no difference.

First we have to introduce the following defi-
nition:

Definition 7. A potentially directed path
(p.d. path) in a CPAG is a path made only of
edges of types o→ and →, with all arrowheads
in the same direction. A p.d. path from Vi to
Vj is denoted as Vi 99K Vj.

3.3.2 Solving o→

An overview of the different rules for solving
o→ is given in Table 1

Type 1(a)
Given Ao→ B

exp(A) 6 B

Action A↔ B

Type 1(b)
Given Ao→ B

exp(A) B

6 ∃p.d. path (length ≥ 2)A 99K B

Action A→ B

Type 1(c)
Given Ao→ B

exp(A) B

∃p.d. path (length ≥ 2)A 99K B

Action Block all p.d. paths by condi-
tioning on blocking set D

(a) exp(A)|D  B: A→ B

(b) exp(A)|D 6 B: A↔ B

Table 1: An overview of the different actions
needed to complete edges of type o→.
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For any edge Vio→ Vj , there is no need to
perform an experiment on Vj because we know
that there can be no immediate influence of Vj

on Vi, so we will only perform an experiment on
Vi.

If exp(Vi) 6 Vj , then there is no influence of
Vi on Vj, so we know that there can be no di-
rected edge between Vi and Vj and thus the only
remaining possibility is Vi ↔ Vj (Type 1(a)).

If exp(Vi)  Vj, then we know for sure that
there is an influence of Vi on Vj, we now need to
discover whether this influence is immediate or
via some intermediate variables. Therefore we
make a difference whether there is a potentially
directed (p.d.) path between Vi and Vj of length
≥ 2, or not. If no such path exists, then the
influence has to be immediate and the edge is
found Vi → Vj (Type 1(b)).

If at least one p.d. path Vi 99K Vj exists,
we need to block the influence of those paths
on Vj while performing the experiment, so we
try to find a blocking set D for all these paths.
If exp(Vi)|D  Vj , then the influence has to
be immediate, because all paths of length ≥ 2
are blocked, so Vi → Vj. On the other hand if
exp(Vi)|D 6 Vj , there is no immediate influ-
ence and the edge is Vi ↔ Vj (Type 1(c)).

3.3.3 Solving o−o

An overview of the different rules for solving
o−o is given in Table 2.

For any edge Vio−oVj, we have no information
at all, so we might need to perform experiments
on both variables.

If exp(Vi) 6 Vj , then there is no influence
of Vi on Vj so we know that there can be no
directed edge between Vi and Vj and thus the
edge is of the following form: Vi ←oVj , which
then becomes a problem of Type 1.

If exp(Vi)  Vj, then we know for sure that
there is an influence of Vi on Vj, and as in the
case of Type 1(b), we make a difference whether
there is a potentially directed path between Vi

and Vj of length ≥ 2, or not. If no such path
exists, then the influence has to be immediate
and the edge must be turned into Vi → Vj.

If at least one p.d. path Vi 99K Vj exists,
we need to block the influence of those paths

Type 2(a)
Given Ao−oB

exp(A) 6 B

Action A←oB(⇒Type 1)

Type 2(b)
Given Ao−oB

exp(A) B

6 ∃p.d. path (length ≥ 2)A 99K B

Action A→ B

Type 2(c)
Given Ao−oB

exp(A) B

∃p.d. path (length ≥ 2)A 99K B

Action Block all p.d. paths by condi-
tioning on blocking set D

(a) exp(A)|D  B: A→ B

(b) exp(A)|D 6 B: A←oB

(⇒Type 1)

Table 2: An overview of the different actions
needed to complete edges of type o−o.

on Vj while performing the experiment, so we
find a blocking set D like with Type 1(c). If
exp(Vi)|D  Vj, then the influence has to be
immediate, because all paths of length ≥ 2 are
blocked, so Vi → Vj . On the other hand if
exp(Vi)|D 6 Vj , there is no immediate influ-
ence and the edge is of type: Vi ←oVj , which
again becomes a problem of Type 1.

3.3.4 Removing inducing path edges

An inducing path between two variables Vi

and Vj might create an edge between these two
variables during learning because the two are
dependent conditional on any subset of observ-
able variables. As mentioned before, this type
of edges is not present in SMCMs as it does not
represent an immediate causal influence or a la-
tent variable in the underlying DAG. We will
call such an edge an i-false edge.

For instance, in Figure 1(a) the path
V1, V2, L1, V6 is an inducing path, which causes
the FCI algorithm to find an i-false edge be-
tween V1 and V6, see Figure 1(c). Another ex-
ample is given in Figure 2 where the SMCM is
given in (a) and the result of FCI in (b). The
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edge between V3 and V4 in (b) is a consequence
of the inducing path via the observable variables
V3, V1, V2, V4.

In order to be able to apply a causal inference
algorithm we need to remove all i-false edges
from the learned structure. We need to identify
the substructures that can indicate this type of
edges. This is easily done by looking at any
two variables that are connected by an immedi-
ate connection, and when this edge is removed,
they have at least one inducing path between
them. To check whether the immediate con-
nection needs to be present we have to block
all inducing paths by performing one or more
experiments on an inducing path blocking set
(i-blocking set) Dip and block all other paths
by conditioning on a blocking set D. If Vi and
Vj are dependent, i.e., Vi 2Vj under these cir-
cumstances the edge is correct and otherwise it
can be removed.

In the example of Figure 1(c), we can block
the inducing path by performing an experiment
on V2, and hence can check that V1 and V6

do not covary with each other in these circum-
stances, so the edge can be removed.

In Table 3 an overview of the actions to re-
solve i-false edges is given.

Given A pair of connected variables Vi, Vj

A set of inducing paths Vi, . . . , Vj

Action Block all inducing paths Vi, . . . , Vj

by conditioning on i-blocking set
Dip.
Block all other paths between Vi

and Vj by conditioning on blocking
set D.
When performing all exp(Dip)|D:
if Vi 2Vj: confounding is real
else remove edge between Vi, Vj

Table 3: Removing inducing path edges.

3.4 Example

We will demonstrate a number of steps to dis-
cover the completely oriented SMCM (Figure
1(b)) based on the result of the FCI algorithm
applied on observational data generated from
the underlying DAG in Figure 1(a). The result

V
3


V
1


V
2


V
5


V
4


V
6


V
3


V
1


V
2


V
5


V
4


V
6


V
3


V
1


V
2


V
5


V
4


V
6


(b)
 (c)


(d)
 (e)


V
3


V
1


V
2


V
5


V
4


V
6


V

3


V

1


V

2


V

5


V

4


V

6


(f)


V
3


V
1


V
2


V
5


V
4


V
6


(a)


Figure 3: (a) The result of FCI on data of the
underlying DAG of Figure 1(a). (b) Result of
an experiment on V5. (c) After experiment on
V4. (d) After experiment on V3. (e) After ex-
periment on V2 while conditioning on V3. (f)
After resolving all problems of Type 1 and 2.

of the FCI algorithm can be seen in Figure 3(a).
We will first resolve problems of Type 1 and 2,
and then remove i-false edges. The result of
each step is indicated in Figure 3.

• exp(V5)

– V5o−oV4:
exp(V5) 6 V4 ⇒ V4o→ V5 (Type 2(a))

– V5o→ V6:
exp(V5) 6 V6 ⇒ V5 ↔ V6 (Type 1(a))

• exp(V4)

– V4o−oV2:
exp(V4) 6 V2 ⇒ V2o→ V4 (Type 2(a))

– V4o−oV3:
exp(V4) 6 V3 ⇒ V3o→ V4 (Type 2(a))

– V4o→ V5:
exp(V4) V5 ⇒ V4 → V5 (Type 1(b))

– V4o→ V6:
exp(V4) V6 ⇒ V4 → V6 (Type 1(b))

• exp(V3)

– V3o−oV2:
exp(V3) 6 V2 ⇒ V2o→ V3 (Type 2(a))

– V3o→ V4:
exp(V3) V4 ⇒ V3 → V4 (Type 1(b))
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• exp(V2) and exp(V2)|V3, because two p.d.
paths between V2 and V4

– V2o−oV1:
exp(V2) 6 V1 ⇒ V1o→ V2 (Type 2(a))

– V2o→ V3:
exp(V2) V3 ⇒ V2 → V3 (Type 1(b))

– V2o→ V4:
exp(V2)|V3  V4 ⇒ V2 → V4 (Type
1(c))

After resolving all problems of Type 1 and
2 we end up with the SMCM structure shown
in Figure 3(f). This representation is no longer
consistent with the MAG representation since
there are bi-directed edges between two vari-
ables on a directed path, i.e., V2, V6. There is
a potentially i-false edge V1 ↔ V6 in the struc-
ture with inducing path V1, V2, V6, so we need
to perform an experiment on V2, blocking all
other paths between V1 and V6 (this is also done
by exp(V2) in this case). Given that the orig-
inal structure is as in Figure 1(a), performing
exp(V2) shows that V1 and V6 are independent,
i.e., exp(V2) : (V1⊥⊥V6). Thus the bi-directed
edge between V1 and V6 is removed, giving us
the SMCM of Figure 1(b).

4 Parametrisation of SMCMs

As mentioned before, in their work on causal in-
ference, Tian and Pearl provide an algorithm for
performing causal inference given knowledge of
the structure of an SMCM and the joint prob-
ability distribution (JPD) over the observable
variables. However, they do not provide a para-
metrisation to efficiently store the JPD over the
observables.

We start this section by discussing the fac-
torisation for SMCMs introduced in (Tian and
Pearl, 2002). From that result we derive an ad-
ditional representation for SMCMs and a para-
metrisation that facilitates probabilistic and
causal inference. We will also discuss how these
parameters can be learned from data.

4.1 Factorising with Latent Variables

Consider an underlying DAG with observable
variables V = {V1, . . . , Vn} and latent variables

L = {L1, . . . , Ln′}. Then the joint probabil-
ity distribution can be written as the following
mixture of products:

P (v) =
∑

{lk|Lk∈L}

∏

Vi∈V

P (vi|Pa(vi), LPa(vi))

(1)
∏

Lj∈L

P (lj).

Taking into account that in a SMCM the la-
tent variables are implicitly represented by bi-
directed edges, we introduce the following defi-
nition.

Definition 8. In a SMCM, the set of observ-
able variables can be partitioned by assigning
two variables to the same group iff they are con-
nected by a bi-directed path. We call such a
group a c-component (from “confounded com-
ponent”) (Tian and Pearl, 2002).

For instance, in Figure 1(b) variables
V2, V5, V6 belong to the same c-component.
Then it can be readily seen that c-components
and their associated latent variables form re-
spective partitions of the observable and la-
tent variables. Let Q[Si] denote the contribu-
tion of a c-component with observable variables
Si ⊂ V to the mixture of products in Equa-
tion 1. Then we can rewrite the JPD as follows:
P (v) =

∏
i∈{1,...,k}

Q[Si].

Finally, (Tian and Pearl, 2002) proved that
each Q[S] could be calculated as follows. Let
Vo1

< . . . < Von
be a topological order over V ,

and let V (i) = Vo1
< . . . < Voi

, i = 1, . . . , n, and
V (0) = ∅.

Q[S] =
∏

Vi∈S

P (vi|(Ti ∪ Pa(Ti))\{Vi}) (2)

where Ti is the c-component of the SMCM G

reduced to variables V (i), that contains Vi. The
SMCM G reduced to a set of variables V ′ ⊂
V is the graph obtained by removing from the
graph all variables V \V ′ and the edges that are
connected to them.

In the rest of this section we will develop
a method for deriving a DAG from a SMCM.
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We will show that the classical factorisation∏
P (vi|Pa(vi)) associated with this DAG, is the

same as the one associated with the SMCM, as
above.

4.2 Parametrised representation

Here we first introduce an additional represen-
tation for SMCMs, then we show how it can be
parametrised and, finally we discuss how this
new representation could be optimised.

4.2.1 PR-representation

Consider Vo1
< . . . < Von

to be a topological
order O over the observable variables V , only
considering the directed edges of the SMCM,
and let V (i) = Vo1

< . . . < Voi
, i = 1, . . . , n, and

V (0) = ∅. Then Table 4 shows how the para-
metrised (PR-) representation can be obtained
from the original SMCM structure.

Given a SMCM G and a topological ordering
O, the PR-representation has these properties:

1. The nodes are V , i.e., the observable var-
iables of the SMCM.

2. The directed edges are the same as in the
SMCM.

3. The confounded edges are replaced by a
number of directed edges as follows:
Add an edge from node Vi to node Vj iff:

a) Vi ∈ (Tj ∪ Pa(Tj)), where Tj is the
c-component of G reduced to variables

V (j) that contains Vj ,
b) and there was not already an edge
between nodes Vi and Vj.

Table 4: Obtaining the PR-representation.

This way each variable becomes a child of the
variables it would condition on in the calcula-
tion of the contribution of its c-component as in
Equation (2).

Figure 4(a) shows the PR-representation of
the SMCM in Figure 1(a). The topological or-
der that was used here is V1 < V2 < V3 < V4 <

V5 < V6 and the directed edges that have been
added are V1 → V5, V2 → V5, V1 → V6, V2 → V6,
and, V5 → V6.
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Figure 4: (a) The PR-representation applied to
the SMCM of Figure 1(b). (b) Junction tree
representation of the DAG in (a).

The resulting DAG is an I -map (Pearl, 1988),
over the observable variables of the indepen-
dence model represented by the SMCM. This
means that all the independencies that can be
derived from the new graph must also be present
in the JPD over the observable variables. This
property can be more formally stated as the fol-
lowing theorem.

Theorem 9. The PR-representation PR de-
rived from a SMCM S is an I-map of that
SMCM.

Proof. Consider two variables A and B in PR

that are not connected by an edge. This means
that they are not independent, since a necessary
condition for two variables to be conditionally
independent in a stable DAG is that they are
not connected by an edge. PR is stable as we
consider only stable problems (Assumption 1 in
Section 2.4).

Then, from the method for constructing PR

we can conclude that S (i) contains no directed
edge between A and B, (ii) contains no bi-
directed edge between A and B, (iii) contains
no inducing path between A and B. Property
(iii) holds because the only inducing paths that
are possible in a SMCM are those between a
member of a c-component and the immediate
parent of another variable of the c-component,
and in these cases the method for constructing
PR adds an edge between those variables. Be-
cause of (i),(ii), and (iii) we can conclude that
A and B are independent in S.
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4.2.2 Parametrisation

For this DAG we can use the same para-
metrisation as for classical BNs, i.e., learning
P (vi|Pa(vi)) for each variable, where Pa(vi)
denotes the parents in the new DAG. In this
way the JPD over the observable variables
factorises as in a classical BN, i.e., P (v) =∏

P (vi|Pa(vi)). This follows immediately from
the definition of a c-component and from Equa-
tion (2).

4.2.3 Optimising the Parametrisation

We have mentioned that the number of
edges added during the creation of the PR-
representation depends on the topological order
of the SMCM.

As this order is not unique, choosing an or-
der where variables with a lesser amount of par-
ents have precedence, will cause less edges to
be added to the DAG. This is because most of
the added edges go from parents of c-component
members to c-component members that are
topological descendants.

By choosing an optimal topological order, we
can conserve more conditional independence re-
lations of the SMCM and thus make the graph
more sparse, thus leading to a more efficient
parametrisation.

4.2.4 Learning parameters

As the PR-representation of SMCMs is a
DAG as in the classical Bayesian network for-
malism, the parameters that have to be learned
are P (vi|Pa(vi)). Therefore, techniques such
as ML and MAP estimation (Heckerman, 1995)
can be applied to perform this task.

4.3 Probabilistic inference

One of the most famous existing probabilistic
inference algorithm for models without latent
variables is the junction tree algorithm (JT)
(Lauritzen and Spiegelhalter, 1988).

These techniques cannot immediately be ap-
plied to SMCMs for two reasons. First of all
until now no efficient parametrisation for this
type of models was available, and secondly, it
is not clear how to handle the bi-directed edges
that are present in SMCMs.

We have solved this problem by first trans-
forming the SMCM into its PR-representation,
which allows us to apply the junction tree in-
ference algorithm. This is a consequence of
the fact that, as previously mentioned, the PR-
representation is an I -map over the observable
variables. And as the JT algorithm is based
only on independencies in the DAG, applying it
to an I -map of the problem gives correct results.
See Figure 4(b) for the junction tree obtained
from the parametrised representation in Figure
4(a).

Note that any other classical probabilistic in-
ference technique that only uses conditional in-
dependencies between variables could also be
applied to the PR-representation.

4.4 Causal inference

Tian and Pearl (2002) developed an algorithm
for performing causal inference, however as
mentioned before they have not provided an ef-
ficient parametrisation.

Richardson and Spirtes (2003) show causal
inference in AGs on an example, but a detailed
approach is not provided and the problem of
what to do when some of the parents of a vari-
able are latent is not solved.

By definition in the PR-representation, the
parents of each variable are exactly those vari-
ables that have to be conditioned on in order to
obtain the factor of that variable in the calcula-
tion of the c-component, see Table 4 and (Tian
and Pearl, 2002). Thus, the PR-representation
provides all the necessary quantitative informa-
tion, while the original structure of the SMCM
provides the necessary structural information,
for the algorithm by Tian and Pearl to be ap-
plied.

5 Conclusions and Perspectives

In this paper we have proposed a number of so-
lutions to problems that arise when using SM-
CMs in practice.

More precisely, we showed that there is a big
gap between the models that can be learned
from data alone and the models that are used
in theory. We showed that it is important to re-
trieve the fully oriented structure of a SMCM,

Learning Semi-Markovian Causal Models using Experiments         205



and discussed how to obtain this from a given
CPAG by performing experiments.

For future work we would like to relax the
assumptions made in this paper. First of all
we want to study the implications of allowing
two types of edges between two variables, i.e.,
confounding as well as a immediate causal rela-
tionship. Another direction for possible future
work would be to study the effect of allowing
multiple joint experiments in other cases than
when removing inducing path edges.

Furthermore, we believe that applying the
orientation and tail augmentation rules of
(Zhang and Spirtes, 2005) after each experi-
ment, might help to reduce the number of exper-
iments needed to fully orient the structure. In
this way we could extend to SMCMs our previ-
ous results (Meganck et al., 2006) on minimising
the total number of experiments in causal mod-
els without latent variables. This would allow to
compare empirical results with the theoretical
bounds developed in (Eberhardt et al., 2005).

Up until now SMCMs have not been para-
metrised in another way than by the entire joint
probability distribution. Another contribution
of our paper is that we showed that using an
alternative representation, we can parametrise
SMCMs in order to perform probabilistic as well
as causal inference. Furthermore this new rep-
resentation allows to learn the parameters using
classical methods.

We have informally pointed out that the
choice of a topological order when creating the
PR-representation, influences its size and thus
its efficiency. We would like to investigate this
property in a more formal manner. Finally, we
have started implementing the techniques intro-
duced in this paper into the structure learning
package (SLP)1 of the Bayesian networks tool-
box (BNT)2 for MATLAB.
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Geometry of Rank Tests
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Abstract

We study partitions of the symmetric group which have desirable geometric properties.
The statistical tests defined by such partitions involve counting all permutations in the
equivalence classes. These permutations are the linear extensions of partially ordered sets
specified by the data. Our methods refine rank tests of non-parametric statistics, such
as the sign test and the runs test, and are useful for the exploratory analysis of ordinal
data. Convex rank tests correspond to probabilistic conditional independence structures
known as semi-graphoids. Submodular rank tests are classified by the faces of the cone of
submodular functions, or by Minkowski summands of the permutohedron. We enumerate
all small instances of such rank tests. Graphical tests correspond to both graphical models
and to graph associahedra, and they have excellent statistical and algorithmic properties.

1 Introduction

The non-parametric approach to statistics was
introduced by (Pitman, 1937). The emergence
of microarray data in molecular biology has led
to a number of new tests for identifying signifi-
cant patterns in gene expression time series; see
e.g. (Willbrand, 2005). This application moti-
vated us to develop a mathematical theory of
rank tests. We propose that a rank test is a
partition of Sn induced by a map τ : Sn → T
from the symmetric group of all permutations of
[n] = {1, . . . , n} onto a set T of statistics. The
statistic τ(π) is the signature of the permuta-
tion π ∈ Sn. Each rank test defines a partition
of Sn into classes, where π and π′ are in the
same class if and only if τ(π) = τ(π′). We iden-
tify T = image(τ) with the set of all classes in
this partition of Sn. Assuming the uniform dis-
tribution on Sn, the probability of seeing a par-
ticular signature t ∈ T is 1/n! times |τ−1(t)|.
The computation of a p-value for a given per-
mutation π ∈ Sn typically amounts to summing

Pr(π′) =
1
n!
· | τ−1

(
τ(π′)

)
| (1)

over all permutations π′ with Pr(π′) < Pr(π).
In Section 2 we explain how existing rank tests
can be understood from our point of view.

In Section 3 we describe the class of con-
vex rank tests which captures properties of tests
used in practice. We work in the language of
algebraic combinatorics (Stanley, 1997). Con-
vex rank tests are in bijection with polyhedral
fans that coarsen the hyperplane arrangement
of Sn, and with conditional independence struc-
tures known as semi-graphoids (Studený, 2005).

Section 4 is devoted to convex rank tests that
are induced by submodular functions. These
submodular rank tests are in bijection with
Minkowski summands of the (n−1)-dimensional
permutohedron and with structural imset mod-
els. Furthermore, these tests are at a suitable
level of generality for the biological applications
that motivated us. We make the connections
to polytopes and independence models concrete
by classifying all convex rank tests for n ≤ 5.

In Section 5 we discuss the class of graphi-
cal tests. In mathematics, these correspond to
graph associahedra, and in statistics to graphi-
cal models. The equivalence of these two struc-
tures is shown in Theorem 18. The implemen-
tation of convex rank tests requires the efficient
enumeration of linear extensions of partially or-
dered sets (posets). A key ingredient is a highly
optimized method for computing distributive
lattices. Our software is discussed in Section 6.



2 Rank tests and posets

A permutation π in Sn is a total order on [n] =
{1, . . . , n}. This means that π is a set of

(
n
2

)
ordered pairs of elements in [n]. If π and π′ are
permutations then π ∩ π′ is a partial order.

In the applications we have in mind, the data
are vectors u ∈ Rn with distinct coordinates.
The permutation associated with u is the to-
tal order π = { (i, j) ∈ [n] × [n] : ui < uj }.
We shall employ two other ways of writing
this permutation. The first is the rank vector
ρ = (ρ1, . . . , ρn), whose defining properties are
{ρ1, . . . , ρn} = [n] and ρi < ρj if and only if
ui < uj . That is, the coordinate of the rank
vector with value i is at the same position as the
ith smallest coordinate of u. The second is the
descent vector δ = (δ1, . . . , δn), defined by uδi

>
uδi+1

. The ith coordinate of the descent vector
is the position of the ith largest value of u. For
example, if u = (11, 7, 13) then its permutation
is represented by π = {(2, 1), (1, 3), (2, 3)}, by
ρ = (2, 1, 3), or by δ = (3, 1, 2).

A permutation π is a linear extension of a
partial order P on [n] if P ⊆ π. We write
L(P ) ⊆ Sn for the set of linear extensions of P .
A partition τ of the symmetric group Sn is a pre-
convex rank test if the following axiom holds:

(PC)
If τ(π) = τ(π′) and π′′ ∈ L(π ∩ π′)

then τ(π)=τ(π′)=τ(π′′).

Note that π′′ ∈ L(π ∩ π′) means π ∩ π′ ⊆ π′′.
For n = 3 the number of all rank tests is the Bell
number B6 = 203. Of these 203 set partitions
of S3, only 40 satisfy the axiom (PC).

Each class C of a pre-convex rank test τ cor-
responds to a poset P on [n]; namely, P is
the intersection of all total orders in that class:
P =

⋂
π∈C π. The axiom (PC) ensures that C

coincides with the set L(P ) of all linear exten-
sions of P . The inclusion C ⊆ L(P ) is clear. For
the reverse inclusion, note that from any permu-
tation π in L(P ), we can obtain any other π′ in
L(P ) by a sequence of reversals (a, b) 7→ (b, a),
where each intermediate π̂ is also in L(P ). As-
sume π0 ∈ L(P ) and π1 ∈ C differ by one rever-
sal (a, b) ∈ π0, (b, a) ∈ π1. Then (b, a) /∈ P , so

there is some π2 ∈ C such that (a, b) ∈ π2; thus,
π0 ∈ L(π1 ∩ π2) by (PC). This shows π0 ∈ C.

A pre-convex rank test is thus an unordered
collection of posets P1, , . . . , Pk on [n] that sat-
isfies the property that Sn is the disjoint union
of the subsets L(P1), . . . ,L(Pk). The posets Pi

that represent the classes in a pre-convex rank
test capture the shapes of data vectors.

Example 1 (The sign test for paired data).
The sign test is performed on data that are
paired as two vectors u = (u1, u2, . . . , um) and
v = (v1, v2, . . . , vm). The null hypothesis is that
the median of the differences ui − vi is 0. The
test statistic is the number of differences that
are positive. This test is a rank test, because u
and v can be transformed into the overall ranks
of the n = 2m values, and the rank vector en-
tries can then be compared. This test coarsens
the convex rank test which is the MSS of Section
4 with K = {{1,m + 1}, {2,m + 2}, . . . }.
Example 2 (Runs tests). A runs test can be
used when there is a natural ordering on the
data points, such as in a time series. The data
are transformed into a sequence of ‘pluses’ and
‘minuses,’ and the null hypothesis is that the
number of observed runs is no more than that
expected by chance. A runs test is a coarsening
of the convex rank test τ described in (Will-
brand, 2005, Section 6.1.1) and in Example 4.

These two examples suggest that many tests
from classical statistics have a natural refine-
ment by a pre-convex rank test. The term
“pre-convex” refers to the following interpreta-
tion of the axiom (PC). Consider any two vec-
tors u and u′ in Rn, and a convex combination
u′′ = λu + (1 − λ)u′, with 0 < λ < 1. If
π, π′, π′′ are the permutations of u, u′, u′′ then
π′′ ∈ L(π ∩ π′). Thus the regions in Rn speci-
fied by a pre-convex rank test are convex cones.

3 Convex rank tests

A fan in Rn is a finite collection F of polyhe-
dral cones which satisfies the following proper-
ties: (i) if C ∈ F and C ′ is a face of C, then
C ′ ∈ F , (ii) If C,C ′ ∈ F , then C ∩ C ′ is a face
of C. Two vectors u and v in Rn are permu-
tation equivalent when ui < uj if and only if
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vi < vj , and ui = uj if and only if vi = vj for all
i, j ∈ [n]. The permutation equivalence classes
(of which there are 13 for n = 3) induce a fan
which we call the Sn-fan. The maximal cones
in the Sn-fan, which are the closures of the per-
mutation equivalence classes corresponding to
total orders, are indexed by permutations δ in
Sn. A coarsening of the Sn-fan is a fan F such
that every permutation equivalence class of Rn

is fully contained in a cone C of F ; F defines
a partition of Sn because each maximal cone of
the Sn-fan is contained in some cone C ∈ F .
We define a convex rank test to be a partition
of Sn defined by a coarsening of the Sn-fan. We
identify the fan with that test.

Two maximal cones of the Sn-fan share a wall
if there exists an index k such that δk = δ′k+1,
δk+1 = δ′k and δi = δ′i for i 6= k, k + 1. That is,
the corresponding permutations δ and δ′ differ
by an adjacent transposition. To such an un-
ordered pair {δ, δ′}, we associate the following
conditional independence (CI) statement:

δk ⊥⊥ δk+1 | {δ1, . . . , δk−1}. (2)

This formula defines a map from the set of walls
of the Sn-fan onto the set of all CI statements

Tn =
{

i ⊥⊥ j |K : K ⊆ [n]\{i, j}
}
.

The map from walls to CI statements is not in-
jective; there are (n−k−1)!(k−1)! walls which
are labelled by the statement (2).

Any convex rank test F is characterized by
the collection of walls {δ, δ′} that are removed
when passing from the Sn-fan to F . So, from
(2), any convex rank test F maps to a set MF
of CI statements corresponding to missing walls.
Recall from (Matúš, 2004) and (Studený, 2005)
that a subset M of Tn is a semi-graphoid if the
following axiom holds:

i ⊥⊥ j |K ∪ ` ∈M and i ⊥⊥ ` |K ∈M
implies i ⊥⊥ j |K ∈M and i ⊥⊥ ` |K∪j ∈M.

Theorem 3. The map F 7→MF is a bijection
between convex rank tests and semi-graphoids.

Example 4 (Up-down analysis for n = 3). The
test in (Willbrand, 2005) is a convex rank test
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Figure 1: The permutohedron P3 and the S3-
fan projected to the plane. Each permutation
is represented by its descent vector δ = δ1δ2δ3.

and is visualized in Figure 1. Permutations are
in the same class if they are connected by a
solid edge; there are four classes. In the S3-fan,
the two missing walls are labeled by conditional
independence statements as defined in (2).

Example 5 (Up-down analysis for n = 4). The
test F in (Willbrand, 2005) is shown in Figure 2.
The double edges correspond to the 12 CI state-
ments inMF . There are 8 classes; e.g., the class
{3412, 3142, 1342, 1324, 3124} consists of the 5
permutations with up-down pattern (−,+,−).

Our proof of Theorem 3 rests on translating
the semi-graphoid axiom for a set of CI state-
ments into geometric statements about the cor-
responding set of edges of the permutohedron.

The Sn-fan is the normal fan (Ziegler, 1995)
of the permutohedron Pn, which is the convex
hull of the vectors (ρ1, . . . , ρn) ∈ Rn, where ρ
runs over all rank vectors of permutations in
Sn. The edges of Pn correspond to walls and
are thus labeled with CI statements. A collec-
tion of parallel edges of Pn perpendicular to a
hyperplane xi = xj corresponds to the set of
CI statements i ⊥⊥ j|K, where K ranges over
all subsets of [n]\{i, j}. The two-dimensional
faces of Pn are squares and regular hexagons,
and two edges of Pn have the same label in Tn
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Figure 2: The permutohedron P4 with vertices
marked by descent vectors δ. The test “up-
down analysis” is indicated by the double edges.

if, but not only if, they are opposite edges of a
square. A semi-graphoid M can be identified
with the set M of edges with labels from M.
The semi-graphoid axiom translates into a geo-
metric condition on the hexagonal faces of Pn.

Observation 6. A set M of edges of the per-
mutohedron Pn is a semi-graphoid if and only
if M satisfies the following two axioms:
Square axiom: Whenever an edge of a square
is in M, then the opposite edge is also in M.
Hexagon axiom: Whenever two adjacent edg-
es of a hexagon are in M, then the two opposite
edges of that hexagon are also in M.

Let M be the subgraph of the edge graph of
Pn defined by the statements in M. Then the
classes of the rank test defined by M are given
by the permutations in the path-connected com-
ponents of M. We regard a path from δ to
δ′ on Pn as a word σ(1) · · ·σ(l) in the free as-
sociative algebra A generated by the adjacent
transpositions of [n]. For example, the word
σ23 := (23) gives the path from δ to δ′ = σ23δ =
δ1δ3δ2δ4 . . . δn. The following relations in A de-

fine a presentation of the group algebra of Sn:

(BS) σi,i+1σi+k+1,i+k+2 − σi+k+1,i+k+2σi,i+1,

(BH) σi,i+1σi+1,i+2σi,i+1 − σi+1,i+2σi,i+1σi+1,i+2,

(BN) σ2
i,i+1 − 1,

where suitable i and k vary over [n]. The first
two are the braid relations, and the last repre-
sents the idempotency of each transposition.

Now, we regard these relations as proper-
ties of a set of edges of Pn, by identifying a
word and a permutation δ with the set of edges
that comprise the corresponding path in Pn.
For example, a set satisfying (BS) is one such
that, starting from any δ, the edges of the path
σi,i+1σi+k+1,i+k+2 are in the set if and only if the
edges of the path σi+k+1,i+k+2σi,i+1 are in the
set. Note then, that (BS) is the square axiom,
and (BH) is a weakening of the hexagon ax-
iom of semi-graphoids. That is, implications in
either direction hold in a semi-graphoid. How-
ever, (BN) holds only directionally in a semi-
graphoid: if an edge lies in the semi-graphoid,
then its two vertices are in the same class; but
the empty path at some vertex δ certainly does
not imply the presence of all incident edges in
the semi-graphoid. Thus, for a semi-graphoid,
we have (BS) and (BH), but must replace (BN)
with the directional version

(BN ′) σ2
i,i+1 → 1.

Consider a path p from δ to δ′ in a semi-
graphoid. A result of (Tits, 1968) gives the fol-
lowing lemma; see also (Brown, 1989, p. 49-51).

Lemma 7. If M is a semi-graphoid, then if δ
and δ′ lie in the same class of M, then so do
all shortest paths on Pn between them.

We are now equipped to prove Theorem 3.
Note that we have demonstrated that semi-
graphoids and convex rank tests can be re-
garded as sets of edges of Pn, so we will show
that their axiom systems are equivalent. We
first show that a semi-graphoid satisfies (PC).
Consider δ, δ′ in the same class C of a semi-
graphoid, and let δ′′ ∈ L(δ, δ′). Further, let p be
a shortest path from δ to δ′′ (so, pδ = δ′′), and
let q be a shortest path from δ′′ to δ′. We claim

210          J. Morton, L. Pachter, A. Shiu, B. Sturmfels, and O. Wienand



that qp is a shortest path from δ to δ′, and thus
δ′′ ∈ C by Lemma 7. Suppose qp is not a short-
est path. Then, we can obtain a shorter path in
the semi-graphoid by some sequence of substitu-
tions according to (BS), (BH), and (BN’). Only
(BN’) decreases the length of a path, so the se-
quence must involve (BN’). Therefore, there is
some i, j in [n], such that their positions rela-
tive to each other are reversed twice in qp. But
p and q are shortest paths, hence one reversal
occurs in each p and q. Then δ and δ′ agree on
whether i > j or j > i, but the reverse holds
in δ′′, contradicting δ′′ ∈ L(δ, δ′). Thus every
semi-graphoid is a pre-convex rank test.

Now, we show that a semi-graphoid corre-
sponds to a fan. Consider the cone corre-
sponding to a class C. We need only show
that it meets any other cone in a shared face.
Since C is a cone of a coarsening of the Sn-fan,
each nonmaximal face of C lies in a hyperplane
H = {xi = xj}. Suppose a face of C coin-
cides with the hyperplane H and that i > j in
C. A vertex δ borders H if i and j are adja-
cent in δ. We will show that if δ, δ′ ∈ C bor-
der H, then their reflections δ̂ = δ1 . . . ji . . . δn

and δ̂′ = δ′1 . . . ji . . . δ′n both lie in some class
C ′. Consider a ‘great circle’ path between δ
and δ′ which stays closest to H: all vertices in
the path have i and j separated by at most one
position, and no two consecutive vertices have i
and j nonadjacent. This is a shortest path, so
it lies in C, by Lemma 7. Using the square and
hexagon axioms (Observation 6), we see that
the reflection of the path across H is a path in
the semi-graphoid that connects δ̂ to δ̂′ (Figure
3). Thus a semigraphoid is a convex rank test.

•

•
•qqq

qq•
δ̂

MMMMMM

•δ
•qqqqqq •M

MMM
M

δ′•

•
δ̂′•qqq

qqq•MMMMM

•
•qqqqq •M

MMM
M

xi = xj
_________________

Figure 3: Reflecting a path across a hyperplane.

Finally, if M is a set of edges of Pn, repre-
senting a convex rank test, then it is easy to

show that M satisfies the square and hexagon
axioms. This completes the proof of Theorem 3.

Remark 8. For n = 3 there are 40 pre-convex
rank tests, but only 22 of them are convex rank
tests. The corresponding CI models are shown
in Figure 5.6 on page 108 in (Studený, 2005).

4 The submodular cone

In this section we examine a subclass of the con-
vex rank tests. Let 2[n] denote the collection
of all subsets of [n] = {1, 2, . . . , n}. Any real-
valued function w : 2[n] → R defines a convex
polytope Qw of dimension ≤ n− 1 as follows:

Qw :=
{

x ∈ Rn : x1 + x2 + · · ·+ xn = w([n])
and

∑
i∈I xi ≤ w(I) for all ∅ 6= I ⊆ [n]

}
.

A function w : 2[n] → R is called submodular if
w(I)+w(J) ≥ w(I∩J)+w(I∪J) for I, J ⊆ [n].

Proposition 9. A function w : 2[n] → R is
submodular if and only if the normal fan of the
polyhedron Qw is a coarsening of the Sn-fan.

This follows from greedy maximization as in
(Lovász, 1983). Note that the function w is sub-
modular if and only if the optimal solution of

maximize u · x subject to x ∈ Qw

depends only on the permutation equivalence
class of u. Thus, solving this linear program-
ming problem constitutes a convex rank test.
Any such test is called a submodular rank test.

A convex polytope is a (Minkowski) summand
of another polytope if the normal fan of the lat-
ter refines the normal fan of the former. The
polytope Qw that represents a submodular rank
test is a summand of the permutohedron Pn.

Theorem 10. The following combinatorial
objects are equivalent for any positive integer n:
1. submodular rank tests,
2. summands of the permutohedron Pn,
3. structural conditional independence models,
4. faces of the submodular cone Cn in R2n

.

We have 1 ⇐⇒ 2 from Proposition 9, and
1 ⇐⇒ 3 follows from (Studený, 2005). Further
3 ⇐⇒ 4 holds by definition.
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The submodular cone is the cone Cn of all
submodular functions w : 2[n] → R. Work-
ing modulo its lineality space Cn ∩ (−Cn),
we regard Cn as a pointed cone of dimension
2n − n− 1.

Remark 11. All 22 convex rank tests for n = 3
are submodular. The submodular cone C3 is a
4-dimensional cone whose base is a bipyramid.
The polytopes Qw, as w ranges over the faces
of C3, are all the Minkowski summands of P3.

Proposition 12. For n ≥ 4, there exist convex
rank tests that are not submodular rank tests.
Equivalently, there are fans that coarsen the Sn-
fan but are not the normal fan of any polytope.

This result is stated in Section 2.2.4 of (Stu-
dený, 2005) in the following form: “There exist
semi-graphoids that are not structural.”

We answered Question 4.5 posed in (Post-
nikov, 2006) by finding a non-submodular con-
vex rank test in which all the posets Pi are trees:

M =
{
2 ⊥⊥ 3|{1, 4}, 1 ⊥⊥ 4|{2, 3},

1 ⊥⊥ 2|∅, 3 ⊥⊥ 4|∅
}
.

Remark 13. For n = 4 there are 22108 sub-
modular rank tests, one for each face of the 11-
dimensional cone C4. The base of this submod-
ular cone is a polytope with f -vector (1, 37, 356,
1596, 3985, 5980, 5560, 3212, 1128, 228, 24, 1).

Remark 14. For n = 5 there are 117978 coars-
est submodular rank tests, in 1319 symmetry
classes. We confirmed this result of (Studený,
2000) with POLYMAKE (Gawrilow, 2000).

We now define a class of submodular rank
tests, which we call Minkowski sum of simplices
(MSS) tests. Note that each subset K of [n]
defines a submodular function wK by setting
wK(I) = 1 if K∩I is non-empty and wK(I) = 0
if K ∩ I is empty. The corresponding polytope
QwK is the simplex ∆K = conv{ek : k ∈ K}.

Now consider an arbitrary subset K =
{K1,K2, . . . ,Kr} of 2[n]. It defines the submod-
ular function wK = wK1 +wK2 + · · ·+wKr . The
corresponding polytope is the Minkowski sum

∆K = ∆K1 + ∆K2 + · · ·+ ∆Kr .

The associated MSS test τK is defined as follows.
Given ρ ∈ Sn, we compute the number of indices
j ∈ [r] such that max{ρk : k ∈ Kj} = ρi, for
each i ∈ [n]. The signature τK(ρ) is the vector
in Nn whose ith coordinate is that number. Few
submodular rank tests are MSS tests:

Remark 15. For n = 3, among the 22 sub-
modular rank tests, only 15 are MSS tests. For
n = 4, among the 22108, only 1218 are MSS.

5 Graphical tests

Graphical models are fundamental in statistics,
and they also lead to a useful class of rank tests.
First we show how to associate a semi-graphoid
to a family K. Let FwK be the normal fan of
QwK . We write MK for the CI model derived
from FwK using the bijection in Theorem 3.

Proposition 16. The semi-graphoid MK is the
set of CI statements i ⊥⊥ j |K which satisfy the
following property: all sets containing {i, j} and
contained in {i, j} ∪ [n]\K are not in K.

Let G be a graph with vertex set [n]. We
define K(G) to be the collection of all subsets K
of [n] such that the induced subgraph of G|K is
connected. Recall that the undirected graphical
model (or Markov random field) derived from
the graph G is the set MG of CI statements:

MG =
{

i ⊥⊥ j |C : the restriction of G to
[n]\C contains no path from i to j

}
.

The polytope ∆G = ∆K(G) is the graph asso-
ciahedron, which is a well-studied object in com-
binatorics (Carr, 2004; Postnikov, 2005). The
next theorem is derived from Proposition 16.

Theorem 17. The CI model induced by the
graph associahedron coincides with the graphi-
cal model MG, i.e., MK(G) = MG.

There is a natural involution ∗ on the set of
all CI statements which is defined as follows:

(i ⊥⊥ j |C)∗ := i ⊥⊥ j | [n]\(C ∪ {i, j}).

If M is any CI model, then the CI model M∗ is
obtained by applying the involution ∗ to all the
CI statements in the model M. Note that this
involution was called duality in (Matúš, 1992).
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Figure 4: The permutohedron P4. Double edges
indicate the test τK(G) when G is the path.
Edges with large dots indicate the test τ∗K(G).

The graphical tubing rank test τ∗K(G) is the test
associated with M∗

K(G). It can be obtained by
a construction similar to the MSS test τK, with
the function wK defined differently and super-
modular. The graphical model rank test τK(G) is
the MSS test of the set family K(G).

We next relate τK(G) and τ∗K(G) to a known
combinatorial characterization of the graph as-
sociahedron ∆G. Two subsets A,B ⊂ [n] are
compatible for the graph G if one of the fol-
lowing conditions holds: A ⊂ B, B ⊂ A, or
A ∩ B = ∅, and there is no edge between any
node in A and B. A tubing of the graph G is a
subset T of 2[n] such that any two elements of
T are compatible. Carr and Devadoss (2005)
showed that ∆G is a simple polytope whose
faces are in bijection with the tubings.

Theorem 18. The following four combinatorial
objects are isomorphic for any graph G on [n]:
• the graphical model rank test τK(G),
• the graphical tubing rank test τ∗K(G),
• the fan of the graph associahedron ∆G,
• the simplicial complex of all tubings on G.

The maximal tubings of G correspond to ver-
tices of the graph associahedron ∆G. When G is
the path of length n, then ∆G is the associahe-

dron, and when it is a cycle, ∆G is the cyclohe-
dron. The number of classes in the tubing test
τ∗K(G) is the G-Catalan number of (Postnikov,

2005). This number is 1
n+1

(
2n
n

)
for the associa-

hedron test and
(
2n−2
n−1

)
for the cyclohedron test.

6 Enumerating linear extensions

In this paper we introduced a hierarchy of
rank tests, ranging from pre-convex to graph-
ical. Rank tests are applied to data vectors
u ∈ Rn, or permutations π ∈ Sn, and locate
their cones. In order to determine the signifi-
cance of a data vector, one needs to compute the
quantity | τ−1

(
τ(π)

)
|, and possibly the proba-

bilities of other maximal cones. These cones are
indexed by posets P1, P2, . . . , Pk on [n], and the
probability computations are equivalent to find-
ing the cardinality of some of the sets L(Pi).

We now present our methods for computing
linear extensions. If the rank test is a tubing
test then this computation is done as follows.
From the given permutation, we identify its sig-
nature (image under τ), which we may assume
is its G-tree T (Postnikov, 2005). Suppose the
root of the tree T has k children, each of which
is a root of a subtree Ti for i = 1, . . . , k. Writing
|Ti| for the number of nodes in Ti, we have

| τ−1(T) | =
( ∑k

i=1 |Ti|
|T1|, . . . , |Tk|

)( k∏
i=1

|τ−1(Ti)|

)
.

This recursive formula can be translated into
an efficient iterative algorithm. In (Willbrand,
2005) the analogous problem is raised for the
test in Example 3. A determinantal formula for
(1) appears in (Stanley, 1997, page 69).

For an arbitrary convex rank test we proceed
as follows. The test is specified (implicitly or
explicitly) by a collection of posets P1, . . . , Pk

on [n]. From the given permutation, we first
identify the unique poset Pi of which that per-
mutation is a linear extension. We next con-
struct the distributive lattice L(Pi) of all order
ideals of Pi. Recall that an order ideal is a sub-
set O of [n] such that if l ∈ O and (k, l) ∈ Pi

then k ∈ O. The set of all order ideals is a lat-
tice with meet and join operations given by set
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intersection O∩O′ and set union O∪O′. Knowl-
edge of this distributive lattice L(Pi) solves our
problem because the linear extensions of Pi are
precisely the maximal chains of L(Pi). Com-
puting the number of linear extensions is #P-
complete (Brightwell, 1991). Therefore we de-
veloped efficient heuristics to build L(Pi).

The key algorithmic task is the following:
given a poset Pi on [n], compute an efficient
representation of the distributive lattice L(Pi).
Our program for performing rank tests works
as follows. The input is a permutation π and a
rank test τ . The test τ can be specified either

• by a list of posets P1, . . . , Pk (pre-convex),

• or by a semigraphoidM (convex rank test),

• or by a submodular function w : 2[n] → R,

• or by a collection K of subsets of [n] (MSS),

• or by a graph G on [n] (graphical test).

The output of our program has two parts. First,
it gives the number |L(Pi)| of linear extensions,
where the poset Pi represents the equivalence
class of Sn specified by the data π. It also
gives a representation of the distributive lat-
tice L(Pi), in a format that can be read by
the maple package posets (Stembridge, 2004).
Our software for the above rank tests is available
at www.bio.math.berkeley.edu/ranktests/.
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Abstract

In this paper we compare Naı̈ve Bayes (NB) models, general Bayes Net (BN) models and Proba-
bilistic Decision Graph (PDG) models w.r.t. accuracy and efficiency. As the basis for our analysis
we use graphs of size vs. likelihood that show the theoretical capabilities of the models. We also
measure accuracy and efficiency empirically by running exact inference algorithms on randomly
generated queries. Our analysis supports previous results by showing good accuracy for NB mod-
els compared to both BN and PDG models. However, our results also show that the advantage of
the low complexity inference provided by NB models is not as significant as assessed in a previous
study.

1 Introduction

Probabilistic graphical models (PGMs) have been
applied extensively in machine learning and data
mining research, and many studies have been dedi-
cated to the development of algorithms for learning
PGMs from data. Automatically learned PGMs are
typically used for inference, and therefore efficiency
and accuracy of the PGM w.r.t. inference are of in-
terest when evaluating a learned model.

Among some of the most commonly used PGMs
are the general Bayesian Network model (BN) and
the Naı̈ve Bayes model (NB). The BN model ef-
ficiently represents a joint probability distribution
over a domain of discrete random variables by a fac-
torization into independent local distributions. The
NB model contains a number of components defined
by an unobserved latent variable and models each
discrete random variable as independent of all other
variables within each component. Exact inference
has linear time complexity in the size of the model
when using NB models.

For the general BN model both exact and approx-
imate inference are NP-hard (Cooper, 1987; Dagum
and Luby, 1993).

Model-selection algorithms for learning PGMs
typically use some conventional score-metric,
searching for a model that optimises the metric. Pe-

nalised likelihood metrics like BIC, AIC and MDL
are weighted sums of model accuracy and size.
When the learned model is to be used for general in-
ference, including a measure for inference complex-
ity into the metric is relevant. Neither BIC, AIC nor
MDL explicitly takes inference complexity into ac-
count when assessing a given model. Recently, sev-
eral authors have independently emphasised the im-
portance of considering inference complexity when
applying learning in a real domain.

Beygelzimer and Rish (2003) investigate the
tradeoff between model accuracy and efficiency.
They only consider BN models for a given target
distribution (in a learning setting, the target distri-
bution is the empirical distribution defined by the
data; more generally, the target distribution could
be any distribution one wants to represent). For BNs
treewidth is an adequate efficiency measure (defined
as k − 1, where k is the size of the largest clique in
an optimal junction tree). Tradeoff curves that plot
treewidth against the best possible accuracy achiev-
able with a given treewidth are introduced. These
tradeoff curves can be used to investigate the ap-
proximability of a target distribution.

As an example for a distribution with poor ap-
proximability in this sense, Beygelzimer and Rish
(2003) mention the parity distribution, which rep-



resents the parity function on n binary inputs. An
accurate representation of this distribution requires
a BN of treewidth n− 1, and any BN with a smaller
treewidth can approximate the parity distribution
only as well as the empty network.

The non-approximability of the parity distribu-
tion (and hence the impossibility of accurate models
supporting efficient inference) only holds under the
restriction to BN models with nodes corresponding
exactly to the n input bits. The use of other PGMs,
or the use of latent variables in a BN representation,
can still lead to accurate and computationally effi-
cient representations of the parity distribution.

Motivated by some distribution’s refusal to be ef-
ficiently approximated by BN models, the PGM lan-
guage of probabilistic decision graph (PDG) mod-
els was developed (Jaeger, 2004). In particular, the
parity distribution is representable by a PDG that
has inference complexity linear in n. In a recent
study an empirical analysis of the approximations
offered by BN and PDG models learned from real-
world data was conducted (Jaeger et al., 2006). Sim-
ilar to the tradeoff curves of (Beygelzimer and Rish,
2003), Jaeger et al. (2006) used graphs showing
likelihood of data vs. size of the model for the anal-
ysis of accuracy vs. complexity. The comparison of
PDGs vs. BNs did not produce a clear winner, and
the main lesson was that the models offer surpris-
ingly similar tradeoffs when learned from real data.

Also motivated by considerations of model ac-
curacy and efficiency, Lowd and Domingos (2005)
in a recent study compared NB and BN models.
NB models can potentially offer accuracy-efficiency
tradeoff behaviors that for some distributions differ
from those provided by standard BN representation
(although NBs do not include the latent class mod-
els that allow an efficient representation of the par-
ity distribution). Lowd and Domingos (2005) deter-
mine inference complexity empirically by measur-
ing inference times on randomly generated queries.
The inferences are computed exactly for NB mod-
els, but for BN models approximate methods were
used (Gibbs sampling and loopy belief propaga-
tion). Lowd and Domingos (2005) conclude that
NB models offer approximations that are as accu-
rate as those offered by BN models, but in terms of
inference complexity the NB models are reported to
be orders of magnitude faster than BN models.

Our present paper extend these previous works in
two ways. First, we conduct a comparative analysis
of accuracy vs. efficiency tradeoffs for three type
of PGMs: BN, NB and PDG models. Our results
show that in spite of theoretical differences BN,
NB and PDG models perform surprisingly similar
when learned from real data, and no single model
is consistently superior. Second, we investigate the
theoretical and empirical efficiency of exact infer-
ence for all models. This analysis somewhat differs
from the analysis in (Lowd and Domingos, 2005),
where only approximate inference was considered
for BNs. The latter approach can lead to somewhat
unfavorable results for BNs, because approximate
inference can be much slower than exact inference
for models still amenable to exact inference. Our re-
sults show that while NB models are still very com-
petitive w.r.t. accuracy, exact inference in BN mod-
els is often tractable and differences in empirically
measured run-times are typically not significant.

2 Probabilistic Graphical Models

In this section we introduce the three types of mod-
els that we will use in our experiments; the gen-
eral Bayesian Network (BN), the Naı̈ve Bayesian
Network (NB) and the Probabilistic Decision Graph
(PDG).

2.1 Bayesian Network Models

BNs (Jensen, 2001; Pearl, 1988) are a class of
probabilistic graphical models that represent a joint
probability distribution over a domain X of discrete
random variables through a factorization of inde-
pendent local distributions or factors. The structure
of a BN is a directed acyclic graph (DAG) G =
(V,E) of nodes V and directed edges E. Each ran-
dom variable Xi ∈ X is represented by a node Vi ∈
V, and the factorization

∏
Xi∈X

P (Xi|paG(Xi))
(where paG(Xi) is the set of random variables rep-
resented by parents of node Vi in DAG G) defines
the full joint probability distribution P (X) repre-
sented by the BN model. By size of a BN we under-
stand the size of the representation, i.e. the number
of independent parameters. Exact inference is usu-
ally performed by first constructing a junction tree
from the BN. Inference is then solvable in time lin-
ear in the size of the junction tree (Lauritzen and
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Spiegelhalter, 1988), which may be exponential in
the size of the BN from which it was constructed.

2.2 Naı̈ve Bayes Models

The NB model represents a joint probability distri-
bution over a domain X of discrete random vari-
ables by introducing an unobserved, latent variable
C . Each state of C is referred to as a component,
and conditioned on C , each variable Xi ∈ X is as-
sumed to be independent of all other variables in X.
This yields the simple factorization: P (X, C) =
P (C)

∏
Xi∈X

P (Xi|C). Exact inference is com-
putable in time linear in the representation size of
the NB model.

2.3 Probabilistic Decision Graph Models

PDGs are a fairly new language for probabilis-
tic graphical modeling (Jaeger, 2004; Bozga and
Maler, 1999). As BNs and NBs, PDGs represent
a joint probability distribution over a domain of dis-
crete random variables X through a factorization of
local distributions. However, the structure of the
factorization defined by a PDG is not based on a
variable level independence model but on a certain
kind of context specific independencies among the
variables. A PDG can be seen as a two-layer struc-
ture, 1) a forest of tree-structures over all mem-
bers of X, and 2) a set of rooted DAG structures
over parameter nodes, each holding a local distri-
bution over one random variable. Figure 1(a) shows
a forest F of tree-structures over binary variables
X = {X0, X1 . . . , X5}, and figure 1(b) shows an
example of a PDG structure based on F . For a com-
plete semantics of the PDG model and algorithms
for exact inference with linear complexity in the size
of the model, the reader is referred to (Jaeger, 2004).

X0

X1 X2

X3

X4

X5

(a)

X0

X1 X2

X3

X4

X5

(b)

0 1 0 1

0 1 01

0 1

Figure 1: Example PDG. Subfigure (a) shows the a
forest-structure F over binary 5 variables, and (b)
shows a full PDG structure based on F .

3 Elements of the Analysis

The goal of our analysis is to investigate the qual-
ity of PGMs learned from real data w.r.t. accu-
racy and inference efficiency. The appropriate no-
tion of accuracy depends on the intended tasks for
the model. Following (Jaeger et al., 2006; Lowd
and Domingos, 2005; Beygelzimer and Rish, 2003)
we use log-likelihood of the model given the data
(L(M,D)) as a “global” measure of accuracy. Log-
likelihood score is essentially equivalent to cross-
entropy (CE) between the empirical distribution
PD and the distribution P M represented in model
M :

CE(P D, P M ) = −H(P D)−
1

|D|
L(M,D), (1)

where H(·) is the entropy function. Observe that
when CE(P D, P M ) = 0 (when P D and P M are
equal), then L(M,D) = −|D| ·H(P D). Thus, data
entropy is an upper bound on the log-likelihood.

3.1 Theoretical Complexity vs. Accuracy

We use SL-curves (Jaeger et al., 2006) in our anal-
ysis of the theoretical performance of each PGM
language. SL-curves are plots of size vs. likeli-
hood. The size of model here is the effective size, i.e.
a model complexity parameter, such that inference
has linear time complexity in this parameter. For
NB and PDG models this is the size of the model
itself. For BN models it is the size of the junction
tree constructed for inference.

3.2 Empirical Complexity and Accuracy

The size measure used in the SL-curves described
in section 3.1 measures inference complexity only
up to a linear factor. Following Lowd and Domin-
gos (2005), we estimate the complexity of exact
inference also empirically by measuring execution
times for random queries. A query for model M

is solved by computing a conditional probability
PM (Q = q|E = e), where Q,E are disjoint sub-
sets of X, and q, e are instantiations of Q, respec-
tively E. Queries are randomly generated as fol-
lows: first a random pair 〈Qi,Ei〉 of subsets of
variables is drawn from X. Then, an instance di

is randomly drawn from the test data. The random
query then is P M (Q = di[Qi]|E = di[Ei]), where
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di[Qi], di[Ei] are the instantiations of Q, respec-
tively E in di. The empirical complexity is sim-
ply the average execution time for random queries.
The empirical accuracy is measured by averaging
log(P M (Q = di[Qi]|E = di[Ei])) over the ran-
dom queries. Compared to the global accuracy mea-
sure L(M,D), this can be understood as a measure
for “local” accuracy, i.e. restricted to specific con-
ditional and marginal distributions of P M .

4 Learning

In this section we briefly describe the algorithms
we use for learning each type of PGM from data.
For our analysis we need to learn a range of models
with different efficiency vs. accuracy tradeoffs. For
score based learning a general λ-score will be used
(Jaeger et al., 2006):

Sλ(M,D) = λ · L(M,D)− (1− λ)|M |, (2)

where 0 < λ < 1, and |M | is the size of model
M . Equation (2) is a general score metric, as it be-
comes equivalent to common metrics as BIC, AIC
and MDL for specific settings of λ1. By optimizing
scores with different settings of λ we get a range of
models offering different tradeoffs between size and
accuracy. Suitable ranges of λ-values were deter-
mined experimentally for each type of model using
score score-based learning (BNs and PDGs).

4.1 Learning Bayesian Networks

We use the KES algorithm for learning BN mod-
els (Nielsen et al., 2003). KES performs model-
selection in the space of equivalence classes of BN
structures using a semi-greedy heuristic. A param-
eter k ∈ [0 . . . 1] controls the level of greediness,
where a setting of 0 is maximally stochastic and 1 is
maximally greedy.

The λ-score used in the KES algorithm uses the
size of the BN as the size parameter |M |, not the
size of its junction tree. Clearly, it would be desir-
able to score BNs directly by the size of their junc-
tion trees, but this appears computationally infeasi-
ble. Thus, our SL-curves for BNs do not show for a
given accuracy level the smallest possible size of a
junction tree achieving that accuracy, but the size of

1E.g. (2) with λ = log|D|

2+log |D|
corresponds to BIC

a junction tree we were able to find using existing
state-of-the-art learning and triangulation methods.

4.2 Learning Naı̈ve Bayes Net Models

For learning NB models we have implemented a
version of the NBE algorithm (Lowd and Domin-
gos, 2005) for learning NB models. As the structure
of NB models is fixed, the task reduces to learning
the number of states in the latent variable C , and
the parameters of the model. Learning in the pres-
ence of the latent components is done by standard
Expectation Maximization (EM) approach, follow-
ing (Lowd and Domingos, 2005; Karciauskas et al.,
2004). Learning a range of models is done by incre-
mentally increasing the number of states of C , and
outputting the model learned for each cardinality. In
this way we obtain a range of models that offer dif-
ferent complexity vs. accuracy tradeoffs. Note that
no structure-score like (2) is required as the struc-
ture is fixed.

4.3 Learning Probabilistic Decision Graphs

Learning of PDGs is done using the model-selection
algorithm presented in (Jaeger et al., 2006). Using
local transformations as search operators, the algo-
rithm performs a search for a structure that opti-
mises λ-score.

5 Experiments

We have produced SL-curves and empirically mea-
sured inference times and accuracy, on 5 differ-
ent datasets (see table 1) from the UCI repository2 .
These five datasets are a representative sample of
the 50 datasets used in the extensive study by Lowd
and Domingos (2005).

We used the same versions of the datasets as used
by Lowd and Domingos (2005). Specifically, the
partitioning into training (90%) and test (10%) sets
was the same, continuous variables were discretized
into five equal frequency bins, and missing values
were interpreted as special states of the variables.

For measuring the empirical efficiency and accu-
racy, we generated random queries as described in
3.2 consisting of 1 to 5 query variables Q and 0 to
5 evidence variables E.

2http://www.ics.uci.edu/˜mlearn
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Table 1: Datasets used for experiments.
Dataset #Vars training test
Poisonous Mushroom 23 7337 787
King, Rook vs. King 7 25188 2868
Pageblocks 11 4482 574
Abalone 9 3758 419
Image Segmentation 17 2047 263

For inference in BN and NB models we used
the junction-tree algorithm implemented in the in-
ference engine in Hugin3 through the Hugin Java
API. For inference in PDGs, the method described
in (Jaeger, 2004) was implemented in Java. BN and
NB experiments were performed on a standard lap-
top, 1.6GHz Pentium CPU with 512Mb RAM run-
ning Linux. PDG experiments were performed on
a Sun Fire280R, 900Mhz SPARC CPU with 4Gb
RAM running Solaris 9.

6 Results

Table 2 shows SL-curves for each dataset and PGM,
both for training (left column) and test sets (right
column).

Lowd and Domingos (2005) based their compar-
ison on single BN and NB models. The NB models
were selected by maximizing likelihood on a hold-
out set. Crosses × in the right column of table 2 in-
dicate the size-likelihood values obtained by the NB
models reported in (Lowd and Domingos, 2005).

The first observation we make from table 2 is
that no single model language consistently domi-
nates the others. The plots in the left column shows
that BN models have the lowest log-likelihood mea-
sured on training data consistently for models larger
than some small threshold. For Abalone and Image
Segmentation, this characteristic is mitigated in the
plots for the test-data, where especially PDGs seem
to overfit the training-data and accordingly receives
low log-likelihood score on the test-data.

The overall picture in table 2 is that in terms of ac-
curacy, BNs and NBs are often quite similar (King,
Rook vs. King is the only exception). This is con-
sistent with what Lowd and Domingos (2005) have
found. However, Lowd and Domingos (2005) re-
ported big differences in inference complexity when

3http://www.hugin.com

comparing exact inference in NB to approximate
methods in BNs. We do not observe this tendency
when considering exact inference for both BNs and
NBs. Our results show that we can learn BNs that
are within reach of exact inference methods, and
that the theoretical inference complexity as mea-
sured by effective model size mostly is similar for
a given accuracy level for all three PGM languages.

Effective model size measures actual inference
time only up to a linear factor. In order to de-
termine whether there possibly are huge (orders of
magnitude) differences in these linear factors, we
measure the actual inference time on our random
queries. The left column of table 3 shows the av-
erage inference time for 1000 random queries with
4 query and 3 evidence variables (results for other
numbers of query and evidence variables were very
similar). We observe that this empirical complex-
ity behaves almost indistinguishably for BN and NB
models. This is not surprising, since both models
use the Hugin inference engine 4. The results do
show, however, that the different structures of the
junction trees for BN and NB models do not have
a significant impact on runtime. The linear factor
for PDG inference in these experiments is about 4
times larger than that for BN/NB inference5 . Seeing
that we use a proof-of-concept prototype Java im-
plementation for PDGs, and the commercial Hugin
inference engine for BNs and NBs, this indicates
that PDGs are competitive in practice, not only ac-
cording to theoretical complexity analyses.

The right column in table 3 shows the empirical
(local) accuracy obtained for 1000 random queries
with 4 query and 3 evidence variables. Overall, the
results are consistent with the global accuracy on
the test data (table 2, right column). The differences
observed for the different PGMs in table 2 can also
be seen in table 3, though the discrepancies tend

4Zhang (1998) shows that variable elimination can be more
efficient than junction tree-based inference. However, his re-
sults do not indicate that we would obtain substantially differ-
ent results if we used variable elimination in our experiments.

5This factor has to be viewed with caution, since PDG in-
ference was run on a machine with a slower CPU but more
main memory. When running PDG inference on the same ma-
chine as NB/BN inference, we observed overall a similar per-
formance, but more deviations from a strictly linear behavior
(in table 3 still visible to some degree for the Mushroom and
Abalone data). These deviations seem mostly attributable to
the memory management in the Java runtime environment.
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Table 2: SL-curves for train-sets (left column) and test-sets (right column). The crosses × marks the NB
models reported by Lowd and Domingos (2005). −H(D) (minus data-entropy) is plotted as a horizontal
line.
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Table 3: Empirical efficiency (left column) and accuracy (right column) for 4 query and 3 evidence variables.
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to become less pronounced on the random queries
as on global likelihood (particularly for PDGs in
the image segmentation data). One possible expla-
nation for this is that low global likelihood scores
are mostly due to a few test cases whose joint in-
stantiation of the variables are given low probability
by a model, and that these isolated low-probability
configurations are seldom met with in the random
queries.

7 Conclusion

Motivated by several previous, independent studies
on the tradeoff between model accuracy and effi-
ciency in different PGM languages, we have inves-
tigated the performance of BN, NB, and PDG mod-
els. Our main findings are: 1) In contrast to po-
tentially widely different performance on artificial
examples (e.g. the parity distribution), we observe a
relatively uniform behavior of all three languages on
real-life data. 2) Our results confirm the conclusions
of Lowd and Domingos (2005) that the NB model
is a viable alternative to the BN model for gen-
eral purpose probabilistic modeling and inference.
However, the order-of-magnitude advantages in in-
ference complexity could not be confirmed when
comparing exact inference methods for both types
of models. 3) Previous theoretical complexity anal-
yses for inference in PDG models now have been
complemented with empirical results showing also
the practical competitiveness of PDGs.
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Nielsen, J. D., Kočka, T. and Peña, J. M.: 2003,
On local optima in learning Bayesian networks,
Proceedings of the Nineteenth Conference on Un-
certainty in Artificial Intelligence, Morgan Kauf-
mann Publishers, pp. 435–442.

Pearl, J.: 1988, Probabilistic reasoning in intelli-
gent systems: networks of plausible inference,
Morgan Kaufmann Publishers.

Zhang, N. L.: 1998, Computational properties of
two exact algorithms for Bayesian networks, Ap-
plied Intelligence 9, 173–183.

222          J. D. Nielsen and M. Jaeger



Adapting Bayes Network Structures to Non-stationary Domains

Søren Holbech Nielsen and Thomas D. Nielsen
Department of Computer Science

Aalborg University
Fredrik Bajers Vej 7E

9220 Aalborg Ø, Denmark

Abstract

When an incremental structural learning method gradually modifies a Bayesian network (BN)
structure to fit observations, as they are read from a database, we call the process structural adap-
tation. Structural adaptation is useful when the learner isset to work in an unknown environment,
where a BN is to be gradually constructed as observations of the environment are made. Existing
algorithms for incremental learning assume that the samples in the database have been drawn from
a single underlying distribution. In this paper we relax this assumption, so that the underlying dis-
tribution can change during the sampling of the database. The method that we present can thus be
used in unknown environments, where it is not even known whether the dynamics of the environ-
ment are stable. We briefly state formal correctness resultsfor our method, and demonstrate its
feasibility experimentally.

1 Introduction

Ever since Pearl (1988) published his seminal book
on Bayesian networks (BNs), the formalism has be-
come a widespread tool for representing, eliciting,
and discovering probabilistic relationships for prob-
lem domains defined over discrete variables. One
area of research that has seen much activity is the
area of learning the structure of BNs, where prob-
abilistic relationships for variables are discovered,
or inferred, from a database of observations of these
variables (main papers in learning include (Heck-
erman, 1998)). One part of this research area fo-
cuses on incremental structural learning, where ob-
servations are received sequentially, and a BN struc-
ture is gradually constructed along the way with-
out keeping all observations in memory. A special
case of incremental structural learning is structural
adaptation, where the incremental algorithm main-
tains one or more candidate structures and applies
changes to these structures as observations are re-
ceived. This particular area of research has received
very little attention, with the only results that we are
aware of being (Buntine, 1991; Lam and Bacchus,
1994; Lam, 1998; Friedman and Goldszmidt, 1997;
Roure, 2004).

These papers all assume that the database of
observations has been produced by a stationary
stochastic process. That is, the ordering of the ob-
servations in the database is inconsequential. How-
ever, many real life observable processes cannot re-
ally be said to be invariant with respect to time:
Mechanical mechanisms may suddenly fail, for
instance, and non-observable effects may change
abruptly. When human decision makers are some-
how involved in the data generating process, these
are almost surely not fully describable by the ob-
servables and may change their behaviour instanta-
neously. A simple example of a situation, where it is
unrealistic to expect a stationary generating process,
is an industrial system, where some component is
exchanged for one of another make. Similarly, if
the coach of a soccer team changes the strategy of
the team during a match, data on the play from af-
ter the chance would be distributed differently from
that representing the time before.

In this work we relax the assumption on sta-
tionary data, opting instead for learning from data
which is only “approximately” stationary. More
concretely, we assume that the data generating pro-
cess is piecewise stationary, as in the examples
given above, and thus do not try to deal with data



where the data generating process changes gradu-
ally, as can happen when machinery is slowly being
worn down.1 Furthermore, we focus on domains
where the shifts in distribution from one stationary
period to the next is of a local nature (i.e. only a
subset of the probabilistic relationships among vari-
ables change as the shifts take place).

2 Preliminaries

As a general notational rule we use bold font to de-
note sets and vectors (V , c, etc.) and calligraphic
font to denote mathematical structures and compo-
sitions (B, G, etc.). Moreover, we shall use upper
case letters to denote random variables or sets of
random variables (X, Y , V , etc.), and lower case
letters to denote specific states of these variables
(x4, y′, c, etc.).≡ is used to denote “defined as”.

A BN B ≡ (G,Φ) over a set of discrete vari-
ablesV consists of an acyclic directed graph (tradi-
tionally abbreviated DAG)G, whose nodes are the
variables inV , and a set of conditional probabil-
ity distributionsΦ (which we abbreviate CPTs for
“conditional probability table”). A correspondence
betweenG andΦ is enforced by requiring thatΦ
consists of one CPTP (X|PAG(X)) for each vari-
ableX, specifying a conditional probability distri-
bution forX given each possible instantiation of the
parentsPAG(X) of X in G. A unique joint distri-
butionPB overV is obtained by taking the product
of all the CPTs inΦ. When it introduces no am-
biguity, we shall sometimes treatB as synonymous
with its graphG.

Due to the construction ofPB we are guaranteed
that all dependencies inherent inPB can be read di-
rectly from G by use of thed-separation criterion
(Pearl, 1988). The d-separation criterion states that,
if X andY are d-separated byZ, then it holds that
X is conditionally independent ofY givenZ in PB,
or equivalently, ifX is conditionally dependent of
Y givenZ in PB, thenX andY are not d-separated
by Z in G. In the remainder of the text, we use
X ⊥⊥ GY | Z to denote thatX is d-separated from
Y by Z in the DAGG, andX⊥⊥PY | Z to denote
that X is conditionally independent ofY given Z

1The changes in distribution of such data is of a continous
nature, and adaptation of networks would probably be better
accomplished by adjusting parameters in the net, rather than
the structure itself.

in the distributionP . The d-separation criterion is
thus

X⊥⊥GY | Z ⇒ X⊥⊥PB
Y | Z,

for any BNB ≡ (G,Φ). The set of all conditional
independence statements that may be read from a
graph in this manner, is referred to as that graph’s
d-separation properties.

We refer to any two graphs over the same vari-
ables as beingequivalent if they have the same
d-separation properties. Equivalence is obviously
an equivalence relation. Verma and Pearl (1990)
proved that equivalent graphs necessarily have the
same skeleton and the same v-structures.2 The
equivalence class of graphs containing a specific
graphG can then be uniquely represented by the
partially directed graphG∗ obtained from the skele-
ton of G by directing links that participate in a v-
structure inG in the direction dictated byG. G∗

is called thepatternof G. Any graphG′, which is
obtained fromG∗ by directing the remaining undi-
rected links, without creating a directed cycle or a
new v-structure, is then equivalent toG. We say
thatG′ is aconsistent extensionof G∗. The partially
directed graphG∗∗ obtained fromG∗, by directing
undirected links as they appear inG, whenever all
consistent extensions ofG∗ agree on this direction,
is called thecompletedpattern ofG. G∗∗ is ob-
viously a unique representation ofG’s equivalence
class as well.

Given any joint distributionP overV it is possi-
ble to construct a BNB such thatP = PB (Pearl,
1988). A distributionP for which there is a BN
BP ≡ (GP ,ΦP ) such thatPBP

= P and also

X⊥⊥P Y | Z ⇒ X⊥⊥GP
Y | Z

holds, is calledDAG faithful, andBP (and some-
times justGP ) is called aperfect map. DAG faithful
distributions are important since, if a data generat-
ing process is known to be DAG faithful, then a per-
fect map can, in principle, be inferred from the data
under the assumption that the data is representative
of the distribution.

For any probability distributionP over variables
V and variableX ∈ V , we define aMarkov bound-
ary (Pearl, 1988) ofX to be a setS ⊆ V \ {X}

2A triple of nodes(X, Y, Z) constitutes av-structureiff X

andZ are non-adjacent and both are parents ofY .
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such thatX⊥⊥PV \ (S ∪ {X}) | S and this holds
for no proper subset ofS. It is easy to see that if
P is DAG faithful, the Markov boundary ofX is
uniquely defined, and consists ofX ’s parents, chil-
dren, and children’s parents in a perfect map ofP .
In the case ofP being DAG faithful, we denote the
Markov boundary byMBP (X).

3 The Adaptation Problem

Before presenting our method for structural adapta-
tion, we describe the problem more precisely:

We say that a sequence issamples from a piece-
wise DAG faithful distribution, if the sequence can
be partitioned into sets such that each set is a
database sampled from a single DAG faithful dis-
tribution, and therank of the sequence is the size
of the smallest such partition. Formally, letD =
(d1, . . . ,dl) be a sequence of observations over
variablesV . We say thatD is sampled from a piece-
wise DAG faithful distribution (or simply that it is
a piecewise DAG faithful sequence), if there are in-
dices1 = i1 < · · · < im = l + 1, such that each
of Dj = (dij , . . . ,dij+1−1), for 1 ≤ j ≤ m − 1,
is a sequence of samples from a DAG faithful dis-
tribution. The rank of the sequence is defined as
minj ij+1− ij , and we say thatm− 1 is itssizeand
l its length. A pair of consecutive samples,di and
di+1, constitute ashift in D, if there isj such that
di is inDj anddi+1 is inDj+1. Obviously, we can
have any sequence of observations being indistin-
guishable from a piecewise DAG faithful sequence,
by selecting the partitions small enough, so we re-
strict our attention to sequences that are piecewise
DAG faithful of at least rankr. However, we do not
assume that neither the actual rank nor size of the
sequences are known, and specifically we do not as-
sume that the indicesi1, . . . , im are known.

The learning task that we address in this paper
consists of incrementally learning a BN, while re-
ceiving a piecewise DAG faithful sequence of sam-
ples, and making sure that after each sample point
the BN structure is as close as possible to the dis-
tribution that generated this point. Throughout the
paper we assume that each sample is complete, so
that no observations in the sequence have missing
values. Formally, letD be a complete piecewise
DAG faithful sample sequence of lengthl, and let

Pt be the distribution generating sample pointt.
Furthermore, letB1, . . . ,Bl be the BNs found by a
structural adaptation methodM , when receivingD.
Given a distance measurediston BNs, we define the
devianceof M onD wrt. dist as

dev(M,D) ≡
1

l

l
∑

i=1

dist(BPi
,Bi).

For a methodM to adaptto a DAG faithful sample
sequenceD wrt. dist then means thatM seeks to
minimize its deviance onD wrt. dist as possible.

4 A Structural Adaptation Method

The method proposed here continuously monitors
the data streamD and evaluates whether the last,
sayk, observations fit the current model. When this
turns out not to be the case, we conclude that a shift
in D took placek observations ago. To adapt to the
change, an immediate approach could be to learn a
new network from the lastk cases. By following
this approach, however, we will unfortunately loose
all the knowledge gained from cases before the last
k observations. This is a problem if some parts of
the perfect maps, of the two distributions on each
side of the shift, are the same, since in such situ-
ations we re-learn those parts from the new data,
even though they have not changed. Not only is this
a waste of computational effort, but it can also be the
case that the lastk observations, while not directly
contradicting these parts, do not enforce them ei-
ther, and consequently they are altered erroneously.
Instead, we try to detect where in the perfect maps
of the two distributions changes have taken place,
and only learn these parts of the new perfect map.
This presents challenges, not only in detection, but
also in learning the changed parts and having them
fit the non-changed parts seamlessly. Hence, the
method consists of two main mechanisms: One,
monitoring the current BN while receiving obser-
vations and detecting when and where the model
should be changed, and two, re-learning the parts of
the model that conflicts with the observations, and
integrating the re-learned parts with the remaining
parts of the model. These two mechanisms are de-
scribed below in Sections 4.1 and 4.2, respectively.

Adapting Bayes Network Structures to Non-stationary Domains          225



4.1 Detecting Changes

The detection part of our method, shown in Al-
gorithm 1, continuously processes the cases it re-
ceives. For each observationd and nodeX, the
method measures (using CONFLICTMEASURE(B,
X, d)) how well d fits with the local structure of
B aroundX. Based on the history of measurements
for nodeX, cX , the method tests (using SHIFTIN-
STREAM(cX , k)) whether a shift occurredk obser-
vations ago.k thus acts as the number of observa-
tions that are allowed to “pass” before the method
should realize that a shift has taken place. We there-
fore call the parameterk the allowed delayof the
method. When the actual detection has taken place,
as a last step, the detection algorithm invokes the
updating algorithm (UPDATENET(·)) with the set
of nodes, for which SHIFTINSTREAM(·) detected a
change, together with the lastk observations.

Algorithm 1 Algorithm for BN adaption. Takes as
input an initial networkB, defined over variables
V , a series of casesD, and an allowed delayk for
detecting shifts inD.
1: procedure ADAPT(B, V ,D, k)
2: D′ ← []
3: cX ← [] (∀X ∈ V )
4: loop
5: d←NEXTCASE(D)
6: APPEND(D′, (d))
7: S ← ∅

8: for X ∈ V do
9: c←CONFLICTMEASURE(B, X, d)

10: APPEND(cX, c)
11: if SHIFTINSTREAM(cX, k) then
12: S ← S ∪ {X}

13: D′ ←LASTKENTRIES(D′, k)
14: if S 6= ∅ then
15: UPDATENET(B, S,D′)

To monitor how well each observationd ≡
(d1, . . . , dm) “fit” the current modelB, and espe-
cially the connections between a nodeXi and the re-
maining nodes inB, we have followed the approach
of Jensen et al. (1991): If the current model is cor-
rect, then we would in general expect that the prob-
ability for observingd dictated byB is higher than
or equal to that yielded by most other models. This
should especially be the case for the empty modelE ,
where all nodes are unconnected. That is, inB, we
expect the individual attributes ofd to be positively
correlated (unlessd is a rare case, in which case all

bets are off):

log
PE(Xi = di)

PB(Xi = di|Xj = dj (∀j 6= i))
> 0 . (1)

Therefore, we let CONFLICTMEASURE(B, Xi, d)
return the value given on the left-hand side of (1).
We note that this is where the assumption of com-
plete data comes into play: Ifd is not completely
observed, then (1) cannot be evaluated for all nodes
Xi.

Since a high value returned by CONFLICTMEA-
SURE(·) for a nodeX could be caused by a rare
case, we cannot use that value directly for deter-
mining whether a shift has occurred. Rather, we
look at the block of values for the lastk cases,
and compare these with those from before that. If
there is a tendency towards higher values in the for-
mer, then we conclude that this cannot be caused
only by rare cases, and that a shift must have oc-
curred. Specifically, for each variableX, SHIFTIN-
STREAM(cX , k) checks whether there is a signif-
icant increase in the values of the lastk entries in
cX relative to those before that. In our implementa-
tion SHIFTINSTREAM(cX , k) calculates the nega-
tive of the second discrete cosine transform compo-
nent (see e.g. (Press et al., 2002)) of the last2k mea-
sures incX , and returns true if this statistic exceeds
a pre-specified threshold value. We are unaware of
any previous work using this technique for change
point detection, but we chose to use this as it out-
performed the more traditional methods of log-odds
ratios andt-tests in our setting.

4.2 Learning and Incorporating Changes

When a shift involving nodesS has been detected,
UPDATENET(B, S, D′) in Algorithm 2 adapts the
BN B around the nodes inS to fit the empirical dis-
tribution defined by the lastk casesD′ read from
D. Throughout the text, both the cases and the em-
pirical distribution will be denotedD′. Since we
want to reuse the knowledge encoded inB that has
not been deemed outdated by the detection part of
the method, we will updateB to fit D′ based on the
assumption that only nodes inS need updating of
their probabilistic bindings (i.e. the structure asso-
ciated with their Markov boundaries inBD′). Ig-
noring most details for the moment, the updating
method in Algorithm 2 first runs through the nodes
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Algorithm 2 Update Algorithm for BN. Takes as
input the network to be updatedB, a set of vari-
ables whose structural bindings may be wrongS,
and data to learn fromD′.
1: procedure UPDATENET(B, S,D′)
2: for X ∈ S do
3: dMBD

′(X)←MARKOVBOUNDARY(X,D′)
4: GX ←ADJACENCIES(X, dMBD

′(X),D′)
5: PARTIALLY DIRECT(X,GX , dMBD

′(X),D′)
6: G′ ←MERGEFRAGMENTS({GX}X∈S )
7: G′′ ←MERGECONNECTIONS(B,G′, S)
8: (G′′, C)←DIRECT(G′′, B, S)
9: Φ

′′ ← ∅

10: for X ∈ V do
11: if X ∈ C then
12: Φ

′′ ← Φ
′′ ∪ {PD

′(X|PAG
′′(X))}

13: else
14: Φ

′′ ← Φ
′′ ∪ {PB(X|PAG

′′(X))}

15: B ← (G′′,Φ′′)

in S and learns a partially directed graph fragment
GX for each nodeX (GX can roughly be thought of
as a “local completed pattern” forX). When net-
work fragments have been constructed for all nodes
in S, these fragments are merged into a single graph
G′, which is again merged with fragments from the
original graph ofB. The merged graph is then di-
rected using four direction rules, which try to pre-
serve as much ofB’s structure as possible, with-
out violating the newly uncovered knowledge rep-
resented by the learned graph fragments. Finally,
new CPTs are constructed for those nodesC that
have a new parent set inBD′ (nodes which, ideally,
should be a subset ofS).

The actual construction ofGX is divided into
three steps: First, an estimatêMBD′(X) of
MBD′(X) is computed, using MARKOVBOUND-
ARY(X, D′); second, nodes in̂MBD′(X) that are
adjacent toX in BD′ are uncovered, using ADJA-
CENCIES(X, ̂MBD′(X), D′), andGX is initialized
as a graph overX and these nodes, whereX is con-
nected with links to these adjacent nodes; and third,
some links inGX that are arcs inB∗∗D′ are directed as
they would be inB∗∗D′ using PARTIALLY DIRECT(X,

GX , ̂MBD′(X), D′). See (Nielsen and Nielsen,
2006) for more elaboration on this.

In our experimental implementation, we used the
decision tree learning method of Frey et al. (2003)
to find ̂MBD′(X), and the ALGORITHMPCD(·)
method in (Peña et al., 2005) (restricted to the vari-

ables in̂MBD′(X)) to find variables adjacent toX.
The latter method uses a greedy search for itera-
tively growing and shrinking the estimated set of ad-
jacent variables until no further change takes place.
Both of these methods need an “independence ora-
cle” ID′ . For this we have used aχ2 test onD′.

Algorithm 3 Uncovers the direction of some arcs
adjacent to a variableX as they would be inB∗∗D′.
NEGX

(X) consists of the nodes connected toX by
a link in GX .

1: procedure PARTIALLY DIRECT(X,GX , dMBD
′(X),D′)

2: DIRECTASINOTHERFRAGMENTS(GX)
3: for Y ∈ dMBD

′(X) \ (NEGX
(X) ∪PAGX

(X)) do
4: for T ( dMBD

′(X) \ {X, Y } do
5: if ID′(X, Y | T ) then
6: for Z ∈ NEGX

(X) \ T do
7: if ¬ID′(X, Y | T ∪ {Z}) then
8: LINK TOARC(GX, X, Z)

The method PARTIALLY DIRECT(X, GX ,
̂MBD′(X), D′) directs a number of links in the
graph fragmentGX in accordance with the direction
of these in (the unknown)B∗∗D′ . With DIREC-
TASINOTHERFRAGMENTS(GX ), the procedure
first exchanges links for arcs, when previously
directed graph fragments unanimously dictate this.
The procedure then runs through each variableY in
̂MBD′(X) not adjacent toX, finds a set of nodes
in ̂MBD′(X) that separateX from Y , and then
tries to re-establish connection toY by repeatedly
expanding the set of separating nodes by a single
node adjacent toX. If such a node can be found
it has to be a child ofX in the completed pattern
B∗∗D′ , and no arc in the patternB∗D′ originating from
X is left as a link by the procedure (see (Nielsen
and Nielsen, 2006) for proofs). As before the
independence oracleID′ was implemented as aχ2

test in our experiments.
In most constraint based learning methods, only

the direction of arcs participating in v-structures
are uncovered using independence tests, and struc-
tural rules are relied on for directing the remaining
arcs afterwards. For the proposed method, how-
ever, more arcs from the completed pattern, than
just those of v-structures, are directed through in-
dependence tests. The reason is that traditional un-
covering of the direction of arcs in a v-structure
X → Y ← Z relies not only on knowledge thatX
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andY are adjacent, and thatX andZ are not, but
also on the knowledge thatY andZ are adjacent. At
the point, whereGX is learned, however, knowledge
of the connections among nodes adjacent toX is not
known (and may be dictated byD′ or may be dic-
tated byB), so this traditional approach is not pos-
sible. Of course these unknown connections could
be uncovered fromD′ using a constraint based algo-
rithm, but the entire point of the method is to avoid
learning of the complete new network.

When all graph fragments for nodes inS have
been constructed, they are merged through a simple
graph union in MERGEFRAGMENTS(·); no conflicts
among orientations can happen due to the construc-
tion of PARTIALLY DIRECT(·). In MERGECON-
NECTIONS(B, G′, S) connections among nodes in
V \ S are added according to the following rule: If
X,Y ∈ V \ S are adjacent inB, then add the link
X − Y to G′. The reason for this rule is that insepa-
rable nodes, for which no change has been detected,
are assumed to be inseparable still. However, the di-
rection of some of the arcs may have changed inG′,
wherefore we cannot directly transfer the directions
in B to G′.

Following the merge, DIRECT(G′′ , B, S) directs
the remaining links inG′′ according to the following
five rules:

1. If X ∈ V \ S, X − Y is a link,X → Y is an
arc inB, andY is a descendant of some node
Z in MBB(X) \ADB(X), whereADB(X)
are nodes adjacent toX in B, through a path
involving only children ofX, then direct the
link X − Y asX → Y .3

2. If Rule 1 cannot be applied, and ifX − Y is a
link, Z → X is an arc, andZ andY are non-
adjacent, then direct the linkX−Y asX → Y .

3. If Rule 1 cannot be applied, and ifX − Y is a
link and there is a directed path fromX to Y ,
then direct the linkX − Y asX → Y .

3That Rule 1 is sensible is proved in (Nielsen and Nielsen,
2006). Intuitively, we try to identify a graph fragment forX in
B, that can be merged with the graph fragments learned from
D′. It turns out that the arcs directed by Rule 1 are exactly
those that would have been learned by PARTIALLY DIRECT(X,
GX , MBB(X), PB).

4. If Rules 1 to 3 cannot be applied, chose a link
X − Y at random, such thatX,Y ∈ V \ S,
and direct it as inB.

5. If Rules 1 to 4 cannot be applied, chose a link
at random, and direct it randomly.

Due to potentially flawed statistical tests, the resul-
tant graph may contain cycles each involving at least
one node inS. These are eliminated by reversing
only arcs connecting to at least one node inS. The
reversal process resembles the one used in (Margari-
tis and Thrun, 2000): We remove all arcs connecting
to nodes inS that appears in at least one cycle. We
order the removed arcs according to how many cy-
cles they appear in, and then insert them back in the
graph, starting with the arcs that appear in the least
number of cycles, breaking ties arbitrarily. When
at some point the insertion of an arc gives rise to a
cycle, we insert the arc as its reverse.

We have obtained a proof of the “correctness”
of the proposed method, but space restrictions pre-
vents us from bringing it here. Basically, we have
shown that, given the set-up from Section 3, if the
method is started with a network equivalent toBP1

,
thenBi will be equivalent toBPi−k

for all i > k.
This is what we refer to as “correct” behaviour, and
it means that once on the right track, the method
will continue to adapt to the underlying distribu-
tion, with the delayk. The assumptions behind the
result, besides that eachPi is DAG faithful, are i)
the samples inD are representative of the distribu-
tions they are drawn from, ii) the rank ofD is bigger
than 2k, and iii) SHIFTINSTREAM(·) returns true
for variableX and samplej iff Pj−k is not simi-
lar to Pj−k−1 aroundX (see (Nielsen and Nielsen,
2006) for formal definitions and detailed proofs).

5 Experiments and Results

To investigate how our method behaves in practice,
we ran a series of experiments. We constructed
100 experiments, where each consisted of five ran-
domly generated BNsB1, . . . ,B5 over ten variables,
each having between two and five states. We made
sure thatBi was structurally identical toBi−1 ex-
cept for the connection between two randomly cho-
sen nodes. All CPTs inBi were kept the same as
in Bi−1, except for the nodes with a new parent
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set. For these we employed four different meth-
ods for generating new distributions:A estimated
the probabilities from the previous network with
some added noise to ensure that no two distribu-
tions were the same.B, C, andD generated entirely
new CPTs, withB drawing distributions from a uni-
form distribution over distributions.C drew dis-
tributions from the same distribution, but rejected
those CPTs where there were no two parent con-
figurations, for which the listed distributions had a
KL-distance of more than1. D was identical toC,
except for having a threshold of5. The purpose of
the latter two methods is to ensure strong probabilis-
tic dependencies for at least one parent configura-
tion. For generation of the initial BNs we used the
method of Ide et al. (). For each series of five BNs,
we sampledr cases from each network and concate-
nated them into a piecewise DAG faithful sample
sequence of rankr and length5r, for r being500,
1000, 5000, and10000.

We fed our method (NN) with the generated
sequences, using different delaysk (100, 500,
and 1000), and measured the deciance wrt. the
KL-distance on each. As mentioned we are un-
aware of other work geared towards non-stationary
distributions, but for base-line comparison pur-
poses, we implemented the structural adaptation
methods of Friedman and Goldszmidt (1997) (FG)
and Lam and Bacchus (1994) (LB). For the method
of Friedman and Goldszmidt (1997) we tried both
simulated annealing (FG-SA) and a more time con-
suming hill-climbing (FG-HC) for the unspecified
search step of the algorithm. As these methods have
not been developed to deal with non-stationary dis-
tributions, they have to be told the delay between
learning. For this we used the same valuek, that
we use as delay for our own method, as this ensure
that all methods store only a maximum ofk full
cases at any one time. The chosenk values, also
correspond to those found for the experimental re-
sults reported in Friedman and Goldszmidt (1997)
and Lam (1998). The only other pre-specified pa-
rameter required by our method, viz. a threshold for
the χ2-tests we set at a conventional0.05. Each
method was given the correct initial networkB1 to
start its exploration.

Space does not permit us to present the results
in full, but the deviance of both NN, FG-SA, and
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Figure 1: Deviance measures FG-SA (X-axis) vs.
NN (Y-axis).
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Figure 2: Deviance measures FG-HC (X-axis) vs.
NN (Y-axis).

FG-HC are presented in Figures 1 and 2. NN out-
performed FG-SA in 81 of the experiments, and
FG-HC in 65 of the experiments. The deviance of
the LB method was much worse than for either of
these three. The one experiment, where both the
FG methods outperformed the NN method substan-
tially, had r equal to10000 and k equal to1000,
and was thus the experiment closest to the assump-
tion on stationary distributions of the FG and LB
learners.

Studying the individual experiments more
closely, it became apparent that NN is more “sta-
ble” than FG: It does not alter the network as often
as FG, and when doing so, NN does not alter it as
much as FG. This is positive, as besides preventing
unnecessary computations, it frees the user of
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the learned nets from a range of false positives.
Furthermore, we observed that the distance between
the BN maintained by NN and the generating one
seems to stabilize after some time. This was not
always the case for FG.

6 Discussion

The plotted experiments seem to indicate that our
method is superior to existing techniques for do-
mains, where the underlying distribution is not sta-
tionary. This is especially underscored by our ex-
periments actually favouring the existing methods
through using only sequences whose rank is a multi-
plum of the learnersk value, which means that both
FG and LB always learn from data from only one
partition of the sequence, unlike NN, which rarely
identifies the point of change completely accurately.
Moreover, score based approaches are geared to-
wards getting small KL-scores, and thus the metric
we have reported should favour FG and LB too.

Of immediate interest to us, is investigation of
how our method fares when the BN given to it at
the beginning is not representative of the distribu-
tion generating the first partition of the sample se-
quence. Also, it would be interesting to investigate
the extreme cases of sequences of size1 and those
with very low ranks (r ≪ 500). Obviously, the task
of testing other parameter choices and other imple-
mentation options for the helper functions need to
be carried out too.

Currently, we have some ideas for optimizing
the precision of our method, including performing
parameter adaptation of the CPTs associated with
the maintained structure, and letting changes “cas-
cade”, by marking nodes adjacent to changed nodes
as changed themselves.

In the future it would be interesting to see how
a score based approach to the local learning part of
our method would perform. The problem with tak-
ing this road is that it does not seem to have any
formal underpinnings, as the measures score based
approaches optimize are all defined in terms of a
single underlying distribution. A difficulty which
Friedman and Goldszmidt (1997) also allude to in
their efforts to justify learning from data collections
of varying size for local parts of the network.
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Abstract

Lyme disease is an infection evolving in three stages. Lyme disease is characterised by a
number of symptoms whose manifestations evolve over time. In order to correctly classify
the disease it is important to include the clinical history of the patient. Consultations
are typically scattered at non-equidistant points in time and the probability of observing
symptoms depend on the time since the disease was inflicted on the patient.

A simple model of the evolution of symptoms over time forms the basis of a dynamically
tailored model that describes a specific patient. The time of infliction of the disease is
estimated by a model search that identifies the most probable model for the patient given
the pattern of symptom manifestations over time.

1 Introduction

Lyme disease, or Lyme Borreliosis, is the most
commonly reported tick-borne infection in Eu-
rope and North America. Lyme disease was
named in 1977 when a cluster of children in and
around Lyme, Connecticut, displayed a similar
disease pattern. Subsequent studies revealed
that the children were infected by a bacteria,
which was named Borrelia burgdorferi. These
bacteria are transmitted to humans by the bite
of infected ticks (Ixodus species). The clinical
manifestations of Lyme borreliosis are described
in three stages and may affect different organ
systems, most frequently the skin and nervous
system. The diagnosis is based on the clinical
findings and results of laboratory testing for an-

tibodies (immunglobulin M and G) in the blood.
Methods for direct detection of the bacteria in
the tissue or the blood are not available for rou-
tine diagnosis. Thus it may be difficult to diag-
nose Lyme disease as the symptoms may not be
exclusive for the disease and testing for antibod-
ies may yield false positive or negative results.

In the next section we give an overview of
Lyme disease and in section 3 a brief summary
of two earlier systems are given. In section 4 we
suggest an approach that overcome the difficul-
ties by modelling multiple consultations spread
out in non-equidistant points in time. This ap-
proach assumes that the time of infection is
known, but this is rarely the case. We aim for
an estimation of this fact; a number of hypoth-
esised models are generated and the best one is



Organ system Stage 1: Stage 2: Stage 3:

Incubation period Incubation period Incubation period
one week (few days one week to a few months to years
to one month) months

Skin Erythema migrans Borrelial lympocytoma Acrodermatitis chronica
athrophicans

Central nervous Early neuroborreliosis Chronic neuroborreliosis
system

Joints Lyme arthritis

Heart Lyme carditis

Average sentitivity of
antibody detection 50% 80% 100%
(IgG or IgM)

Table 1: Clinical manifestations of Lyme disease.

identified based on the available evidence. In
section 5 a preliminary evaluation of the ap-
proach is described and finally we conclude in
section 6.

2 Lyme Disease

According to European case defintions
(http://www.oeghmp.at/eucalb/diagnosis case-
definition-outline.html) Lyme disease and its
manifestations are described in three stages as
shown in Table 1.

Erythema migrans is the most frequent man-
ifestation. The rash which migrates from the
site of the tickbite continuously grows in size.
Erythema migrans is fairly characteristic and
the diagnosis is clinical. Laboratory testing is
useless as only half of the patients are positive,
when the disease is localized to the skin only.
Neuroborreliosis is less frequent, in Denmark
the incidence is around 3/100.000 per year. The
IgM or IgG may be positive in 80% of patients
with neuroborreliosis, but if the duration of the
the clinical disease is more than two months,
then 100% of patients are positive. Figure 1
shows that not only the probability of being
positive, but also the level of antibodies vary as
a function of time. Thus the laboratory mea-
surement of IgM and IgG antibodies depends
both on the duration of the clinical disease and
the dissemination of the infection to other or-
gan systems than the skin. The incidence of the

other manifestations of Lyme disease is more
rare. The diagnosis of lyme arthritis is espe-
cially difficult as the symptoms are similar to
arthritis due to other causes and because the
disease is rare.

Time2 years4-6 months4-6 weeks3 weeks

Level

Bite

IgM IgG

Figure 1: IgM and IgG development after infec-
tion of Lyme disease.

The epidemiology is complex. For exam-
ple different age groups are at different risks,
there is a large seasonsal variation due to vari-
ations in tick activity (Figure 2), the incuba-
tion period may vary from a few days to sev-
eral years and some clinical manifestations are
very rare. There are large variations in in-
cubation time and clinical progression. Some
patients may have the disease starting with a
rash (erythema migrans) and then progressing
to ntaeuroborreliosis, but most patients with
neuroborreliosis are not aware of a preceeding
rash. The description of the disease and it’s pro-
gression primarily based on (Smith et al., 2003)
and (Gray et al., 2002).

There are also large individual variations in
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Figure 2: Comparison of seasonal occurrence of
erythema migrans (EM, n = 566) and neurobor-
reliosis (NB, n = 148) in northeastern Austria,
1994-1995.(Gray et al., 2002).

the behaviour of the patient and the physician,
about when to visit the doctor, when to take
the laboratory test ect. Possible repeated visits
to the doctor and repeated laboratory testing
are performed at variable intervals. Joint pain
and arthritis is a very common problem in the
general population, but is only very rarely due
to Lyme borreliosis. However, many patients
with arthritis are tested for Lyme borreliosis
( 30% of all patients samples) and as the prior
probability of Lyme disease is low, the posterior
probality of Lyme arthritis is also low in spite
of a positive test result. Laboratories in some
countries attempt to improve the diagnosis of
Lyme disease by using a two-step strategy in
antibody detection, by setting a low cut-off on
the screening test and then performing a more
expensive and complex test to confirm or dis-
card the result of the primary test. As the sec-
ond test is using the same principle of indirect
testing for antibody reactions to different Borre-
lial antigens the two tests are highly correlated,
and the information gain is limited. Thus, the
basic problem of false positive or false negative
results is not solved. It was therefore found im-
portant to develop a decision support system to
assist the clinician by calculating the posterior
probability of Lyme disease to guide the choice
of treatment. An evidence based clinical diag-

nosis is supported by incorporating clinical and
laboratory data into the model.

To capture the complex patterns of the dis-
ease, a model must incorporate the relevant
clinical evidence including estimation of the
temporal aspects of time since the tickbite, the
duration of clinical disease and the development
of antibody response.

3 Existing Models for Diagnosis of

Lyme Disease

We have knowledge of two models that
have been developed to assist the med-
ical practitioner in the diagnosis of
Lyme disease (Dessau and Andersen, 2001;
Fisker et al., 2002). Both models are based on
Bayesian networks (Jensen, 2001) and as the
latter is a further development of the former,
they share most of the variables.

The models include a group of variables de-
scribing general information and knowledge in-
cluding age and gender of the patient, the pa-
tient’s exposure to ticks (is the patient a forrest
worker or orienteer), the month of the year and
whether the patient recalls a tick bite. The in-
formation is used to establish whether or not
the conditions for a Lyme disease infection has
been present. This part of the model influence
the hypothesis variable, Borrelia.

Another section of the models describe clin-
ical manifestations. The findings are influ-
enced by the hypothesis variable, but may be
caused by other reasons. Similarly, a section
of variables describing laboratory findings may
be caused by either Lyme disease or by other
disorders.

The structure of the model by Dessau and
Andersen (2001) is shown in Figure 3. In this
model the three stages of Lyme disease is explic-
itly represented as three copies of the hypothesis
and the findings sections. The conditional prob-
abilities reflect the temporal evolution of symp-
toms, such that e.g. neuroborreliosis is more
probable in stage two than in stages one and
three. A problem with this approach is that the
progression of the disease is uncertain, and con-
sequently it is unclear which copy of e.g. finding
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Background Borrelia1 Borrelia2 Borrelia3

Pathology1 Pathology2 Pathology3

Clinical
findings

Immunology1 Immunology2 Immunology3

Laboratory
findings

Borrelia

Figure 3: Structure of the Bayesian network by Dessau and Andersen.

variables to use. This was resolved by combin-
ing variables from each stage in single variables
that describe the observable clinical manifesta-
tions and laboratory findings.

The progress of Lyme disease was modelled
by a variable “duration” (not shown in the fig-
ure), indicating the time a patient has expe-
rienced the symptoms. It does not distinguish
between the duration of the different symptoms,
but models the total duration of illness. If the
duration is short it indicates a stage one Lyme
disease and so forth.

Dessau and Andersen’s model is a snapshot
of a patient at a specific point in time and it
does not involve temporal aspects such as means
for entering of multiple evidence on the same
variables as a result of repeated consultations.

The model by Fisker et al. (2002) aims to
include these issues. The idea is to reflect the
clinical practice to examine a patient more than
once if the diagnosis is uncertain. This gives the
medical practitioner the opportunity to observe
if the development of the disease corresponds
to the typical pattern. The model mainly in-
cludes the same variables, but the structure of
the network is different (see Figure 4).

Instead of triplicating the pathology for the
different stages of the disease the temporal as-
pect was incorporated in the model by defin-
ing the states of manifestation variables as
time intervals. This approach was inspired by
(Arroyo-Figueroa and Sucar, 1999) that intro-

Background Borrelia

Clinical
findings

Old laboratory
findings

Laboratory
findings

Figure 4: Structure of the Bayesian network by
Fisker et al.

duced Temporal Nodes Bayesian Networks as
an alternative to dynamic Bayesian networks.
The time intervals represent the time since
the symptom was first observed, and both the
length and the number of time intervals was
tailored individually for each node. With this
approach it became possible to enter ”old” evi-
dence into the model. For example, if erythema
migrans was observed on, or recalled by, the
patient ten weeks ago and lymphocytoma is a
current observation, the EM variable is instan-
tiated to the state 8 weeks - 4 months and the
lymphocy is instantiated to < 6 weeks.

The model also incorporated the ability to
enter duplicate results of laboratory tests. This
option was included by repeating the laboratory
findings and including a variable specifying the
time between the result of the old test and the
current test (not shown in the figure).

The two models basically use the same fea-
tures but differ in the modelling of the progres-
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Figure 5: The structure of the tailored patient specific model is composed of background knowledge
and consultation modules.

sion of the disease. Further, the model by Fisker
et al. takes the use of data from previous con-
sultations into consideration.

Both models implement the possibility of
reading the probability of having Lyme disease
in one of the three stages, but with two dif-
ferent approaches. The model by Fisker et al.
models the stages as states in a single variable,
whereas the model by Dessau and Andersen
models the stages explicitly as causally depen-
dent variables.

The main problem in both models is the tem-
poral progression of Lyme disease. Dessau and
Andersen’s model gives a static picture of the
current situation, that only takes the total du-
ration of the period of illness into consideration.
Fisker et al. is more explicit in the modelling
of the progress of the disease by letting states
denote time intervals since a symptom was first
observed and by duplicating variables for labo-
ratory findings. This enables inclusion of find-
ings from the past, but is still limited to single
observations for clinical evidence and two en-
tries for laboratory tests.

Besides the difficulties in determining the
structure of the models, a considerable effort
was required to specify the conditional proba-
bilities.

In the following section we propose a further
elaboration of the modelling by introduction of
continuous time and an arbitrary number of
consultations.

4 Tailoring patient specific models

We aim for a Bayesian network that incor-
porates the full clinical history of individual
patients. The model is composed of mod-

ules, where each module describes a consul-
tation. The problem is that consultations
may appear at random points in time and
that the conditional probabilities for the symp-
toms at each consultation vary, depending
on the time that has passed since the tick
bite. Therefore frameworks such as dynamic
Bayesian networks and Markov chains do not
apply. We introduce continuous time inspired
by (Nodelman et al., 2002). The proposed ap-
proach involve a model for the conditional prob-
abilities, but before reaching that point we de-
termine the structure of the model.

4.1 Structure

The structure of the patient specific model is
illustrated in Figure 5. At the first consulta-
tion the background knowledge module is linked
to a generic consultation module consisting of
the disease node, clinical findings and labora-
tory findings. In order to keep focus on the
overall modelling technique we deliberately kept
the model simple. The consultation module is
a naive Bayes model, and subsequent consulta-
tions are included in the the model by extended-
ing it with a new consultation module. This
process can be repeated for an arbitrary num-
ber of consultations. The consultation modules
are connected only through the disease nodes.
This is a quite strong assumption that may be
debated, but it simplifies things and keep the
complexity of the resulting model linear in the
number of consultations. Less critical is that
the disease nodes do not take the stage of the
disease into account; we consider that the clas-
sification into stages are mostly for descriptive
purposes, but it could be modeled as stages in
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the disease node, although this would compli-
cate the quantitative specification slightly.

4.2 Conditional probability tables

As the symptoms of Lyme disease vary over
time we assume a simple model for the condi-
tional probabilities in the model. We approxi-
mate the conditional probabilities for the symp-
toms by a continuous function, composed as a
mixture of two sigmoid functions. This is a
somewhat arbitrary choise; other models may
be investigated, but for the present purpose this
simple model suffice. The functions describing
the conditional probabilities are based on em-
pirical knowledge. From existing databases we
extract the probabilities for the various symp-
toms at different times since the infection was
inflicted on the patient. The time of infliction is
usually not known, but around one third of the
patients recall a tick bit. In other cases there is
indirect evidence for the time of the bite, such
as limited periods of exposure.

An example is shown in Figure 6, where the
resulting functions for the probability of show-
ing the symptom EM up to 100 days after the
infection are drawn. As can be seen, the age of
the patient has been incorporporated as a pa-
rameter to the function. Thus, we can compute
the conditional probabilities for a consultation
module directly, provided that the time since
the infection is known. This is rarely the case.

4.3 Determining the time of infection

The purpose of the Bayesian model is to cal-
culate the probability of Lyme disease based on
the clinical findings and possible laboratory evi-
dence. As described in the previous section, the
conditional probabilities of the symptoms and
the serology are determined by the time since
the tick bite. Thus, in order to construct the
complete model it is necessary to know the time
of infliction.

The clinical history for a given patient is il-
lustrated in Figure 7. Different time intervals
are shown in the figure. The interval t1 is the
time from the infection to the first consulta-
tion, t2 is the interval between the first and the
second consultation and so on. When the pa-
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Figure 6: The probability of experiencing ery-
thema migrans (EM) over time modelled as con-
tinuous functions. The development of EM is
dependent on the age of the patient.

Time of 

infection

1'st consultation 2'nd consultation

t2
t1

time

n’th consultation

. . .tn

Figure 7: Time line that represents the consul-
tations that forms the clinical history.

tient consults the medical practitioner the time
of the consultation is registered. Therefore, the
intervals between the consultations are known,
whereas the interval, t1, from the infection to
the first consultation is unknown and must be
estimated. It is often difficult to determine t1,
because a patient may not recollect a tick bite,
and because symptoms may not appear until
late in the progress of the disease.

As the conditional probabilities for the con-
sultation modules vary depending on t1, differ-
ent values of t1 will result in Bayesian networks
with different quantitative specification. Hence,
estimation of t1 is a crucial part of the construc-
tion of the patient specific model. We tackle
this problem by hypothesising a number of dif-
ferent models, and we identify those that best
matches the evidence. Each model includes all
consultations for the patient. Thus, we have a
fixed structure with different instantiations of
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the conditional probabilities for different values
of t1.

The probability of a model given the evidence
can be calculated by using Bayes’ rule:

P (M | e) =
P (e | M) · P (M)

P (e)
(1)

P (e | M) can be extracted from the hy-
pothesised Bayesian network as the normaliza-
tion constant. The probability of the evidence,
P (e), is not known, but is a model independent
constant. The prior probability of the model,
P (M), is assumed to be equal for all models,
and is therefore inversely proportional to the
number of models. Thus, P (M | e) can be ex-
pressed by

P (M | e) α P (e | M) (2)

The probability of Lyme disease, P (Ld) can
be read from each model and will, of course,
vary depending on the model M. By using
the fundamental rule, the joint probability of
P (Ld,M | e) can be obtained as

P (Ld,M | e) = P (Ld | M,e) · P (M | e) (3)

where P (M | e) can be substituted by using
equation 2:

P (Ld,M | e) α P (Ld | M,e) · P (e | M) (4)

The probability of Lyme disease given the ev-
idence, can now be found by marginalizing over
M:

P (Ld | e) =
Tend
∑

Tn=Tstart

P (Ld | MTn
, e)·P (e | MTn

)

(5)
Tstart and Tend represent an interval that sur-

rounds the most probable value of the time since
the bite, t1, as illustrated in Figure 8.

The interval is chosen due to computational
considerations, and because the assumption
that all models are equally probable is obviously
not valid. Alternatively, we could simply choose
the model with highest probability.

P(M|e)

Time since 

infection

Tstart Tend

Most probable model

t1

Figure 8: The figure illustrates the probabil-
ity of the different models as a function of days
since infection.

The estimation of the most probable model
has been implemented by evaluating all models
for t1 in the interval 0-800 days. The upper limit
of 800 days is based on the assumption that the
general development pattern of Lyme disease at
this time is stabilized and the symptoms are
chronical. The size of the interval Tstart - Tend

has, somewhat arbritrarily, been set to 25 days.

5 Preliminary evaluation

In a preliminary test of the proposed approach
the results were compared to the outcome of
the model by Dessau and Andersen. The eval-
uation was focused on the structural problems
in the models. The cases that were used for
the evaluation are based on a survey performed
by Ram Dessau where 2414 questionnaires have
been collected from the Danish hospitals in Aal-
borg and Herlev. The overall picture of the com-
parison is that the proposed model in general
estimates a higher probability of Lyme disease
than the model by Dessau and Andersen.

In order to evaluate the effect of the incorpo-
ration of the clinical history in the time sliced
model, a number of typical courses of Lyme dis-
ease have been evaluated as single consultations
without utilizing the clinical history and as con-
sultations utilizing the previous history. At the
same time, each of the consultations have been
evaluated in the model by Dessau and Ander-
sen in order to evaluate how it handles the later
stage symptoms, when the clinical history is not
incorporated.

This informal study indicates that the time
sliced model behaves as intended when the clini-
cal history is incorporated. The estimated prob-
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ability of Lyme disease is gradually increased
for each added consultation, as the general de-
velopment pattern of the disease is confirmed in
typical courses.

In the estimates from the model by Dessau
and Andersen the probability of Lyme disease
decreases as the later stage symptoms are ob-
served. This reasoning does not seem appropri-
ate when it is known from earlier consultations
that the clinical history points toward a borre-
lial infection. The model by Dessau and Ander-
sen is not designed to incorporate the clinical
history, but from the results it can be seen that
this parameter is important in order to provide
reasonable estimates of the probability of Lyme
disease.

6 Conclusion

Temporal reasoning is an integral part of medi-
cal expertise. Many decisions are based on prog-
noses or diagnoses where symptoms evolve over
time and the effects of treatments typically be-
come apparent only with some delay. A com-
mon scenario in the general practice is that a
patient attends the clinic at different times on
a non-regular basis.

Lyme disease is an infection characterised by
a number of symptoms whose manifestations
evolve over time. In order to correctly classify
the disease it is important to include the clini-
cal history of the patient. We have proposed a
method to include consultations scattered over
time at non-equidistant points. A description
of the evolution of symptoms over time forms
the basis of a dynamically tailored model that
describes a specific patient. The time of in-
fliction of the disease is estimated by a model
search that identifies the most probable model
for the patient given the pattern of symptoms
over time.

Based on a preliminary evaluation it can be
concluded that the method proposed for han-
dling nonequivalent time intervals in order to in-
corporate the clinical history works satisfactory.
In cases where the clinical history confirmed
the general development pattern of Lyme dis-
ease the estimated probability the disease was

gradually increased from consultation to consul-
tation, whereas it was reduced when the history
did not confirm the pattern.

We conclude that the proposed method seems
viable for temporal domains, where changing
conditional probabilities can be modeled by con-
tinuous functions.
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Abstract

We study dynamic reliability of systems where system components age with a constant
failure rate and there is a budget constraint. We develop a methodology to effectively
prepare a predictive maintenance plan of such a system using dynamic Bayesian networks
(DBNs). DBN representation allows monitoring the system reliability in a given planning
horizon and predicting the system state under different replacement plans. When the
system reliability falls below a predetermined threshold value, component replacements
are planned such that maintenance budget is not exceeded. The decision of which com-
ponent(s) to replace is an important issue since it affects future system reliability and
consequently the next time to do replacement. Component marginal probabilities given
the system state are used to determine which component(s) to replace. Two approaches
are proposed in calculating the marginal probabilities of components. The first is a myopic
approach where the only evidence belongs to the current planning time. The second is a
look-ahead approach where all the subsequent time intervals are included as evidence.

1 Introduction

Maintenance can be performed either after the
breakdown takes place or before the problem
arises. The former is reactive whereas the latter
is proactive. Reactive maintenance is appropri-
ate for systems where the failure does not re-
sult in serious consequences. Decision-theoretic
troubleshooting belongs to this category. Proac-
tive or planned maintenance can be further clas-
sified as preventive and predictive (Kothamasu
et al., 2006). These differ in the scheduling
behaviour. Preventive maintenance performs
maintenance on a fixed schedule whereas in pre-
dictive maintenance, the schedule is adaptively
determined. Reliability-centered maintenance
is predictive maintenance where reliability esti-
mates of the system are used to develop a cost-
effective schedule.

Decision-theoretic troubleshooting, which
balances costs and likelihoods for the best ac-
tion, is first studied by (Kalagnanam and Hen-
rion, 1988). Heckerman et al.(1995) extend it to

the context of Bayesian networks (Pearl, 1988).
A similar troubleshooting problem, where mul-
tiple but independent faults are allowed, is ad-
dressed in (Srinivas, 1995). More recent studies
are mostly due to researchers from the SACSO
(Systems for Automated Customer Support Op-
erations) project. By assuming a single fault,
independent actions and constant costs, and
making use of a simple model representation
technique (Skaanning et al., 2000), they show
that the simple efficiency ordering yields an op-
timal sequence of actions (Jensen et al., 2001).
Langseth and Jensen (2001) present two heuris-
tics for handling dependent actions and condi-
tional costs. Langseth and Jensen (2003) pro-
vide a formalism that combines the methodolo-
gies used in reliability analysis and decision-
theoretic troubleshooting. Koca and Bilgiç
(2004) present a generic decision-theoretic trou-
bleshooter to handle troubleshooting tasks in-
corporating questions, dependent actions, con-
ditional costs, and any combinations of these.
Decision-theoretic troubleshooting has always



been studied as a static problem and with an
objective to reach a minimum-cost action plan.

On the reliability analysis side, fault diagnosis
finds its roots in (Vesely, 1970). Kothamasu et
al.(2006) review the philosophies and techniques
that focus on improving reliability and reducing
unscheduled downtime by monitoring and pre-
dicting machine health. Torres-Toledano and
Sucar (1998) develop a general methodology for
reliability modelling of complex systems based
on Bayesian networks. Welch and Thelen (2000)
apply DBNs to an example from the dynamic
reliability community. Weber and Jouffe (2003,
2006) present a methodology that helps de-
veloping DBNs and Dynamic Object Oriented
Bayesian Networks (DOOBNs) from available
data to formalize reliability of complex dynamic
models. Muller et al. (2004) propose a method-
ology to design a prognosis process taking into
account the behavior of environmental events.
They develop a probabilistic model based on the
translation of a preliminary process model into
DBN. Bouillaut et al. (2004) use causal prob-
abilistic networks for the improvement of the
maintenance of railway infrastructure. Weber
et al. (2004) use DBN to model dependabil-
ity of systems taking into account degradations
and failure modes governed by exogenous con-
straints.

All of the studies related to reliability analysis
using DBNs are descriptive. Dynamic problem
is represented with DBNs and the outcome of
the analysis is how system reliability behaves
in time. The impact of maintenance of an el-
ement at a specific time on this behaviour is
also reported in some of them. However opti-
mization of maintenance activities (i.e., finding
a minimum cost plan) is not considered which
is the main motivation of our paper. Main-
tenance is expensive and critical in most sys-
tems. Unexpected breakdowns are not tolera-
ble. That is why planning maintenance activ-
ities intelligently is an important issue since it
saves money, service time and also lost produc-
tion time. In this study, we are trying to opti-
mize maintenance activities of a system where
components age with a constant failure rate
and there is a budget constraint. We develop

a methodology to effectively prepare a predic-
tive maintenance plan using DBNs. One can
argue that the failure of the system and its as-
sociated costs can be modelled using influence
diagrams or limited memory influence diagrams
(LIMIDs). But we propose a way of represent-
ing the problem as an optimization problem first
and then use only DBNs for fast inference under
some simplifying assumptions.

The rest of the paper is organized as follows:
In Section 2, problem is defined and in Sec-
tion 3, dynamic Bayesian network based models
are proposed as a solution to the problem de-
fined. Two approaches are presented in schedul-
ing maintenance plans. Numerical results are
given in Section 4. Finally Section 5 gives con-
clusions and points future work.

2 Problem Definition

The problem we take up can be described as fol-
lows: There is a system which consists of sev-
eral components. We observe the system in dis-
crete epochs and assume that system reliability
is observable. System reliability is a function
of the interactions of the system components
which are not directly observable. We presume
that the reliability of the system should be kept
over a predetermined threshold value in all pe-
riods. This is reasonable in mission critical sys-
tems where the failure of the system is a very
low probability event due to built in redundancy
and other structural properties. Therefore, we
do not explicitly model the case where the sys-
tem actually fails. Components age with a con-
stant rate and it is possible to replace compo-
nents in any period. Once replaced, the com-
ponents will work at their full capacity. There
is a given maintenance budget for each period,
which the total replacement cost in that period
cannot exceed. Our aim is to minimize total
maintenance cost in a planning horizon such
that reliability of the system never falls below
the threshold and maintenance budget is not
exceeded. Furthermore we make the following
assumptions:

(i) Lifetime of any component in the system
is exponentially distributed. That is failure rate
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of any component is constant for all periods.
(ii) All other conditional probability distrib-

utions used in the representation are discrete.
(iii) All components and the system have two

states (“1” is the working state, “0” is the fail-
ure state).

(iv) Components can be replaced at the be-
ginning of each period. Once they are replaced,
their working state probability (i.e., their relia-
bility) become 1 in that period.

The problem can be expressed as a mathe-
matical optimization problem.

The model parameters are:

i : index of components
t : index of time periods
λi : failure rate of component i
Ri1 : initial reliability of component i
cit : cost of replacing component i in period t
Bt : available maintenance budget in period t
L : threshold value of system reliability
f(·) : function mapping component reliabilities

Rit to system reliability R0t

The decision variables are:

Xit =

{
1 if component i is replaced in period t
0 otherwise

Rit : reliability of component i in period t
R0t : reliability of system in period t

The Predictive Maintenance (PM) model can
be formulated mathematically as follows:

Z(PM) = min
T∑

t=1

n∑

i=1

citXit (1)

subject to

n∑

i=1

citXit ≤ Bt, ∀t (2)

R0t ≥ L, ∀t (3)

Rit = (1−Xit)e−λiRi,t−1 + Xit, ∀i, t (4)

R0t = f(R1t, R2t, ...Rnt), ∀t (5)

Xit ∈ {0, 1}, ∀i, t (6)

0 ≤ Rit ≤ 1, ∀i, t (7)

The objective function (1) aims to minimize
the total component replacement cost. Con-
straint set (2) represents the budget constraints.
Constraint set (3) guarantees that system relia-
bility in each period should be greater than the
given threshold value. Constraints in (4) ensure
that if components are replaced their reliability
becomes 1, otherwise it will decrease with cor-
responding failure rates. System reliability in
each period is calculated by constraint (5). Fi-
nally constraints (6) and (7) define the bounds
on decision variables. In general, solving this
problem may be quite difficult. The difficulty
lies in constraint sets (4) and (5). Constraint
set (4) defines a non-linear relation of the deci-
sion variables whereas constraint set (5) is much
more generic. In fact, system reliability at time
t can be a function of whole history of the sys-
tem. It is this set of constraints and the implied
relationships of constraint set (4) that we rep-
resent using a dynamic Bayesian network.

Further assumptions are imposed in order to
simplify the above problem:

(v) Replacement costs of all components in
any period are the same and they are all nor-
malized at one.

(vi) Available budget in any period is normal-
ized at one.

These assumptions indicate that in any pe-
riod, only one replacement can be planned and
the objective function we are trying to minimize
becomes the total number of replacements in a
planning horizon.

3 Proposed Solution

The mathematical problem may be solved ana-
lytically or numerically once the constraint set
(5) is made explicit. However, as the causal rela-
tions (represented with constraint set (5) in the
problem formulation) between the components
and the system becomes more complex, it gets
difficult to represent and solve it mathemati-
cally. We represent the constraint set (5) using
dynamic Bayesian Networks (DBNs) (Murphy,
2002). A DBN is an extended Bayesian net-
work (BN) which includes a temporal dimen-
sion. BNs are a widely used formalism for repre-
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senting uncertain knowledge. The main features
of the formalism are a graphical encoding of a
set of conditional independence relations and a
compact way of representing a joint probability
distribution between random variables (Pearl,
1988). BNs have the power to represent causal
relations between components and the system
using conditional probability distributions. It
is possible to analyse the process over a large
planning horizon with DBNs.

A1

S1

B1

A2

S2

B2

A3

S3

B3

Figure 1: DBN representation of a system with
2 components

Figure 1 illustrates a DBN representation of a
system with 2 components, A and B. Solid arcs
represent the causal relations between the com-
ponents and the system node whereas dashed
arcs represent temporal relation of the com-
ponents between two consecutive time peri-
ods. Note that this representation is Markov-
ian whereas DBNs can represent more general
transition structures. Temporal relations are
the transition probabilities of components due
to aging. Since the lifetime of any compo-
nent in the system is exponentially distributed,
the transition probabilities are constant because
of the memoryless property of the exponential
distribution given the time intervals are equal.
Transition probability table for a component
with two states (“1” is the working state, “0” is
the failure state) is given in Table 1.

Table 1: Transition probability for component i
Comp(t)

Comp(t + 1) 1 0
1 e−λi�t 0
0 1-e−λi�t 1

DBN representation allows monitoring the
system reliability in a given planning horizon
and predicting the system state under differ-
ent replacement schedules. When the system
reliability falls below a predetermined thresh-
old value, a component replacement is planned.
The decision of which component to replace is
an important issue since it affects future system
reliability and consequently the next time to do
a replacement. Like in decision-theoretic trou-
bleshooting (Heckerman et al., 1995), marginal
probabilities of components given the system
state are used as efficiency measures of com-
ponents in each period when a replacement is
planned. Let Sk the denote system state in pe-
riod k and Cik denote the state of component
i in period k. The following algorithm summa-
rizes our DBN approach:

(i) Initialize t = 1
(ii) Infer system reliability P (Sk = 1) t ≤ k ≤ T
(iii) Check if P (Sk = 1) ≤ L
(iv) If P (Sk = 1) ≥ L ∀k, then stop.
(v) Else prepare a replacement plan for period k

(a) Calculate Pik = P (Cik = 0|Sk = 0) ∀i
(b) i∗ = arg max{Pik}
(c) Update reliability of i∗ in k to 1.

P (Cik = 1)← 1
(d) Update t = k + 1

(vi) If t > T , then stop.
(vii) Else continue with step (ii)

Note that P (St = 1) = R0t and P (Cit = 1) =
Rit. This is a myopic approach, since the only
evidence in calculating marginal probabilities in
(v.a) belongs to the system state at the current
planning time. An alternative approach is to
take into account future information which can
be transmitted by the transition probabilities
of components. This is done by entering evi-
dence to the system node from k + 1 to T as
Sk+1:T = 0. We call this approach the look-
ahead approach. The algorithm is the same as
above except for step (v.a) which is replaced as
follows in look-ahead approach:

(v.a) Calculate Pik = P (Cik = 0|Sk+1:T = 0)
∀i where Sk+1:T denotes Sk+1, ..., ST .
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4 Numerical Results

The DBN algorithm is coded in Matlab and uses
the Bayes Net Toolbox (BNT) (Murphy, 2001)
to represent the causal and temporal relations,
and to infer the reliability of the system. Two
approaches, myopic and look-ahead, are com-
pared on a small example with two components
given in Figure 1. The planning horizon is taken
as 100 periods and the threshold value is given
as 0.50.

First scenario is created by taking mean time
to failure (MTTF) (1/λi) of each component
i equal which is set at 40 periods. The same
replacement plan, given in Figure 2, is gener-
ated by both approaches. This is because com-
ponents have equal MTTFs and hence equal
transition probabilities. System reliability of
scenario 1 is illustrated in Figure 2 where the
peak points are the periods where a component
is replaced. On each peak point, the compo-
nent which is planned for replacement is indi-
cated in the figure. 4 replacements are planned
in both approaches. When a replacement oc-
curs, system reliability jumps to a higher reli-
ability value, and then gradually decreases as
time evolves until the next replacement.
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Figure 2: Scenario 1- system reliability and re-
placement plan

Second scenario is created by differentiating
MTTFs of components. We decrease MTTF
of component B to 10 periods. Replacement

plans in Figure 3 and Figure 4 are generated by
the myopic and look-ahead approaches, respec-
tively. Replacement plans of the two approaches
differ since components have different transition
probabilities. Both approaches begin their re-
placement plan in period 12, by selecting the
same component to replace. In the next replace-
ment period (k = 21), different components are
selected. Myopic approach selects component
B, because this replacement will make the sys-
tem reliability higher in the short-term. Look-
ahead approach selects component A, because
this replacement will make the system reliabil-
ity higher in the long-run. This is further illus-
trated in Table 2. Although system reliability
in the myopic approach is higher at t = 21, it
decreases faster than the system reliability un-
der the look-ahead approach. Hence, the look-
ahead approach plans its next replacement at
t = 29 while the myopic approach plans its next
replacement at t = 28. By selecting A instead
of B, the look-ahead approach defers its next
replacement time. So as a total, in scenario 2,
the look-ahead approach generates 10 replace-
ments in 100 periods while the myopic approach
generates 11.

Table 2: Scenario 2- system reliability where
21 ≤ t ≤ 28

Period 21 22 23 24
Myopic .7712 .7169 .6673 .6220
Look-ahead .7036 .6718 .6421 .6144
Period 25 26 27 28
Myopic .5805 .5425 .5077 .4758
Look-ahead .5884 .5642 .5414 .5200

System reliability of scenario 2 is illustrated
in Figures 3 and 4 for myopic and look-ahead
approaches, respectively. In Figure 3, there are
11 peak points which means 11 replacements are
planned. In Figure 4, there are 10 peak points
which means 10 replacements are planned.

A third scenario is also carried out by further
decreasing MTTF of component B to 5 peri-
ods. The discrepancy between plans generated
by the two approaches becomes more apparent.
Myopic approach plans a total of 19 replace-
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Figure 3: Scenario 2- system reliability and re-
placement plan with the myopic approach

ments while look-ahead approach plans a total
of 16 replacements.

When the threshold value increases, an inter-
esting question arises: Does it still worth to ac-
count for future information in choosing which
component to replace? Table 3 shows the num-
ber of replacements found by the myopic and
the look-ahead approaches at various threshold
(L) values for scenario 2. When L = 0.80, my-
opic approach finds fewer replacements than the
look-ahead approach. This is because as thresh-
old increases, more frequent replacements will
be planned, hence focusing on short-term relia-
bility instead of the future reliability may result
in less number of replacements.

Table 3: Number of replacements for the myopic
and look-ahead approaches at various threshold
values for T = 100

Threshold Myopic Look-ahead
0.50 11 10
0.60 15 15
0.70 23 22
0.80 33 35
0.90 67 67
0.95 100 100

In order to understand how good our method-
ology is, we enumerate all possible solutions of
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Figure 4: Scenario 2- system reliability and re-
placement plan with the look-ahead approach

k replacements in a reasonable time horizon.
Here, k refers to the upper bound of minimum
replacements given by our DBN algorithm. The
total number of solutions in a horizon of T pe-
riods with k replacements is given as:

(
T
k

)
2k (8)

The first term is the total number of all possible
size-k subsets of a size-T set. This corresponds
to the total number of all possible time alterna-
tives of k replacements in horizon T . The sec-
ond term is the total number of all possible re-
placements for two components. Since this solu-
tion space becomes intractable with increasing
T and k, a smaller part of the planning horizon
is taken for enumeration of both scenarios. We
started working with T = 50 periods where 2
repairs are proposed and T = 30 periods where
3 repairs are proposed by our algorithm for sce-
nario 1 and scenario 2, respectively. The next
replacements correspond to t = 62 (Figure 2)
and t = 40 (Figure 4). Hence, we increased
T = 61 and T = 39, the periods just before
the 3rd and 4th replacements given by our al-
gorithm for scenarios 1 and 2. The number of
feasible solutions found by enumeration are re-
ported in Table 4.

When we decrease k, number of replacements,
by 1 (k = 1 and k = 2 for scenarios 1 and 2 re-
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Table 4: Enumeration results
Scen- Horizon Number of Feasible
ario Replacements Solutions
1 50 2 324
1 50 1 0
1 61 2 2
1 61 1 0
2 30 3 1543
2 30 2 0
2 39 3 1
2 39 2 0

spectively); no feasible solution is found. So, it
is not possible to find a plan with less replace-
ments given by our algorithm for these cases.
Note also that, in scenario 1 when T = 61 and
k = 2, enumeration finds two feasible solutions
which are in fact symmetric solutions found also
by our algorithm. Similarly in scenario 2 when
T = 39 and k = 3, enumeration finds one fea-
sible solution which is the one found by our al-
gorithm with the look-ahead approach. There
are 1543 feasible solutions for scenario 2 with
T = 30 and k = 3. Our lookahead approach
finds one of these solutions and the solution
it finds has the maximum system reliability at
T = 30 among all solutions. The same observa-
tion is also valid for scenario 1 with T = 50 and
k = 2.

5 Conclusion

We study dynamic reliability of a system where
components age with a constant failure rate and
there is a budget constraint. We develop a
methodology to effectively prepare a good pre-
dictive maintenance plan using DBNs to rep-
resent the causal and temporal relations, and
to infer reliability values. We try to minimize
number of component replacements in a plan-
ning horizon by first deciding the time and then
the component to replace. Two approaches are
presented to choose the component and they
are compared on three scenarios and various
threshold values. When failure rates of com-
ponents are equal, they find the same replace-
ment plan. However, as failure rates differ, the

two approaches may end up with different num-
ber of replacements. This is because the look-
ahead approach takes future system reliability
into consideration while the myopic approach
focuses on the current planning time.

In this kind of predictive maintenance prob-
lem, there are two important decisions: One is
the time of replacement. Replacement should
be done such that system reliability is always
guaranteed to be over a threshold. The other
decision is which component(s) to replace in
that period such that budget is not exceeded
and total replacement cost is minimized. Our
methodology is based on separating these deci-
sions under assumptions (v) and (vi). We give
the former decision by monitoring the first pe-
riod when system reliability just falls below a
given threshold. In other words, we defer a re-
placement decision as far as the threshold per-
mits. As for the latter decision, we propose two
approaches, myopic and look-ahead, to choose
the component to replace. By enumerating fea-
sible solutions in a reasonable horizon, we show
that our method is effective for our simplified
problem where the objective has become min-
imizing total replacements in a given planning
horizon.

In this paper, we outline a method that can
be used for finding a minimum-cost predictive
maintenance schedule such that the system reli-
ability is always above a certain threshold. The
approach is normative in nature as opposed to
descriptive which is the case in most of the lit-
erature that uses DBNs in reliability analysis.

The problem becomes more complex by
(i) differentiating component costs (in time),
(ii) differentiating available budget in time,
(iii) defining a maintenance fixed cost for each
period which may or may not differ in time. In
these cases, separating the two decisions may
not give a good solution. Studying such cases is
left for future work.
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Research Fund under grant BAP06A301D.
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Boğaziçi University.

Ranganath Kothamasu, Samuel H. Huang and
William H. VerDuin. 2006. System health mon-
itoring and prognostics - a review of current par-
adigms and practices. Int J Adv Manuf Technol,
28:1012-1024.

Helge Langseth and Finn V. Jensen. 2003. Decision
theoretic troubleshooting of coherent systems. Re-
liability Engineering and System Safety, 80(1):49-
62.

Helge Langseth and Finn V. Jensen. 2001. Heuris-
tics for two extensions of basic troubleshooting.
In 7th Scandinavian Conference on Artificial In-
telligence, Frontiers in Artificial Intelligence and
Applications, pages 80-89.

Alexandre Muller, Philippe Weber and A. Ben
Salem. 2004. Process model-based dynamic
Bayesian networks for prognostic. In IEEE 4th
International Conference on Intelligent Systems
Design and Applications.

Kevin Patrick Murphy. 2002. Dynamic Bayesian
networks: representation, inference and learn-
ing, Ph.D. Dissertation, University of California,
Berkeley.

Kevin Patrick Murphy. 2001. The Bayes Net Tool-
box for Matlab, Computing Science and Statistics:
Proceedings of the Interface.

Jude Pearl. 1988. Probabilistic reasoning in intel-
ligent systems: Networks of plausible inference,
Morgan Kaufmann Publishers.

Sampath Srinivas. 1995. A polynomial algorithm for
computing the optimal repair strategy in a system
with independent component failures. In 11th An-
nual Conference on Uncertainty in Artificial In-
telligence, pages 515-522.

Claus Skaanning, Finn V. Jensen and Uffe Kjærulff.
2000. Printer troubleshooting using Bayesian net-
works. In 13th International Conference on In-
dustrial and Engineering Applications of Artificial
Intelligence and Expert Systems, pages 367-379.
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Abstract

We present a sound and complete graphical criterion for reading dependencies from the
minimal undirected independence map of a graphoid that satisfies weak transitivity. We
argue that assuming weak transitivity is not too restrictive.

1 Introduction

A minimal undirected independence map G of
an independence model p is used to read inde-
pendencies that hold in p. Sometimes, however,
G can also be used to read dependencies hol-
ding in p. For instance, if p is a graphoid that is
faithful to G then, by definition, vertex separa-
tion is a sound and complete graphical criterion
for reading dependencies from G. If p is simply
a graphoid, then there also exists a sound and
complete graphical criterion for reading depen-
dencies from G (Bouckaert, 1995).

In this paper, we introduce a sound and com-
plete graphical criterion for reading dependen-
cies from G under the assumption that p is a
graphoid that satisfies weak transitivity. Our
criterion allows reading more dependencies than
the criterion in (Bouckaert, 1995) at the cost of
assuming weak transitivity. We argue that this
assumption is not too restrictive. Specifically,
we show that there exist important families of
probability distributions that are graphoids and
satisfy weak transitivity.

The rest of the paper is organized as follows.
In Section 5, we present our criterion for reading
dependencies from G. As will become clear la-
ter, it is important to first prove that vertex
separation is sound and complete for reading
independencies from G. We do so in Section
4. Equally important is to show that assuming
that p satisfies weak transitivity is not too res-
trictive. We do so in Section 3. We start by
reviewing some key concepts in Section 2 and

close with some discussion in Section 6.

2 Preliminaries

The following definitions and results can be
found in most books on probabilistic graphi-
cal models, e.g. (Pearl, 1988; Studený, 2005).
Let U denote a set of random variables. Un-
less otherwise stated, all the independence mo-
dels and graphs in this paper are defined over
U. Let X, Y, Z and W denote four mutually
disjoint subsets of U. An independence mo-
del p is a set of independencies of the form
X is independent of Y given Z. We represent
that an independency is in p by X⊥⊥Y|Z and
that an independency is not in p by X 6⊥⊥Y|Z.
An independence model is a graphoid when
it satisfies the following five properties: Sym-
metry X ⊥⊥ Y|Z ⇒ Y ⊥⊥ X|Z, decomposi-
tion X ⊥⊥ YW|Z ⇒ X ⊥⊥ Y|Z, weak union
X ⊥⊥YW|Z ⇒ X ⊥⊥Y|ZW, contraction X ⊥⊥
Y|ZW∧X⊥⊥W|Z ⇒ X⊥⊥YW|Z, and intersec-
tion X⊥⊥Y|ZW ∧X⊥⊥W|ZY ⇒ X⊥⊥YW|Z.
Any strictly positive probability distribution is
a graphoid.

Let sep(X,Y|Z) denote that X is separated
from Y given Z in a graph G. Specifically,
sep(X,Y|Z) holds when every path in G bet-
ween X and Y is blocked by Z. If G is an undi-
rected graph (UG), then a path in G between X
and Y is blocked by Z when there exists some
Z ∈ Z in the path. If G is a directed and acyclic
graph (DAG), then a path in G between X and
Y is blocked by Z when there exists a node Z



in the path such that either (i) Z does not have
two parents in the path and Z ∈ Z, or (ii) Z has
two parents in the path and neither Z nor any of
its descendants in G is in Z. An independence
model p is faithful to an UG or DAG G when
X ⊥⊥ Y|Z iff sep(X,Y|Z). Any independence
model that is faithful to some UG or DAG is a
graphoid. An UG G is an undirected indepen-
dence map of an independence model p when
X⊥⊥Y|Z if sep(X,Y|Z). Moreover, G is a mi-
nimal undirected independence (MUI) map of p
when removing any edge from G makes it cease
to be an independence map of p. A Markov
boundary of X ∈ U in an independence model
p is any subset MB(X) of U \X such that (i)
X⊥⊥U\X\MB(X)|MB(X), and (ii) no proper
subset of MB(X) satisfies (i). If p is a graphoid,
then (i) MB(X) is unique for all X, (ii) the
MUI map G of p is unique, and (iii) two nodes
X and Y are adjacent in G iff X ∈ MB(Y ) iff
Y ∈ MB(X) iff X 6⊥⊥Y |U \ (XY ).

A Bayesian network (BN) is a pair (G, θ)
where G is a DAG and θ are parameters spe-
cifying a probability distribution for each X ∈
U given its parents in G, p(X|Pa(X)). The
BN represents the probability distribution p =∏

X∈U p(X|Pa(X)). Then, G is an indepen-
dence map of a probability distribution p iff p
can be represented by a BN with DAG G.

3 WT Graphoids

Let X, Y and Z denote three mutually disjoint
subsets of U. We call WT graphoid to any
graphoid that satisfies weak transitivity X ⊥⊥
Y|Z ∧X⊥⊥Y|ZV ⇒ X⊥⊥V |Z ∨ V ⊥⊥Y|Z with
V ∈ U\ (XYZ). We now argue that there exist
important families of probability distributions
that are WT graphoids and, thus, that WT gra-
phoids are worth studying. For instance, any
probability distribution that is Gaussian or fai-
thful to some UG or DAG is a WT graphoid
(Pearl, 1988; Studený, 2005). There also exist
probability distributions that are WT graphoids
although they are neither Gaussian nor faithful
to any UG or DAG. For instance, it follows from
the theorem below that the probability distribu-
tion that results from marginalizing some nodes

out and instantiating some others in a probabi-
lity distribution that is faithful to some DAG
is a WT graphoid, although it may be neither
Gaussian nor faithful to any UG or DAG.

Theorem 1. Let p be a probability distribution
that is a WT graphoid and let W ⊆ U. Then,
p(U \W) is a WT graphoid. If p(U \W|W =
w) has the same independencies for all w, then
p(U\W|W = w) for any w is a WT graphoid.

Proof. Let X, Y and Z denote three mutually
disjoint subsets of U \W. Then, X⊥⊥Y|Z in
p(U \W) iff X⊥⊥Y|Z in p and, thus, p(U \W)
satisfies the WT graphoid properties because p
satisfies them. If p(U \ W|W = w) has the
same independencies for all w then, for any w,
X⊥⊥Y|Z in p(U\W|W = w) iff X⊥⊥Y|ZW in
p. Then, p(U \W|W = w) for any w satisfies
the WT graphoid properties because p satisfies
them.

We now show that it is not too restrictive to
assume in the theorem above that p(U\W|W =
w) has the same independencies for all w, be-
cause there exist important families of proba-
bility distributions whose all or almost all the
members satisfy such an assumption. For ins-
tance, if p is a Gaussian probability distribution,
then p(U \W|W = w) has the same indepen-
dencies for all w, because the independencies in
p(U\W|W = w) only depend on the variance-
covariance matrix of p (Anderson, 1984). Let
us now consider all the multinomial probability
distributions for which a DAG G is an indepen-
dence map and denote them by M(G). The
following theorem, which is inspired by (Meek,
1995), proves that the probability of randomly
drawing from M(G) a probability distribution
p such that p(U\W|W = w) does not have the
same independencies for all w is zero.

Theorem 2. The probability distributions p in
M(G) for which there exists some W ⊆ U such
that p(U \W|W = w) does not have the same
independencies for all w have Lebesgue measure
zero wrt M(G).

Proof. The proof basically proceeds in the same
way as that of Theorem 7 in (Meek, 1995), so we
refer the reader to that paper for more details.
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Let W ⊆ U and let X, Y and Z denote three
disjoint subsets of U\W. For a constraint such
as X ⊥⊥ Y|Z to be true in p(U \ W|W = w)
but false in p(U \ W|W = w′), two condi-
tions must be met. First, sep(X,Y|ZW) must
not hold in G and, second, the following equa-
tions must be satisfied: p(X = x,Y = y,Z =
z,W = w)p(Z = z,W = w) − p(X = x,Z =
z,W = w)p(Y = y,Z = z,W = w) = 0
for all x, y and z. Each equation is a poly-
nomial in the BN parameters corresponding to
G, because each term p(V = v) in the equa-
tions is the summation of products of BN para-
meters (Meek, 1995). Furthermore, each poly-
nomial is non-trivial, i.e. not all the values of
the BN parameters corresponding to G are so-
lutions to the polynomial. To see it, note that
there exists a probability distribution q in M(G)
that is faithful to G (Meek, 1995) and, thus,
that X 6⊥⊥ Y|ZW in q because sep(X,Y|ZW)
does not hold in G. Then, by permuting the
states of the random variables, we can trans-
form the BN parameter values corresponding to
q into BN parameter values for p so that the po-
lynomial does not hold. Let sol(x,y, z,w) de-
note the set of solutions to the polynomial for
x, y and z. Then, sol(x,y, z,w) has Lebesgue
measure zero wrt Rn, where n is the number of
linearly independent BN parameters correspon-
ding to G, because it consists of the solutions
to a non-trivial polynomial (Okamoto, 1973).
Let sol =

⋃
X,Y,Z,W

⋃
w

⋂
x,y,z sol(x,y, z,w)

and recall from above that the outer-most
union only involves those cases for which
sep(X,Y|ZW) does not hold in G. Then, sol
has Lebesgue measure zero wrt Rn, because the
finite union and intersection of sets of Lebesgue
measure zero has Lebesgue measure zero too.
Consequently, the probability distributions p in
M(G) such that p(U \ W|W = w) does not
have the same independencies for all w have
Lebesgue measure zero wrt Rn because they
are contained in sol. These probability distri-
butions also have Lebesgue measure zero wrt
M(G), because M(G) has positive Lebesgue
measure wrt Rn (Meek, 1995).

Finally, we argue in Section 6 that it is not

unrealistic to assume that the probability dis-
tribution underlying the learning data in most
projects on gene expression data analysis, one
of the hottest areas of research nowadays, is a
WT graphoid.

4 Reading Independencies

By definition, sep is sound for reading indepen-
dencies from the MUI map G of a WT graphoid
p, i.e. it only identifies independencies in p.
Now, we prove that sep in G is also complete
in the sense that it identifies all the indepen-
dencies in p that can be identified by studying
G alone. Specifically, we prove that there exist
multinomial and Gaussian probability distribu-
tions that are faithful to G. Such probability
distributions have all and only the independen-
cies that sep identifies from G. Moreover, such
probability distributions must be WT graphoids
because sep satisfies the WT graphoid proper-
ties (Pearl, 1988). The fact that sep in G is
complete, in addition to being an important re-
sult in itself, is important for reading as many
dependencies as possible from G (see Section 5).

Theorem 3. Let G be an UG. There exist mul-
tinomial and Gaussian probability distributions
that are faithful to G.

Proof. We first prove the theorem for multino-
mial probability distributions. Create a copy H
of G and, then, replace every edge X − Y in
H by X → WXY ← Y where WXY /∈ U is an
auxiliary node. Let W denote all the auxiliary
nodes created. Then, H is a DAG over UW.
Moreover, for any three mutually disjoint sub-
sets X, Y and Z of U, sep(X,Y|ZW) in H iff
sep(X,Y|Z) in G.

The probability distributions p(U,W) in
M(H) that are faithful to H and satisfy that
p(U|W = w) has the same independencies for
all w have positive Lebesgue measure wrt M(H)
because (i) M(H) has positive Lebesgue mea-
sure wrt Rn (Meek, 1995), (ii) the probabi-
lity distributions in M(H) that are not faithful
to H have Lebesgue measure zero wrt M(H)
(Meek, 1995), (iii) the probability distributions
p(U,W) in M(H) such that p(U|W = w) does
not have the same independencies for all w have
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Lebesgue measure zero wrt M(H) by Theorem
2, and (iv) the union of the probability distri-
butions in (ii) and (iii) has Lebesgue measure
zero wrt M(H) because the finite union of sets
of Lebesgue measure zero has Lebesgue measure
zero.

Let p(U,W) denote any probability distribu-
tion in M(H) that is faithful to H and satis-
fies that p(U|W = w) has the same indepen-
dencies for all w. As proven in the paragraph
above, such a probability distribution exists.
Fix any w and let X, Y and Z denote three
mutually disjoint subsets of U. Then, X⊥⊥Y|Z
in p(U|W = w) iff X ⊥⊥ Y|ZW in p(U,W)
iff sep(X,Y|ZW) in H iff sep(X,Y|Z) in G.
Then, p(U|W = w) is faithful to G.

The proof for Gaussian probability distribu-
tions is analogous. In this case, p(U,W) is a
Gaussian probability distribution and thus, for
any w, p(U|W = w) is Gaussian too (Ander-
son, 1984). Theorem 2 is not needed in the proof
because, as discussed in Section 3, any Gaussian
probability distribution p(U,W) satisfies that
p(U|W = w) has the same independencies for
all w.

The theorem above has previously been pro-
ven for multinomial probability distributions
in (Geiger and Pearl, 1993), but the proof
constrains the cardinality of U. Our proof does
not constraint the cardinality of U and applies
not only to multinomial but also to Gaussian
probability distributions. It has been proven
in (Frydenberg, 1990) that sep in an UG G is
complete in the sense that it identifies all the
independencies holding in every Gaussian pro-
bability distribution for which G is an indepen-
dence map. Our result is stronger because it
proves the existence of a Gaussian probability
distribution with exactly these independencies.
We learned from one of the reviewers, whom we
thank for it, that a rather different proof of the
theorem above for Gaussian probability distri-
butions is reported in (Lněnička, 2005).

The theorem above proves that sep in the
MUI map G of a WT graphoid p is complete
in the sense that it identifies all the indepen-
dencies in p that can be identified by studying

G alone. However, sep in G is not complete if
being complete is understood as being able to
identify all the independencies in p. Actually,
no sound criterion for reading independencies
from G alone is complete in the latter sense.
An example follows.

Example 1. Let p be a multinomial (Gaussian)
probability distribution that is faithful to the
DAG X → Z ← Y . Such a probability dis-
tribution exists (Meek, 1995). Let G denote
the MUI map of p, namely the complete UG.
Note that p is not faithful to G. However, by
Theorem 3, there exists a multinomial (Gaus-
sian) probability distribution q that is faithful
to G. As discussed in Section 3, p and q are WT
graphoids. Let us assume that we are dealing
with p. Then, no sound criterion can conclude
X ⊥⊥Y |∅ by just studying G because this inde-
pendency does not hold in q, and it is impossible
to know whether we are dealing with p or q on
the sole basis of G.

5 Reading Dependencies

In this section, we propose a sound and com-
plete criterion for reading dependencies from
the MUI map of a WT graphoid. We define the
dependence base of an independence model p as
the set of all the dependencies X 6⊥⊥Y |U \ (XY )
with X, Y ∈ U. If p is a WT graphoid, then ad-
ditional dependencies in p can be derived from
its dependence base via the WT graphoid pro-
perties. For this purpose, we rephrase the WT
graphoid properties as follows. Let X, Y, Z
and W denote four mutually disjoint subsets
of U. Symmetry Y 6⊥⊥X|Z ⇒ X 6⊥⊥Y|Z. De-
composition X 6⊥⊥ Y|Z ⇒ X 6⊥⊥ YW|Z. Weak
union X 6⊥⊥Y|ZW ⇒ X 6⊥⊥YW|Z. Contraction
X 6⊥⊥YW|Z ⇒ X 6⊥⊥Y|ZW ∨X 6⊥⊥W|Z is pro-
blematic for deriving new dependencies because
it contains a disjunction in the right-hand side
and, thus, it should be split into two properties:
Contraction1 X 6⊥⊥YW|Z ∧ X ⊥⊥Y|ZW ⇒ X
6⊥⊥ W|Z, and contraction2 X 6⊥⊥ YW|Z ∧ X
⊥⊥ W|Z ⇒ X 6⊥⊥ Y|ZW. Likewise, intersec-
tion X 6⊥⊥YW|Z ⇒ X 6⊥⊥Y|ZW ∨X 6⊥⊥W|ZY
gives rise to intersection1 X 6⊥⊥ YW|Z ∧ X
⊥⊥ Y|ZW ⇒ X 6⊥⊥ W|ZY, and intersection2
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X 6⊥⊥ YW|Z ∧ X ⊥⊥ W|ZY ⇒ X 6⊥⊥ Y|ZW.
Note that intersection1 and intersection2 are
equivalent and, thus, we refer to them simply
as intersection. Finally, weak transitivity X 6⊥⊥
V |Z ∧ V 6⊥⊥Y|Z ⇒ X 6⊥⊥Y|Z ∨X 6⊥⊥Y|ZV with
V ∈ U \ (XYZ) gives rise to weak transitivity1
X 6⊥⊥V |Z ∧ V 6⊥⊥Y|Z ∧X⊥⊥Y|Z ⇒ X 6⊥⊥Y|ZV ,
and weak transitivity2 X 6⊥⊥V |Z∧ V 6⊥⊥Y|Z∧X
⊥⊥ Y|ZV ⇒ X 6⊥⊥ Y|Z. The independency in
the left-hand side of any of the properties above
holds if the corresponding sep statement holds
in the MUI map G of p. This is the best solution
we can hope for because, as discussed in Section
4, sep in G is sound and complete. Moreover,
this solution does not require more information
about p than what it is available, because G can
be constructed from the dependence base of p.
We call the WT graphoid closure of the depen-
dence base of p to the set of all the dependencies
that are in the dependence base of p plus those
that can be derived from it by applying the WT
graphoid properties.

We now introduce our criterion for reading
dependencies from the MUI map of a WT gra-
phoid. Let X, Y and Z denote three mutually
disjoint subsets of U. Then, con(X,Y|Z) de-
notes that X is connected to Y given Z in an
UG G. Specifically, con(X,Y|Z) holds when
there exist some X1 ∈ X and Xn ∈ Y such that
there exists exactly one path in G between X1

and Xn that is not blocked by (X \ X1)(Y \
Xn)Z. Note that there may exist several unblo-
cked paths in G between X and Y but only one
between X1 and Xn. We now prove that con is
sound for reading dependencies from the MUI
map of a WT graphoid, i.e. it only identifies
dependencies in the WT graphoid. Actually, it
only identifies dependencies in the WT graphoid
closure of the dependence base of p. Hereinaf-
ter, X1:n denotes a path X1, . . . , Xn in an UG.

Theorem 4. Let p be a WT graphoid and G
its MUI map. Then, con in G only identifies
dependencies in the WT graphoid closure of the
dependence base of p.

Proof. We first prove that if X1:n is the only
path in G between X1 and Xn that is not blo-
cked by Y ⊆ U \ X1:n, then X1 6⊥⊥Xn|Y. We

prove it by induction over n. We first prove
it for n = 2. Let W denote all the nodes
in U \ X1:2 \ Y that are not separated from
X1 given X2Y in G. Since X1 and X2 are
adjacent in G, X1 6⊥⊥ X2|U \ X1:2 and, thus,
X1W 6⊥⊥X2(U \ X1:2 \Y \W)|Y due to weak
union. This together with sep(X1W,U \X1:2 \
Y \W|X2Y), which follows from the definition
of W, implies X1W 6⊥⊥ X2|Y due to contrac-
tion1. Note that if U \ X1:2 \ Y \ W = ∅,
then X1W 6⊥⊥X2(U \X1:2 \Y \W)|Y directly
implies X1W 6⊥⊥X2|Y. In any case, this inde-
pendency together with sep(W, X2|X1Y), be-
cause otherwise there exist several unblocked
paths in G between X1 and X2 which contra-
dicts the definition of Y, implies X1 6⊥⊥ X2|Y
due to contraction1. Note that if W = ∅, then
X1W 6⊥⊥X2|Y directly implies X1 6⊥⊥X2|Y. Let
us assume as induction hypothesis that the sta-
tement that we are proving holds for all n < m.
We now prove it for n = m. Since the paths
X1:2 and X2:m contain less than m nodes and
Y blocks all the other paths in G between X1

and X2 and between X2 and Xm, because other-
wise there exist several unblocked paths in G
between X1 and Xm which contradicts the de-
finition of Y, then X1 6⊥⊥X2|Y and X2 6⊥⊥Xm|Y
due to the induction hypothesis. This together
with sep(X1, Xm|YX2), which follows from the
definition of X1:m and Y, implies X1 6⊥⊥Xm|Y
due to weak transitivity2.

Let X, Y and Z denote three mutually dis-
joint subsets of U. If con(X,Y|Z) holds in G,
then there exist some X1 ∈ X and Xn ∈ Y
such that X1 6⊥⊥Xn|(X \ X1)(Y \ Xn)Z due to
the paragraph above and, thus, X 6⊥⊥Y|Z due
to weak union. Then, every con statement in
G corresponds to a dependency in p. Moreover,
this dependency must be in the WT graphoid
closure of the dependence base of p, because we
have only used in the proof the dependence base
of p and the WT graphoid properties.

We now prove that con is complete for rea-
ding dependencies from the MUI map of a WT
graphoid p, in the sense that it identifies all the
dependencies in p that follow from the informa-
tion about p that is available, namely the de-
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pendence base of p and the fact that p is a WT
graphoid.

Theorem 5. Let p be a WT graphoid and G
its MUI map. Then, con in G identifies all the
dependencies in the WT graphoid closure of the
dependence base of p.

Proof. It suffices to prove (i) that all the depen-
dencies in the dependence base of p are identi-
fied by con in G, and (ii) that con satisfies the
WT graphoid properties. Since the first point
is trivial, we only prove the second point. Let
X, Y, Z and W denote four mutually disjoint
subsets of U.

• Symmetry con(Y,X|Z) ⇒ con(X,Y|Z).
Trivial.

• Decomposition con(X,Y|Z) ⇒
con(X,YW|Z). Trivial if W contains no
node in the path X1:n in the left-hand
side. If W contains some node in X1:n,
then let Xm denote the closest node to
X1 such that Xm ∈ X1:n ∩W. Then, the
path X1:m satisfies the right-hand side
because (X \ X1)(YW \ Xm)Z blocks all
the other paths in G between X1 and Xm,
since (X \ X1)(Y \ Xn)Z blocks all the
paths in G between X1 and Xm except
X1:m, because otherwise there exist several
unblocked paths in G between X1 and Xn,
which contradicts the left-hand side.

• Weak union con(X,Y|ZW) ⇒
con(X,YW|Z). Trivial because W
contains no node in the path X1:n in the
left-hand side.

• Contraction1 con(X,YW|Z) ∧
sep(X,Y|ZW) ⇒ con(X,W|Z). Since
ZW blocks all the paths in G between
X and Y, then (i) the path X1:n in the
left-hand side must be between X and W,
and (ii) all the paths in G between X1 and
Xn that are blocked by Y are also blocked
by (W \Xn)Z and, thus, Y is not needed
to block all the paths in G between X1

and Xn except X1:n. Then, X1:n satisfies
the right-hand side.

• Contraction2 con(X,YW|Z) ∧
sep(X,W|Z) ⇒ con(X,Y|ZW). Since Z
blocks all the paths in G between X and
W, the path X1:n in the left-hand side
must be between X and Y and, thus, it
satisfies the right-hand side.

• Intersection con(X,YW|Z) ∧
sep(X,Y|ZW) ⇒ con(X,W|ZY). Since
ZW blocks all the paths in G between X
and Y, the path X1:n in the left-hand side
must be between X and W and, thus, it
satisfies the right-hand side.

• Weak transitivity2 con(X, Xm|Z) ∧
con(Xm,Y|Z) ∧ sep(X,Y|ZXm) ⇒
con(X,Y|Z) with Xm ∈ U \ (XYZ). Let
X1:m and Xm:n denote the paths in the first
and second, respectively, con statements in
the left-hand side. Let X1:m:n denote the
path X1, . . . , Xm, . . . , Xn. Then, X1:m:n

satisfies the right-hand side because (i) Z
does not block X1:m:n, and (ii) Z blocks
all the other paths in G between X1 and
Xn, because otherwise there exist several
unblocked paths in G between X1 and Xm

or between Xm and Xn, which contradicts
the left-hand side.

• Weak transitivity1 con(X, Xm|Z) ∧
con(Xm,Y|Z) ∧ sep(X,Y|Z) ⇒
con(X,Y|ZXm) with Xm ∈ U \ (XYZ).
This property never applies because, as
seen in weak transitivity2, sep(X,Y|Z)
never holds since Z does not block X1:m:n.

Note that the meaning of completeness in the
theorem above differs from that in Theorem 3.
It remains an open question whether con in G
identifies all the dependencies in p that can be
identified by studying G alone. Note also that
con in G is not complete if being complete is
understood as being able to identify all the de-
pendencies in p. Actually, no sound criterion for
reading dependencies from G alone is complete
in this sense. Example 1 illustrates this point.
Let us now assume that we are dealing with q
instead of with p. Then, no sound criterion can
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conclude X 6⊥⊥ Y |∅ by just studying G because
this dependency does not hold in p, and it is im-
possible to know whether we are dealing with p
or q on the sole basis of G.

We have defined the dependence base of a
WT graphoid p as the set of all the dependen-
cies X 6⊥⊥ Y |U \ (XY ) with X, Y ∈ U. Howe-
ver, Theorems 4 and 5 remain valid if we re-
define the dependence base of p as the set of
all the dependencies X 6⊥⊥ Y |MB(X) \ Y with
X, Y ∈ U. It suffices to prove that the WT
graphoid closure is the same for both depen-
dence bases of p. Specifically, we prove that
the first dependence base is in the WT gra-
phoid closure of the second dependence base
and vice versa. If X 6⊥⊥ Y |U \ (XY ), then
X 6⊥⊥Y (U\(XY )\(MB(X)\Y ))|MB(X)\Y due
to weak union. This together with sep(X,U \
(XY ) \ (MB(X) \ Y )|Y (MB(X) \ Y )) implies
X 6⊥⊥ Y |MB(X) \ Y due to contraction1. On
the other hand, if X 6⊥⊥ Y |MB(X) \ Y , then
X 6⊥⊥ Y (U \ (XY ) \ (MB(X) \ Y ))|MB(X) \
Y due to decomposition. This together with
sep(X,U\(XY )\(MB(X)\Y )|Y (MB(X)\Y ))
implies X 6⊥⊥Y |U \ (XY ) due to intersection.

In (Bouckaert, 1995), the following sound and
complete (in the same sense as con) criterion
for reading dependencies from the MUI map
of a graphoid is introduced: Let X, Y and
Z denote three mutually disjoint subsets of U,
then X 6⊥⊥Y|Z when there exist some X1 ∈ X
and X2 ∈ Y such that X1 ∈ MB(X2) and ei-
ther MB(X1) \ X2 ⊆ (X \ X1)(Y \ X2)Z or
MB(X2) \X1 ⊆ (X \X1)(Y \X2)Z. Note that
con(X,Y|Z) coincides with this criterion when
n = 2 and either MB(X1) \X2 ⊆ (X \X1)(Y \
X2)Z or MB(X2) \ X1 ⊆ (X \ X1)(Y \ X2)Z.
Therefore, con allows reading more dependen-
cies than the criterion in (Bouckaert, 1995) at
the cost of assuming weak transitivity which, as
discussed in Section 3, is not a too restrictive
assumption.

Finally, the soundness of con allows us to give
an alternative proof to the following theorem,
which was originally proven in (Becker et al.,
2000).

Theorem 6. Let p be a WT graphoid and G its

MUI map. If G is a forest, then p is faithful to
it.

Proof. Any independency in p for which the cor-
responding separation statement does not hold
in G contradicts Theorem 4.

6 Discussion

In this paper, we have introduced a sound
and complete criterion for reading dependencies
from the MUI map of a WT graphoid. In (Peña
et al., 2006), we show how this helps to iden-
tify all the nodes that are relevant to compute
all the conditional probability distributions for
a given set of nodes without having to learn a
BN first. We are currently working on a sound
and complete criterion for reading dependencies
from a minimal directed independence map of a
WT graphoid.

Due to lack of time, we have not been able to
address some of the questions posed by the re-
viewers. We plan to do it in an extended version
of this paper. These questions were studying
the relation between the new criterion and lack
of vertex separation, studying the complexity of
the new criterion, and studying the uniqueness
and consistency of the WT graphoid closure.

Our end-goal is to apply the results in this
paper to our project on atherosclerosis gene ex-
pression data analysis in order to learn depen-
dencies between genes. We believe that it is not
unrealistic to assume that the probability distri-
bution underlying our data satisfies strict positi-
vity and weak transitivity and, thus, it is a WT
graphoid. The cell is the functional unit of all
the organisms and includes all the information
necessary to regulate its function. This informa-
tion is encoded in the DNA of the cell, which is
divided into a set of genes, each coding for one
or more proteins. Proteins are required for prac-
tically all the functions in the cell. The amount
of protein produced depends on the expression
level of the coding gene which, in turn, depends
on the amount of proteins produced by other
genes. Therefore, a dynamic Bayesian network
is a rather accurate model of the cell (Murphy
and Mian, 1999): The nodes represent the genes
and proteins, and the edges and parameters re-
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present the causal relations between the gene
expression levels and the protein amounts. It
is important that the Bayesian network is dy-
namic because a gene can regulate some of its
regulators and even itself with some time delay.
Since the technology for measuring the state of
the protein nodes is not widely available yet,
the data in most projects on gene expression
data analysis are a sample of the probability dis-
tribution represented by the dynamic Bayesian
network after marginalizing the protein nodes
out. The probability distribution with no node
marginalized out is almost surely faithful to the
dynamic Bayesian network (Meek, 1995) and,
thus, it satisfies weak transitivity (see Section 3)
and, thus, so does the probability distribution
after marginalizing the protein nodes out (see
Theorem 1). The assumption that the proba-
bility distribution sampled is strictly positive is
justified because measuring the state of the gene
nodes involves a series of complex wet-lab and
computer-assisted steps that introduces noise in
the measurements (Sebastiani et al., 2003).

Additional evidence supporting the claim
that the results in this paper can be help-
ful for learning gene dependencies comes from
the increasing attention that graphical Gaussian
models of gene networks have been receiving
from the bioinformatics community (Schäfer
and Strimmer, 2005). A graphical Gaussian mo-
del of a gene network is not more than the MUI
map of the probability distribution underlying
the gene network, which is assumed to be Gaus-
sian, hence the name of the model. Then, this
underlying probability distribution is a WT gra-
phoid and, thus, the results in this paper apply.
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Radim Lněnička. 2005. On Gaussian Conditional In-
dependence Structures. Technical Report 2005/
14, Academy of Sciences of the Czech Republic.

Christopher Meek. 1995. Strong Completeness and
Faithfulness in Bayesian Networks. In 11th Confe-
rence on UAI, pages 411–418.

Kevin Murphy and Saira Mian. 1999. Modelling
Gene Expression Data Using Dynamic Bayesian
Networks. Technical Report, University of Cali-
fornia.

Masashi Okamoto. 1973. Distinctness of the Eigen-
values of a Quadratic Form in a Multivariate
Sample. Annals of Statistics, 1:763–765.

Judea Pearl. 1988. Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference.
Morgan Kaufmann.

Jose M. Peña, Roland Nilsson, Johan Björkegren
and Jesper Tegnér. 2006. Identifying the Rele-
vant Nodes Without Learning the Model. In 22nd
Conference on UAI, pages 367–374.
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{esucar,emorales}@inaoep.mx

Abstract

We propose a novel approach for solving continuous and hybrid Markov Decision Processes
(MDPs) based on two phases. In the first phase, an initial approximate solution is obtained
by partitioning the state space based on the reward function, and solving the resulting
discrete MDP. In the second phase, the initial abstraction is refined and improved. States
with high variance in their value with respect to neighboring states are partitioned, and
the MDP is solved locally to improve the policy. In our approach, the reward function and
transition model are learned from a random exploration of the environment, and can work
with both, pure continuous spaces; or hybrid, with continuous and discrete variables. We
demonstrate empirically the method in several simulated robot navigation problems, with
different sizes and complexities. Our results show an approximate optimal solution with
an important reduction in state size and solution time compared to a fine discretization
of the space.

1 Introduction

Markov Decision Processes (MDPs) have de-
veloped as a standard method for decision-
theoretic planning. Traditional MDP solution
techniques have the drawback that they re-
quire an explicit state representation, limiting
their applicability to real-world problems. Fac-
tored representations (Boutilier et al., 1999) ad-
dress this drawback via compactly specifying
the state-space in factored form by using dy-
namic Bayesian networks or decision diagrams.
Such Factored MDPs can be used to repre-
sent in a more compact way exponentially large
state spaces. The algorithms for planning using
MDPs, however, still run in time polynomial in
the size of the state space or exponential in the

1Ph.D. Student at ITESM Campus Cuernavaca, Av.
Reforma 182-A, Lomas, Cuernavaca, Mor., México

number of state-variables; and do not apply to
continuous domains.

Many stochastic processes are more naturally
defined using continuous state variables which
are solved as Continuous Markov Decision Pro-
cesses (CMDPs) or general state-space MDPs
by analogy with general state-space Markov
chains. In this approach the optimal value func-
tion satisfies the Bellman fixed point equation:

V (s) = maxa[R(s, a) + γ

∫
s′

p(s′|s, a)V (s′)ds′].

Where s represents the state, a a finite set of ac-
tions, R the immediate reward, V the expected
value, P the transition function, and γ a dis-
count factor.

The problem with CMDPs is that if the con-
tinuous space is discretized to find a solution,
the discretization causes yet another level of ex-



ponential blow up. This “curse of dimensional-
ity” has limited the use of the MDP framework,
and overcoming it has become a relevant topic of
research. Existing solutions attempt to replace
the value function or the optimal policy with a
finite approximation. Two recent methods to
solve a CMDPs are known as grid-based MDP
discretizations and parametric approximations.
The idea behind the grid-based MDPs is to dis-
cretize the state-space in a set of grid points and
approximate value functions over such points.
Unfortunately, classic grid algorithms scale up
exponentially with the number of state variables
(Bonet and Pearl, 2002). An alternative way is
to approximate the optimal value function V (x)
with an appropriate parametric function model
(Bertsekas and Tsitsiklis, 1996). The parame-
ters of the model are fitted iteratively by ap-
plying one step Bellman backups to a finite set
of state points arranged on a fixed grid or ob-
tained through Monte Carlo sampling. Least
squares criterion is used to fit the parameters of
the model. In addition to parallel updates and
optimizations, on-line update schemes based on
gradient descent, e.g., (Bertsekas and Tsitsiklis,
1996) can be used to optimize the parameters.
The disadvantages of these methods are their
instability and possible divergence (Bertsekas,
1995).

Several authors, e.g., (Dean and Givan,
1997), use the notions of abstraction and ag-
gregation to group states that are similar with
respect to certain problem characteristics to fur-
ther reduce the complexity of the representation
or the solution. (Feng et al., 2004) proposes a
state aggregation approach for exploiting struc-
ture in MDPs with continuous variables where
the state space is dynamically partitioned into
regions where the value function is the same
throughout each region. The technique comes
from POMDPs to represent and reason about
linear surfaces effectively. (Hauskrecht and
Kveton, 2003) show that approximate linear
programming is able to solve not only MDPs
with finite states, but also be successfully ap-
plied to factored continuous MDPs. Similarly,
(Guestrin et al., 2004) presents a framework
that also exploits structure to model and solve

factored MDPs although he extends the tech-
nique to be applied to both discrete and contin-
uous problems in a collaborative setting.

Our approach is related to these works, how-
ever it differs on several aspects. First, it is
based on qualitative models (Kuipers, 1986),
which are particularly useful for domains with
continuous state variables. It also differs in the
way the abstraction is built. We use training
data to learn a decision tree for the reward
function, from which we deduce an abstraction
called qualitative states. This initial abstrac-
tion is refined and improved via a local itera-
tive process. States with high variance in their
value with respect to neighboring states are par-
titioned, and the MDP is solved locally to im-
prove the policy. At each stage in the refine-
ment process, only one state is partitioned, and
the process finishes when any potential partition
does not change the policy. In our approach,
the reward function and transition model are
learned from a random exploration of the en-
vironment, and can work with both, pure con-
tinuous spaces; or hybrid, with continuous and
discrete variables.

We have tested our method in simulated
robot navigation problems, in which the state
space is continuous, with several scenarios with
different sizes and complexities. We compare
the solution of the models obtained with the
initial abstraction and the final refinement, with
the solution of a discrete MDP obtained with a
fine discretization of the state space, in terms of
differences in policy, value and complexity. Our
results show an approximate optimal solution
with an important reduction in state size and
solution time compared to a fine discretization
of the space.

The rest of the paper is organized as follows.
The next section gives a brief introduction to
MDPs. Section 3 develops the abstraction pro-
cess and Section 4 the refinement stage. In Sec-
tion 5 the empirical evaluation is described. We
conclude with a summary and directions for fu-
ture work.
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2 Markov Decision Processes

A Markov Decision Process (MDP) (Puterman,
1994) models a sequential decision problem, in
which a system evolves in time and is controlled
by an agent. The system dynamics is governed
by a probabilistic transition function that maps
states and actions to states. At each time, an
agent receives a reward that depends on the cur-
rent state and the applied action. Thus, the
main problem is to find a control strategy or
policy that maximizes the expected reward over
time.

Formally, an MDP is a tuple M =<
S,A,Φ, R >, where S is a finite set of states
{s1, . . . , sn}. A is a finite set of actions for all
states. Φ : A × S × S is the state transition
function specified as a probability distribution.
The probability of reaching state s′ by perform-
ing action a in state s is written as Φ(a, s, s′).
R : S × A → < is the reward function. R(s, a)
is the reward that the agent receives if it takes
action a in state s. A policy for an MDP is
a mapping π : S → A that selects an action
for each state. A solution to an MDP is a pol-
icy that maximizes its expected value. For the
discounted infinite–horizon case with any given
discount factor γ ∈ [0, 1), there is a policy V ∗

that is optimal regardless of the starting state
that satisfies the Bellman equation (Bellman,
1957):

V ∗(s) = maxa{R(s, a)+γΣs′∈SΦ(a, s, s′)V ∗(s′)}

Two popular methods for solving this equa-
tion and finding an optimal policy for an MDP
are: (a) value iteration and (b) policy iteration
(Puterman, 1994).

2.1 Factored MDPs

A common problem with the MDP formalism
is that the state space grows exponentially with
the number of domain variables, and its infer-
ence methods grow in the number of actions.
Thus, in large problems, MDPs becomes im-
practical and inefficient. Factored represen-
tations avoid enumerating the problem state
space, producing a more concise representa-
tion that makes solving more complex problems

tractable.

In a factored MDP, the set of states is de-
scribed via a set of random variables X =
{X1, . . . , Xn}, where each Xi takes on values
in some finite domain Dom(Xi). A state x de-
fines a value xi ∈ Dom(Xi) for each variable
Xi. Thus, the set of states S = Dom(Xi)
is exponentially large, making it impractical
to represent the transition model explicitly as
matrices. Fortunately, the framework of dy-
namic Bayesian networks (DBN) (Dean and
Kanazawa, 1989) gives us the tools to describe
the transition model function concisely. In these
representations, the post-action nodes (at the
time t + 1) contain matrices with the probabil-
ities of their values given their parents’ values
under the effects of an action.

3 Qualitative MDPs

3.1 Qualitative states

We define a qualitative state space Q as a set of
states q1, q2, ..qn that have different utility prop-
erties. These properties map the state space
into a set of partitions, such that each partition
corresponds to a group of continuous states with
a similar reward value. In a qualitative MDP, a
state partition qi is a region bounded by a set
of constraints over the continuous dimensions in
the state space. The relational operators used
in this approach are < and ≥. For example,
assuming that the immediate reward is a func-
tion of the linear position in a robot navigation
domain, a qualitative state could be a region
in an x0 − x1 coordinates system bounded by
the constraints: x0 ≥ val(x0) and x1 ≥ val(x1),
expressing that the current x0 coordinate is lim-
ited by the interval [val(x0),∞], and the x1 co-
ordinate by the interval [val(x1),∞]. It is evi-
dent that a qualitative state can cover a large
number of states (if we consider a fine discretiza-
tion) with similar properties.

Similarly to the reward function in a factored
MDP, the state space Q is represented by a deci-
sion tree (Q–tree). In our approach, the decision
tree is automatically induced from data. Each
leaf in the induced decision tree is labeled with
a new qualitative state. Even for leaves with the
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same reward value, we assign a different qualita-
tive state value. This generates more states but
at the same time creates more guidance that
helps produce more adequate policies. States
with similar reward are partitioned so each q–
state is a continuous region. Figure 1 shows
this tree transformation in a two dimensional
domain.

Figure 1: Transformation of the reward deci-
sion tree into a Q-tree. Nodes in the tree rep-
resent continuous variables and edges evaluate
whether this variable is less or greater than a
particular bound.

Each branch in the Q–tree denotes a set of
constraints for each partition qi. Figure 2 illus-
trates the constraints associated to the example
presented above, and its representation in a 2-
dimensional space.

Figure 2: In a Q-tree, branches are constraints
and leaves are qualitative states. A graphical
representation of the tree is also shown. Note
that when an upper or lower variable bound is
infinite, it must be understood as the upper or
lower variable bound in the domain.

3.2 Qualitative MDP Model

Specification

We can define a qualitative MDP as a factored
MDP with a set of hybrid qualitative–discrete

factors. The qualitative state space Q, is an
additional factor that concentrates all the con-
tinuous variables. The idea is to substitute
all these variables by this abstraction to re-
duce the dimensionality of the state space. Ini-
tially, only the continuous variables involved in
the reward function are considered, but, as de-
scribed in Section 4, other continuous variables
can be incorporated in the refinement stage.
Thus, a Qualitative MDP state is described in
a factored form as X = {X1, . . . , Xn, Q}, where
X1, . . . , Xn are the discrete factors, and Q is a
factor that represents the relevant continuous
dimensions.

3.3 Learning Qualitative MDPs

The Qualitative MDP model is learned from
data based on a random exploration of the en-
vironment with a 10% Gaussian noise intro-
duced on the actions outcomes. We assume that
the agent can explore the state space, and for
each state–action can receive some immediate
reward. Based on this random exploration, an
initial partition, Q0, of the continuous dimen-
sions is obtained, and the reward function and
transition functions are induced.

Given a set of state transition represented as
a set of random variables, Oj = {Xt,A,Xt+1},
for j = 1, 2, ...,M , for each state and action A
executed by an agent, and a reward (or cost) Rj

associated to each transition, we learn a quali-
tative factored MDP model:

1. From a set of examples {O,R} obtain a
decision tree, RDT , that predicts the re-
ward function R in terms of continuous
and discrete state variables, X1, . . . , Xk, Q.
We used J48, a Java re- implementation of
C4.5 (Quinlan, 1993) in Weka, to induce a
pruned decision tree.

2. Obtain from the decision tree, RDT , the
set of constraints for the continuous vari-
ables relevant to determine the qualitative
states (q–states) in the form of a Q-tree. In
terms of the domain variables, we obtain
a new variable Q representing the reward-
based qualitative state space whose values
are the q–states.
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3. Qualify data from the original sample in
such a way that the new set of attributes
are the Q variables, the remaining discrete
state variables not included in the decision
tree, and the action A. This transformed
data set can be called the qualified data set.

4. Format the qualified data set in such a way
that the attributes follow a temporal causal
ordering. For example variable Qt must be
set before Qt+1, X1t before X1t+1, and so
on. The whole set of attributes should be
the variable Q in time t, the remaining sys-
tem variables in time t, the variable Q in
time t+1, the remaining system variables
in time t+1, and the action A.

5. Prepare data for the induction of a 2-stage
dynamic Bayesian net. According to the
action space dimension, split the qualified
data set into |A| sets of samples for each
action.

6. Induce the transition model for each action,
Aj , using the K2 algorithm (Cooper and
Herskovits, 1992).

This initial model represents a high-level ab-
straction of the continuous state space and can
be solved using a standard solution technique,
such as value iteration, to obtain the optimal
policy. This approach has been successfully ap-
plied in some domains. However, in some cases,
our abstraction can miss some relevant details
of the domain and consequently produce sub-
optimal policies. We improve this initial parti-
tion through a refinement stage described in the
next section.

4 Qualitative State Refinement

We have designed a value-based algorithm that
recursively selects and partitions abtract states
with high utility variance. Given an initial
partition and a solution for the qualitative
MDP, the algorithm proceeds as follows:

While there is an unmarked partition greater
than the minimum size:

1. Select an unmarked partition (state) with
the highest variance in its utility value with
respect to its neighbours

2. Select the dimension (state variable) with
the highest difference in utility value with
its contiguous states

3. Bisect the dimension (divide the state in
two equal-size parts)

4. Solve the new MDP

5. If the new MDP has the same policy as
before, mark the original state before the
partition and return to the previous MDP,
otherwise, accept the refinement and con-
tinue.

The minimum size of a state is defined by the
user and is domain dependent. For example, in
the robot navigation domain, the minimum size
depends on the smallest goal (area with certain
reward) or on the robot step size. A graphical
representation of this process is shown in fig-
ure 3. Figure 3 (a) shows an initial partition
for two qualitative variables where each quali-
tative state is a set of ground states with simi-
lar reward. Figure 3 (b) shows the refined two-
dimension state space after applying the split-
ting state algorithm.

Figure 3: Qualitative refinement for a two-
dimension state space. a) initial partition by
reward. b) refined state space

5 Experimental Results

We tested our approach in a robot navigation
domain using a simulated environment. In this
setting goals are represented as light-colored
square regions with positive immediate reward,
while non-desirable regions are represented by
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Figure 4: Abstraction and refinement process. Upper left: reward regions. Upper right: explo-
ration process. Lower left: initial qualitative states and their corresponding policies, where u=up,
d=down, r=right, and l=left. Lower right: refined partition.

dark-colored squares with negative reward. The
remaining regions in the navigation area receive
0 reward (white). Experimentally, we express
the size of a rewarded (non zero reward) as a
function of the navigation area. Rewarded re-
gions are multivalued and can be distributed
randomly over the navigation area. The num-
ber of rewarded squares is also variable. Since
obstacles are not considered robot states, they
are not included.

The robot sensor system included the x-y
position, angular orientation, and navigation
bounds detection. In a set of experiments the
possible actions are discrete orthogonal move-
ments to the right, left, up, and down. Fig-
ure 4 upper left shows an example of a navi-
gation problem with 26 rewarded regions. The
reward function can have six possible values. In
this example, goals are represented as different-
scale light colors. Similarly, negative rewards
are represented with different-scale dark colors.
The planning problem is to automatically ob-
tain an optimal policy for the robot to achieve
its goals avoiding negative rewarded regions.

The qualitative representation and refine-
ment were tested with several problems of dif-
ferent sizes and complexities, and compared to a
fine discretization of the environment in terms
of precision and complexity. The precision is
evaluated by comparing the policies and values
per state. The policy precision is obtained by
comparing the policies generated with respect
to the policy obtained from a fine discretiza-
tion. That is, we count the number of fine cells
in which the policies are the same:

PP = (NEC/NTC)× 100,

where PP is the policy precision in percentage,
NEC is the number of fine cells with the same
policy, and NTC is the total number of fine
cells. This measure is pessimistic because in
some states it is possible for more than one ac-
tion to have the same or similar value, and in
this measure only one is considered correct.

The utility error is calculated as follows. The
utility values of all the states in each represen-
tation is first normalized. The sum of the abso-
lute differences of the utility values of the corre-
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Table 1: Description of problems and comparison between a “normal” discretization and our qual-
itative discretization.

Problem Discrete Qualitative

Learning Inference Learning Inference

no. reward no. no. no. time no. time no. time no. time
id reward size reward samples states (ms) itera- (ms) states (ms) itera- (ms)

cells (% dim) values tions tions
1 2 20 3 40,000 25 7,671 120 20 8 2,634 120 20
2 4 20 5 40,000 25 1,763 123 20 13 2,423 122 20
3 10 10 3 40,000 100 4,026 120 80 26 2,503 120 20
4 6 5 3 40,000 400 5,418 120 1,602 24 4,527 120 40
5 10 5 5 28,868 400 3,595 128 2,774 29 2,203 127 60
6 12 5 4 29,250 400 7,351 124 7,921 46 2,163 124 30
7 14 3.3 9 50,000 900 9,223 117 16,784 60 4,296 117 241

sponding states is evaluated and averaged over
all the differences.

Figure 4 shows the abstraction and refine-
ment process for the motion planning problem
presented above. A color inversion and gray
scale format is used for clarification. The upper
left figure shows the rewarded regions. The up-
per right figure illustrates the exploration pro-
cess. The lower left figure shows the initial qual-
itative states and their corresponding policies.
The lower right figure shows the refined parti-
tion.

Table 1 presents a comparison between the
behavior of seven problems solved with a sim-
ple discretization approach and our qualitative
approach. Problems are identified with a num-
ber as shown in the first column. The first
five columns describe the characteristics of each
problem. For example, problem 1 (first row) has
2 reward cells with values different from zero
that occupy 20% of the number of cells, the dif-
ferent number of reward values is 3 (e.g., -10,
0 and 10) and we generated 40,000 samples to
build the MDP model.

Table 2 presents a comparison between the
qualitative and the refined representation. The
first three columns describe the characteristics
of the qualitative model and the following de-
scribe the characteristics with our refinement
process. They are compared in terms of utility
error in %, the policy precision also in %, and
the time spent in the refinement in minutes.

As can be seen from Table 1, there is a signif-
icant reduction in the complexity of the prob-
lems using our abstraction approach. This can
be clearly appreciated from the number of states

and processing time required to solve the prob-
lems. This is important since in complex do-
mains where it can be difficult to define an ade-
quate abstraction or solve the resulting MDP
problem, one option is to create abstractions
and hope for suboptimal policies. To evaluate
the quality of the results Table 2 shows that the
proposed abstraction produces on average only
9.17% error in the utility value when compared
against the values obtained from the dicretized
problem as can be seen in Table 2. Finally, since
an initial refinement can miss some relevant as-
pects of the domain, a refinement process may
be necessary to obtain more adequate policies.
Our refinement process is able to maintain or
improve the utility values in all cases. The per-
centage of policy precision with respect to the
initial qualitative model can sometimes decrease
with the refinement process. This is due to our
pessimistic measure.

Table 2: Comparative results between the ini-
tial abstraction and the proposed refinement
process.

Qualitative Refinement

util. policy util. policy refin.
id error precis. error precis. time

(%) (%) (%) (%) (min)
1 7.38 80 7.38 80 0.33
2 9.03 64 9.03 64 0.247
3 10.68 64 9.45 74 6.3
4 12.65 52 8.82 54.5 6.13
5 7.13 35 5.79 36 1.23
6 11.56 47.2 11.32 46.72 10.31
7 5.78 44.78 5.45 43.89 23.34
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6 Conclusions and Future Work

In this paper, a new approach for solving con-
tinuous and hybrid infinite-horizon MDPs is
described. In the first phase we use an ex-
ploration strategy of the environment and a
machine learning approach to induce an ini-
tial state abstraction. We then follow a refine-
ment process to improve on the utility value.
Our approach creates significant reductions in
space and time allowing to solve quickly rela-
tively large problems. The utility values on our
abstracted representation are reasonably close
(less than 10%) to those obtained using a fine
discretization of the domain. A new refinement
process to improve the results of the initial pro-
posed abstraction is also presented. It always
improves or at least maintains the utility val-
ues obtained from the qualitative abstraction.
Although tested on small solvable problems for
comparison purposes, the approach can be ap-
plied to more complex domains where a simple
dicretization approach is not feasible.

As future research work we will like to im-
prove our refinement strategy to select a better
segmentation of the abstract states and use an
alternative search strategy. We also plan to test
our approach in other domains.
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Intelligent Systems Group, Computer Science and A. I. Dept.

University of the Basque Country, Spain

Abstract

Selecting a single model for clustering ignores the uncertainty left by finite data as to
which is the correct model to describe the dataset. In fact, the fewer samples the dataset
has, the higher the uncertainty is in model selection. In these cases, a Bayesian approach
may be beneficial, but unfortunately this approach is usually computationally intractable
and only approximations are feasible. For supervised classification problems, it has been
demonstrated that model averaging calculations, under some restrictions, are feasible and
efficient. In this paper, we extend the expectation model averaging (EMA) algorithm
originally proposed in Santafé et al. (2006) to deal with model averaging of naive Bayes
models for clustering. Thus, the extended algorithm, EMA-TAN, allows to perform an
efficient approximation for a model averaging over the class of tree augmented naive Bayes
(TAN) models for clustering. We also present some empirical results that show how the
EMA algorithm based on TAN outperforms other clustering methods.

1 Introduction

Unsupervised classification or clustering is the
process of grouping similar objects or data sam-
ples together into natural groups called clus-
ters. This process generates a partition of
the objects to be classified. Bayesian networks
(Jensen, 2001) are powerful probabilistic graph-
ical models that can be used for clustering
purposes. The naive Bayes is the most sim-
ple Bayesian network model (Duda and Hart,
1973). It assumes that the predictive vari-
ables in the model are independent given the
value of the cluster variable. Despite this be-
ing a very simple model, it has been success-
fully used in clustering problems (Cheeseman
and Stutz, 1996). Other models have been pro-
posed in the literature in order to relax the
heavy independence assumptions that the naive
Bayes model makes. For example, tree aug-
mented naive Bayes (TAN) models (Friedman
et al., 1997) allow the predictive variables to
form a tree and the class variable remains as
a parent of each predictive variable. On the
other hand, more complicated methods have
been proposed to allow the encoding of context-
specific (in)dependencies in clustering problems
by using, for instance, naive Bayes (Barash and

Friedman, 2002) or recursive Bayesian multinets
(Peña et al., 2002) which are trees that incor-
porate Bayesian multinets in the leaves.

The process of selecting a single model for
clustering ignores model uncertainty and it can
lead to the selection of a model that does not
properly describe the data. In fact, the fewer
samples the dataset has, the higher the uncer-
tainty is in model selection. In these cases,
a Bayesian approach may be beneficial. The
Bayesian approach proposes an averaging over
all models weighted by their posterior probabil-
ity given the data (Madigan and Raftery, 1994;
Hoeting et al., 1999). The Bayesian model av-
eraging has been seen by some authors as a
model combination technique (Domingos, 2000;
Clarke, 2003) and it does not always perform
as successfully as expected. However, other au-
thors states that Bayesian model averaging is
not exactly a model ensemble technique but a
method for ‘soft model selection’ (Minka, 2002).

Although model averaging approach is nor-
mally preferred when there are a few data sam-
ples because it deals with uncertainty in model
selection, this approach is usually intractable
and only approximations are feasible. Typi-
cally, the Bayesian model averaging for cluster-
ing is approximated by averaging over some of



the models with the highest posterior probabili-
ties (Friedman, 1998). However, efficient calcu-
lation of model averaging for supervised classifi-
cation models under some constraints has been
proposed in the literature (Dash and Cooper,
2004; Cerquides and López de Mántaras, 2005).
Some of these proposals have also been extended
to clustering problems. For example, Santafé
et al. (2006) extend the calculations of naive
Bayes models to approximate a Bayesian model
averaging for clustering. In that paper, the
authors introduce the expectation model aver-
aging (EMA) algorithm, which is a variant of
the well-known EM algorithm (Dempster et al.,
1977) and allows to deal with the latent clus-
ter variable and then approximate a Bayesian
model averaging of naive Bayes models for clus-
tering.

In this paper we use the structural features
estimation proposed by Friedman and Koller
(2003) and the model averaging calculations
for supervised classifiers presented in Dash and
Cooper (2004) in order to extend the EMA algo-
rithm to TAN models (EMA-TAN algorithm).
In other words, we propose a method to obtain
a single Bayesian network model for clustering
which approximates a Bayesian model averaging
over all possible TAN models. This is possible
by setting an ancestral order among the predic-
tive variables. The result of the Bayesian model
averaging over TAN models is a single Bayesian
network model for clustering (Dash and Cooper,
2004).

The rest of the paper is organized as follows.
Section 2 introduces the notation that is used
throughout the paper as well as the assumptions
that we make. Section 3 describes the EMA
algorithm to approximate model averaging over
the class of TAN models. Section 4 shows some
experimental results with synthetic data that
illustrate the behavior of the EMA algorithm.
Finally, section 5 presents the conclusions of the
paper and future work.

2 Notation and Assumptions

In an unsupervised learning problem there is a
set of predictive variables, X1, . . . ,Xn, and the
latent cluster variable, C. The dataset D =
{x(1), . . . ,x(N)} contains data samples x(l) =

{x(l)
1 , . . . , x

(l)
n }, with l = 1, . . . , N .

We define a Bayesian network model as B =
〈S,θ〉, where S describes the structure of the
model and θ its parameter set. Using the clas-
sical notation in Bayesian networks, θijk (with
k = 1, . . . , ri and ri being the number of states
for variable Xi) represents the conditional prob-
ability of variable Xi taking its k-th value given
that its parents, P ai, takes its j-th configura-
tion. The conditional probability mass function
for Xi given the j-th configuration of its par-
ents is designated as θij , with j = 1, . . . , qi,
where qi is the number of different states of P ai.
Finally, θi = (θi1, . . . ,θiqi) denotes the set of
parameters for variable Xi, and therefore, θ =
(θC ,θ1, . . . ,θn), where θC = (θC−1, . . . , θC−rC

)
is the set of parameters for the cluster variable,
with rC the number of clusters fixed in advance.

In order to use the decomposition proposed
in Friedman and Koller (2003) for an efficient
model averaging calculation, we need to con-
sider an ancestral order π over the predictive
variables.

Definition 1. Class of TAN models (Lπ
TAN ):

given an ancestral order π, a model B belongs
to Lπ

TAN if each predictive variable has up to
two parents (another predictive variable and the
cluster variable) and the arcs between variables
that are defined in the structure S are directed
down levels: Xj → Xi ∈ S ⇒ levelπ(Xi) <
levelπ(Xj).

Note that, the classical conception of TAN
model allows the predictive variables to form a
tree and then, the cluster variable is set as a
parent of each predictive variable. However, we
do not restrict Lπ

TAN to only these tree mod-
els, but we also allow the predictive variables to
form a forest and also the class variable may or
may not be set as a parent of each predictive
variable. Therefore Lπ

TAN also includes, among
others, naive Bayes and selective naive Bayes
models.

For a given ordering π and a particular vari-
able Xi, we can enumerate all the possible
parent sets for Xi in the class of TAN mod-
els Lπ

TAN . In order to clarify calculations, we
superscript with v any quantity related to a
predictive variable Xi and thus, we are able
to identify the parent set of variable Xi that
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we are taking into consideration. For exam-
ple, for a given order π = 〈X1,X2,X3〉 the
possible sets of parents for X3 in Lπ

TAN are:
P a1

3 = {∅},P a2
3 = {X1},P a3

3 = {X2},P a4
3 =

{C,X1},P a5
3 = {C,X2},P a6

3 = {C} with, in
this case, v = 1, . . . , 6. In general, we consider,
without loss of generality, π = 〈X1, . . . ,Xn〉
and therefore, for a variable Xi, v = 1, . . . , 2i.
Moreover, we use i to index any quantity related
to the i-th predictive variable, with i = 1, . . . , n.

Additionally, the following five assumptions
are needed to perform an efficient approxima-
tion of model averaging over Lπ

TAN :
Multinomial variables: Each variable Xi is
discrete and can take ri states. The cluster vari-
able is also discrete and can take rC possible
states, rC being the number of clusters fixed in
advance.
Complete dataset: We assume that there are
no missing values for the predictive variables in
the dataset. However, the cluster variable is
latent; therefore, its values are always missing.
Dirichlet priors: The parameters of every
model are assumed to follow a Dirichlet distri-
bution. Thus, αijk is the Dirichlet hyperparam-
eter for parameter θijk from the network, and
αC−j is the hyperparameter for θC−j. In fact, as
we have to take into consideration each possible
model in Lπ

TAN , the parameters of the models
can be denoted as θv

ijk. Hence, we assume the
existence of hyperparameters αv

ijk.
Parameter independence: The probability
of having the set of parameters θ for a given
structure S can be factorized as follows:

p(θ|S) = p(θC)
n∏

i=1

qi∏

j=1

p(θij|S) (1)

Structure modularity: The prior probability
p(S) can be decomposed in terms of each
variable and its parents:

p(S) ∝ pS(C)
n∏

i=1

pS(Xi,P ai) (2)

where pS(Xi,P ai) is the information con-
tributed by variable Xi to p(S), and pS(C) is
the information contributed by the cluster vari-
able.

Parameter independence assumes that the
prior on parameters θijk for a variable Xi de-
pends only on local structures. This is known as
parameter modularity (Heckerman et al., 1995).
Therefore, we can state that for any two net-
work structures S1 and S2, if Xi has the same
parent set in both structures then p(θijk|S1) =
p(θijk|S2). As a consequence, parameter cal-
culations for a variable Xi will be the same in
every model whose structure defines that the
variable Xi has the same parent set.

3 The EMA-TAN Algorithm

The EMA algorithm was originally introduced
in Santafé et al. (2006) for dealing with model
averaging calculations of naive Bayes models.
In this section we present the extension of this
algorithm (EMA-TAN) in order to average over
TAN models.

Theorem 1 (Dash and Cooper, 2004). There
exist, for supervised classification problems, a
single model B̃ = 〈S̃, θ̃〉 which defines a joint
probability distribution p(c,x|B̃) equivalent to
the joint probability distribution produced by
model averaging over all TAN models. This
model B̃ is a complete Bayesian network where
the structure S̃ defines the relationship between
variables in such a way that, for a variable Xi,
the parent set of Xi in the model B̃ is P̃ ai =
∪2i

v=1P av
i .

This result can be extended to clustering
problems by means of the EMA-TAN algorithm.
However, the latent cluster variable prevents the
exact calculation of the model averaging and
therefore the model B̃ obtained by the EMA-
TAN algorithm is not an exact model averag-
ing over Lπ

TAN but an approximation. There-
fore, the EMA-TAN algorithm provides a pow-
erful tool that allows to learn a single unsuper-
vised Bayesian network model which approxi-
mates Bayesian model averaging over Lπ

TAN .
The unsupervised classifier is obtained by

learning the predictive probability, p(c,x|D),
averaged over the maximum a posteriori (MAP)
parameter configurations for all the models in
Lπ

TAN . Then, we can obtain the unsupervised
classifier by using the conditional probability of
the cluster variable given by Bayes’ rule.

The EMA-TAN algorithm is an adaption of
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the well-known EM algorithm. It uses the E
step of the EM algorithm to deal with the miss-
ing values for the cluster variable. Then, it per-
forms a model averaging step (MA) to obtain
p(c,x|D) and thus the unsupervised Bayesian
network model for clustering.

The EMA-TAN, as well as the EM algorithm,
is an iterative process where the two steps of
the algorithm are repeated successively until a
stopping criterion is met. At the t-th iteration
of the algorithm, a set of parameters, θ̃

(t)
, for

the Bayesian network model B̃(t) is calculated.
Note that, although we differentiate between
the Bayesian network models among the itera-
tions of the EMA-TAN algorithm, the structure
of the model, S̃, is constant and only the es-
timated parameter set changes. The algorithm
stops when the difference between the sets of pa-
rameters learned in two consecutive iterations,
θ̃

(t)
and θ̃

(t+1)
, is less than threshold ε, which

is fixed in advance.
In order to use the EMA-TAN algorithm,

we need to set an initial parameter configu-
ration, θ̃

(0)
, and the value of ε. The values

for θ̃
(0)

are usually taken at random and ε is
set at a small value. Note that, even though
the obtained model is a single unsupervised
Bayesian network, its parameters are learned
taking into account the MAP parameter con-
figuration for every model in Lπ

TAN . Thus,
the resulting unsupervised Bayesian network
will incorporate into its parameters information
about the (in)dependencies between variables
described by the different TAN models.

3.1 E Step (Expectation)

Intuitively, we can see this step as a comple-
tion of the values for the cluster variable, which
are missing. Actually, this step computes the
expected sufficient statistics in the dataset for
variable Xi in every model in Lπ

TAN given the
current model, B̃(t). These expected sufficient
statistics are used in the next step of the al-
gorithm, MA, as if they were actual sufficient
statistics from a complete dataset. From now
on, D(t) denotes the dataset after the E step at
the t-th iteration of the algorithm.

Note that, due to parameter modularity, we
do not actually need to calculate the expected

sufficient statistics for all the models in Lπ
TAN

because some of these models share the same
value for the expected sufficient statistics.
Hence, it is only necessary to calculate the
expected sufficient statistics with different
parent sets. They can be obtained as follows:

E(Nv
ijk|B̃(t)) =

N∑

l=1

p(xk
i ,P av

i = j|x(l), B̃(t)) (3)

where xk
i represents the k-th value of the i-

th variable. The expected sufficient statistic
E(Nv

ijk|B̃(t)) denotes, at iteration t, the ex-
pected number of cases in the dataset D where
variable Xi takes its k-th value, and the v-th
parent set of Xi takes its j-th configuration.

Similarly, we can obtain the expected suf-
ficient statistics for the cluster variable. This
is a special case since for any model in Lπ

TAN
the parent set for C is the same (the cluster
variable does not have any parent). Therefore,
we refuse the use of superindex v in those
quantities related only to C.

E(NC−j |B̃(t)) =
N∑

l=1

p(C = j|x(l), B̃(t)) (4)

Note that, some of the expected sufficient
statistics E(Nv

ijk|B̃(t)) do not depend on the
value of C. Therefore, these values are constant
throughout the iterations of the algorithm and
it is necessary to calculate them only once.

3.2 MA Step (Model Averaging)

In this second step, the EMA algorithm per-
forms the model averaging calculations which
obtain a single Bayesian network model with
parameters θ̃

(t+1)
. These parameters are ob-

tained by calculating p(c,x|D(t)) as an average
over the MAP configurations for the models in
Lπ

TAN .
In order to make the calculations clearer, we

first show how we can obtain p(c,x|S,D(t)) for
a fixed structure S:

p(c,x|S,D(t)) =
∫

p(c,x|S,θ)p(θ|S,D(t))dθ (5)

The exact computation of the integral in
Equation 5 is intractable for clustering prob-
lems, therefore, an approximation is needed
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(Heckerman et al., 1995). However, assuming
parameter independence and Dirichlet priors,
and given that the expected sufficient statis-
tics calculated in the previous E step can
be used as an approximation to the actual
sufficient statistics in the complete dataset, we
can approximate p(c,x|S,D(t)) by the MAP
parameter configuration. This is the parameter
configuration that maximizes p(θ|S,D(t)) and
can be described in terms of the expected
sufficient statistics and the Dirichlet hyper-
parameters (Heckerman et al., 1995; Cooper
and Herskovits, 1992). Therefore, Equation 5
results:

p(c,x|S,D(t)) ≈ αC−j + E(NC−j |B̃(t))
αC + E(NC |B̃(t))

· (6)

n∏

i=1

αµi
ijk + E(Nµi

ijk|B̃(t))

αµi
ij + E(Nµi

ij |B̃(t))
= θ̂C−j

n∏

i=1

θ̂µi

ijk

where θ̂µi
ijk is the MAP parameter configu-

ration for θµi
ijk (μi denotes the parent index

that corresponds to the parent set for Xi de-
scribed in S), αµi

ij =
∑ri

k=1 αµi

ijk, E(Nij |B̃(t)) =
∑ri

k=1 E(Nijk|B̃(t)) and similarly for the values
related to C.

Considering that the structure is not fixed
a priori, we should average over all selective
model structures in Lπ

TAN in the following way:

p(c,x|D(t)) = (7)
∑

S

∫
p(c,x|S,θ)p(θ|S,D(t))dθ p(S|D(t))

Therefore, the model averaging calculations
require a summation over 2nn! terms, which are
the models in Lπ

TAN .
Using the previous calculations for a fixed

structure, Equation 8 can be written as:

p(c,x|D(t)) ≈
∑

S

θ̂C−j

n∏

i=1

θ̂µi

ijk p(S|D(t))

∝
∑

S

θ̂C−j

n∏

i=1

θ̂µi

ijk p(D(t)|S) p(S) (8)

Given the assumption of Dirichlet priors and
parameter independence, we can approximate

p(D(t)|S) efficiently. In order to do so, we
adapt the formula to calculate the marginal
likelihood with complete data (Cooper and
Herskovits, 1992) to our problem with missing
values. Thus, we have an approximation to
p(D(t)|S):

p(D(t)|S)≈ Γ(αC)

Γ(αC + E(NC |B̃(t)))

rC∏

j=1

Γ(αC−j + E(NC−j|B̃(t)))

Γ(αC−j)
·

n∏

i=1

qi∏

j=1

Γ(α
µi
ij

)

Γ(α
µi
ij

+ E(N
µi
ij

|B̃(t)))

ri∏

k=1

Γ(α
µi
ijk

+ E(N
µi
ijk

|B̃(t)))

Γ(α
µi
ijk

)

At this point, given structure modular-
ity assumption, we are able to approximate
p(c,x|D(t)) with the following expression:

p(c,x|D(t)) ≈ κ
∑

S

ρC−j

n∏

i=1

ρµi
ijk (9)

where κ is a constant and ρC−j and ρµi
ijk are

defined in Equation 10.

ρC−j = θ̂C−j pS(C)
Γ(αC)

Γ(αC + E(NC |B(t)))
·

rC∏

j=1

Γ(αC−j + E(NC−j |B(t)))

Γ(αC−j)
(10)

ρµi
ijk = θ̂µi

ijk pS(Xi, P aµi
i )

qi∏

j=1

Γ(αµi
ij )

Γ(αµi
ij + E(Nµi

ij |B(t)))
·

ri∏

k=1

Γ(αµi
ijk + E(Nµi

ijk|B(t)))

Γ(αµi
ijk)

Since we are assuming parameter indepen-
dence, structure modularity and parameter
modularity, we can apply the dynamic pro-
gramming solution described in Friedman and
Koller (2003), and Dash and Cooper (2004).
Thus Equation 9 can be written as follows:

p(c,x|D(t)) ≈ λ ρC−j

n∏

i=1

2i∑

v=1

ρv
ijk (11)

with λ being a constant.
Note that the time complexity needed to cal-

culate the averaging over Lπ
TAN is the same as

that which is needed to learn the MAP param-
eter configuration for B̃.
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We can see the similarity of the above-
described Equation 11 with the factorization
of a Bayesian network model. Indeed the joint
probability distribution of the approximated
Bayesian model averaging over Lπ

TAN for
clustering is equivalent to a single Bayesian
network model. Therefore, the parameters
of the model for the next iteration of the
algorithm can be calculated as follows:

θ̃
(t+1)
C−j ∝ ρC−j , θ̃

(t+1)
ijk ∝

2i∑

v=1

ρv
ijk (12)

3.3 Multi-start EMA-TAN

The EMA-TAN is a greedy algorithm that is
susceptible to be trapped in a local optima. The
results obtained by the algorithm depend on the
random initialization of the parameters. There-
fore, we propose the use of a multi-start scheme
where m different runs of the algorithm with dif-
ferent random initializations are performed. In
Santaf et al. (2006) different criteria to obtain
the final model from the multi-start process are
proposed. In our case, we use the same criteria
that the multi-start EM uses: the best model in
terms of likelihood among all the m calculated
models is selected as the final model. This is
not a pure Bayesian approach to the model av-
eraging process but, in practice, it works as well
as other more complicated techniques.

4 Evaluation in Clustering Problems

It is not easy to validate clustering algorithms
since clustering problems do not normally
provide information about the true grouping of
data samples. In general, it is quite common
to use synthetic data because the true model
that generated the dataset as well as the
underlying clustering structure of the data
are known. In order to illustrate the behavior
of the EMA-TAN algorithm, we compare it
with the classical EM algorithm and with the
EMA algorithm (Santafé et al., 2006). For
EMA-TAN evaluation, we obtain random TAN
models where the number of predictive vari-
ables vary in {2, 4, 8, 10, 12, 14}, each predictive
variable can take up to three states and the
number of clusters is set to two. For each TAN
configuration we generate 100 random models
and each one of these models is sampled to

obtain different datasets of sizes 40, 80, 160, 320
and 640. In the experiments, we compare the
multi-start EMA-TAN (called also EMA-TAN
for convenience) with three different algorithms:

EM-TAN: a multi-start EM that learns a TAN
model by using, at each step of the EM algo-
rithm, the classical method proposed by Fried-
man et al. (1997) adapted to be used within the
EM algorithm.
EM-BNET: a multi-start EM algorithm used
to learn the MAP parameters of a complete
Bayesian network for a given order π.
EMA: the multi-start model averaging of naive
Bayes for clustering.

Note that, for a given order π, both EMA-
TAN and EM-BNET models share the same
network structure but their parameter sets are
calculated in a different way. The number of
multi-start iterations for both multi-start EM
and multi-start EMA is m = 100.

Since the datasets are synthetically gener-
ated, we are able to know the real ordering
among variables. Nevertheless, we prefer to use
a more general approach and assume that this
order is unknown. Therefore, we use a random
ordering among predictive variables for each
EMA-TAN model that we learn. As the EM-
BNET algorithm also needs an ancestral order
among predictive variables, in the experiments,
we use the same random ordering for any pair
of models (EMA-TAN vs. EM-BNET) that we
compare.

Every model is used to cluster the dataset
from which it has been learned. In the exper-
iments, we compare EMA-TAN vs. EM-TAN,
EMA-TAN vs. EM-BNET and EMA-TAN vs.
EMA. For each test, the winner model is ob-
tained by comparing the data partitions ob-
tained by both models with the true partition of
the dataset. Thus, the model with the best es-
timated accuracy (percentage of correctly clas-
sified instances) is the winner model. In Table
1, the results from the experiments with ran-
dom TAN models are shown. For each model
configuration, the table describes the number
of wins/draws/losses of the EMA-TAN models
with respect to EM-TAN, EM-BNET or EMA
models on basis of the estimated accuracy of
each model. We also provide information about
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a Wilcoxon signed-rank test1 used to evaluate
whether the accuracy estimated by two differ-
ent models is different at the 1% and 10% levels.
We write the results shown in Table 1 in bold if
the test is surpassed at the 10% level and inside
a gray color box if the test is surpassed at the 1%
level. It can be seen that, in general, the EMA-
TAN models behave better than the others and
the differences between estimated accuracy are,
in most of the cases, statistically significant.

We can see that the compared models obtain
very similar results when they have a few predic-
tive variables. This is because the set of models
that we are averaging over to obtain the EMA-
TAN model is very small. Therefore, it is quite
possible that other algorithms such as EM-TAN
select the correct model. Hence, in some exper-
iments with the simplest models (models with 2
predictive variables), EMA-TAN algorithm sig-
nificantly lost with the other algorithms. How-
ever, when the number of predictive variables
in the model increases and the dataset size is
relatively big (the smallest datasets are not big
enough for a reliable estimation of the param-
eters) the EMA-TAN considerably outperforms
any other model in the test.

The experimental results from this section re-
inforce the idea that the results of the Bayesian
model averaging outperform other methods
when the model that generated the data is in-
cluded in the set of models that we are aver-
aging over. Since we are averaging over a re-
stricted class of models, this situation may not
be fulfilled when applying the EMA-TAN to real
problems. Due to the lack of space, we do not
include in the paper more experimentation in
progress, but we are aware that it would be
very interesting to check the performance of the
EMA algorithm with other synthetic datasets
generated by sampling naive Bayes and general
Bayesian network models and also with dataset
from real problems.

5 Conclusions

We have shown that it is possible to obtain a sin-
gle unsupervised Bayesian network that approx-

1Since we have checked by means of a Kolmogorov-
Smirnov test that not all the outcomes from the experi-
ment can be considered to follow a normal distribution,
we decided to use a Wilcoxon sign-rank test to compare
the results

imates model averaging over the class of TAN
models. Furthermore, this approximation can
be performed efficiently. This is possible by us-
ing the EMA-TAN algorithm. The EMA is an
algorithm originally proposed in Santafé et al.
(2006) for averaging over naive Bayes models in
clustering problems. In this paper we extend
the algorithm to deal with more complicated
models such as TAN (EMA-TAN algorithm).
We also present an empirical evaluation by com-
paring the model averaging over TAN models
with the model averaging over naive Bayes mod-
els and with the EM algorithm to learn a sin-
gle TAN model and a Bayesian network model.
These experiments conclude that, at least, when
the model that generated the dataset is included
in the set of models that we average over, the av-
eraging over TAN models outperforms the other
methods

Probably, one of the limitations of the pro-
posed algorithm is that, because the learned
model which approximates model averaging is a
complete Bayesian network, it is computation-
ally hard to learn the model for problems with
many predictive variables. In order to overcome
this situation, we can restrict the final model
to a maximum of k possible parents for each
predictive variable. Future work might include
a more exhaustive empirical evaluation of the
EMA-TAN algorithm and the application of the
algorithm to real problems. Moreover, the algo-
rithm can be extended to other Bayesian clas-
sifiers such as k-dependent naive Bayes (kDB),
selective naive Bayes, etc. Another interesting
future work may be the relaxation of complete
dataset assumption.
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Abstract

In this paper we introduce the Dynamic Weighting A* (DWA*) search algorithm for solv-
ing MAP. By exploiting asymmetries in the distribution of MAP variables, the algorithm
can greatly reduce the search space and yield MAP solutions with high quality.

1 Introduction

The Maximum A-Posteriori assignment (MAP)
is the problem of finding the most probable in-
stantiation of a set of variables given partial ev-
idence on the remaining variables in a Bayesian
network. A special case of MAP that has been
paid much attention is the Most Probable Ex-
planation (MPE) problem. MPE is the problem
of finding the most probable state of the model
given that all its evidences have been observed.
MAP turns out to be a much harder problem
compared to MPE. Particularly, MPE is NP-
complete while the corresponding MAP prob-
lem is NPPP -complete (Park, 2002). MAP is
more useful than MPE for providing explana-
tions. For instance, in diagnosis, generally we
are only interested in the configuration of fault
variables given some observations. There may
be many other variables that have not been ob-
served and are outside the scope of our interest.

In this paper, we introduce the Dynamic
Weighting A* (DWA*) search algorithm for
solving MAP that is generally more efficient
than existing algorithms. The algorithm ex-
plores the asymmetries among all possible as-
signments in the joint probability distribution
of the MAP variables. Typically, a small frac-
tion of all possible assignments can be expected
to cover a large portion of the total probabil-

ity space with the remaining assignments hav-
ing practically negligible probability (Druzdzel,
1994). Also, the DWA* uses dynamic weight-
ing based on greedy guess (Park and Darwiche,
2001; Yuan et al., 2004) as the heuristic func-
tion. While it is theoretically not admissi-
ble (admissible heuristic should offer an upper
bound on the MAP), it offers ε-admissibility and
excellent performance in practice (Pearl, 1988).

2 MAP

The MAP problem is defined as follows: Let M

be the set of MAP variables (we are interested
in the most probable configuration of these vari-
ables); E is the set of evidence, namely the
variables whose states we have observed; The
remainder of the variables, denoted by S, are
variables that are neither observed nor of inter-
est to us. Given an assignment e of variables
E, the MAP problem is that of finding the as-
signment m of variables M which maximizes
the probability of P (m | e), while MPE is the
special case of MAP with S being empty.

map = max
M

∑

S

p(M, S | E) . (1)

In Bayesian networks, we use the Conditional
Probability Table (CPT) φ as the potential over
a variable and its parents. A potential over all



the states of one variable after updating beliefs
is called marginal. The notation φe stands for
the potential in which we have fixed the value
of e ∈ E. Then the probability of MAP with Φ
as its CPTs turns out to be a real number:

map = max
M

∑

S

∏

φ∈Φ

φe . (2)

In Equation 2, summation does not commute
with maximization. Therefore, it is necessary
to do summation before the maximization. The
order is called the elimination order. The size
of the largest clique minus 1 in a jointree con-
structed based on an elimination order is called
the induced width. The induced width of the
best elimination order is called the treewidth.
However, for the MAP problems in which nei-
ther the set S nor the set M are empty, the order
is constrained. Then the constrained elimina-
tion order is known as the constrained treewidth.
Generally, the constrained treewidth is much
larger than treewidth, leading the problem be-
yond the limits of feasibility.

Several researchers have proposed algorithms
for solving MAP. A very efficient approximate
search-based algorithm based on local search,
proposed by Park (2002), is capable of solving
MAP efficiently. An exact method, based on
branch-and-bound depth-first search, proposed
by Park and Darwiche (2003), performs quite
well when the search space is not too large. An-
other approximate scheme, proposed by Yuan et
al. (2004), is a Reheated Annealing MAP algo-
rithm. It is somewhat slower on simple networks
but it is capable of handling difficult cases that
exact methods cannot tackle.

3 Solving MAP using Dynamic

Weighting A* Search

We propose in this section an algorithm for
solving MAP using Dynamic Weighting A*
search, which incorporates the dynamic weight-
ing (Pearl, 1988) in the heuristic function,
relevance reasoning (Druzdzel and Suermondt,
1994), and dynamic ordering in the search tree.

3.1 A* search

MAP can be solved by A* search in the proba-
bility tree that is composed of all the variables
in the MAP set. The nodes in the search tree
represent partial assignments of the MAP vari-
ables M. The root node represents an empty
assignment. Each MAP variable will be instan-
tiated in a certain order. If a variable x in the
set of MAP variables M is instantiated at the
ith place using its jth state, it will be denoted
as Mij . Leaves of the search tree correspond to
the last MAP variable that has been instanti-
ated. The vector of instantiated states of each
MAP variable is called an assignment or a sce-
nario. We compute the probability of assign-
ments while searching the whole probability tree
using chain rule. For each inner node, the newly
instantiated node will be added to the evidence
set, i.e., the evidence set will be extended to
Mij ∪E. Then the probability of an assignment
of n MAP variables can be computed as follows:

P (M | E) = P (Mni |M1j , M2k, . . .M(n−1)t, E)

. . . P (M2k |M1j , E)P (M1j | E) .

Suppose we are in the xth layer of the search tree
and preparing for instantiating the xth MAP
variables. Then the function above can be
rewritten as follows:

P (M | E) =

b

︷ ︸︸ ︷

P (Mni |M1j . . . M(n−1)t, E) . . . P (M(x+1)z |Mxy . . . E)

·P (Mxy |M1j , M2k . . . M(x−1)q, E) . . . P (M1j | E)
︸ ︷︷ ︸

a

(3)

The general idea of DWA* is that in each in-
ner node of the probability tree, we can compute
the value of item (a) in the function above ex-
actly. We can estimate the heuristic value of the
item (b) for the MAP variables that have not
been instantiated given the initial evidence set
and the MAP variables that have been instanti-
ated as the new evidence. In order to fit the typ-
ical format of the cost function of A* search, we
can take the logarithm of the equation above,
which will not change its monotonicity. Then
we get f(n) = g(n)+h(n), where g(n) and h(n)
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are obtained from the logarithmic transforma-
tion of items (a) and (b) respectively. g(n) gives
the exact cost from the start node to node in the
nth layer of the search tree, and h(n) is the es-
timated cost of the best search path from the
nth layer to the leaf nodes of the search tree.
In order to guarantee the optimality of the so-
lution, h(n) should be admissible, which in this
case means that it should be an upper-bound on
the value of any assignment with the currently
instantiated MAP variables as its elements.

3.2 Heuristic Function with Dynamic

Weighting

Definition 1. A heuristic function h2 is said to
be more informed than h1 if both are admissible
and h2 is closer to the optimal cost.

For the MAP problem, the probability of the
optimal assignment Popt < h2 < h1.

Theorem 1. If h2 is more informed than h1

then A∗
2

dominates A∗
1
. (Pearl, 1988)

The power of the heuristic function is mea-
sured by the amount of pruning induced by h(n)
and depends on the accuracy of this estimate.
If h(n) estimates the completion cost precisely
(h(n) = Popt), then A* will only expand nodes
on the optimal path. On the other hand, if no
heuristic at all is used, (for the MAP problem
this amounts to h(n) = 1), then a uniform-cost
search ensues, which is far less efficient. So it
is critical for us to find an admissible and tight

h(n) to get both accurate and efficient solutions.

3.2.1 Greedy Guess

If each variable in the MAP set M is condi-
tionally independent of all remaining MAP vari-
ables (this is called exhaustive independence),
then the MAP problem amounts to a simple
computation based on the greedy chain rule.
We instantiate the MAP variable in the current
search layer to the state with the largest proba-
bility and repeat this for each of the remaining
MAP variables one by one. The probability of
MAP is then

P (M |E) =
n

∏

i=1

max
j

P (Mij |M(i−1)k . . .M1m, E) .

(4)

The requirement of exhaustive independence
is too strict for most MAP problems. However,
simulation results show that in practice, even
when this requirement is violated, the product
is still extremely close to the MAP probability
(Yuan et al., 2004). This suggests using it as an
ε-admissible heuristic function (Pearl, 1988).

The curve Greedy Guess Estimate in Figure 1
shows that with the increase of the number of
MAP variables, the ratio between the greedy
guess and the accurate estimate of the optimal
probability diverges from the ideal ratio one al-
though not always monotonically.

3.2.2 Dynamic Weighting

Since greedy guess is a tight lower bound on
the optimal probability of MAP, it is possible
to compensate for the error between the greedy
guess and the optimal probability. We can do
this by adding a weight to the greedy guess such
that the product of them is equal to or larger
than the optimal probability for each inner node
in the search tree. This, it turns out, yields an
excellent ε-admissible heuristic function. This
assumption can be represented as follows:

∃ε{∀PGreedyGuess ∗ (1 + ε) ≥ Popt∧

∀ε
′

(PGreedyGuess ∗ (1 + ε
′

) ≥ Popt)⇒ ε < ε
′

} ,

where ε is the minimum weight that can guar-
antee the heuristic function to be admissible.
Figure 1 shows that if we just keep ε constant,
neglecting the changes of the estimate accuracy
with the increase of the MAP variables, the es-
timate function and the optimal probability can
be represented by the curve Constant Weight-
ing Heuristic. Obviously, the problem with this
idea is that it is less informed when the search
progresses, as there are fewer MAP variables to
estimate.

Dynamic Weighting (Pohl, 1973) is an effi-
cient tool for improving the efficiency of A*
search. If applied properly, it will keep the
heuristic function admissible while remaining
tight on the optimal probability. For MAP, in
the shallow layer of the search tree, we get more
MAP variables than the deeper layer for esti-
mate. Hence, the greedy estimate will be more
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likely to diverge from the optimal probability.
We propose the following Dynamic Weighting
Heuristic Function for the xth layer of the search
tree of n MAP variables:

h(x) = GreedyGuess · (1 + α
n− (x + 1)

n
)

(α ≥ ε) .

Rather than keeping the weight constant
throughout the search, we dynamically change
it so as to make it less heavy as the search goes
deeper. In the last step of the search (x = n−1),
the weight will be zero, since the greedy guess
for only one MAP variable is exact and then the
cost function f(n-1) is equal to the probability
of the assignment. Figure 1 shows an empiri-
cal comparison of greedy guess, constant, and
dynamic weighting heuristics against accurate
estimate of the probability. We see that the dy-
namic weighting heuristic is more informed than
constant weighting.
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Figure 1: An empirical comparison of the con-
stant weighting and the dynamic weighting
heuristics based on greedy guess.

3.3 Searching with Inadmissible

Heuristics for MAP Problem

Since the minimum weight ε that can guarantee
the heuristic function to be admissible is un-
known before the MAP problem is solved, and
it may vary between cases, we normally set α to
be a safe parameter that is supposed to be larger
than ε (In our experiments, we set α to be 1.0).
However, if α is accidentally smaller than ε, it

will lead the weighted heuristic to be inadmis-
sible. Let us give this a closer look and analyze
the conditions under which the algorithm fails
to achieve optimality. Suppose there are two
candidate assignments: s1 and s2 with proba-
bilities p1 and p2 respectively, among which s2

is the optimal assignment that the algorithm
fails to find. And s1 is now in the last step of
search which will lead to a suboptimal solution.
We skip the logarithm in the function for the
sake of clarity here (then the cost function f is a
product of transformed g and h instead of their
sum).

f1 = g1 · h1 and f2 = g2 · h2

The error introduced by a inadmissible h2 is
f1 > f2. The algorithm will then find s1 in-
stead of s2, i.e.,

f1 > f2 ⇒ g1 · h1 > g2 · h2.

Since s1 is now in the last step of search, f1 = p1

(Section 3.2.2). Now, suppose that we have
an ideal heuristic function h

′

2
, which leads to

p2 = g2 · h
′

2
. Then we have:

g1 · h1

p2

>
g2 · h2

g2 · h
′

2

⇒
p1

p2

>
g2 · h2

g2 · h
′

2

⇒
p1

p2

>
h2

h
′

2

.

It is clear that only when the ratio between
the probability of suboptimal assignment and
the optimal one is larger than the ratio be-
tween the inadmissible heuristic function and
the ideal one, will the algorithm find a subop-
timal solution. Because of large asymmetries
among probabilities that are further amplified
by their multiplicative combination (Druzdzel,
1994), we can expect that for most cases, the
ratios between p1 and p2 are far less than 1.
Even though the heuristic function will some-
times break the rule of admissibility, if only the
greedy guess is not too divergent from the ideal
estimate, the algorithm will still achieve opti-
mality. Our simulation results also confirm the
robustness of the algorithm.

3.4 Improvements to the Algorithm

There are two main techniques that we used to
improve the efficiency of the basic A* algorithm.

282          X. Sun, M. J. Druzdzel, and C. Yuan



3.4.1 Relevance Reasoning

The main problem faced by the decision-
theoretic approach is the complexity of prob-
abilistic reasoning. The critical factor in ex-
act inference schemes for Bayesian networks
is the topology of the underlying graph and,
more specifically, its connectivity. The frame-
work of relevance reasoning (Druzdzel and
Suermondt (1994) provides an accessible sum-
mary of the relevant techniques) is based on
d-separation and other simple and computa-
tional efficient techniques for pruning irrelevant
parts of a Bayesian network and can yield sub-
networks that are smaller and less densely con-
nected than the original network. Relevance
reasoning is an integral part of the SMILE li-
brary (Druzdzel, 2005) on which the implemen-
tation of our algorithm is based.

For MAP, our focus is the set of variables
M and the evidence set E. Parts of the model
that are probabilistically independent from the
nodes in M given the observed evidence E are
computationally irrelevant to reasoning about
the MAP problem. Removing them leads to
substantial savings in computation.

3.4.2 Dynamic Ordering

As the search tree is constructed dynamically,
we have the freedom to order the variables in a
way that will improve the efficiency of DWA*.
Expanding nodes with the largest asymmetries
in marginal probability distribution leads to
early cut-off of less promising branches of the
search tree. We use the entropy of the marginal
probability distributions as a measure of asym-
metry.

4 Experimental Results

To test DWA*, we compared its performance
in real Bayesian networks with those of current
state of the art MAP algorithms: the P-Loc

and P-Sys algorithms (Park and Darwiche,
2001; Park and Darwiche, 2003) implemented
in SamIam, and AnnealedMAP (Yuan et al.,
2004) in SMILE respectively. We implemented
DWA* in C++ and performed our tests on a 3.0
GHz Pentium D Windows XP computer with
2GB RAM. We used the default parameters and

settings for all the three algorithms above dur-
ing comparison, unless otherwise stated.

4.1 Experimental Design

The Bayesian networks that we used in our
experiments included Alarm (Beinlich et al.,
1989), Barley (Kristensen and Rasmussen,
2002), CPCS179 and CPCS360 (Pradhan et al.,
1994), Diabetes (Andreassen et al., 1991), Hail-
finder (Abramson et al., 1996), Munin (An-
dreassen et al., 1989), Pathfinder (Heckerman,
1990), Andes, and Win95pts (Heckerman et al.,
1995). We also tested the algorithms on two
large proprietary diagnostic networks built at
the HRL Laboratories (HRL1 and HRL2). We
divided the networks into three groups: (1)
small and middle-sized, (2) large but tractable,
and (3) hard networks.

For each network, we randomly generated 20
cases. For each case, we randomly chose 20
MAP variables from among the root nodes. We
chose the same number of evidence nodes from
among the leaf nodes. Following tests of MAP
algorithms published earlier in the literature, we
set the search time limit to be 3, 000 seconds.

4.2 Results of First & Second Group

We firstly ran the P-Loc, P-Sys, An-

nealedMAP and DWA* on all networks in the
first and second group. The P-Sys is an exact
algorithm. So Table 2 only reports the number
of MAP problems that were solved optimally by
the rest three algorithms. DWA* found all opti-
mal solutions. The P-Loc missed only one case
on Andes and the AnnealedMAP missed one
on Hailfinder and two cases on Andes.

Since both AnnealedMAP and P-Loc

failed to find all optimal solutions in Andes, we
studied the performance of the four algorithms
as a function of the number of MAP variables
(we randomly generated 20 cases for each num-
ber of MAP variables) on it.

Because P-Sys failed to generate any result
when the number of MAP variables reached 40,
while DWA* found all largest probabilities, we
subsequently compared all the other three al-
gorithms with DWA*. With the increase of
the number of MAP variables, both P-Loc and
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Group Networks P-Loc A-MAP A*

1 Alarm 20 20 20
CPCS179 20 20 20
CPCS360 20 20 20
Hailfinder 20 19 20
Pathfinder 20 20 20

Andes 19 18 20
Win95pts 20 20 20

2 Munin 20 20 20
HRL1 20 20 20
HRL2 20 20 20

Table 1: Number of cases solved optimally out
of 20 cases for the first and second group.

#MAP P-Sys P-Loc A-MAP

10 0 0 0
20 0 1 2
30 0 1 0
40 TimeOut 4 4
50 TimeOut 6 2
60 TimeOut 5 2
70 TimeOut 6 5
80 TimeOut 6 1

Table 2: Number of cases in which DWA*
found more probable instantiation than the
other three algorithms (network Andes).

AnnealedMAP turned out to be less accu-
rate than DWA* on Andes. When the num-
ber of MAP variables was above 40, there were
about 25% cases of P-Loc and 15% cases in
which AnnealedMAP found smaller probabil-
ities than DWA*. We notice from Table 2 that
P-Loc spent less time than DWA* when using
its default settings for Andes, so we increased
the search steps of P-Loc such that it spent
the same amount of time as DWA* in order to
make a fair comparison. However, in practice
the search time is not continuous in the number
of search steps, so we just chose parameters for
P-Loc such that it spent only a little bit more
time than DWA*. Table 3 shows the compar-
ison results. We can see that after increasing
the search steps of P-Loc, DWA* still main-
tains better accuracy.

In addition to the precision of the results, we

#MAP P-Loc<DWA* P-Loc>DWA*

10 0 0
20 0 0
30 0 0
40 1 0
50 2 0
60 2 1
70 3 2
80 5 0

Table 3: The number of cases in which the P-

Loc algorithm found larger/smaller probabili-
ties than DWA* in network Andes when spend-
ing a little bit more time than DWA*.

also compared the efficiency of the algorithms.
Table 4 reports the average running time of
the four algorithms on the first and the sec-
ond groups of networks. For the first group,

P-Sys P-Loc A-MAP A*

Alarm 0.017 0.020 0.042 0.005
CPCS179 0.031 0.117 0.257 0.024
CPCS360 0.045 75.20 0.427 0.072
Hailfinder 2.281 0.109 0.219 0.266
Pathfinder 0.052 0.056 0.098 0.005
Andes 14.49 1.250 4.283 2.406
Win95pts 0.035 0.041 0.328 0.032

Munin 3.064 4.101 19.24 1.763
HRL1 0.493 51.18 2.831 0.193
HRL2 0.092 3.011 2.041 0.169

Table 4: Running time (in seconds) of the four
algorithms on the first and second group.

the AnnealedMAP, P-Loc and P-Sys algo-
rithms showed similar efficiency on all except
the CPCS360 and Andes networks. DWA* gen-
erated solutions with the shortest time on av-
erage. Its smaller variance of the search time
indicates that DWA* is more stable across dif-
ferent networks.

For the second group, which consists of large
Bayesian networks, P-Sys, AnnealedMAP

and DWA* are all efficient. DWA* still spends
shortest time on average, while the P-Loc is
much slower on the HRL1 network.
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4.3 Results of Third Group

The third group consists of two complex
Bayesian networks: Barley and Diabetes, many
nodes of which have more than 10 different
states. Because the P-Sys algorithm did not
produce results within the time limit, the only
available measure of accuracy was a relative one:
which of the algorithms found an assignment
with higher probability. Table 5 lists the num-
ber of cases that were solved differently between
the P-Loc, AnnealedMAP, and DWA* algo-
rithms. PL, PA and P∗ stand for the proba-
bility of MAP solutions found by P-Loc, An-

nealedMAP and DWA* respectively.

Group3 P∗>PL/P∗<PL P∗>PA/P∗<PA

Barley 3/2 5/3
Diabetes 5/0 4/0

Table 5: The numberof cases that are solved
differently from P-Loc, AnnealedMAP and
DWA*.

For Barley, the accuracy of the three algo-
rithms was quite similar. However, for Diabetes
DWA* was more accurate: it found solutions
with largest probabilities for all 20 cases, while
P-Loc failed to find 5 and AnnealedMAP

failed to find 4 of them.

Group3 P-Sys P-Loc A-MAP A*
Barley TimeOut 68.63 31.95 122.1
Diabetes TimeOut 338.4 163.4 81.8

Table 6: Running time (in seconds) of the four
algorithms on the third group.

DWA* turns out to be slower than P-Loc

and AnnealedMAP on Barley but more effi-
cient on Diabetes (see Table 6).

4.4 Results of Incremental MAP Test

Out last experiment focused on the robustness
of the four algorithms to the number of MAP
variables. In this experiment, we set the num-
ber of evidence nodes to 100, generated MAP
problems with an increasing number of MAP
nodes. We chose the Munin network, because
it seems the hardest network among the group
1 & 2 and has sufficiently large sets of root and

leaf nodes. The running times are shown in Fig-
ure 2. Typically, P-Sys and P-Loc need more
running time in face of more complex problems,
while AnnealedMAP and DWA* seem more
robust in comparison.

Number of MAP Variables(100 Evidences)
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Figure 2: Running time of the four algorithms
when increasing the number of MAP nodes on
the Munin network.

5 Discussion

Solving MAP is hard. By exploiting asymme-
tries among the probabilities of possible ele-
ments of the joint probability distributions of
MAP variables, DWA* is able to greatly reduce
the search space and lead to efficient and accu-
rate solutions of MAP problems. Our experi-
mental results also show that generally, DWA*
is more efficient than the existent algorithms.
Especially for large and complex Bayesian net-
works, when the exact algorithm fails to gen-
erate any result within a reasonable time, the
DWA* can still provide accurate solutions effi-
ciently. Further extension of this research is to
apply DWA* to the K-MAP problem, which is
to find k most probable assignments for MAP
variables. It is very convenient for DWA* to
achieve that, since in the process of finding the
most probable assignment the algorithm keeps
all the candidate assignments in the search fron-
tier. We can expect that the additional search
time will be linear in k.

In sum, DWA* enriches the approaches for
solving MAP problem and extends the scope of
MAP problems that can be solved.
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Abstract

The paper discusses the problem to characterize collections of conditional independence
triples (independence model) that are representable by a discrete distribution. The known
results are summarized and the number of representable models over four elements set,
often mistakenly claimed to be 18300, is corrected. In the second part, the bounds for the
number of positively representable models over four elements set are derived.

1 Introduction

Conditional independence relationships occur
naturally among components of highly struc-
tured stochastic systems. In a field of graphical
Markov models, a graph (nodes connected by
edges) is used to represent the CI structure of a
set of probability distributions.

Given the joint probability distribution of
a collection of random variables it is easy to con-
struct the list of all CIs among them. On the
other hand, given the list (here called an inde-
pendence model) of CIs an interesting question
arises whether there exists a collection of dis-
crete random variables meeting these and only
these CIs, i.e. representing that model.

The problem of probabilistic representability
comes originally from J. Pearl, cf. (Pearl, 1998).
It was proved by M. Studený in (Studený, 1992)
that there is no finite characterization (≡finite
set of inference rules) of the set of representable
independence models.

The interesting point is that for the fixed
number of variables (or vertices) the number
of representable independence models is much
higher than the number of graphs. Therefore,
even partial characterization of representable
independence models may help to improve and
understand the limits of learning of Bayesian
networks and Markov models.

2 Independence models

For the reader’s convenience, auxiliary results
related to independence models are recalled in
this section.

Throughout the paper, the singleton {a} will
be shorten by a and the union of sets A∪B will
be written simply as juxtaposition AB. A ran-
dom vector ξ = (ξa)a∈N is a collection of ran-
dom variables indexed by a finite set N . For
A ⊆ N , a subvector (ξa)a∈A is denoted by ξA;
ξ∅ is presumed to be a constant. Analogously,
if x = (xa)a∈N is a constant vector then xA is
an appropriate coordinate projection.

Provided A, B, C are pairwise disjoint subsets
of N , “ξA⊥⊥ξB|ξC” stands for a statement ξA

and ξB are conditionally independent given ξC .
In particular, unconditional independence (C =
∅) is abbreviated as ξA⊥⊥ξB.

A random vector ξ = (ξa)a∈N is called dis-

crete if each ξa takes values in a state space
Xa such that 1 < |Xa| < ∞. A discrete random
vector ξ is called positive if for any appropriate
constant vector x

0 < P (ξ = x) < 1.

In the case of discretely distributed random vec-
tor, variables ξa and ξb are independent1 given

1The independence relation between random vectors



ξC iff for any appropriate constant vector xabC

P (ξabC = xabC)P (ξC = xC) =

P (ξaC = xaC)P (ξbC = xbC).

Let N be a finite set and TN denotes the set
of all pairs 〈ab|C〉 such that ab is an (unordered)
couple of distinct elements of N and C ⊆ N \ab.

Subsets of TN will be referred as formal in-

dependence models over N . Independence
models ∅ and TN are called trivial.

The independence model I(ξ) induced by a
random vector ξ indexed by N is the indepen-
dence model over N defined as follows

I(ξ) = {〈ab|C〉; ξa⊥⊥ξb|ξC} .

Let us emphasize that an independence model
I(ξ) uniquely determines also all other condi-
tional independences among subvectors of ξ, cf.
(Matúš, 1992).

Diagrams proposed by R. Lněnička will be
used for a visualisation of independence model
I over N such that |N | ≤ 4. Each element of
N is plotted as a dot. If 〈ab|∅〉 ∈ I then dots
corresponding to a and b are joined by a line. If
〈ab|c〉 ∈ I then we put a line between dots cor-
responding to a and b and add small line in the
middle pointing in c–direction. If both 〈ab|c〉
and 〈ab|d〉 are elements of I, then only one line
with two small lines in the middle is plotted.
Finally, if 〈ab|cd〉 ∈ I is visualised by a brace
between a and b. See example in Figure 1.

21

34 {

Figure 1: Diagram of the independence model
I =

{
〈12|∅〉, 〈23|1〉, 〈23|4〉, 〈34|12〉, 〈14|∅〉,

〈14|2〉
}
.

Independence models I and I∗ over N will be
called isomorphic if there exists a permutation

ξ
A
, ξ

B
given ξ

C
might be defined analogously. However,

we will see that such relationships are uniquely deter-
mined by the elementary ones (|A| = |B| = 1).

π on N such that

〈ab|C〉 ∈ I ⇐⇒ 〈π(a)π(b)|π(C)〉 ∈ I∗,

where π(C) stands for {π(c); c ∈ C}. See Fig-
ure 2 for an example of three isomorphic models.

An equivalence class of independence models
with respect to the isomorphic relation will be
referred as type.

Figure 2: Example of three isomorphic models.

An independence model I is said to be repre-

sentable2 if there exists a discretely distributed
random vector ξ such that I = I(ξ). In addi-
tion, a special attention will be devoted to pos-

itive representations, i.e. representations by
a positive discrete distribution.

Let us note that isomorphic models are either
all representable or non-representable. Conse-
quently, we can classify types as representable
and non-representable.

Lemma 1. If I = I(ξ) and I∗ = I(ξ∗) are
representable independence models then the in-
dependence model I ∩ I∗ is also representable.
In particular, if they have positive representa-
tions then there exists a positive representation
of I ∩ I∗, too.

Proof. Let X =
∏

Xa and X ′ =
∏

X ′
a be state

spaces of ξ and ξ′, respectively. The required
representation ξ̂ takes place in

X̂ =
∏

a∈N

Xa ×X ′
a

and it is distributed as follows

P (ξ̂ = (xa, x
′
a)a∈N ) =

P (ξ = (xa)a∈N ) · P (ξ′ = (x′a)a∈N ).

See (Studený and Vejnarová, 1998), pp. 5, for
more details.

2Of course, it is also possible to consider repre-
sentability in other distribution frameworks that the dis-
crete distributions, cf. (Lněnička, 2005).
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Figure 3: Irreducible models over N = {1, 2, 3, 4}.
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Lemma 2. Let a, b, c be distinct elements of N

and D ⊆ N \ abc. If an independence models I

over N is representable, then

(
{〈ab|cD〉, 〈ac|D〉} ⊆ I

)
⇐⇒(

{〈ac|bD〉, 〈ab|D〉} ⊆ I
)
.

Moreover, if I is positively representable, then

(
{〈ab|cD〉, 〈ac|bD〉} ⊆ I

)
=⇒(

{〈ab|D〉, 〈ac|D〉} ⊆ I
)
.

Proof. These are so called “semigraphoid” and
“graphoid” properties, cf. (Lauritzen, 1996) for
the proof.

3 Representability of Independence

Models over N = {1, 2, 3, 4}

For N consisting of three or less elements, all
independence models not contradicting proper-
ties from Lemma 2 are representable, resp. pos-
itively representable, cf. (Studený, 2005). That
is why we focus on N = {1, 2, 3, 4} from now to
the end of the paper.

The first subsection summarizes known re-
sults related to (general) representability of in-
dependence models. The second subsection is
devoted to positive representability.

3.1 General Representability

The problem was solved in a brilliant series
of papers (Matúš and Studený, 1995), (Matúš,
1995) and (Matúš, 1999) by F. Matúš and
M. Studený. The final conclusions are clearly
and comprehensibly presented in (Studený and
Boček, 1994) and (Matúš, 1997)3.

In brief, due to Lemma 1 an intersection of
two representable models is also representable.
Therefore, the class of all representable models
over N can be described by a set of so called
irreducible models C, i.e. nontrivial repre-
sentable models that cannot be written as an
intersection of two other representable models.
It is not difficult to evidence that a nontrivial in-
dependence model I is representable if and only

3To avoid confusion, note that (Matúš, 1997) contains
a minor typo in Figure 14 on pp. 21. Over the upper
line in the first two diagrams should be ∅ instead of ∗.

if there exists A ⊆ C such that

I =
⋂

C∈A

C.

There are only only 13 types of irreducible
models, see Figure 3 or (Studený and Boček,
1994), pp. 277–278. The problematic point is
the total number of representable independence
models over N . It has been believed that this
number is 18300, cf. (Studený, 2002), (Lau-
ritzen and Richardson, 2002), (Robins et al.,
2003), (Šimeček, 2006). . . However, working on
this paper I have discovered that there actu-
ally exist 18478 different representable indepen-
dence models over N of 1098 types. The list of
models has been checked by several programs
including SG POKUS written by M. Studený
and P. Boček. The list can be downloaded from
the web page

http://5r.matfyz.cz/skola/models

3.2 Positive Representability

Only a little is known about positive rep-
resentability. This paper would like to be
the first step to the complete characterisation
of positively representable models over N =
{1, 2, 3, 4}.

Obviously, a set of positively representable
models is a subset of the set of (generally) repre-
sentable models. In addition, positively repre-
sentable model must fulfill properties following
the second part of Lemma 2 and Lemma 3 be-
low.

Lemma 3. Let a, b, c, d be distinct elements of
N . If I is a positively representable indepen-
dence model oven N such that

{〈ab|cd〉, 〈cd|ab〉, 〈cd|a〉} ⊆ I,

then
〈cd|b〉 ∈ I ⇐⇒ 〈cd|∅〉 ∈ I.

Proof. See (Spohn, 1994), pp. 15.

There are 5547 (generally) representable
models (356 types) meeting requirements on for
positively representable models from Lemma 2
and Lemma 3. This is the upper bound to the
set of all positively representable models.
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Figure 4: Undecided types.
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Again, this class of models A is generated by
its subset C by the operation of intersection.
The elements of C can be found by starting with
an empty set C and in each step adding the el-
ement of A not yet generated by C with the
greatest size. Actually, C contains (nontrivial)
models of 23 types (may be downloaded from
the mentioned web page).

To find some lower bound to the set of pos-
itively representable models, large amount of
positive binary (≡sample space {0, 1}N ) ran-
dom distributions have been randomly gener-
ated. The description of the generating pro-
cess will be omitted here4, see the above men-
tioned web page for the list of corresponding
independence models and their binary represen-
tations. Using Lemma 1 we obtained 4555 (299
types) different positive representations of inde-
pendence models. The remaining problematic
57 types are plotted in Figure 4.

3.3 Conclusion

Let us summarize the results into the conclud-
ing theorem.

Theorem 1. There are 18478 different (gener-
ally) representable independence models (1098
types) over the set N = {1, 2, 3, 4}. There are
between 4555 and 5547 different positively rep-
resentable independence models (299–356 types)
over the set N = {1, 2, 3, 4}.
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F. Matúš. 1997. Conditional independence struc-
tures examined via minors. The Annals of Math-
ematics and Artificial Intelligence, 21:99–128.
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Evaluating Causal e�e
ts using Chain Event GraphsPeter Thwaites and Jim SmithUniversity of Warwi
k Statisti
s DepartmentCoventry, United KingdomAbstra
tThe Chain Event Graph (CEG) is a 
oloured mixed graph used for the representationof �nite dis
rete distributions. It 
an be derived from an Event Tree (ET) togetherwith a set of equivalen
e statements relating to the probabilisti
 stru
ture of the ET.CEGs are espe
ially useful for representing and analysing asymmetri
 pro
esses, and
olle
tions of implied 
onditional independen
e statements over a variety of fun
tions
an be read from their topology. The CEG is also a valuable framework for expressing
ausal hypotheses, and manipulated-probability expressions analogous to that givenby Pearl in his Ba
k Door Theorem 
an be derived. The expression we derive hereis valid for a far larger set of interventions than 
an be analysed using Bayesian Net-works (BNs), and also for models whi
h have insuÆ
ient symmetry to be des
ribedadequately by a Bayesian Network.1 Introdu
tionBayesian Networks are good graphi
al repre-sentations for many dis
rete joint probabil-ity distributions. However, many asymmet-ri
 models (by whi
h we mean models withnon-symmetri
 sample spa
e stru
tures) 
an-not be fully des
ribed by a BN. Su
h pro-
esses arise frequently in, for example, bio-logi
al regulation, risk analysis and Bayesianpoli
y analysis.In eli
iting these models it is usually sen-sible to start with an Event Tree (Shafer,1996), whi
h is essentially a des
ription ofhow the pro
ess unfolds rather than how thesystem might appear to an observer. Work-ing with an ET 
an be quite 
umbersome, butthey do re
e
t any model asymmetry, bothin model development and in model samplespa
e stru
ture.The Chain Event Graph (Ri

omagno &Smith, 2005; Smith & Anderson, 2006;Thwaites & Smith, 2006a) is a graphi
alstru
ture designed for analysis of asymmetri
systems. It retains the advantages of the ET,whilst typi
ally having far fewer edges andverti
es. Moreover, the CEG 
an be read fora ri
h 
olle
tion of 
onditional independen
eproperties of the model. Unlike Jaeger's veryuseful Probabilisti
 De
ision Graph (2002)

this in
ludes all the properties that 
an beread from the equivalent BN if the CEG rep-resents a symmetri
 model and far more if themodel is asymmetri
.In the next se
tion we show how CEGs
an be 
onstru
ted. We then des
ribe how we
an use CEGs to analyse the e�e
ts of Causalmanipulation.Bayesian Networks are often extended toapply also to a 
ontrol spa
e. When it is validto make this extension the BN is 
alled 
ausal.Although there is debate (Pearl, 2000; Lau-ritzen, 2001; Dawid, 2002) about terminol-ogy, it is 
ertainly the 
ase that BNs are use-ful for analysing (in Pearl's notation) the ef-fe
ts of manipulations of the form Do X = x0in symmetri
 models, where X is a variableto be manipulated and x0 the setting thatthis variable is to be manipulated to. Thistype of intervention, whi
h might be termedatomi
, is a
tually a rather 
oarse manipula-tion sin
e we would need to extend the spa
eto make predi
tions of e�e
ts when X is ma-nipulated to any value. Although there isa 
ase for only 
onsidering su
h manipula-tions when a model is very symmetri
, it istoo 
oarse to 
apture many of the manipu-lations we might want to 
onsider in asym-metri
 environments. We use this paper toshow how CEGs 
an be used to analyse a far



more re�ned singular manipulation in modelswhi
h may have insuÆ
ient symmetry to bedes
ribed adequately by a Bayesian Network.2 CEG 
onstru
tionWe 
an produ
e a CEG from an Event Treewhi
h we believe represents the model (see forexample Figure 1). This ET is just a graph-i
al des
ription of how the pro
ess unfolds,and the set of atoms of the Event Spa
e (orpath sigma algebra) of the tree is simply theset of root to leaf paths within the tree. Anyrandom variables de�ned on the tree are mea-sureable with respe
t to this path sigma alge-bra.
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14Figure 1. ET for ma
hine example.Example 1.A ma
hine in a produ
tion line utilises tworepla
eable 
omponents A and B. Faults inthese 
omponents do not automati
ally 
ausethe ma
hine to fail, but do a�e
t the qual-ity of the produ
t, so the ma
hine in
orpo-rates an automated monitoring system, whi
his 
ompletely reliable for �nding faults in A,but whi
h 
an dete
t a fault in B when it isfun
tioning 
orre
tly.In any monitoring 
y
le, 
omponent A is
he
ked �rst, and there are three initial pos-sibilities: A, B 
he
ked and no faults found

(�1 on the ET in Figure 1); A 
he
ked, faultfound, ma
hine swit
hed o� (�2); A 
he
ked,no fault found, B 
he
ked, fault found, ma-
hine swit
hed o� (�3).If A is found faulty it is repla
ed and thema
hine swit
hed ba
k on (vertex v1), andB is then 
he
ked. B is then either foundnot faulty (�4), or faulty and the ma
hineswit
hed o� (�5).If B is found faulty by the monitoring sys-tem, then it is removed and 
he
ked (verti
esv2 and v3). There are then three possibili-ties, whose probabilities are independent ofwhether or not 
omponent A has been re-pla
ed: B is not in fa
t faulty, the ma
hineis reset and restarted (�6); B is faulty, is su
-
essfully repla
ed and the ma
hine restarted(�7); B is faulty, is repla
ed unsu

essfullyand the ma
hine is left o� until the engineer
an see it (�8).At the time of any monitoring 
y
le, thequality of the produ
t produ
ed (�10) is un-a�e
ted by the repla
ement of A unless B isalso repla
ed. It is however dependent on thee�e
tiveness of B whi
h depends on its age,but also, if it is a new 
omponent, on the ageof A; so:�(good produ
t j A and B repla
ed) = �12> �(good produ
t j only B repla
ed) = �14> �(good produ
t j B not repla
ed) = �10An ET for this set-up is given in Figure 1 anda derived CEG in Figure 2. Note that:� The subtrees rooted in the verti
es v4; v5;v6 and v8 of the ET are identi
al (bothin physi
al stru
ture and in probabilitydistribution), so these verti
es have been
onjoined into the vertex (or position) w4in the CEG.� The subtrees rooted in v2 and v3 are notidenti
al (as �11 6= �13; �12 6= �14), butthe edges leaving v2 and v3 
arry identi
alprobabilities. The equivalent positions inthe CEG w2 and w3 have been joined byan undire
ted edge.� All leaf-verti
es of the ET have been 
on-joined into one sink-vertex in the CEG,labelled w1.To 
omplete the transformation, note thatvi ! wi for 0 � i � 3, v7 ! w5 and v9 ! w6.
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hine example.A formal des
ription of the pro
ess is as fol-lows: Consider the ET T = (V (T ); E(T ))where ea
h element of E(T ) has an asso
i-ated edge probability. Let S(T ) � V (T ) bethe set of non-leaf verti
es of the ET.Let vi � vj indi
ate that there is a path join-ing verti
es vi and vj in the ET, and that vipre
edes vj on this path.Let X(v) be the sample spa
e of X(v), therandom variable asso
iated with the vertex v(X(v) 
an be thought of as the set of edgesleaving v, so in our example, X(v1) =fB found not faulty;B found faultyg).For any v 2 S(T ), vl 2 V (T )nS(T ) su
h thatv � vl :� Label v = v�0� Let v�i+1 be the vertex su
h thatv�i � v�i+1 � vl for whi
h there is novertex v0 su
h that v�i � v0 � v�i+1 fori � 0� Label vl = v�m, where the path � 
onsistsof m edges of the form e(v�i; v�i+1)De�nition 1. For any v1; v2 2 S(T ), v1 andv2 are termed equivalent, i� there is a bije
-tion  whi
h maps the set of paths (and 
om-ponent edges)�1 = f�1(v1; vl1) j vl1 2 V (T )nS(T )g onto�2 = f�2(v2; vl2) j vl2 2 V (T )nS(T )g in su
ha way that:

(a)  (e(v�1 i; v�1 i+1)) = e( (v�1 i);  (v�1 i+1))= e(v�2 i; v�2 i+1) for 0 � i � m(�)(b) �(v�1 i+1 j v�1 i) = �(v�2 i+1 j v�2 i)where v�1 i+1 and v�2 i+1 label the same valueon the sample spa
es X(vi�1 ) and X(vi�2 ) fori � 0.The set of equivalen
e 
lasses indu
ed bythe bije
tion  is denoted K(T ), and the ele-ments of K(T ) are 
alled positions.De�nition 2. For any v1; v2 2 S(T ), v1 andv2 are termed stage-equivalent, i� there is abije
tion � whi
h maps the set of edgesE1 = fe1(v1; v1 0) j v10 2 X(v1)g ontoE2 = fe2(v2; v2 0) j v20 2 X(v2)g in su
ha way that:�(v10 j v1) = �(�(v10) j �(v1)) = �(v20 j v2)where v10 and v20 label the same value on thesample spa
es X(v1) and X(v2).The set of equivalen
e 
lasses indu
ed bythe bije
tion � is denoted L(T ), and the ele-ments of L(T ) are 
alled stages.A CEG C(T ) of our model is 
onstru
ted asfollows:(1) V (C(T )) = K(T ) [ fw1g(2) Ea
h w;w0 2 K(T ) will 
orrespond to aset of v; v0 2 S(T ). If, for su
h v; v0, 9a dire
ted edge e(v; v0) 2 E(T ), then 9 adire
ted edge e(w;w0) 2 E(C(T ))(3) If 9 an edge e(v; vl) 2 E(T ) st v 2 S(T )
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and vl 2 V (T )nS(T ), then 9 a dire
tededge e(w;w1) 2 E(C(T ))(4) If two verti
es v1; v2 2 S(T ) are stage-equivalent, then 9 an undire
ted edgee(w1; w2) 2 E(C(T ))(5) If w1 and w2 are in the same stage (ie: ifv1; v2 are stage-equivalent in E(T )), andif �(v10 j v1) = �(v20 j v2) then the edgese(w1; w1 0) and e(w2; w2 0) have the samelabel or 
olour in E(C(T )).Note that in our example, w2 and w3 are inthe same stage and that �(v6jv2) = �(v8jv3),�(v7jv2) = �(v9jv3), �(v18jv2) = �(v23jv3), sothe edges e(w2; w4) and e(w3; w4) are
oloured the same, as are the edges e(w2; w5)and e(w3; w6) and as are e(w2; w1) ande(w3; w1).More detail on CEG 
onstru
tion 
an befound in Smith & Anderson (2006), as 
ana detailed des
ription of how CEGs are read.We 
on
lude se
tion 2 of this paper by lookingat two ideas that will be used extensively inthe next se
tion.Firstly, when we say that a position win our CEG or the set of edges leaving whave an asso
iated variable, we are not refer-ing to the measurement-variables of a BN-representation of the problem, ea
h of whi
hmust take a value for any atomi
 event, butto a more 
exible 
onstru
t de�ned throughstage-equivalen
e in the underlying tree. Theexit-edges of a position are simply the 
olle
-tion of possible immediate out
omes in thenext step of the pro
ess given the history upto that position. A setting (or value or level)is then simply a possible realisation of a vari-able in this 
olle
tion.Se
ondly, we use these edge probabilitiesto de�ne the probabilities of 
omposite eventsin the path sigma �eld of our CEG:De�nition 3. For two positions w;w0 withw � w0, let ��(w0 j w) be the probability as-so
iated with the path �(w;w0). Note thatthis will be a produ
t of edge probabilities.De�ne �(w0 j w) ,X�2� ��(w0 j w)where � is the set of all paths from w to w0.

Note that the 
ombination rules for pathprobabilities on CEGs (dire
tly analogous tothose for trees) give us that for any 3 posi-tions w1; w2; w3, with w1 � w2 � w3, we havethat �(w3 j w1; w2) = �(w3 j w2); that is theprobability that we pass through position w3given that we have passed through positionsw1 and w2 is simply the probability that wepass through position w3 given that we havepassed through position w2.3 Manipulations of CEGsThe simplest types of intervention are of theform Do X = x0 for some variable X andsetting x0, and these are really the only in-terventions that 
an be satisfa
torily analysedusing BNs. In this paper we 
onsider a mu
hmore general intervention where not only thesetting of the manipulated variable, but thevariable itself may be di�erent depending onthe settings of other variables within the sys-tem.We 
an model su
h interventions by theprodu
tion of a manipulated CEG Ĉ in par-allel with our idle CEG C. In the interven-tion 
onsidered here every path in our CEG ismanipulated by having one 
omponent edgegiven a probability of 1 or 0. All edges withzero probabilities and bran
hes stemmingfrom su
h edges are removed (or pruned) fromĈ (note that in this paper all edges on anyCEG will have non-zero probabilities). Wewill 
all su
h an intervention a singular ma-nipulation, and denote it Do Int.De�nition 4. A subset WX of positions ofC quali�es as a singular manipulation set if:(1) all root-to-sink paths in C pass throughexa
tly one position in pa(WX), wherew 2 pa(WX) if w � w0 for some w0 2WXand there exists an edge e(w;w0)(2) ea
h position in pa(WX) has exa
tly one
hild in WX , by whi
h we mean that forw 2 pa(WX), there exists exa
tly onew0 2 WX su
h that there exists an edgee(w;w0)A singular manipulation is then an interven-tion su
h that:(a) for ea
h w 2 pa(WX) and 
orrespondingw0 2WX , �̂(w0 j w) = 1
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(b) for any w 2 pa(WX) and w0 =2 WX su
hthat w � w0 and there exists an edgee(w;w0), then �̂(w0 j w) = 0, and thisedge is removed (or pruned) in Ĉ(
) for any w =2 pa(WX) and w0 su
h thatw � w0 and there exists an edge e(w;w0),then �̂(w0 j w) = �(w0 j w)where �̂ is a probability in our manipulatedCEG Ĉ.Let WX = fwjg, pa(WX) = fwijg. Ea
h posi-tion in pa(WX) has exa
tly one 
hild inWX soelements of pa(WX) 
an be intially identi�edby their 
hild in WX (ie by theindex j). But a position in WX 
ould havemore than one parent in pa(WX), so we dis-tinguish these parents by a se
ond index i.For ea
h pair (wij; wj) let Xij be the variableasso
iated with the edge e(wij; wj) and xij bethe setting of this variable on this edge.If we also 
onsider a response variable Ydownstream from the set of positions WX ,then we 
an show (using for example Pearl'sde�nition of Do) that:�(y j Do Int)=Xi;j h�(wij j w0) �(y j wj)i (3:1)Pearl's own Ba
k Door expression (below) isa simpli�
ation of the general manipulated-probability expression used with BNs.�(y j Do x0)=Xz �(y j z; x0) �(z) (3:2)Z here is a subset of the measurement-variables of the BN whi
h obey 
ertain 
on-ditions. If Z is 
hosen 
arefully then we 
an
al
ulate �(y j Do x0) without 
onditioningon the full set of measurement-variables.In this paper we use the topology of theCEG to produ
e an analogous expression to(3.2) for our more general singular manipu-lation, by using a set of positions WZ down-stream from the intervention whi
h 
an stand-in for the set of positionsWX used in expres-sion (3.1). As with Pearl's expression, theuse of su
h a setWZ will redu
e the 
omplex-ity of the general expression (3.1) as well as

possibly allowing us to sidestep identi�abilityproblems asso
iated with it.Following Pearl, we have two 
onditions,whi
h if satis�ed, are suÆ
ient for WZ to be
onsidered a Ba
k Door blo
king set. We givethe �rst here, and the se
ond following a fewfurther de�nitions.(A) For all wj 2 WX , every wj � w1 path inC must pass through exa
tly one positionwk 2WZThe obvious notation for use with CEGs is apath-based one. However most pra
titionerswill be more familiar with expressions su
has (3.2), so we here develop a few ideas toallow us to express our 
ausal expression in asimilar fashion. The �rst step in this pro
essis to note that any position w in a CEG hasa unique set q(w) asso
iated with it, where:� Q(w) is the minimum set of variables,by spe
ifying the settings (or values orlevels) of whi
h, we 
an des
ribe the unionof all w0 � w paths� q(w) are the settings of Q(w) whi
h fullydes
ribe the union of all w0 � w pathsFormally this means that:q(w) = [�2�w q(�)where q(�) are the settings on thew0�w path �, and �w is the set of all w0�wpaths.Letting Z(w) be the set of variables en
oun-tered on edges upstream of w, X(w) be the setof variables en
ountered on edges downstreamof w, and R(w) = Z(w)nQ(w), we note thatthe 
onditional independen
e statement en-
oded by the position w is of the form:X(w)q R(w) j q(w)In the CEG in Figure 2 for example,X(w4) q R(w4) j q(w4) tells us that produ
tquality is independent of the monitoring sys-tem responses, given that B is not repla
ed.Note that the de�nition of q(w) meansthat the variable-settings within it might notalways 
orrespond to simple values of the vari-ables within Q(w). None-the-less, we have
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found that q(w) is typi
ally simpler than ea
hindividual q(�).We now use the ideas outlined above toexpand the expression (3.1). As the positionwk is uniquely de�ned by q(wk), we 
an write,without ambiguity �(y j wk) = �(y j q(wk)).Using 
ondition (A) we get:�(y j Do Int) (3:3)=Xi;j h�(wij j w0) Xk �(wk; y j wj)i=Xi;j;k �(wij j w0) �(y j wj ; wk) �(wk j wj)=Xi;j;k �(wij j w0) �(y j wk) �(wk j wj)=Xk hXi;j �(wij jw0)�(wkjwj)i�(yjq(wk))The equivalen
e of �(y j wj ; wk) and �(y j wk)is a 
onsequen
e of the equivalen
e of�(w3 j w1; w2) and �(w3 j w2) noted at theend of se
tion 2, and proved in Thwaites &Smith (2006b).We now need a number of te
hni
al def-initions before we 
an introdu
e our se
ond
ondition and pro
eed to our 
ausal expres-sion. Examples illustrating these de�nitions
an be found in Thwaites & Smith (2006b).Now, the position wk 
an also be fully de-s
ribed by the union of disjoint events, ea
h ofwhi
h is (by 
onditions (1) and (A)) aw0 � wij � wk path for some wij 2 pa(WX).These events divide into 2 distin
t sets:(1) w0 � wij � wj � wk paths(2) paths that do not utilise the xij edge whenleaving wij (formally w0 � wij � w0 � wkpaths where there exists an edge e(wij; w0),but w0 =2WX).We 
an 
ombine the events in set (1) into
omposite or C-paths so that ea
h C-pathpasses through exa
tly one wij and 
an beuniquely 
hara
terised by a pairqij(wk) = (xij ; zij(wk)), where zij is de�ned asfollows:� Zij(wk) is the minimum set of variables,by spe
ifying the settings of whi
h, we
an des
ribe the union of all w0 � wij �wj � wk paths (with Xij ex
luded fromthis set)

� zij(wk) are the settings of Zij(wk) whi
h(with the addition of Xij = xij) fully de-s
ribe the union of all w0 �wij �wj �wkpathsDe�nition 5. We express this formally as:Let qij(wk) = S�2� q(�), where q(�) are thesettings on the w0�wij�wj�wk path �, and� is the set of all w0 � wij � wj � wk pathsin C. Let Qij(wk) be the set of variablespresent in qij(wk).De�ne Zij(wk) as Qij(wk)nXij. Let zij(wk) bethe settings of Zij(wk) 
ompatible with qij(wk).Our Xij; xij ; Zij(wk); zij(wk) are dire
tlyanalogous to Pearl's X;x;Z and z in expres-sion (3.2), and ful�l similar roles in our �nal
ausal expression.The following rather te
hni
al de�nitionsare only required for an understanding of theproof. De�nition 7 deals with the idea of ades
endant whi
h is very similar to the analo-gous idea in BNs, and is needed for
ondition (B).De�nition 6.De�ne q(wij) analogously with the de�nitionof q(w). Let Q(wij) be the set of variablespresent in q(wij).De�ne Qj(wk) as Zij(wk)nQ(wij). Note thatQ(wij) � Zij(wk). Let qj(wk) be the settingsofQj(wk) 
ompatible with zij(wk) (or qij(wk)).We 
an therefore write:zij(wk) = (q(wij); qj(wk))qij(wk) = (xij; zij(wk)) = (q(wij); xij ; qj(wk))We 
an also 
ombine the events in set (2) intoC-paths, ea
h of whi
h 
an be uniquely 
har-a
terised by rij(wk) = S�2M q(�), where q(�)are the settings on the w0 � wij � w0 � wkpath �, andM is the set of allw0�wij�w0�wkpaths in C. We 
an therefore write:q(wk) = h[i;j qij(wk)i[h[i;j rij(wk)iDe�nition 7. Consider variablesA;D; fBmgde�ned on our CEG C. Then D is a de-s
endant of A in C if there exists a sequen
e
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of (not ne
essarily adja
ent) edges e1; : : : enforming part of a w0 � w1 path in C wherethe edges e1; : : : en are labelled respe
tivelyb1 j (a; : : :); b2 j (b1; : : :); : : : bn�1 j (bn�2; : : :);d j (bn�1; : : :), or if there exists an edge form-ing part of a w0 � w1 path in C labelledd j (a; : : :); where a; b1; b2; : : : bn�1; d are set-tings of A;B1; B2; : : : Bn�1;D.We are now in a position to state our 2nd
ondition.(B) In the sub-CEG Cij with wij as root-node,Qj(wk) must 
ontain no des
endants ofXij for all i; j; for ea
h position wkChe
king that 
ondition (B) is ful�lled is a
-tually straightforward on a CEG, espe
iallysin
e we will know whi
h manipulations weintend to investigate, and 
an usually 
on-stru
t our CEG so as to make Qj(wk) as smallas possible for all values of j; k.We 
an now repla
e expression (3.3) by a Ba
kDoor expression for singular manipulations:Proposition 1.�(y j Do Int) (3:4)=Xk hXi;j �(zij(wk))i �(y j q(wk))Proof.Consider�(wk j wj) = �(wk j wij ; wj)= �(q(wk) j q(wij); xij)= ��h [m;n qmn (wk)i [ h [m;n rmn (wk)ijq(wij); xij�=Xm;n �(qmn (wk) j q(wij); xij)+Xm;n �(rmn (wk) j q(wij); xij)sin
e disjoint.= �(qij(wk)jq(wij); xij) + �(rij(wk)jq(wij); xij)= �(qij(wk) j q(wij); xij)= �(q(wij); xij ; qj(wk) j q(wij); xij)= �(qj(wk) j q(wij); xij)

But this is simply the probability thatQj(wk) = qj(wk) given that Xij = xij in thesub-CEG Cij .Condition (B) implies that XijqQj(wk) in Cijsin
e Xij has no parents in this CEG. So weget: �(wk j wj) = �(qj(wk) j q(wij))Substituting this into expression (3.3), we get:�(y j Do Int)=Xk hXi;j �(wij j w0) �(qj(wk) j q(wij))i��(y j q(wk))=Xk hXi;j �(q(wij)) �(qj(wk) j q(wij))i��(y j q(wk))=Xk hXi;j �(zij(wk))i �(y j q(wk)) �It is possible to show that the expression�(y j q(wk)) 
an be repla
ed by a probability
onditioned on a single w0 � wk path, andmoreover that even on that path Y may wellbe independent of some of the variables en-
ountered given the path-settings of the oth-ers | for details see Thwaites & Smith(2006b).We also noted earlier that q(w) = S q(�)is typi
ally simpler than ea
h individualq(�). In most instan
es Pi;j �(zij(wk)) willbe the probability of a union of disjoint eventswhi
h will also typi
ally be simpler than anindividual zij(wk). We 
an dedu
e that 
al
u-latingPi;j �(zij(wk)) is unlikely to be a 
om-plex task.We 
on
lude this se
tion by demonstratinghow expression (3.4) is related to Pearl's Ba
kDoor expression (3.2):Consider the intervention Do X = x0, andlet Xij = X and xij = x0 for all i; j. Combineall our w0 �wij �wj �wk C-paths, and writeSi;j qij(wk) = (x0; z(wk)). Rephrase 
ondi-tions (2) and (B) as:(2) ea
h position in pa(WX) has exa
tly oneof its outward edges in C labelled x0, andthis edge joins the position in pa(WX) toa position in WX
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(B) Z(wk) must 
ontain no des
endants of X(where Z(Wk) is de�ned from z(wk) inthe obvious manner)Then with a little work, we 
an repla
e ex-pression (3.4) by:�(y j Do Int)=Xk �(z(wk)) �(y j x0; z(wk))If Z(wk) 
ontains the same variables for all k,and z(wk) runs through all settings of Z(wk)as we run through all wk, then this expressionredu
es to Pearl's expression (3.2).4 Causal Analysis on CEGs and BNsThe prin
ipal advantage that CEGs have overBNs when it 
omes to Causal analysis is their
exibility. In a BN the kind of manipulationswe 
an 
onsider are severely restri
ted (see forexample se
tion 2.6 of Lauritzen (2001) wherehe 
omments on Shafer (1996)), whereas us-ing a CEG we 
an ta
kle not only the 
on-ventional Do X = x0 manipulations of sym-metri
 models, but also the analysis of inter-ventions on asymmetri
 models and manipu-lations where both the manipulated-variableand the manipulated-variable value 
an di�erfor di�erent settings of other variables. It isalso the 
ase that our blo
king sets are setsof values or settings, and do not need to 
or-respond to any �xed subset of the originalproblem random variables.For simpli
ity of exposition in this pa-per we have not fully exploited the potential
exibility of the CEG, 
onsidering only for-mulae asso
iated with a blo
king-set WZ ofpositions downstream of WX . We 
an also
onsider sets of stages upstream of WX , and
ombinations of the two. Also, we have onlydis
ussed one parti
ular fairly 
oarse exam-ple of an intervention. There are often 
ir-
umstan
es where some paths in our CEGare not manipulated at all, for example ina treatment regime where only patients with
ertain 
ombinations of symptoms (ie at 
er-tain positions or stages) are treated. Thereare also non-singular interventions where (forinstan
e) a manipulation, rather than for
-ing a path to follow one spe
i�
 edge at some

vertex, instead provides a probability distri-bution for the outgoing edges of that vertex.So not only are CEGs ideal representa-tions of asymmetri
 dis
rete models, retainingthe 
onvenien
e of a tree-form for des
ribinghow a pro
ess unfolds but also expressing ari
h 
olle
tion of the model's 
onditional in-dependen
e properties, but their event-based
ausal analysis has distin
t advantages overthe variable-based analysis one performs onBayesian Networks.Referen
esA.P. Dawid. 2002. In
uen
e Diagrams for CausalModelling and Inferen
e. International Statisti-
al Review 70.M. Jaeger. 2002. Probabilisti
 De
ision Graphs| Combining Veri�
ation and AI te
hniques forProbabilisti
 Inferen
e. In PGM '02 Pro
eedingsof the 1st European Workshop on Probabilisti
Graphi
al Models, pages 81-88.S.L. Lauritzen. 2001. Causal Inferen
e fromGraphi
al Models. In O.E. Barndor�-Nielsen etal (Eds) Complex Sto
hasti
 Systems. Chapmanand Hall / CRC.J. Pearl. 2000. Causality: models, reasoning andinferen
e. Cambridge University Press.E. Ri

omagno and J.Q. Smith. 2005. The CausalManipulation and Bayesian Estimation of ChainEvent Graphs. CRiSM Resear
h Report no. 05-16, University of Warwi
k.G. Shafer. 1996. The Art of Causal Conje
ture.MIT Press.J.Q. Smith and P.E. Anderson. 2006. Conditionalindependen
e and Chain Event Graphs. A
-
epted, subje
t to revision, by Journal of Ar-ti�
ial Intelligen
e.P.A. Thwaites and J.Q. Smith. 2006a. Non-symmetri
 models, Chain Event Graphs andpropagation. In IPMU '06 Pro
eedings of the11th International Conferen
e on InformationPro
essing and Management of Un
ertainty inKnowledge-Based Systems.P.A. Thwaites and J.Q. Smith. 2006b. Singularmanipulations on Chain Event Graphs. War-wi
k Resear
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Abstract

It is common knowledge that the EM algorithm can be trapped at local maxima and
consequently fails to reach global maxima. We empirically investigate the severity of this
problem in the context of hierarchical latent class (HLC) models. Our experiments were
run on HLC models where dependency between neighboring variables is strong. (The
reason for focusing on this class of models will be made clear in the main text.) We
first ran EM from randomly generated single starting points, and observed that (1) the
probability of hitting global maxima is generally high, (2) it increases with the strength of
dependency and sample sizes, and (3) it decreases with the amount of extreme probability
values. We also observed that, at high dependence strength levels, local maxima are far
apart from global ones in terms of likelihoods. Those imply that local maxima can be
reliably avoided by running EM from a few starting points and hence are not a serious
issue. This is confirmed by our second set of experiments.

1 Introduction

The EM algorithm (Dempster et al., 1977) is
a popular method for approximating maximum
likelihood estimate in the case of incomplete
data. It is widely used for parameter learning
in models, such as mixture models (Everitt and
Hand, 1981) and latent class models (Lazarsfeld
and Henry, 1968), that contain latent variables.

A well known problem associated with EM
is that it can be trapped at local maxima and
consequently fails to reach global maxima (Wu,
1983). One simple way to alleviate the problem
is to run EM many times from randomly gener-
ated starting points, and take the highest like-
lihood obtained as the global maximum. One
problem with this method is that it is compu-
tationally expensive when the number of start-
ing points is large because EM converges slowly.
For this reason, researchers usually adopt the
multiple restart strategy (Chickering and Heck-
erman, 1997; van de Pol et al., 1998; Uebersax,
2000; Vermunt and Magidson, 2000): First run

EM from multiple random starting points for
a number of steps, then pick the one with the
highest likelihood, and continue EM from the
picked point until convergence. In addition to
multiple restart EM, several more sophisticated
strategies for avoiding local maxima have also
been proposed (Fayyad et al., 1998; Ueda and
Nakano, 1998; Ueda et al., 2000; Elidan et al.,
2002; Karciauskas et al., 2004).

While there is abundant work on avoiding lo-
cal maxima, we are aware of few work on the
severity of the local maxima issue. In this pa-
per, we empirically investigate the severity of
local maxima for hierarchical latent class (HLC)
models. Our experiments were run on HLC
models where dependency between neighboring
variables is strong. This class of models was
chosen because we use HLC models to discover
latent structures. It is our philosophical view
that one cannot expect to discover latent struc-
tures reliably unless observed variables strongly
depend on latent variables (Zhang, 2004; Zhang
and Kocka, 2004).



In the first set of experiments, we ran EM
from randomly generated single starting points,
and observed that (1) the probability of hitting
global maxima is generally high, (2) it increases
with the strength of dependency and sample
sizes, and (3) it decreases with the amount of
extreme probability values. We also observed
that, at high dependence strength levels, local
maxima are far apart from global ones in terms
of likelihoods.

Those observations have immediate practi-
cal implications. Earlier in this section, we
mentioned a simple local-maxima avoidance
method. We pointed out one of its problems,
i.e. its high computational complexity, and said
that multiple restart can alleviate this prob-
lem. There is another problem with the method:
there is no guidance on how many starting
points to use in order to avoid local maxima
reliably. Multiple restart provides no solution
for this problem.

Observations from our experiments suggest a
guideline for strong dependence HLC models.
As a matter of fact, they imply that local max-
ima can be reliably avoided by using multiple
restart and a few starting points. This is con-
firmed by our second set of experiments.

The remainder of this paper is organized as
follows. In Section 2, we review some basic con-
cepts about HLC models and the EM algorithm.
In Sections 3 and 4, we report our first and sec-
ond sets of experiments respectively. We con-
clude this paper and point out some potential
future work in Section 5.

2 Background

2.1 Hierarchical Latent Class Models

Hierarchical latent class (HLC) models (Zhang,
2004) are tree-structured Bayesian networks
where the leaf nodes are observed while the
internal nodes are hidden. An example HLC
model is shown in Figure 1. Following the con-
ventions in latent variable model literatures, we
call the leaf nodes manifest variables and the
internal nodes latent variables1.

1In this paper, we do not distinguish between nodes
and variables.

X1

X2 Y1 X3

Y2 Y3 Y4 Y5 Y6 Y7

Figure 1: An example HLC model. X1, X2,
X3 are latent variables, and Y1, Y2, · · · , Y7 are
manifest variables.

We usually write an HLC model as a pair
M=(m,θ). The first component m consists of
the model structure and cardinalities of the vari-
ables. The second component θ is the collection
of parameters. Two HLC models M=(m,θ)
and M ′=(m′,θ′) are marginally equivalent if
they share the same set of manifest variables
Y and P (Y|m,θ)=P (Y|m′,θ′).

We denote the cardinality of a variable X by
|X|. For a latent variable X in an HLC model,
denote the set of its neighbors by nb(X). An
HLC model is regular if for any latent vari-

able X, |X|≤
Q

Z∈nb(X)
|Z|

maxZ∈nb(X)|Z| , and the inequality

strictly holds when X has only two neighbors,
one of which being a latent variable. Zhang
(2004) has shown that an irregular HLC model
can always be reduced to a marginally equiv-
alent HLC model that is regular and contains
fewer independent parameters. Henceforth, our
discussions are restricted to regular HLC mod-
els.

2.2 Strong Dependence HLC Models

The strength of dependency between two vari-
ables is usually measured by mutual informa-
tion or correlation (Cover and Thomas, 1991).
However, there is no general definition of strong
dependency for HLC models yet. In this study,
we use the operational definition described in
the following paragraph.

Consider a probability distribution. We call
the component with the largest probability
mass the major component. We say that an
HLC model is a strong dependence model if

• The cardinality of each node is no smaller
than that of its parent.

• The major components in all conditional
distributions are larger than 0.5, and
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• In each conditional probability table, the
major components of different rows are lo-
cated in different columns.

In general, the larger the major components, the
higher the dependence strength (DS) level. In
the extreme case, when all major components
are equal to 1, the HLC model becomes deter-
ministic. Strong dependence HLC models de-
fined in this way have been examined in our
previous work on discovering latent structures
(Zhang, 2004; Zhang and Kocka, 2004). The
results show that such models can be reliably
recovered from data.

2.3 EM Algorithm

Latent variables can never be observed and
their values are always missing in data. This
fact complicates the maximum likelihood esti-
mation problem, since we cannot compute suf-
ficient statistics from incomplete data records.
A common method to deal with such situations
is to use the expectation-maximization (EM) al-

gorithm (Dempster et al., 1977). The EM al-
gorithm starts with a randomly chosen estima-
tion to parameters, and iteratively improves this
estimation by increasing its loglikelihood. In
each EM step, the task of increasing loglikeli-
hood is delegated to the maximization of the
expected loglikelihood function. The latter is a
lower bound of the loglikelihood function. It is
defined as

Q(θ|D,θt)

=

m
∑

l=1

∑

Xl

P (Xl|Dl,θ
t) log P (Xl,Dl|θ),

where D={D1,D2, · · · ,Dm} denotes the col-
letion of data, Xl denotes the set of variables
whose values are missing in Dl, and θ

t denotes
the estimation at the t-th step. The EM algo-
rithm terminates when the increase in loglike-
lihood between two successive steps is smaller
than a predefined stopping threshold.

It is common knowledge that the EM algo-
rithm can be trapped at local maxima and con-
sequently fails to reach global maxima (Wu,
1983). The specific result depends on the choice
of the starting point. A common method to

avoid local maxima is to run EM many times
with randomly generated starting points, and
pick the instance with the highest likelihood as
the final result. The more starting points it
uses, the higher the chance it can reach the
global maximum. However, due to the slow
convergence of EM, this method is computa-
tionally expensive. A more feasible method,
called multiple restart EM, is to run EM with
multiple random starting points, and retain the
one with the highest likelihood after a specified
number of initial steps. This method and its
variant are commonly used to learn latent vari-
able models in practice (Chickering and Heck-
erman, 1997; van de Pol et al., 1998; Uebersax,
2000; Vermunt and Magidson, 2000). Other
work on escaping from poor local maxima in-
cludes (Fayyad et al., 1998; Ueda and Nakano,
1998; Ueda et al., 2000; Elidan et al., 2002; Kar-
ciauskas et al., 2004).

3 Severity of Local Maxima

Here is the strategy that we adopt to empiri-
cally investigate the severity of local maxima in
strong dependence HLC models: (1) create a set
of strong dependence models, (2) sample some
data from each of the models, (3) learn model
parameters from the data by running EM to
convergence from a number of starting points,
(4) graph the final loglikelihoods obtained.

The final loglikelihoods for different starting
points could be different due to local maxima.
Hence, an inspection of their distribution would
give us a good idea about the severity of local
maxima.

3.1 Experiment Setup

The structure of all models used in our exper-
iments was the ternary tree with height equals
3, as shown in Figure 2. The cardinalities of
all variables were set at 3. Parameters were
randomly generated subject to the strong de-
pendency condition. We examined 5 DS levels,
labeled from 1 to 5. They correspond to restrict-
ing the major components within the following 5
intervals: [0.5, 0.6), [0.6, 0.7),[0.7, 0.8),[0.8, 0.9),
and [0.9, 1.0]. For each DS level, 5 different pa-
rameterizations were generated. Consequently,
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X1

X2 X3 X4

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

Figure 2: The structure of generative models.

we examined 25 models in total.

From each of the 25 models, four training sets
of 100, 500, 1000, and 5000 records were sam-
pled. On each training set, we ran EM indepen-
dently for 100 times, each time starting from a
randomly selected initial point. The stopping
threshold of EM was set at 0.0001. The high-
est loglikelihood obtained in the 100 runs is re-
garded as the global maximum.

3.2 Results

The results are summarized in Figures 3 and
4. In Figure 3, there is a plot for each combi-
nation of DS level (row) and sample size (col-
umn). As mentioned earlier, 5 models were cre-
ated for each DS level. The plot is for one of
those 5 models. In the plot, there are three
curves: solid, dashed, and dotted2. The dashed
and dotted curves are for Section 4. The solid
curve is for this section. The curve depicts a
distribution function F (x), where x is loglikeli-
hood and F (x) is the percent of EM runs that
achieved a loglikelihood no larger than x.

While a plot in Figure 3 is about one model
at a DS level, a plot in Figure 4 represents an
aggregation of results about all 5 models at a DS
level. Loglikelihoods for different models can be
in very different ranges. To aggregate them in
a meaningful way, we introduce the concept of
relative likelihood shortfall of EM run.

Consider a particular model. We have run
EM 100 times and hence obtained 100 loglike-
lihoods. The maximum is regarded as the op-
timum and is denoted by l∗. Suppose a partic-
ular EM run resulted in loglikelihood l. Then
the relative likelihood shortfall of that EM run is
defined as (l−l∗)/l∗. This value is nonnegative.

2Note that in some plot (e.g., that for DS level 4 and
sample size 5000) the curves overlap and are indistin-
guishable.

The smaller it is, the higher the quality of the
parameters produced by the EM run. In partic-
ular, the relative likelihood shortfall of the run
that produced the global maximum l∗ is 0.

For a given DS level, there are 5 models and
hence 500 EM runs. We put the relative like-
lihood shortfalls of all those EM runs into one
set and let, for any nonnegative real number x,
F (x) be the percent of the elements in the set
that is no larger than x. We call F (x) the dis-

tribution function of (aggregated) relative likeli-

hood shortfalls of EM runs, or simply distribu-

tion of EM relative likelihood shortfall, for the
DS level.

The first 5 plots in Figure 4 depict the dis-
tributions of EM relative likelihood shortfall for
the 5 DS levels. There are four curves in each
plot, each corresponding to a sample size3.

3.2.1 Probability of Hitting Global

Maxima

The most interesting question is how often
EM hits global maxima. To answer this ques-
tion, we first look at the solid curves in Fig-
ure 3. Most of them are stair-shaped. In each
curve, the x-position of the right most stair is
the global maximum, and the height of that
stair is the frequency of hitting the global max-
imum.

We see that the frequency of hitting global
maxima was generally high for high DS lev-
els. In particular, for DS level 3 or above, EM
reached global maxima more than half of the
time. For sample size 500 or above, the fre-
quency was even greater than 0.7. On the other
hand, the frequency was low for DS level 1, es-
pecially when the sample size was small.

The first 5 plots in Figure 4 tell the same
story. In those plots, the global maxima are
represented by x=0. The heights of the curves
at x=0 are the frequencies of hitting global max-
ima. We see that for DS level 3 or above, the fre-
quency of hitting global maxima is larger than
0.5, except that for DS level 3 and sample size
100. And once again, the frequency was low for
DS level 1.

3Note that in Figure 4 (b) and (c) some curves are
close to the y-axes and are hardly distinguishable.
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Figure 3: Distributions of loglikelihoods obtained by different EM runs. Solid curves are for EM
runs with single starting points. Dashed and dotted curves are for runs of multiple restart EM with
setting 4×10 and 16×50 respectively (see Section 4). Each curve depicts a distribution function
F (x), where x is loglikelihood and F (x) is the percent of runs that achieved a loglikelihood no
larger than x.
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Figure 4: Distributions of EM relative likelihood shortfall for different DS levels.

3.2.2 DS Level and Local Maxima

To see how DS level influences the severity
of local maxima, read each column of Figure 3
(for a given sample size) from top to bottom.
Notice that, in general, the height of the right
most stair increases with the DS level. It means
that the frequency of hitting global maxima in-
creases with DS level. The same conclusion can
be read off from Figure 4. Compare the curves
for a given sample size from the first 5 plots. In
general, their values at x=0 rise up as we move
from DS level 1 to DS level 5.

3.2.3 Extreme Parameter Values and

Local Maxima

There are some exceptions to the regularities
mentioned in the previous paragraph. We see in
both figures that the frequency of hitting global
maxima decreases as the DS level changes from
4 to 5. By comparing Figure 4 (c) and (d), we
also find that the frequency slightly drops when
the DS level changes from 3 to 4, given that the

sample size is large.

We conjecture that this is because that, in
generative models for DS levels 4 and 5, there
are many parameter values close to 0. It has
been reported in latent variable model litera-
tures that extreme parameter values cause local
maxima (Uebersax, 2000; McCutcheon, 2002).

To confirm our conjecture, we created another
set of five models for DS level 3. The parame-
ters were generated in the same way as before,
except that we randomly set 15% of the non-
major components in the probability distribu-
tions to 0. We then repeated the experiments
for this set of models. The EM relative likeli-
hood shortfall distributions are given in Figure
4 (f). We see that, as expected, the frequency
of hitting global maxima did decrease consider-
ably compared with Figure 4 (c).

3.2.4 Sample Size and Local Maxima

We also noticed the power of the sample size.
By going through each row of Figure 3, we found
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that the frequency of hitting global maxima in-
creases with the sample size. The phenomenon
is more apparent if we look at Figure 4, where
curves for different sample sizes are plotted in
the same picture. As the sample size goes up,
the curve becomes steeper and its value at x=0
increases significantly.

3.2.5 Quality of Local Maxima

In addition to the frequency of hitting global
maxima, another interesting question is how
bad local maxima could be. Let us first examine
the local maxima in Figure 3. They are marked
by the x-positions of the inflection points on
curves. For DS level 1, the local maxima are not
far from the global ones. The discrepancies are
less than 15. Moreover, there are a lot inflection
points on the curves, namely, distinct local max-
imal solutions. They distributed evenly within
the interval between the worst local maxima and
the global ones.

For the other DS levels, things are different.
We first observed that the quality of local max-
ima can be extremely poor in some situation.
The worst case is that of DS level 5 with sample
size 5000. The loglikelihood of the local maxi-
mum can be lower than that of the global one
by more than 4000. The second thing we ob-
served is that the curves contain much fewer
inflection points. In other words, there are only
a few distinct local maximal solutions in such
cases. Moreover, those local maxima stay far
apart from global ones since the steps of the
staircases are fairly large. Those observations
can be confirmed by studying the first 5 plots
in Figure 4, where the curves and the inflection
points can be interpreted similarly.

4 Performance of Multiple Restart

EM

We emphasize two observations mentioned in
the previous section: (1) the probability of hit-
ting global maxima is generally high, and (2)
likelihoods of local maxima are far apart from
those of global maxima at high DS levels. We
will see that these observations have immedi-
ate implications on the performance of multiple
restart EM.

We say that a starting point is optimal if it
converges to the global maximum. The first ob-
servation can be restated as follows: the proba-
bility for a randomly generated starting point to
be optimal is generally high. Consequently, it
is almost sure that there is an optimal starting
point within a few randomly generated ones.

As it is well known, the EM algorithm in-
creases the likelihood quickly in its early stage
and slows down when it is converging. In other
words, the likelihood should become relatively
stable after a few steps. Therefore, the second
observation implies that we can easily separate
the optimal starting point from the others after
running a few EM steps on them.

A straightforward consequence of the above
inference is that multiple restart EM with a few
starting points and initial steps should reliably
avoid local maxima for strong dependence HLC
models. To confirm this conjecture, we ran mul-
tiple restart EM independently for 100 times on
each training set that was presented in Figure
3. We tested two settings for multiple restart
EM: (1) 4 random starting points with 10 ini-
tial steps (in short, 4×10), and (2) 16 random
starting points with 50 initial steps (in short,
16×50). As before, we plotted the distributions
of loglikelihoods in Figure 3. The dashed and
the dotted curves denote the results for settings
of 4×10 and 16×50, respectively.

From Figure 3, we see that multiple restart
EM with setting 16×50 can reliably avoid lo-
cal maxima for DS level 2 or above. Actually,
the dotted curves are parallel to the y-axes ex-
cept that for DS level 2 and sample size 100.
It means that global maxima can always be
reached in such cases. For setting 4×10, sim-
ilar behaviors are observed for DS level 4 or 5
and sample size 500 or above. Note that dashed
and dotted curves overlap in those plots.

Nonetheless, we also notice that, for DS level
1, multiple restart EM with both settings still
can not find global maxima reliably. This is
consistent with our reasoning. As we have men-
tioned in Section 3.2.1, when we ran EM with
randomly generated single starting points, the
frequency of hitting global maxima is low for DS
level 1. In other words, it is hard to hit an op-
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timal starting point by chance. Moreover, due
to the small discrepancy among local maxima
(see Section 3.2.5), it demands a large number
of initial steps to distinguish an optimal starting
point from the others. Therefore, the effective-
ness of multiple restart EM degenerates. In such
situations, one can either increase the number
of starting points and initial steps, or appeal to
more sophisticated methods for avoiding local
maxima.

5 Conclusions

We have empirically investigated the severity of
local maxima for EM in the context of strong de-
pendence HLC models. We have observed that
(1) the probability of hitting global maxima is
generally high, (2) it increases with the strength
of dependency and sample sizes, (3) it decreases
with the amount of extreme probability values,
and (4) likelihoods of local maxima are far apart
from those of global maxima at high dependence
strength levels. We have also empirically shown
that the local maxima can be reliably avoided
by using multiple restart EM with a few starting
points and hence are not a serious issue.

Our discussion has been restricted to a spe-
cific class of HLC models. In particular, we
have defined the strong dependency in an op-
erational way. One can devise more formal def-
initions and carry on similar studies for gener-
alized strong dependence models. Another fu-
ture work would be the theoretical exploration
to support our experiences.

Based on our observations, we have ana-
lyzed the performance of multiple restart EM.
One can exploit those observations to analyze
more sophisticated strategies for avoiding local
maxima. We believe that those observations
can also give some inspirations to develop new
methods on this direction.

Acknowledgments

Research on this work was supported by Hong
Kong Grants Council Grant #622105.

References

D. M. Chickering and D. Heckerman. 1997. Effi-
cient approximations for the marginal likelihood

of Bayesian networks with hidden variables. Ma-
chine Learning, 29:181–212.

T. M. Cover and J. A. Thomas. 1991. Elements of
Information Theory. John Wiley & Sons, Inc.

A. P. Dempster, N. M. Laird, and D. R. Rubin.
1977. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Sta-
tistical Society, Series B, 39(1):1–38.

G. Elidan, M. Ninio, N. Friedman, and D. Schuur-
mans. 2002. Data perturbation for escaping local
maxima in learning. In AAAI-02, pages 132–139.

B. S. Everitt and D. J. Hand. 1981. Finite Mixture
Distributions. Chapman and Hall.

U. M. Fayyad, C. A. Reina, and P. S. Bradley. 1998.
Initialization of iterative refinement clustering al-
gorithms. In KDD-98, pages 194–198.

G. Karciauskas, T. Kocka, F. V. Jensen, P. Lar-
ranaga, and J. A. Lozano. 2004. Learning of
latent class models by splitting and merging com-
ponents. In PGM-04.

P. F. Lazarsfeld and N. W. Henry. 1968. Latent
Structure Analysis. Houghton Mifflin.

A. L. McCutcheon. 2002. Basic concepts and pro-
cedures in single- and multiple-group latent class
analysis. In Applied Latent Class Analysis, chap-
ter 2, pages 56–85. Cambridge University Press.

J. S. Uebersax. 2000. A brief study of local
maximum solutions in latent class analysis.
http://ourworld.compuserve.com/homepages/
jsuebersax/local.htm.

N. Ueda and R. Nakano. 1998. Determinis-
tic annealing EM algorithm. Neural Networks,
11(2):271–282.

N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hin-
ton. 2000. SMEM algorithm for mixture models.
Neural Computation, 12(9):2109–2128.

F. van de Pol, R. Langeheine, and W. de Jong, 1998.
PANMARK user manual, version 3. Netherlands
Central Bureau of Statistics.

J. K. Vermunt and J. Magidson, 2000. Latent GOLD
User’s Guide. Statistical Innovations Inc.

C. F. J. Wu. 1983. On the convergence properties
of the EM algorithm. The Annals of Statistics,
11(1):95–103.

N. L. Zhang and T. Kocka. 2004. Efficient learning
of hierarchical latent class models. In ICTAI-04,
pages 585–593.

N. L. Zhang. 2004. Hierarchical latent class models
for cluster analysis. Journal of Machine Learning
Research, 5(6):697–723.

308          Y. Wang and N. L. Zhang



���������
	���
�������������������
����������! "�#�$�&%�'�()�
*,+.-�/1032.4

562./87:9<;�=�/8>@?BA:CED)F$9HG1IKJ�LNMO032P0:QP0

RTSVUHWYX[ZK\:W
] =BIP0^;�>TA:C,Q.9H_</1=�/8A`2bac>�J$9<A:;�9<>�/1_d_eA3G1G10:f�A:;�0^>�/87:9gQ.9H=�/84`2�L�>�JP/1=ThiA:;�j&0:QPQ.;�9H=�=k9H=T;�9HI.;�9H=�9[23>�0^>�/8A`2
032PQl_eA`mnINF$>�0^>�/8A`2d/1=�=oF$9H=)CpA:;�0�=k9<>�aqfP0:=k9HQrQ.9H=�/84`2l0^4:9[23><+tsu9v;�9<wN2$9x>�J$9vQ.9<w�2./8>�/8A`2uA:CyQ.9H=�/84`2
2.9<>qhzA:;�jb=i>kA�f�9�mnA:;�9�9e{.I.;�9H=�=�/87:9|CpA:;iQ.9H=�/84`2xj.2$A[h|G89HQP4:9�032.Q}m~A:;�9�9e��9H_e>�/87:96C�A:;i4`F./1QP/�2$4�m~A$Q.9HG
_eA`2P=k>k;oF._e>�/8A`2g032.Qd7:9<;o/8wK_<0^>�/8A`2�+tsu9}I.;�A3I�A3=k9x0�_eA`mnIP/1G89HQg=k>k;oF._e>�F$;�9nA:C�Q.9H=�/84`2g2$9<>qhzA:;�j$=�032PQ
0g=�F./8>k9�A:C)0:G84:A:;�/8>�JPmn=x>�J.0^>T_eA`mnIKF$>k9H=nA3I.>�/�mn0:G�Q.9H=�/84`2.=v9<�x_</89[2`>�G8?:+��|J$9t;�9H=�F.G8>vIP;�A[7$/1Q.9H=}0
mn9H_oJ.032P/1=�m�>�JP0^>#_eA`m�fP/�2.9H=�IP;�A3fP0:fP/1G1/1=k>�/1_^L�_eA`2.=k>k;�0:/�2`>�aqfP0:=k9HQ�L�032.Q,Q.9H_</1=�/8A`2bac>�J$9<A:;�9<>�/1_y;�9H0:=kA`2./�2.4
CpA:;|=�/�2.43G89eaq0^4:9[23>�A3I.>�/�mn0:G�QP9H=�/84`2�LK032.QtwKG1G1=�/�2B0~430:I�/�2TA3I.>�/�mn0:GV_eA3G1G10:fNA:;o0^>�/87:9�Q.9H=�/84`2�+

� �Y���:�3�E�����b�3�q�V�

�|J./1=lhiA:;�j�_eA`2._e9<;o2.=gA3I.>�/�mx0:GxQ.9H_</1=�/8A`2�/�2�_e9[2ba
>k;�0:G1/8�<9HQ�032PQr_eA3G1G10:f�A:;�0^>�/87:9�Q.9H=�/84`2�+ ] >~>�J$9B_e9[2ba
>k;�0:G1/8�<9HQ�C�;�A`23><L}/8>gQ.9H0:G1=lh|/8>�J�=k9<>�aqfK0:=k9HQ�QP9H=�/84`2
� sd0^;�Q�LT�H�:�:�b�T $A3fN9<j¡9<>¢0:G£+1LT�H�:�:��¤Th�J./1_oJ�L,FP2ba
G1/8j:9�I�A3/�2`>�aqfP0:=k9HQ�Q.9H=�/84`2rA:C�>k9[2¥_eA`2.wN2$9HQ¦>kAlG8A$_<0:G
A3I.>�/�mx0:G1=<Lx9<7^0:G�F.0^>k9H=¥0:G1Gx0:G8>k9<;§2.0^>�/87:9�Q.9H=�/84`2.=l>kA
=k9<9<j}>�J$9643G8A3fP0:G�A3I.>�/�mx0:G£+�¨�;�/�mx0^;�?n_oJP0:G1G89[2$4:9H=�CpA:;
I.;�A$QKF._e>©G1/8Cp9H_e?$_<G89Omx032.0^4:9[m~9[2`>V/�2._<G�F.QP9iJ$A[hg>kA�9<C�a
wK_</89[2`>�G8?lI.;�A3IK0^430^>k9}_eA`2.=�>k;�0:/�23>�=,032.Qg=k9H0^;�_§Jg/�2g0
Q.9H=�/84`2l=�IP0:_e9 � ¨�0^;�9HQP/1=ª9<>�0:G£+1L�«^¬:¬3­�¤�+��|J./1=ªhiA:;�j
_eA`2`>k;�/1fKF$>k9H=z>kAnm~9<9<>�/�2$4�>�J$9H=k96_oJP0:G1G89[2$4:9H=yh|/8>�Jv032
0:G84:A:;�/8>�JPm�=�FP/8>k9|>�J.0^>zQ.9H=�/84`2.=�A3I.>�/�mn0:G1G8?nQ.9H_</1=�/8A`2ba
>�J$9<A:;�9<>�/1_<0:G1G8?�032.QB9<�x_</89[2`>�G8?:+
] >�>�J$9g_eA3G1G10:f�A:;�0^>�/87:9¥Cp;�A`2`><Lª/8>�=kA3G87:9H=¢0®=�F.f$a

I.;�A3fKG89[m¯/�2gQ.9H_</1=�/8A`2bac>�J.9<A:;�9<>�/1_BQ.9H=�/84`2�°n±�A3=k>,;�9ea
=k9H0^;�_§J®A`2®_eA3G1G10:f�A:;�0^>�/87:9gQ.9H=�/84`2�L�9:+²4.+ �£³ A`2PQKF$;�/
032.Q�MyJ.032PQ.;�0^j^0:=�032�L��H�:�:��¤�LOC�A$_HF.=k9H=�A`2¦Q.9H=�/84`2$9<;
/�2$CpA:;omn0^>�/8A`2l=�J.0^;�/�2.4�fKF$>�2$A:>�A`2rmn0^j$/�2$4�QP9H=�/84`2
_oJ.A3/1_e9H=<+l´E{._e9HI.>�/8A`2.=HL�=�F._oJr0:=uµE¶^·p·8¸�¹�¶:º�¸:»½¼p¾À¿¢¶oÁ�Â
»½¼pÃ�¼1ÄH¸3»½¼p¶:Å �£Æ ;�03FP2Ç9<>v0:G£+1L��H�:�:­�¤~0^;�9�9H=�=k9[2`>�/10:G1G8?
I�A3/�23>�aqfK0:=k9HQ�032.QÈA`2.G8?&I.;�A$QKF._e9uG8A$_<0:G1G8?&A3IP>�/�mn0:G
Q.9H=�/84`2P=<+ ] Q.9H_</1=�/8A`2bac>�J$9<A:;�9<>�/1_T4:;�0:IKJ./1_<0:Gym~A$Q.9HG£L
>k9<;omn9HQ&Éo¶^·�·1¸`¹�¶:ºÊ¸3»½¼�¾^¿�Ë�¿§Ì§¼1Í:ÅÇÅN¿<»½Î�¶:º�Ï � MyÐ�Ñª¤�LE/1=
I.;�A3I�A3=k9HQl/�2 � -6/1032$4�9<>�0:G£+1L�«^¬:¬^Ò$¤�+�MzA`mxINA`2.9[23>�a
_e9[2`>k9<;�9HQgQP9H=�/84`2d/1=�_eA`2.=�/1Q.9<;�9HQg/�2u>�J$9v_eA`23>k9e{$>�A:C
I.;�A$QKF._e>6G1/8Cp9H_e?b_<G89Tmn032.0^4:9[mn9[23> � ¨�Ó�±u¤�h�/8>�J¢>�J$9
A3f$Ô�9H_e>�/87:9ÕA:CVAY7:9<;�0:G1G�A3I.>�/�mx0:GNI�9<;�CpA:;omn032P_e9�_eA`FP2`>�a
/�2$4dQP/87:9<;o=k9�FP2._e9<;�>�0:/�23>@?¥C�;�A`mÖmn0^>k9<;�/10:G1=<Lymn032bFba
C£0:_e>�F$;�/�2$4r032.Q�A3I�9<;�0^>�/�2$4.L�0:=vhz9HG1G|0:=}I.;�9<Cp9<;�9[2._e9
A:Cx7:9[2PQ.A:;�=¢032.Q×F.=k9<;�=H+ ] =�_oJ$9[mn9gCpA:;lm,F.G8>�/10Àa

4:9[2`>�_eA3G1G10:f�A:;�0^>�/8A`2�/1=BQP9<7:9HG8A3IN9HQ � -�/1032$4Ç9<>�0:G£+1L
«^¬:¬3Ø�¤nh�J./1_§J®;�9HQKF._e9H=T_eA`mnIKG89e{$/8>@?Ç9e{.INA`2.9[23>�/10:G1G8?
Cp;�A`m">�J.0^>|A:C#0v_e9[23>k;o0:G1/8�<9HQ�QP9H=�/84`2tf�?T9e{.J.03FP=k>�/87:9
9<7^0:G�F.0^>�/8A`2�+��|JP/1=v_eA`2`>k;�/1fKF$>�/8A`2&4:Ab9H=TC½F$;�>�J$9<;}>kA
9[2.0:fPG89�9<�x_</89[2`>ÕG8Ab_<0:G�Q.9H=�/84`2�0^>�9H0:_oJ¢0^4:9[2`><+ ] Q$a
QP/8>�/8A`2.0:G#_eA`2.=�>k;�0:/�23>�=6CpA:;)MOÐ6Ñ�0^;�9,0:G1=kABI.;�A3I�A3=k9HQ
>kA|C£0:_</1G1/8>�0^>k9�m~A$Q.9HG:_eA`2.=k>k;§F._e>�/8A`2ª032PQ)7:9<;�/8wK_<0^>�/8A`2�+
Ù ÚuÛKÜ^�cÝV��ÞgÛ.�HßT�©�3àEÜ
] =�/�2`>k;�A$QKF._e9HQr0:f�A[7:9:L�>�J./1=�hzA:;�jl/1=,032l9H=�=k9[2`>�/10:G
IP0^;�>�A:CE>�J$9ª;�9H=k9H0^;�_oJ�>kAYhz0^;�QK=�m,F.G8>�/10^4:9[2`>�_eA3G1G10:f.a
A:;�0^>�/87:9�Q.9H=�/84`2�+z ./�2._e9Õ>�J$9)CpAb_HFP=�J$9<;�9)/1=�>�J.9)Q.9H_</áa
=�/8A`2}I.;�A$_e9H=�=z0^>y0�=�/�2.43G89�0^4:9[2`><LKm,F.G8>�/10^4:9[23>y/1=�=oF$9H=
_<032�f�9�=k9<>Õ0:=�/1Q.9�h|/8>�J$A`F.>�0À��9H_e>�/�2$4B>�J$9,/�23>k9<4:;o/8>q?
A:Cz>�J$9~;�9H=�F.G8>ÕI.;�9H=k9[23>k9HQ©+�âk2�>�J./1=Õ=k9H_e>�/8A`2�L�hz9nQ.9ea
wN2$9�0}Ë`¿eÌ§¼1Í:ÅBÅN¿H»½Î�¶:º�Ï � Ð6Ñ)¤E0:=�>�J.9|j:9<?n4:;�0:INJ./1_<0:G
m~A$Q.9HG�0:=�=kA$_</10^>k9HQth|/8>�Jt=�F._oJT032T0^4:9[2`><+i��J$9ÕQ.9<w.a
2./8>�/8A`2�J$9<;�9)9e{$>k9[2.QP=|>�J.0^>�/�2 � -�/1032$4v9<>|0:G£+1L�«^¬:¬^Ò$¤
=kAg>�J.0^>}/8>}/1=}2.A:>vA`2.G8?ÇmnA:;�9t9e{.I.;�9H=�=�/87:9�/�2�;�9HI$a
;�9H=k9[2`>�/�2$4lQP9H=�/84`2¦j.2$A[h|G89HQP4:9:LOfNF$>n0:G1=kAgmnA:;�9B;�9ea
=k>k;�/1_e>�/87:9|>kA)fN9<>k>k9<;�4`F./1Q.9�m~A$Q.9HG$_eA`2.=k>k;oFP_e>�/8A`2~032.Q
7:9<;�/8wK_<0^>�/8A`2�+ ] =�I�9H_e>�=�/�2 � -6/1032$4n9<>�0:G£+1L�«^¬:¬^Ò$¤O0^;�9
A`F$>�G1/�2$9HQ¢J$9<;�9�f.;�/89<ãP?TCpA:;�_eA`mnIKG89<>k9[2$9H=�=<+yä�9H0:QP9<;�=
0^;�9);�9<C�9<;�;�9HQT>kAn;�9<Cp9<;�9[2._e9)CpA:;�m~A:;�9)Q.9<>�0:/1G1=<+
] QP9H=�/84`2È2$9<>qhzA:;�jÇ/1=T0g>k;�/1IPG89dåçæ �cè�é�êné�ë ¤

h�J$A3=�9�=�>k;oF._e>�F$;�9×/1=�0"_eA`2K2$9H_e>k9HQ¯Ð ] D ì æ
�cè�é�ê ¤�+d�|J$9}=k9<>,A:C�2$A$Q.9H=<L#9H0:_oJ�_eA:;�;�9H=�I�A`2.QP=ª>kA
0d7^0^;�/10:fPG89:L�/1= è æîíçïuð�ïgñ ï¥ò�+Èíó/1=v032
2$A`2bac9[mxI.>q?u=k9<>�A:C)Ë`¿§Ìe¼8Í3Å�Á$¸:º�¸:Ãn¿<»q¿<ºo+tðô/1=�0�=k9<>
A:C�¿HÅP¾[¼pºÊ¶3ÅPÃn¿<ÅP»c¸^·<õ<¸3É[»c¶:º�Ì�;�9HI.;�9H=k9[2`>�/�2$4�>�J$9zFK2._e9<;ka
>�0:/�2�mn032bF$Cp0:_e>�F.;�/�2$4x032.Q�A3I�9<;�0^>�/�2$4x9[2`7$/8;�A`2Pm~9[2`>
CpA:;t>�J$9uI.;�A$QKF._e>tFP2.QP9<;TQP9H=�/84`2�+öñ /1=�032¡2$A`2ba



9[mxI.>q?n=k9<>OA:C©A3f.ÔÊ9H_e>�/87:96ÁP¿<º�õe¶:º§Ã~¸:ÅKÉ§¿�Ã~¿�¸ÀÌ � ºk¿§Ì�A:C
>�J$9~I.;�AbQKFP_e><+nò�/1=Õ032u2.A`2bac9[mnI.>@?�=k9<>ÕA:CO=�F.f.ÔÊ9H_§a
>�/87:9 � »½¼�·á¼p»���õ � ÅKÉH»½¼£¶:Å$ÌOA:C#>�J$9)Q.9H=�/84`2.9<;H+
ê /1=|032t2.A`2bac9[mnI.>@?}=�9<>�A:CO·1¿@Í3¸^·.0^;�_<=<+isu9ª;�9<Cp9<;

>kATQP/1=k>�/�2._e>�9[2.QPI�A3/�2`>�=|Cp;�A`m í 0:=��T032.Q����£LNCp;�A`m
ð®0:=	��032PQ
� � L`Cp;�A`m�ñ 0:=	�"032PQ�� � L3C�;�A`m�òÈ0:=�

032.Q

��£L3;�9H=�I�9H_e>�/87:9HG8?:+��|J.9<;�9�0^;�9|=�/á{,>q?$I�9H=EA:C�G89<430:G
0^;�_<=H°
�^+ ] ;�_ � � é ���£¤�=�/84`2P/8wP9H=�>�J.0^>�>�J.9i>@hiAÕIP0^;�03mn9<>k9<;�=
0^;�9ª/�237:A3G87:9HQ�/�2B0nQP9H=�/84`2B_eA`2.=k>k;o0:/�23><+

«b+ ] ;�_ � � é ��¤|;�9HI.;�9H=k9[23>�=)>�J.0^>ªI�9<;�CpA:;omn032._e9
�
QP9HIN9[2PQP=OA`2BQ.9H=�/84`2�IP0^;�03mn9<>k9<;��.+

� + ] ;�_ � � é ���p¤ª;�9HI.;�9H=�9[23>�=}Q.9HI�9[2.Q.9[2._e?¦f�9<>qhz9<9[2
9[2`7$/8;�A`2Pm~9[2`>�0:G6C£0:_e>kA:;�=<+���J./1=}>q?$IN9¢A:C�0^;�_<=
/1=Ç0:QPQ.9HQ�>kA�G89<430:GB0^;�_<=�/�2 � -6/1032$4�9<>¥0:G£+1L
«^¬:¬^Ò$¤�>kAv9[2._eA$Q.9~_eA`mnIKG89e{�Q.9HI�9[2.Q.9[2._e9�;�9HG10Àa
>�/8A`2P=|03m~A`2.4~9[237$/8;�A`2Pmn9[23>�0:G�C£0:_e>kA:;�=<+

Ò.+ ] ;�_ � � é ��¤#=�/84`2./8wP9H=i>�J.0^>iI�9<;�CpA:;omx032._e9��öQ.9ea
I�9[2.QK=OA`2T9[237$/8;�A`2Pmn9[23>yC£0:_e>kA:;��o+

Øb+ ] ;�_ � � é ���p¤�Q.9<wN2$9H=����N0:=y0,_eA`mxINA3=�/8>k9�I�9<;ka
CpA:;omx032._e9ªm~9H0:=�F.;�9:+

­b+ ] ;�_ � � é 
©¤�=�/84`2P/8wP9H=)>�J.0^>�F$>�/1G1/8>q?�
gQ.9HI�9[2.QP=
A`2�I�9<;�C�A:;§mn032._e9��¢+

ë /1=x0u=k9<>~A:C�I�A:>k9[2`>�/10:G1=nA`2$9t0:=�=kAb_</10^>k9HQÇh|/8>�J
9H0:_§JB2$AbQP9��t/�2v>�J$9Oõ<¶:ºoÃ A:CV0,_eA`2.QP/8>�/8A`2P0:G�I.;�A3fP0Àa
fP/1G1/8>@?BQP/1=k>k;�/1fKF.>�/8A`2 ëx� ��� � � �V¤k¤�LKh�J.9<;�9�� � �©¤z/1=y>�J$9
=k9<>BA:C,IP0^;�9[2`>t2$A$Q.9H=TA:C���+ ] _<_eA:;�QP/�2.4¥>kAÇG89<430:G
0^;�_<=HLb0�Q.9H=�/84`2nIK0^;�03m~9<>k9<;���_<032vJ.0[7:9�A`2PG8?nQ.9H=�/84`2
IP0^;o03m~9<>k9<;�=,0:=nIP0^;�9[23>�=<+gâ@C��u/1=n0�;�AbA:><L ëx� �.¤�/1=
0u_eA`2.=�>�0323>xQK/1=k>k;�/1fKF$>�/8A`2�+! �>�J.9<;�h|/1=k9:L ëx� �"� � � �.¤k¤
m,F.=k>O_eA`2`>�0:/�2B>�J$967^0:G�F$9)¬ � /£+²9:+1LN2$A:>y=k>k;�/1_e>�G8?BI�A3=�/áa
>�/87:9^¤�+��|J.9z2$A`2baq=�>k;�/1_e>�G8?`aqI�A3=�/8>�/87:9O;�9$#$F./8;�9[mn9[23>�_<032
f�9�FP2PQ.9<;�=k>kAbAbQÇ0:=vCpA3G1G8A[h�=<°usÈJ.9[2%� � �.¤,/1=T2$A`2ba
9[mxI.>q?:L ëx� �&� � � �$¤k¤i;�9HI.;�9H=k9[2`>�=�Q.9H=�/84`2T_eA`2P=k>k;�0:/�2`>�=<+
âÊ>~=�I�9H_</8wP9H=~FP2.Q.9<;�h�J.0^>~_eA`2$wP4`F.;�0^>�/8A`2.=,A:C�� � �.¤�L
_e9<;�>�0:/�2g7^0:G�F$9H=�A:C��¢0^;�9T/1G1G89<430:G£L�032.Qg>�J$9}7À0:G�F$9T¬
=�/84`2P/8wP9H=y7$/8A3G10^>�/8A`2tA:CEQ.9H=�/84`2t_eA`2.=k>k;�0:/�2`>�=<+
¨�A:>k9[2`>�/10:G ëx� �'� � � �o¤k¤u/1=l0�>@?bIK/1_<0:GvI.;�A3fP0:fP/1G1/8>q?

QP/1=�>k;�/1fKF$>�/8A`2�+ ] _<_eA:;oQP/�2$4T>kA}G89<430:GE0^;o_<=<L(� � ��¤y_eA`2ba
=�/1=�>�=�A:C#9[237$/8;�A`2Pmn9[23>�0:G©Cp0:_e>kA:;�=�A`2.G8?:+ ëx� ��� � � ��¤k¤
/1=�0:G1=kA}0x>q?$IP/1_<0:G#I.;�A3fP0:fK/1G1/8>q?tQP/1=k>k;o/1fKF$>�/8A`2�LN;�9HI.;�9ea
=k9[2`>�/�2$4,>�J$9ÕFP2._e9<;�>�0:/�2}Q.9HI�9[2.QP9[2._e9�A:CV>�J$9�I�9<;�CpA:;ka
mx032._e96A`2BQ.9H=�/84`2�LK9[237$/8;�A`2Pmn9[23><LP0:=|hi9HG1G©0:=�A:>�J$9<;
I�9<;�CpA:;omn032P_e96mn9H0:=�F$;�9H=<+

] G1GyF$>�/1G1/8>q?g7À0^;o/10:fPG89H=~0^;�9BfP/�2.0^;�?lh|/8>�JrQ.A`mn0:/�2)+*Né-,/. +��|J$9�INA:>k9[2`>�/10:G ëx� 
Bæ * � � � 
©¤k¤�/1=i0:=�=�/84`2$9HQ
0¥F$>�/1G1/8>@?&C½FP2._e>�/8A`20
 � � � 
�¤k¤xh�J$A3=k9¢7À0:G�F.9H=T;�032$4:9
/�201 ¬ é �32�032.Q¦/�2._<G�FPQ.9T>�J$9T>qhzAdfNA`FK2.QP=<+ ] _<_eA:;�Q$a
/�2$4�>kA�G89<430:GO0^;�_<=HL4� � 
�¤Õ_eA`2.=�/1=k>�=�A:C�I�9<;�CpA:;omn032._e9
mn9H0:=�F$;�9H=|A`2.G8?:+���J$9�I�A:>k9[2`>�/10:G ëv� 
�æ , � � � 
�¤k¤�/1=
0:=�=�/84`2$9HQ �65 ëx� 
×æ * � � � 
©¤k¤�+�´i0:_oJÈ2$A$Q.97
¡/1=
0:G1=kA¢0:=�=�/84`2.9HQg0�hi9H/84`J`>68%9:1 ¬ é �32y=�F._§Jd>�J.0^>�>�J$9
hz9H/84`J3>�=|A:CE0:G1GVF$>�/1G1/8>q?�2.AbQ.9H=y=oFPmô>kAnA`2$9:+
sÈ/8>�J ë >�J�F.=rQ.9<wN2.9HQ�LBå /1=ÇÌ3�^ÅP»c¸3É[»½¼pÉo¸^·p·;�È0

Æ 0H?:9H=�/1032�2.9<>qhzA:;�jN+ ] =�=�FKmn/�2$4~0:QPQP/8>�/87:9,/�2.Q.9HI�9[2ba
Q.9[2P_e9 �£³ 9<9[2.9<?�032.Q�ä|0:/á��0$L��H��<^­�¤|03m~A`2$4TF$>�/1G1/8>q?
7^0^;�/10:fPG89H=<LK>�J$9Õ9e{$I�9H_e>k9HQ�F$>�/1G1/8>q?BA:CE0~Q.9H=�/84`27=

ê ò � =�¤Eæ?>A@B8 @ � >DCE
 @ ��F ¤ ëx��F � =�¤k¤ � �À¤

_<032lfN9n_eA`mxIKF$>k9HQdf�?¢=k>�032.QP0^;�QlI.;�A3fP0:fP/1G1/1=�>�/1_x/�2ba
Cp9<;�9[2._e9y/�2nå � -6/1032$4Õ9<>E0:G£+1Lb«^¬:¬^Ò$¤�L`h�J$9<;�9�= � f�A3G1Q�¤
/1=)0B_eA`2.wP4`F$;�0^>�/8A`2dA:Czí�LHG|/�2PQ.9e{b9H=�F$>�/1G1/8>q?d2$A$Q.9H=
/�2tò�L F!� f�A3G1Q�¤E/1=z0,_eA`2$wK4`F$;�0^>�/8A`2vA:C©>�J$96IP0^;�9[2`>�=
A:C�
 @ L�032PQB8 @ /1=�>�J$9}hi9H/84`J`>n0:=�=kA$_</10^>k9HQ¦h|/8>�JI
 @ +J#/84`F$;�9n�ª=�J$A[h�=�0~>k;�/87$/10:G©9e{.03mnIPG89)Ð6Ñ�+

u_cost

u_perf

d_memory

u_stability

t_humidity
t_temperatured_12v

d_c_voltage

d_c_chipset

m_io_perf m_costu_io_perf

d_b_chipset
d_io_controler

m_perf

m_stability

J�/84`F.;�9x�^° ] >k;�/87$/10:GVÐ6Ñ�C�A:;|¨OM¡m~A:>�J.9<;�f�A30^;�Q�+
ä|9H=k>k;�/1_e>�/8A`2ÈA:C�G89<430:G)0^;�_<=tQPA�9H=t2$A:>B_eA`2.=�>k;�0:/�2

å�=�F$�v_</89[23>�G8?&=kA¦>�J.0^>T9<7:9<;�?&_eA`mxI�A`2$9[23>}/1=T;�9HGáa
9<7^0323>~>kA¢>�J$9BQ.9H=�/84`2r>�0:=kjNLz0:=,h|/1G1GOf�9H_eA`m~9B_<G89H0^;
f�9HG8A[hª+�su9�/�mxI�A3=k96>�J$9)CpA3G1G8A[h|/�2$4d¿§ÌoÌ<¿HÅP»½¼p¸:·á¼p»��6;�9ea#$F./8;�9[mn9[23>E>kA�I.;�A[7$/1Q.9�C½F$;�>�J.9<;�4`F./1QP032._e9�>kA�mnAbQ.9HG
_eA`2.=�>k;oF._e>�/8A`2�032.QÕ>kA|C£0:_</1G1/8>�0^>k9|m~A$Q.9HG^7:9<;�/8wN_<0^>�/8A`2�+JPA:;t0323?&Q.9H=�/84`2ÈIP0^;�03mn9<>k9<;K�.L�/8C�>�J$9<;�9¢9e{./1=k>�=
0uQP/8;�9H_e>k9HQÇIP0^>�J¥/�2®å�C�;�A`mL�d>kAg0lF$>�/1G1/8>q?�2$A$Q.9
VLª>�J$9[2M�È/1=¥¿§Ì�ÌH¿<ÅP»½¼£¸^·á+N �>�J$9<;�h|/1=�9:LO�¡/1=rÅK¶:ÅPÂ
¿eÌ�Ì<¿HÅP»½¼£¸^· + âÊCP�È/1=d2$A`2$ac9H=�=k9[2`>�/10:G£L�>�J.9[2�>�J.9r9e{ba
I�9H_e>k9HQ,F$>�/1G1/8>q?�A:CK0323?Õ43/87:9[2,QP9H=�/84`2ª/1=#/�2.QP9HIN9[2PQ.9[23>
A:Cy>�J$9v7À0:G�F.9x>�J.0^>
��>�0^j:9H=<+�âk2uA:>�J$9<;�hzA:;�QP=<L�>�J$9
A3I.>�/�mx0:G6Q.9H=�/84`2&A[7:9<;�>�J$9u;�9[mn0:/�2P/�2$4rQP9H=�/84`2ÈIP0Àa
;�03mn9<>k9<;�=ª/1=,/�2.QP9HIN9[2PQ.9[23>ªA:C��.LE032.Qg>�J$9}A3I.>�/�mn0:G

310          Y. Xiang



7^0:G�F$9tCpA:;P�l/1=vFP2.Q.9<wN2.9HQ�+��|9[2._e9:L �l_<032�f�9B;�9ea
m~AY7:9HQnCp;�A`m�åuh|/8>�J$A`F$>�0À��9H_e>�/�2$4�>�J$9�A3I.>�/�mx0:GPQ.9ea
=�/84`2�A[7:9<;ª;�9[mn0:/�2./�2.4vQ.9H=�/84`2�IP0^;o03m~9<>k9<;�=�032.Q�>�J$9
mn0À{./�m,FPm�9e{$I�9H_e>k9HQ�F$>�/1G1/8>q?:+J.A:;6032`?TI�9<;�CpA:;omx032._e9)m~9H0:=�F$;�9 �¢LK/8C#>�J$9<;�9)9e{ba
/1=k>�=y0,QP/8;�9H_e>k9HQBIK0^>�JT/�2tådCp;�A`mô0,Q.9H=�/84`2TIK0^;�03m~9ea
>k9<;��ª>kA6�¢L$0:=�hz9HG1GN0:=z0ªQK/8;�9H_e>k9HQvIK0^>�JnCp;�A`m �">kA
0�F$>�/1G1/8>@?l2$A$Q.9

©LV>�J.9[2 � /1=v¿eÌ�Ì<¿HÅP»½¼£¸^· +vs&/8>�J.A`F$>
>�J$9�IP0^>�J~C�;�A`m �)>kA��¢L ��h|/1G1GK2.A:>�Q.9HI�9[2.Q�A`2~0323?
Q.9H=�/84`2�+�sÈ/8>�J$A`F$>6>�J$9,IP0^>�J�Cp;�A`mE�¯>kA 
©L(� h|/1G1G
2$A:>�/�2.ãNF$9[2._e9�>�J.9�A3I.>�/�mn0:GKQ.9H=�/84`2�+#âk2,9H/8>�J$9<;O_<0:=k9:L� /1=�Q.9<9[mn9HQuÅK¶:ÅPÂk¿§ÌoÌ<¿HÅP»½¼p¸:·$032PQt_<032Bf�9Õ;�9[m~AY7:9HQ
h|/8>�J$A`F.>�0À��9H_e>�/�2$4}>�J$9ÕA3I.>�/�mx0:G�Q.9H=�/84`2�+
�|J.9 _<0:=k9�C�A:;&9[2`7b/8;�A`2Km~9[2`>�0:G�C£0:_e>kA:;�=ÈQP/á��9<;�=

Cp;�A`m >�J$9x0:f�A[7:9:+vMOA`2.=�/1Q.9<;)0BIP0^>�J ��� ��� � �pL
h�J$9<;�9 �ó/1=�9H=�=k9[2`>�/10:Gy032.QI� ��/1=~0�G89H0^CÊ+r .F.IPI�A3=k9
>�J.0^>�>�J$9ª7^0:G�F$9�A:C � � /1=�j.2$A[h�2�0^>�>�J.9ª>�/�m~9�A:C�Q.9ea
=�/84`2 � 032T9e{b>k9[2P=�/8A`2B>kAv>�J$9)_eA`23>k9e{$>�C�A:;|´�#b2�+ � �À¤k¤�+
Ð�9HI�9[2.QP/�2$4)A`2n>�J$9|j.2$AYh�2~7^0:G�F$9|A:C � � Lb>�J$9|/�mxIP0:_e>
A:C �)A`2I��mn0[?lQP/á��9<;H+�âÊC|0�QP/8;�9H_e>k9HQ¥IP0^>�JlCp;�A`m
9H0:_oJÇ9[2`7b/8;�A`2Km~9[2`>�0:G�C£0:_e>kA:;v>kAr0gF$>�/1G1/8>@?Ç2$AbQP9�/1=
;�9$#$F./8;�9HQ�L�>�J$9T2$AbQP9�� ��0:f�AY7:9}h�/1G1G�f�9xQP/1=�0:G1G8AYhi9HQ©+
�|J$9<;�9<C�A:;�9:LN032B9[2`7b/8;�A`2Km~9[2`>�0:G©C£0:_e>kA:;��y/1=|QP9<9[m~9HQ
¿§ÌoÌ<¿HÅP»½¼p¸:·�/8CV>�J.9<;�969e{$/1=k>�=y032TFP2PQP/8;�9H_e>k9HQTIP0^>�JT/�2Bå
Cp;�A`m ��>kA)0ªIN9<;�C�A:;omx032._e9ym~9H0:=�F$;�9 �¢+	 �>�J$9<;�h|/1=k9:L�O/1=ªÅK¶:ÅKÂ�¿eÌ�Ì<¿HÅP»½¼£¸^· +
su9�;�9$#bFP/8;�9B>�J.0^>v0:G1G|Q.9H=�/84`2�IK0^;�03m~9<>k9<;�=HLzI�9<;ka

CpA:;omn032._e9Tm~9H0:=�F.;�9H=<LE032.Qg9[237$/8;�A`2Pmn9[23>�0:GiCp0:_e>kA:;o=
/�2B0nQP9H=�/84`2t2$9<>@hiA:;�jT>kAxf�9Õ9H=�=�9[23>�/10:G£+

� ÚuÛ.�:ÛK�b�3�q��ÝÇ���	�cÛPÝ�
���ÚuÛKÜ^�cÝ���Ü
] 2v0^4:9[2`>�9$#$F./1IPI�9HQvh|/8>�JT0,Ð�Ñ _<032T_eA`mnIKF.>k9�9e{ba
I�9H_e>k9HQ�F$>�/1G1/8>@? ê ò � =�¤ � ´	#$2�+ � �À¤k¤zCpA:;|9H0:_§J�0:G8>k9<;ka
2.0^>�/87:9TQ.9H=�/84`2¦F.=�/�2.4�=k>�032.QP0^;oQgI.;�A3fP0:fP/1G1/1=k>�/1_x;�9H0Àa
=kA`2./�2.4.+
��A[hz9<7:9<;HL,wN2.QP/�2$4Ç>�J$9gA3IP>�/�mn0:GªQP9H=�/84`2
f�?�9e{PJ.03F.=k>�/87:9HG8?�9<7À0:G�FP0^>�/�2$4B9H0:_oJuQP9H=�/84`2¢J.0:=6>�J$9
_eA`mnIKG89e{$/8>@?�� ����� ��� ¤�L�h�J$9<;�9 � /1=v>�J$9�mx0À{$/�m,FPm
2bFPm�fN9<;ªA:Cy7À0:G�F$9H=�>�J.0^>�0�QP9H=�/84`2lIK0^;�03m~9<>k9<;,_<032
>�0^j:9:+�su9ÕI.;�9H=k9[23>y0~m,F._oJ}m~A:;�9�9<�x_</89[2`>�m~9<>�J$A$Q
f�9HG8A[h)+
] 2�/1G1G89<430:G�Q.9H=�/84`2�7$/8A3G10^>k9H=ª0^>)G89H0:=k>ÕA`2.9,QP9H=�/84`2

_eA`2.=k>k;o0:/�23><+x��J$9~=kA�A`2.9<;ª/8>)_<032df�9~Q.9<>k9H_e>k9HQ�L�>�J$9
=kAbA`2$9<;}>�J$9�9<7^0:G�F.0^>�/8A`2&_eA`mnIKF.>�0^>�/8A`2Ç_<032®f�9�QP/áa
;�9H_e>k9HQ¥>kAd0:G8>k9<;§2.0^>�/87:9�Q.9H=�/84`2.=~032.Q¦>�J$9tm~A:;�9}9<C�a
wK_</89[2`>u>�J$9¦A[7:9<;�0:G1GvQ.9H=�/84`2�_eA`mxIKF$>�0^>�/8A`2�+! .F.I$a
I�A3=k96>�J.0^>�0,_eA`2.=k>k;�0:/�2`>|/�2`7:A3G87:9H=|0~=�FPfP=k9<>�����í
A:C�fK/�2.0^;�?�Q.9H=�/84`2ôIK0^;�03m~9<>k9<;�=!��� é������1é ���`L}h�J$9<;�9

�! é������1é ���x0^;�9�>�J.9nIP0^;�9[2`>�=ÕA:C ����/�2�>�J.9nÐ�Ñ�L©=�F._§J
>�J.0^>���� é������1é ����_<032K2$A:>u>�0^j:9�7^0:G�F$9�¬¡0:G1G~0^>u>�J$9
=�03mn9�>�/�m~9:+ �|J./1=g/1=g=�IN9H_</8wK9HQ�/�2×>�J.9®Ð6Ñ!f`?
ëx� ���¥æó¬�� �" gæó¬ é������1é ���®æó¬b¤�æ ¬$+ ] 23?ÈQ.9ea
=�/84`2d>�J.0^>ª0^;�9x_eA`2P=�/1=k>k9[2`>ªh|/8>�Jd>�J$9x_eA`2$wP4`F.;�0^>�/8A`2
� �#��æ ¬ é������1é ���dæ
¬b¤�/1=~032¥/1G1G89<430:G�Q.9H=�/84`2�+�Ñ�A:>k9
>�J.0^>n>�J.9�2�FPm�f�9<;,A:C�=oF._oJ¥/1G1G89<430:G�Q.9H=�/84`2.=x0^;�9t/�2
>�J$9)A:;oQ.9<;yA:C$� � 8 � �&%('�� ¤�+
] Ð6Ñ!/1=g=�?$2`>�0:_e>�/1_<0:G1G8?�0 Æ 0[?:9H=�/1032ô2$9<>qhzA:;�j

032.Q�J.9[2._e9ª_<032tf�9)_eA`mxIP/1G89HQ�/�2`>kAv06Ô�FP2._e>�/8A`2B>k;�9<9
��) �Õ¤�ðª+vÐÕF$9x>kA�>�J$9vmnA:;�0:G1/8�H0^>�/8A`2g=k>k9HIl/�2l_eA`m,a
IP/1G10^>�/8A`2�Lª>�J$9<;�9u9e{./1=k>�=�0Ç_<G�F.=k>k9<;+* ,-� /�2&ðª+
] C�>k9<;t_eA`mxIP/1G10^>�/8A`2�L�9H0:_oJ¡_<G�F.=�>k9<;+.î/�2®ð
/1=B0:=�a
=�/84`2$9HQ}0ªI�A:>k9[2`>�/10:G�/ � .,¤�AY7:9<;z>�J.9�=k9<>0.�A:CVm~9[m,a
f�9<;�7^0^;�/10:fPG89H=<+
��J$9l0:=�=�/84`2Km~9[2`>�>kA1*Ö=�0^>�/1=kwK9H=
/ � �#�|æÈ¬ é������1é ���ÕæÈ¬b¤#æÈ¬$+J#/8;�=k><L~hz9�0:=�=�FKm~9r>�J.0^>2* æ3�d+ MzA`2P=�/1Q.9<;
0dQP/á��9<;�9[2`>x_eA`2$wP4`F.;�0^>�/8A`2�A:C4* h�J$A3=k9tI�A:>k9[2`>�/10:G
7^0:G�F$9u/1=t2$A`2bac�<9<;�A.L�C�A:;B/�2.=k>�032P_e9:L�>�J$9u_eA`2$wK4`F$;�0Àa
>�/8A`2 � � � æ ¬ é �  æ � é �#5 æ ¬ é��������1é � � æ ¬b¤
=�F._§J&>�J.0^>6/ � �#�¥æÖ¬ é �" dæ � é � 5 æÖ¬ é������1é ���&æ
¬b¤07¡¬$+���Av9<7^0:G�F.0^>k9~032`?tQ.9H=�/84`2�_eA`2.=�/1=k>k9[2`>�h|/8>�J
� �#�Tæö¬ é������1é ���tæö¬b¤�LE7^0:G�F$9H=
�#�Tæ"¬$Ly+1+1+1L	���Tæç¬
0^;�9�9[23>k9<;�9HQ&/�2`>kA8*,+�s¡J$9[2 �! ¢æ ¬g/1=v9[23>k9<;�9HQ
/�2`>kA9*,L~>�J$9�I�A:>k9[2`>�/10:Gn7^0:G�F$98/ � �#��æ ¬ é �! æ
� é � 5 æ×¬ é������1é ���~æ�¬b¤�/1=6m,F.G8>�/1IKG1/89HQ�f�?�¬Tf�9H_<03F.=k9
>�J$9�_eA`2$wP4`F$;�0^>�/8A`2Ç/1=v/�2P_eA`2.=�/1=k>k9[2`>xh|/8>�J �  æ ¬$+
] =t>�J$9d;�9H=�F.G8><LÕ>�J$9gFPI�QK0^>k9HQ�I�A:>k9[23>�/10:Gª7À0:G�F$9r/1=
/ � �#�Tæç¬ é �" næ¯� é � 5 æç¬ é������1é ����æö¬b¤�æç¬$+���A
=�FPmvmn0^;�/8�<9:L#f�9<C�A:;�9x9[2`>k9<;�/�2$4�7À0:G�F$9H=
�" næç¬$LE>�J$9
I�A:>k9[23>�/10:Gz7^0:G�F$9:/ � ���væ"¬ é������1é ����æç¬b¤6/1=�¬$L�032.Q
0^Cp>k9<;}9[2`>k9<;�/�2$4!�! �æ ¬$L�>�J$9�INA:>k9[2`>�/10:G�7À0:G�F.9�CpA:;
9<7:9<;�?BA:>�J$9<;6_eA`2$wP4`F.;�0^>�/8A`2�/1=|¬$+0��9[2._e9:L�0^C�>k9<;�9[2ba
>k9<;�/�2$4K� � æ×¬$L�+1+1+1LH� � æ�¬$L�9<7:9<;�?�I�A:>k9[23>�/10:G�7^0:G�F$9
/�26/ � *�¤�f�9H_eA`mn9H=�¬$+
Ñ�9e{b><L®0:=�=�FPmn9×>�J.0^>;* æ � ï;<vLrh�J$9<;�9

< =æ >�032.Q?<
@A� æ >b+  $/�2._e9�0323?öI�A^a
>k9[2`>�/10:GB/ � < é �#� é������1é ���3¤r_<032çf�9¡Cp0:_e>kA:;�/8�<9HQ /�2`>kA
/ � < é � � é������1é � � ¤C/ � � � é������1é � � ¤�L¢hz9 _eA`2._<G�F.QP9�Cp;�A`m
>�J$960:f�A[7:96>�J.0^>O0^C�>k9<;O9[2`>k9<;�/�2$4
�#�|æÈ¬$L�+1+1+1L ����æÈ¬$L
9<7:9<;�?BI�A:>k9[23>�/10:GV7À0:G�F.9ª/�26/ � *�¤�f�9H_eA`m~9H=|¬$+
�|JP/1=V032.0:G8?$=�/1=#=�F$4:4:9H=k>�=#0�m~9<>�J$A$Q)>kA6Q.9<>k9H_e>E/1G1G89ea

430:G�Q.9H=�/84`2.=H+�s¡J$9[2}0�IP0^;�>�/1_HF.G10^;yQ.9H=�/84`2 � I�A3=�=�/1fPG8?
/1G1G89<430:Gp¤i/1=O9<7^0:G�F.0^>k9HQ�L.CpA:;O9H0:_oJB_<G�F.=�>k9<;D* >�J.0^>�J.0:=
f�9<9[2~0:=�=�/84`2.9HQ ëx� �&� � � �$¤k¤#;�9HG10^>�/87:9�>kA�0)Q.9H=�/84`2xIP0Àa
;�03mn9<>k9<;P�.Lz9[23>k9<;v>�J$9t7^0:G�F$9tA:C��l032PQ¥>�J$9B7^0:G�F$9
A:CE9H0:_oJ�Q.9H=�/84`2�IP0^;o03m~9<>k9<;�/�2 � � �$¤y/�2`>kA6*~+ ] Cp>k9<;
9[2`>k9<;�/�2$4.LP_oJ.9H_�jB/8CV>�J$9Õ=�FKm�A:C�I�A:>k9[23>�/10:G�7^0:G�F$9H=yA:C

Optimal Design with Design Networks        311



/ � *�¤K/1=V¬$+ ] =©=kAbA`2Õ0:=V0yI�A3=�/8>�/87:9�>k9H=k>VA$_<_HF$;�=<LÀ_eA`2ba
_<G�F.QP9x>�J.0^>~0:G1GOQ.9H=�/84`2.=�>�J.0^>~0^;�9T_eA`2.=�/1=k>k9[2`>,h|/8>�J
>�J./1=|_eA`2$wP4`F$;�0^>�/8A`2BA:C � � é � � �$¤k¤O0^;�9ª/1G1G89<430:G£+O�|J$9<;�9
h|/1G1G�f�9ª2$Ax2.9<9HQB>kAx9<7^0:G�F.0^>k9�032`?}A`2$9)A:C#>�J$9[mB+
� Úu����
��q��Úd�����@ÜÀ�q�V�
âk2T0:QPQP/8>�/8A`2T>kAx9H0^;�G8?BQ.9<>k9H_e>�/8A`2BA:C#/1G1G89<430:G�QP9H=�/84`2.=<L
hz9z=�9<9<j)>kA69<7À0:G�F.0^>k9yG89<430:G$Q.9H=�/84`2P=#mnA:;�9�9<�v_</89[23>�G8?
0:=�CpA3G1G8A[h|=<+6su9~0:=�=�FKm~9ª>�JP0^>�=kA`mn9�=�9HIP0^;�0^>kA:;�=6/�2
ð¡_eA`2.=�/1=k>OA:CVQP9H=�/84`2}IP0^;�03m~9<>k9<;o=iA`2PG8?:+��|J$96=k>k;oF._§a
>�F$;�9tA:CÕ032¥9e{.03mnIPG89�Ð6Ñ /1=v=�J$A[h�2�/�2 J#/84`F$;�9�«b+
âÊ>Õ/1=Õ_eA`237:9<;�>k9HQg/�23>kAB>�J.9 ) �×/�2 J#/84`F$;�9 � +�âk2�>�J$9
) �ÕL�>�J$;�9<9�=k9HIP0^;�0^>kA:;�= ) � � é � � . L ) � � é � � . 032.Q) � � é � � . _eA`2.=�/1=k>�A:C#Q.9H=�/84`2�IP0^;�03mn9<>k9<;�=OA`2.G8?:+

u_w

u_v

d_a

m_g

m_h

t_p

m_j

d_d

t_q
d_b

m_i

d_c

J#/84`F$;�9�«b°��|J$9)=k>k;§F._e>�F$;�9ÕA:CE0~Q.9H=�/84`2�2$9<>qhzA:;�j�+
5�=�/�2$4">�J.9H=k9�=k9HIP0^;o0^>kA:;�=�0:=�f�A`FP2PQP0^;�/89H=<Ldhz9

_eA`mxIP/1G89~>�J$9 ) ��ð�/�2`>kA�0B;�9HI.;�9H=k9[2`>�0^>�/8A`2�L#_<0:G1G89HQ
Ë:¼p¾[¼ Ì§¼£¶:Å�»½º�¿o¿�>�J.0^>�/1=�m~A:;�9u9e��9H_e>�/87:9¦C�A:;�Q.9H=�/84`2
_eA`mxIKF$>�0^>�/8A`2�+
�,¿
	iÅP¼�»½¼£¶:Åd���#ÓV9<>zå¢f�9�0)Q.9H=�/84`2n2$9<>qhzA:;�j,A[7:9<;O032
2$A`2.9[mnI.>@?�=k9<>�A:C�9H=�=�9[23>�/10:GK7À0^;�/10:fKG89H= è æÈí¥ï�ðTï
ñ�ï�ò�+ ]�
���������������������� CpA:;�å¥/1=�0~>�F.IPG89 �uæ
�cè�é"!Té$#�é$% ¤ ��è /1=�>�J$9 & �'������(����)� & ����� A:C*��+ !
/1=y0n=oF.fP=k9<>OA:C�>�J$9)I�A[hz9<;�=k9<> ë �,+ �cè ¤�A:C è =�FP_oJ
>�J.0^>)ï.-*/'0Çæ è +�´�0:_oJ�9HG89[mn9[23>�A:C ! /1=6_<0:G1G89HQ¢0

��)�1�������'� + # /1=|_eA`mxINA3=�9HQTA:C�>�J$9ªC�A3G1G8AYh|/�2$4.°

# æ )32 . é . � 7:� . é . � 9 !Té . =æ . � é
. @ . � =æ > é .�@ . � ��í .#�

´i0:_oJôFP2$A:;�QP9<;�9HQ�IP0:/8; 2 . é .�� 7ó/1=r_<0:G1G89HQ"0
���'4�(3�5(����3� f�9<>qhz9<9[2T>�J$9Õ>@hiAxQK/87b/1=�/8A`2P=y032.QB/1=�G10Àa
f�9HG89HQ,f`?ª>�J$9z/�2`>k9<;�=k9H_e>�/8A`2 . @D.��p+ ! 032.Q # 0^;�9O=kA
_eA`mxINA3=�9HQt>�J.0^> �cè�é"!Té$# ¤yC�A:;§mn=|0ªÔ�FP2._e>�/8A`2�>k;�9<9:+
% /1=}0g=k9<>}A:C 
��������������76�8��19��1�����:�5�����;� +¡âÊ>�=
9HG89[mn9[23>�=�mx0:IxA`2$9eac>kA^acA`2.9)>kA~9HG89[m~9[2`>�=OA:C ! =�FP_oJ
>�J.0^>�9H0:_oJ¦QK/87b/1=�/8A`2�Ô�FP2._e>�/8A`2g>k;�9<9BJ.0:=�>�J$9T_eA:;�;�9ea
=�I�A`2.QK/�2$4�QK/87b/1=�/8A`2�0:=�/8>�=�4:9[2.9<;�0^>�/�2$4v=�9<><+

m_j, d_b

d_a, d_dd_d, m_g, m_h

d_d, m_g

u_w, m_h

d_a, t_p, m_g

d_a, m_g

m_h

m_i, m_j, d_b

t_q, m_i, d_b

m_i, m_j, u_v

m_i, d_b

m_i, m_j

m_j, d_b, d_c

d_a, d_b, d_c

d_a, d_c, d_d

d_a, d_c

d_b, d_c

d_a, d_d, m_g

J#/84`F$;�9 � ° ] ÔkFP2P_e>�/8A`2t>k;�9<9,;�9HIP;�9H=k9[2`>�0^>�/8A`2�A:C�Q.9ea
=�/84`2�2$9<>qhzA:;�jB/�2 J#/84`F$;�9�«b+
] =}032�9e{.03mnIPG89:Ly_eA`2.=�/1Q.9<;}0rQP/87$/1=�/8A`2Ç>k;�9<9�CpA:;

>�J$9vÐ�Ñçå�/�2 J#/84`F$;�9}«b+B�|J$9x=�9<> è A:Cy7À0^;o/10:fPG89H=
/�2uå®/1=6>�J$9�4:9[2$9<;�0^>�/�2$4t=k9<><+)��J$9�=�9<>�A:CzQP/87$/1=�/8A`2.=
/1= ! æ )Àè � éoè  éoè 5 éoè�< . 0:=B=oJ$A[h�2&/�2 J#/84`F$;�9¢Ò.+
�|J.9x=k9<> # A:C�QP/87$/1=�/8A`2l=�9HIP0^;�0^>kA:;�=�/1=�0:G1=�A�=�J$AYh�2
/�2�>�J$9,wP4`F.;�9:+ªâÊ>Õ_<032uf�9�9H0:=�/1G8?�7:9<;�/8wK9HQ¢>�J.0^>Õ>�J$9
4:;�0:INJÕQ.9HIP/1_e>k9HQ�/1=�0 ) �Õ+[��J$9�=k9<>�A:CPQP/87b/1=�/8A`2 ) �|=V/1=
% æ ) å�ð�� é å�ð  é å�ð 5 é å�ð < . 0:=�=�J.A[h�2~/�2�J�/84`F.;�9�ØbL
h�J.9<;�9n>�J$9v4:9[2$9<;�0^>�/�2$4u=k9<>�A:C�QP/87b/1=�/8A`2 ) ��å�ð

@
/1=

QP/87$/1=�/8A`2 è
@
+

d_a, d_c

d_a, d_d, m_g, m_h, t_p, u_w

V3

d_b, d_c, m_i, m_j, t_q, u_v

d_a, d_b, d_c

d_a, d_c, d_d

d_b, d_c

V0

V1

d_a, d_d

V2

J#/84`F$;�9~Ò.°��|J$9nQP/87$/1=�/8A`2¢>k;�9<9xC�A:;ªQP9H=�/84`2d2$9<>@hiA:;�j
/�2PJ#/84`F$;�9Õ«b+�´�0:_oJ}Q.A`FPfPG89eacA[7^0:G�;�9HI.;�9H=k9[2`>�=z0�QP/87$/áa
=�/8A`2�+�´�0:_oJ�f�AH{B;�9HI.;�9H=�9[23>�=�0x=k9HIP0^;�0^>kA:;H+

 )2._e9uÐ�Ñ å"J.0:=Bf�9<9[2È_eA`mxIP/1G89HQ¡/�23>kA ) � ðªL
_eA`2.=�>k;oF._e>�/8A`2¢A:CO0tQP/87$/1=�/8A`2¢>k;�9<9=�®/1=)=k>k;�0:/84`J`>kCpA:;ka
hO0^;�Q�°��|J$9y=k9<>�A:C�QP/87b/1=�/8A`2 ) ��=E0^;�9yA3f.>�0:/�2$9HQ~Cp;�A`m
ðÇf�?�;�9[m~A[7$/�2$4Õ/8>�=�=k9HIK0^;�0^>kA:;�=E>�J.0^>i0^;�9�_eA`mnI�A3=k9HQ
A:C|QP9H=�/84`2¦IP0^;�03mn9<>k9<;�=�A`2.G8?:+�J.A:;n/�2.=�>�032._e9:Li0^Cp>k9<;
;�9[mnA[7$/�2$4�=k9HIP0^;o0^>kA:;�= ) � � é � � . L ) � � é � � . 032.Q

312          Y. Xiang



d_a, m_g

d_d, m_g
m_h

m_i, m_j, d_b

t_q, m_i, d_b

m_i, m_j, u_v

m_i, d_b

m_i, m_j

m_j, d_b, d_c

d_a, d_b, d_c

u_w, m_h

m_j, d_b

ST0

ST2

ST1

d_a, d_c, d_d

ST3

d_d, m_g, m_h

d_a, t_p, m_g

d_a, d_d, m_g

J#/84`F$;�9~Øb°�Ð6/87b/1=�/8A`2 ) ��=�CpA:;ÕQP/87$/1=�/8A`2t>k;�9<9�/�2�J#/84^a
F$;�9ÕÒ.+Oå�ð

@
_eA:;�;�9H=�I�A`2.QP=O>kAxQP/87$/1=�/8A`2 è

@
+

) � � é � � . Liðç/1=n=�IPG1/8>n/�2`>kAlQP/87$/1=�/8A`2 ) ��=~/�2!J#/84^a
F$;�96Øb+��|J$9�4:9[2.9<;�0^>�/�2$4~=k9<>�=zA:C�>�J$9H=k96QP/87$/1=�/8A`2 ) ��=
f�9H_eA`m~9�QP/87$/1=�/8A`2.=i/�2 ! +E�|J$9|;�9[m~AY7:9HQn=k9HIP0^;�0^>kA:;o=
f�9H_eA`m~9ªQK/87b/1=�/8A`2�=k9HIP0^;o0^>kA:;�=6/�2 # +�âÊ>�/1=�0x=�/�mnIPG89
mn0^>k>k9<;|>kAn=�J$A[h�>�J.0^> �cèEé"!Bé$# ¤�>�JbF.=�_eA`2.=k>k;§F._e>k9HQ
CpA:;omn=y06Ô�FP2._e>�/8A`2B>k;�9<9:+

� ÚuÛKÜ^�cÝV��� ��
��@� 
��3�c�V��ß��c���i�q��Úd�����@ÜÀ�q�V�
´�0:_§J¦QP/87$/1=�/8A`2 è

@
_eA`2`>�0:/�2.=~032¦2$A`2$9[mxI.>q?d=oF.fP=k9<>

í
@
A:C�Q.9H=�/84`2,IP0^;�03m~9<>k9<;o=<L3h�J$9<;�9�GV/�2.Q.9e{$9H=#>�J$9�QP/áa

7$/1=�/8A`2�+#�|J./1=V/1=V>k;oF$9z=�/�2._e9�>�J$9zQP/87$/1=�/8A`2ª_eA`2`>�0:/�2.=�0^>
G89H0:=k>y>�J$96Q.9H=�/84`2}IP0^;o03m~9<>k9<;�=z>�J.0^>OCpA:;om�>�J$9�=�9HIP0Àa
;�0^>kA:;�fN9<>@hi9<9[2�/8>�=k9HG8CE032.Qt032$A:>�J.9<;|QP/87$/1=�/8A`2�+J#/8;�=k><L�C�A:;i9H0:_oJv_eA`2$wP4`F$;o0^>�/8A`2nA:C�í @ L`h�J$9<>�J.9<;�/8>
/1=z0ªG89<430:G�IP0^;�>�/10:GNQ.9H=�/84`2}2$9<9HQP=�>kA,f�9|Q.9<>k9<;omx/�2$9HQ�L
>kA�>�J$9v9e{$>k9[2`>,0:G1G8AYhi9HQÇf`?l/�2.C�A:;omx0^>�/8A`2l0[7À0:/1G10:fKG89
/�2¦>�J$9�QP/87b/1=�/8A`2�+®�|JP/1=n_<032�f�9t0:_oJP/89<7:9HQ®0:=xA`F$>�a
G1/�2$9HQu/�2l $9H_e>�/8A`2 � + ] QP/87$/1=�/8A`2dmx0H?�A:;�mn0H?¢2$A:>
_eA`2`>�0:/�2dF$>�/1G1/8>q?�7^0^;�/10:fPG89H=<+�â@C�/8>ÕQ.Ab9H=)2$A:>Õ_eA`2`>�0:/�2
F$>�/1G1/8>@?v7^0^;�/10:fPG89H=<L.>�J.9[2x>�J.9�9<7^0:G�F.0^>�/8A`2th|/8>�J./�2v>�J$9
QP/87$/1=�/8A`2&/1=T_eA`mnIPG89<>k9:+ J.A:;B>�J$9¢QP/87$/1=�/8A`2®>k;�9<9u/�2J#/84`F$;�9)Ò.L è  |032.Q è 5 0^;�9ª=oF._oJBQK/87b/1=�/8A`2P=<+
âÊC©>�J$9)QP/87$/1=�/8A`2T_eA`2`>�0:/�2.=|F$>�/1G1/8>@?v7^0^;�/10:fPG89H=HL.>�J$9[2

CpA:;�9H0:_§J¢G89<430:G�_eA`2.wP4`F$;�0^>�/8A`2�A:C�í
@
LNC½F$;�>�J.9<;�9<7^0:Gáa

F.0^>�/8A`2�2.9<9HQP=¢>kA�f�9¦I�9<;�CpA:;omn9HQ�+ �|J./1=u_<032×f�9
Q.A`2$9}f`?uf�9HG1/89<C�I.;�A3IK0^430^>�/8A`2lh�/8>�J./�2u>�J$9}QP/87$/1=�/8A`2
) �)+��|J$9}9e{.IN9H_e>k9HQ¥F$>�/1G1/8>@?lCpA:;,9H0:_oJ¥F$>�/1G1/8>@?gC½FP2._§a

>�/8A`2}_<032n>�J.9[2xf�9�;�9<>k;o/89<7:9HQvCp;�A`m�>�J$9�_eA:;�;�9H=�I�A`2.Q$a
/�2$4dF$>�/1G1/8>@?r7^0^;�/10:fPG89:+r�|J$9T9e{.IN9H_e>k9HQ�F.>�/1G1/8>q?¦_eA`2ba
>k;�/1fKF.>�/8A`2�A:C�>�J$9~IP0^;�>�/10:GEQP9H=�/84`2¢_<032¢f�9�A3fP>�0:/�2$9HQ
f�?�_eA`m�fP/�2./�2$4}>�J$9,;�9H=�F.G8>�Cp;�A`m /�2.QP/87$/1QKF.0:G#F$>�/1G1/8>q?
7^0^;�/10:fPG89H=<+
±�A:;�96I.;�9H_</1=k9HG8?:L./�2vQP/87b/1=�/8A`2 è

@
Lb>�J$9�C�A3G1G8AYh|/�2$4~/1=

A3f.>�0:/�2$9HQ�C�A:;|9H0:_oJt_eA`2.wP4`F$;�0^>�/8A`27=��©A:C#í @ L
ê ò � =��£¤#æ >

�
8�� � > C 
 � ��F ¤ ëx��F � =��c¤k¤

h�J$9<;�9	�v/�2.Q.9e{$9H=|F$>�/1G1/8>@?t2$AbQP9H=y/�2 è
@
L F /1=|0~_eA`2ba

wP4`F$;o0^>�/8A`2&A:C)>�J$9uIP0^;�9[2`>�=TA:C�
 � L�032PQ08 � /1=T>�J$9
hz9H/84`J3>�0:=�=kA$_</10^>k9HQ�h|/8>�JK
 �^+
su9}9e{b>k9[2PQl>�J$9TQ.9<wN2P/8>�/8A`2dA:C ê ò � =��£¤6>kA�QP/87$/áa

=�/8A`2.=�h|/8>�J.A`F$>�F$>�/1G1/8>q?�7À0^;�/10:fKG89H=�032.Q�>kA6/1G1G89<430:GKIP0^;ka
>�/10:G#Q.9H=�/84`2 =���0:=�CpA3G1G8A[h|=<°|su9,=�9<> ê ò � =��£¤zæ ¬v/8C
QP/87$/1=�/8A`2 è

@
_eA`2`>�0:/�2.=|2$AnF$>�/1G1/8>@?v7^0^;�/10:fPG89H=<+�su9)=k9<>

ê ò � =��c¤�æ , 
�
�
#/8C�=��V/1=|/1G1G89<430:G£+
] C�>k9<;~>�J.9T0:f�AY7:9B9<7À0:G�F.0^>�/8A`2�A`2r9H0:_oJ¥_eA`2.wP4`Fba

;�0^>�/8A`2¦A:C�í
@
Li>�J$9BQ.9H=�/84`2r9<7^0:G�F.0^>�/8A`2¥h�/8>�J./�2r>�J$9

QP/87$/1=�/8A`2B/1=�_eA`mnIPG89<>k9:+


 �"ÛKÜ^Ü 
�ÝVÛ�� 
�Ü^Ü^�q��Ý&�@��Úl�����qÜ^�c�������3ÛPÛ
��A,_eA`m�fP/�2.96QP9H=�/84`2v9<7À0:G�F.0^>�/8A`2P=�0^>�/�2.QP/87$/1QKF.0:G�QP/áa
7$/1=�/8A`2.=|032PQtQ.9<>k9<;omx/�2$96>�J$9)A3I.>�/�mx0:G©Q.9H=�/84`2�L�m~9H=�a
=�0^4:9H=t0^;�9¢IK0:=�=k9HQÈf�9<>qhz9<9[2¡QP/87$/1=�/8A`2.=<L�0:G8A`2$4¥>�J$9
=k9HIP0^;o0^>kA:;�=)A:Cy>�J$9vQP/87b/1=�/8A`2u>k;�9<9 � 9:+²4.+1L4J#/84`F$;�9nÒ$¤�+
�|J$9Èm~9H=�=�0^4:9®IP0:=�=�/�2$4�/1=gA:;�43032./8�<9HQô/�2`>kA�>�J$;�9<9
;�A`FP2PQP=y0:G8A`2$4n>�J$9)QK/87b/1=�/8A`2t>k;�9<9:+��|J.9)=k?$2`>�0À{t032.Q
=k9[mx0323>�/1_<=|A:C#mn9H=�=�0^4:9H=|/�2B9H0:_oJB;�A`FP2.QBQP/á��9<;H+
�|J.9�0:G84:A:;�/8>�JPmn=d>�J.0^>dhz9ÇI.;�9H=k9[2`>lf�9HG8A[hó0^;�9

m~A3=�>�G8?x9e{$9H_HF$>k9HQ�f�?}/�2PQP/87b/1QNF.0:G�QP/87b/1=�/8A`2.=<L.9e{._e9HI.>
A`2$9�f`?B>�J$9,0^4:9[2`>���+�sÈ/8>�J$A`F$>6G8A3=�/�2$4}4:9[2$9<;�0:G1/8>q?:L
hz9�Q.9[2.A:>k9�>�J$9,QP/87$/1=�/8A`2�A3f$Ô�9H_e>�9e{$9H_HF$>�/�2$4T>�J$9,0:Gáa
4:A:;�/8>�JPmçf`? è �Y+i�|J$969e{b9H_HF.>�/8A`2�/1=�0:_e>�/87^0^>k9HQ�f`?B0
_<0:G1G89<;HL�QP9[2$A:>k9HQgf�? è�� L�h�J./1_oJg/1=�9H/8>�J$9<;�032r0:Q^Ôk0Àa
_e9[2`>zQP/87$/1=�/8A`2nA:C è � /�2 ��A:;O0^4:9[2`>���+E�|J$9|=k9HIK0^;�0Àa
>kA:;yf�9<>qhz9<9[2v_<0:G1G89<;yQP/87$/1=�/8A`2 è�� 032.Q è �|/1=zQP9[2$A:>k9HQ
0:=�� � +BâÊC è � J.0:=�0:QKQP/8>�/8A`2.0:Gz0:Q^Ô�0:_e9[2`>,QP/87b/1=�/8A`2.=<L
>�J$9<?t0^;�9�Q.9[2$A:>k9HQ�0:= è  éoè 5 é������1éoè�� 032PQB>�J$9H/8;6=k9HI$a
0^;�0^>kA:;�=th|/8>�J è �¢0^;�9uQ.9[2$A:>k9HQ¡0:=��  é � 5 é������1é � � L
;�9H=�I�9H_e>�/87:9HG8?:+
� � ���C�qÛK�b�3�q��Ý��¢�3�C�@�½�! � �V���:�`�#"z�E�3�c���
âk26>�J$9�wK;�=k>�;�A`FP2PQÕA:CPm~9H=�=�0^4:9iIP0:=�=�/�2$4.L^QP/87$/1=�/8A`2 è �
;�9H_e9H/87:9H=�067:9H_e>kA:;zm~9H=�=�0^4:9OCp;�A`m 9H0:_oJ~0:Q:Ô�0:_e9[2`>�QP/áa
7$/1=�/8A`2 è

@
+E´�G89[mn9[23>�=#A:C�>�J$9y7:9H_e>kA:;z0^;�9�/�2.Q.9e{$9HQ~f`?

Optimal Design with Design Networks        313



IP0^;�>�/10:G�Q.9H=�/84`2.=OAY7:9<; �
@
+���J$9�8b>�J}9HG89[mn9[23>yA:C�>�J$9

7:9H_e>kA:;HLP/�2PQ.9e{b9HQTf�?vIP0^;�>�/10:G�QP9H=�/84`2 ��� � L./1=zQP9[2$A:>k9HQ
0:=ªñ ê�è��@ +,��J$9~_eA:;�;�9H=�I�A`2.QP/�2.4T_eA`mxI�A`2$9[23>�=6CpA:;
>�J$9Õ7:9H_e>kA:;Õm~9H=�=�0^4:9Õ>�J.0^> è �Õ=k9[2.QP=O>kAxQK/87b/1=�/8A`2 è �
0^;�9 ���� � A[7:9<; � � ¤i032PQ�ñ ê,è �� LP;�9H=�IN9H_e>�/87:9HG8?:+
âÊC è

@
/1=z0�G89H0^C©A`2x>�J$96QP/87b/1=�/8A`2x>k;�9<9 � h�J.A3=k9|A`2.G8?

0:Q^Ôk0:_e9[2`>�QP/87$/1=�/8A`2t/1= è �Y¤�L�ñ ê,è �@ _eA:;�;�9H=�INA`2PQP=y>kA
>�J$9ªmx0À{$/�m,FPm�9e{.I�9H_e>k9HQ�F$>�/1G1/8>@?

ñ ê�è �@ æ0� � ���
	 ê ò � =��c¤
AY7:9<;�0:G1G3IP0^;�>�/10:G3Q.9H=�/84`2�=��3>�J.0^>V0^;�9�_eA`2.=�/1=k>k9[23>�h|/8>�J
��� � +� �>�J$9<;�h|/1=�9:LK/8>�=�/�2`>k9<;�I.;�9<>�0^>�/8A`2�f�9H_eA`m~9H=�_<G89H0^;
f�9HG8A[hª+
��J$9�CpA3G1G8A[h|/�2.4¦0:G84:A:;o/8>�JPmBL�h�J$9[2¥9e{$9H_HF$>k9HQ¡f�?

9H0:_§J®QK/87b/1=�/8A`2�L|I.;�A3IP0^430^>k9H=tF.>�/1G1/8>q?®_eA`2`>k;�/1fKF.>�/8A`2.=
A:CPIP0^;�>�/10:G�Q.9H=�/84`2.=�0^>�/�2.QP/87$/1QKF.0:G�QP/87b/1=�/8A`2.=�/�2`hO0^;�QP=
0:G8A`2$4�QK/87b/1=�/8A`2&>k;�9<9:+��|J$9¢7:9H_e>kA:;¢m~9H=�=�0^4:9u=k9[2`>
Cp;�A`m è

@
>kA è �y/1=iQ.9[2$A:>k9HQv0:=�ñ ê,è

@
032PQ~>�J.0^>�=k9[2`>

Cp;�A`m è ��>kA è � /1=�Q.9[2$A:>k9HQt0:=�ñ ê,è � +
� · Í3¶3ºo¼p»
��Ãî���oµE¶:·�·�¿�É[» �ª¼p¾[¼ Ì§¼£¶:Å��#»½¼�·á¼p»����'�zs¡J$9[2BQP/áa
7$/1=�/8A`2 è � /1=�_<0:G1G89HQ�f`? è � >kABMzA3G1G89H_e>�Ð6/87b/1=�/8A`2.5|>�/1Gáa
/8>@?:LN/8>|Q.Ab9H=y>�J$9ÕCpA3G1G8A[h�/�2$4.°
�^+�JPA:;|9H0:_oJ�0:Q^Ôk0:_e9[23>|QK/87b/1=�/8A`2 è @ L è ��_<0:G1G1=6MzA3Gáa
G89H_e>�Ð6/87$/1=�/8A`2.5�>�/1G1/8>q?n/�2 è

@
032.Qª;�9H_e9H/87:9H=Eñ ê,è

@
Cp;�A`m è

@
+

«b+�JPA:;�9H0:_§JtIP0^;�>�/10:GVQ.9H=�/84`2K=��bLNF.I�QP0^>k9
ê ò � =��b¤#æ ê ò � =��b¤�� > @rñ ê�è �@ é

h�J$9<;�9~ñ ê,è �@ /1=Õ/�2.Q.9e{$9HQ�f�?�IP0^;�>�/10:GEQ.9H=�/84`2
� � � 032.Q � � � /1=�_eA`2.=�/1=k>k9[23>�h|/8>�J =��$+

� +�âÊC è�� /1=�032ª0:Q^Ôk0:_e9[2`>�QP/87$/1=�/8A`2�L^CpA:;�9H0:_§J�IP0^;�>�/10:G
QP9H=�/84`2 ���� L è �Õ_eA`mnIKF.>k9H=

ñ ê�è �� æ0� � ����� ê ò � =��b¤
AY7:9<;�0:G1GvIK0^;�>�/10:GvQP9H=�/84`2 =���>�JP0^>g0^;�9È_eA`2ba
=�/1=k>k9[23>®h|/8>�J � �� L�G10:f�9HG1=�A`2$9�=oF._oJçIP0^;�>�/10:G
QP9H=�/84`2�>�JP0^>�;�9H0:_§J$9H=�>�J$9l7^0:G�F$9rñ ê�è �� f�?= ���� � f.;�9H0^j$/�2$4g>�/89H=}0^;ofP/8>k;�0^;�/1G8?N¤�L�032.QÇ=�9[2.QP=
ñ ê�è�� >kA è�� +

Ñ�A:>k9È>�J.0^> ê ò � = � ¤dmn0[?�f�9Ç9$#$F.0:Gx>kA , 
�
�
Ê+
s¡J$9[2 , 
�
 
�IP0^;�>�/1_</1IP0^>k9H=n/�2¦032¦0:QKQP/8>�/8A`2�L�hz9T;�9ea#$F./8;�9~>�J.0^>�>�J$9x=�FKm /1= , 
�
 
Ê+xs¡J$9[2 , 
�
 
OIP0^;�>�/1_§a
/1IP0^>k9H=Õ/�2�0�� � �uA3IN9<;o0^>�/8A`2�L�hi9�;�9$#$F./8;�9�>�J.0^>6>�J$9
;�9H=oF.G8>�/1= , 
�
�
�/8C�032.QnA`2.G8?~/8C�0:G1GKA3I�9<;�0323>�=i0^;�9 , 
�
�
Ê+

� Úd�qÜY�:�`� "i�E�3�@��Ý�� ���3� ��
 ��ÚuÛKÜ^�cÝV�

âk2Õ>�J$9O=k9H_eA`2.Q�;�A`FP2PQ)A:CKm~9H=�=�0^4:9zIK0:=�=�/�2$4.L:QP/87$/1=�/8A`2
è �6;�9H_e9H/87:9H=�C�;�A`möQP/87$/1=�/8A`2 è�� 0vIP0^;�>�/10:GVQP9H=�/84`2 � ��
>�J.0^>�/1=©_eA`2.=�/1=k>k9[2`>©h|/8>�JÕ>�J$9�A3I.>�/�mx0:G:Q.9H=�/84`2�+EMzA`m,a
fP/�2P/�2$4}/8>Õh�/8>�J�>�J$9~Q.9H=�/84`2�9<7^0:G�F.0^>�/8A`2dI�9<;�CpA:;om~9HQ
9H0^;�G1/89<;�h|/8>�J./�2t>�J$9�QK/87b/1=�/8A`2�L è �)/1Q.9[2`>�/8wP9H=|>�J.9)A3I$a
>�/�mx0:GKIP0^;�>�/10:G�Q.9H=�/84`2xh|/8>�J./�2x>�J$9�QP/87b/1=�/8A`2�+Eâ@>i>�J$9[2
=k9[2PQP=y>�J$9�A3I.>�/�mn0:G�IP0^;�>�/10:GVQP9H=�/84`2t;�9HG10^>�/87:9�>kAv>�J$9
=k9HIK0^;�0^>kA:;�A:C|9H0:_oJr0:Q^Ôk0:_e9[23>,QP/87$/1=�/8A`2g>kA�>�J$9}_eA:;ka
;�9H=�INA`2PQP/�2$4 è

@
+ ] =ªm~9H=�=�0^4:9xIP0:=�=�/�2$4tI.;�A:4:;�9H=�=k9H=<L

9H0:_§J¦QP/87b/1=�/8A`2¦/1Q.9[23>�/8wK9H=�>�J.9}A3IP>�/�mn0:GzIP0^;�>�/10:GOQ.9ea
=�/84`2®h|/8>�JP/�2�>�J$9uQP/87$/1=�/8A`2�+×�|JP/1=v/1=B0:_§J./89<7:9HQ�f�?
>�J$9ÕCpA3G1G8A[h�/�2$4v0:G84:A:;�/8>�JKmB+
� · Í3¶3ºo¼p»
��Ã « �
�ª¼ Ì§»½º§¼½¹ � »q¿�!�Á�»½¼pÃ~¸^· �ª¼p¾[¼ Ì§¼£¶:Å��,¿HÂ
Ìe¼8Í3Å��'�}s¡J$9[2 QP/87$/1=�/8A`2 è ��/1=¡_<0:G1G89HQ f`? è � >kA
Ð6/1=k>k;�/1fNF$>k9  6I.>�/�mx0:G1Ð�/87$/1=�/8A`2.Ð�9H=�/84`2�Lt/8>¦QPA�9H=g>�J$9
CpA3G1G8A[h|/�2.4.°

�^+�âÊC è � /1=)032d0:Q^Ô�0:_e9[2`>ªQP/87$/1=�/8A`2�L è ��;�9H_e9H/87:9H=�0
IK0^;�>�/10:GOQ.9H=�/84`2 ���� AY7:9<; � � Cp;�A`m è � +¢�|J$9[2�L
03mnA`2$4|IP0^;�>�/10:G�Q.9H=�/84`2.=©AY7:9<;#í ��>�J.0^>�0^;�9z_eA`2ba
=�/1=k>k9[23>vh|/8>�J ���� Ly/8>x/1QP9[23>�/8wP9H=v>�J$9tA`2.9th|/8>�J
>�J.9�J./84`J$9H=k> ê ò 7À0:G�F$9 � fP;�9H0^jb/�2.4u>�/89H=n0^;�fP/áa
>k;o0^;�/1G8?K¤O032.QBG10:f�9HG©/8>|0:=�= �� +

«b+� 6>�J$9<;�h|/1=k9:Lz03m~A`2$4u0:G1GyIP0^;�>�/10:GyQ.9H=�/84`2.=,AY7:9<;
í �^Ly/8>}/1Q.9[23>�/8wK9H=x>�J$9�A`2$9�h�/8>�J¥>�J$9�JP/84`J$9H=k>
ê òÇ7^0:G�F$9 � f.;�9H0^j$/�2$46>�/89H=�0^;�fP/8>k;�0^;o/1G8?K¤©032.Q,G10Àa
f�9HG�/8>|0:=�= �� +

� +�JPA:;�9H0:_oJx0:Q^Ô�0:_e9[2`>�QP/87$/1=�/8A`2 è @ L`_<0:G1GKÐ�/1=�>k;�/1fKFba
>k9  ÕI.>�/�mn0:G1Ð6/87$/1=�/8A`2.Ð�9H=�/84`2 /�2 è

@
032.Qô=k9[2.Q

>�J.9OIK0^;�>�/10:G$Q.9H=�/84`2 � � � >�J.0^>E/1=E_eA`2.=�/1=k>k9[2`>Eh|/8>�J= �� >kA è @ +
" � ���	�cÛK�b�3�q��Ý�� ���3� ��
 ��ÚdÛKÜ^�cÝV�

âk2g>�J$9tG10:=k>~;�A`FP2PQgA:CÕm~9H=�=�0^4:9tIP0:=�=�/�2.4.LiQP/87$/1=�/8A`2
è �x;�9H_e9H/87:9H=~>�J$9TA3I.>�/�mn0:GOIP0^;�>�/10:GzQP9H=�/84`2rA[7:9<;xí

@
Cp;�A`m 9H0:_oJ×0:Q:Ô�0:_e9[2`>dQP/87$/1=�/8A`2 è

@
+ âÊ>u_eA`m�fP/�2$9H=

>�J$9[m¯h|/8>�Jg/8>�=�A[h�2gA3I.>�/�mx0:G�IP0^;�>�/10:GOQ.9H=�/84`2dAY7:9<;
í ��032.Qu=k9[2.QK=�>�J.9�;�9H=�F.G8>Õ>kABQP/87$/1=�/8A`2 è�� + ] >Õ>�J$9
9[2.QtA:C�>�J./1=|;�A`FP2.Q©Lb>�J.9)A3I.>�/�mn0:GVQ.9H=�/84`2TAY7:9<;�í /1=
A3f.>�0:/�2.9HQ�+
� · Í3¶3ºo¼p»
��Ã � �§µE¶^·p·1¿�ÉH»#!�Á�»½¼pÃ~¸^· �,¿eÌ§¼1Í:Å�����s¡J$9[2}QP/áa
7$/1=�/8A`2 è �n/1=�_<0:G1G89HQgf�? è � >kAuMzA3G1G89H_e>  6I.>�/�mx0:G1Ð�9ea
=�/84`2�LP/8>|Q.Ab9H=y>�J$9)CpA3G1G8A[h|/�2.4.°

314          Y. Xiang



�^+�JPA:;�9H0:_oJ�0:Q^Ôk0:_e9[23>|QK/87b/1=�/8A`2 è @ L è �6_<0:G1G1=6MzA3Gáa
G89H_e>  ÕI.>�/�mn0:G1Ð�9H=�/84`2�/�2 è

@
032PQ�;�9H_e9H/87:9H= = ��

Cp;�A`m è
@
+

«b+OMOA`m�fK/�2$9�= �� h|/8>�J�0:G1G/= �� ;�9H_e9H/87:9HQu032.Q�=k9[2.Q
;�9H=�F.G8>y>kA è � +

�|J.9�CpA3G1G8A[h|/�2$4�0:G84:A:;o/8>�JPm�0:_e>�/87À0^>k9H=t>�J$9¢>�J$;�9<9
;�A`FP2PQP=ªA:C6m~9H=�=�0^4:9TIK0:=�=�/�2$4u/�2r>�F$;o2r032.Q¦/1=,9e{$9ea
_HF$>k9HQtf�?T>�J$9)0^4:9[2`> ��+
� · Í3¶:º§¼p»
��Ã Ò ��!�Á�»½¼�Ã~¸^· �,¿§Ìe¼8Í3Å�� � ��¼p¾[¼ Ì§¼£¶:Å��Kº�¿o¿ ���

�����
	��
	��������
�
�
�
���
��������� �"!#�
���$�%�"�
�
&'�

()��*+�,�
�-*.�,�/�
	��$�"01�
�
�
���
���#2��"�
�
�3�4&5�
�6� � �

7
��*+�,�
�801�
�9���"�
!�:
�"	%;=<#�"�
>?� �/0=�/�)�
���
���#01	����
@��5�
�A���#�
B ��*+�,�
�-*.�,�/�
	��$��;=<#�"�
>?�,�
01	����
@,�A�/��� � �

C)��DFE�	��A� �HG �#�
��E�	���I)�"	��J	J�/��	1KL�"��>M�3���#	J���/@,�ANO�%�P	J��QR�

 bA`FK2.QK2$9H=�=tA:CP 6I.>�/�mn0:G1Ð�9H=�/84`2 Æ ?$Ð6/87b/1=�/8A`2.�V;�9<9
/1=y9H=k>�0:fKG1/1=�J$9HQ�f�9HG8AYh)+�¨�;�A3I�A3=�/8>�/8A`2�«~0:=�=k9<;�>�=�>�J.0^>=�I.;�AbQKFP_e9HQl/�2g>�J$9T0:G84:A:;�/8>�JPm /1=,0�G89<430:GyQP9H=�/84`2�+ Õ2.G8?}0~I.;�AbA:C�=kj:9<>�_§Jt/1=y43/87:9[2�QKF$96>kAx=�IK0:_e9)G1/�mn/8><+
Syº�¶oÁ$¶^Ì§¼p»½¼p¶:Å¡«����|J$9vQ.9H=�/84`2 =¡I.;�A$QKF._e9HQdf�?� 6I$a
>�/�mn0:G1Ð�9H=�/84`2 Æ ?$Ð6/87b/1=�/8A`2.�V;�9<9�/1=�G89<430:G£+
¨�;�A�A:CN=kj:9<>�_oJ�°=T6/89<hr>�J.9OQK/87b/1=�/8A`2�>k;�9<9O0:=#;�AbA:>k9HQ

0^> è-U 032.Q¢F.=k9,/�2.QKF._e>�/8A`2�A`2�/8>�=ÕQ.9HI.>�J��WV�XV+Õ�|J$9
fP0:=k9,_<0:=k9~/1=��WV�X�æ�¬$+��|J.9<;�9�/1=�0T=�/�2$43G89,QP/87$/1=�/8A`2
032.Qr>�J$9tI.;�A3INA3=�/8>�/8A`2g_<032¦f�9T9H0:=�/1G8?¦=�J$AYh�2�+ ] =�a
=�FPmn96>�J$9ªI.;�A3I�A3=�/8>�/8A`2BC�A:;��8VJXZY � 032.Qt_eA`2.=�/1Q.9<;�WV�XBæ0���u�^+#Ó©9<>�>�J$9|;�A�A:>iQP/87b/1=�/8A`2nf�9 è � 032PQn/8>�=
0:Q^Ôk0:_e9[23>6QP/87$/1=�/8A`2.=�fN9 è

@
� GEæ�� é������1é [ ¤�+��|J$9�=�F.f$a

>k;�9<9Õ;�AbA:>k9HQB0^>y9H0:_oJ è
@
J.0:=y0,Q.9HI.>�JZY �¢+ Æ ?}0:=�a

=�FPmxI.>�/8A`2�LV/8C�MzA3G1G89H_e>�Ð6/87$/1=�/8A`2.5�>�/1G1/8>q?¥/1=ª_<0:G1G89HQgA`2
9H0:_oJ è

@
f�?t>�J$9�0^4:9[2`><L�CpA3G1G8A[hz9HQuf`?�0}_<0:G1G�A:C�Ð6/1=�a

>k;�/1fKF.>k9  6I.>�/�mn0:G1Ð6/87$/1=�/8A`2.Ð�9H=�/84`2�A`2 è
@
LnC�A3G1G8AYhi9HQ

f�?g0�_<0:G1GOA:C6MzA3G1G89H_e>  6IP>�/�mn0:G1Ð�9H=�/84`2¥A`2 è @ L�>�J$9[2
>�J$9 � IP0^;�>�/10:Gp¤zQ.9H=�/84`2};�9<>�F$;§2$9HQvf�? è

@
/1=yG89<430:G©;�9HG10Àa

>�/87:9ª>kAx>�J$9)=�F.f.>k;�9<9:+
�|J.9�0:_e>�F.0:G39e{$9H_HF$>�/8A`2�QP/á��9<;�=©Cp;�A`m�>�J$9�0:f�A[7:9O0:=

CpA3G1G8A[h|=<°yMzA3G1G89H_e>�Ð6/87b/1=�/8A`2.5|>�/1G1/8>@?�/1=|_<0:G1G89HQtA`2T9H0:_§J
è
@
f`? è �ih�J./1_§J);�9H_e9H/87:9H=iñ ê,è

@
C�;�A`m è

@
+�J.A:;E9H0:_§J

9HG89[m~9[2`>�ñ ê�è �@ /�2�ñ ê,è @ LK/8>�/1= , 
�
 
�/8C�>�J$9<;�9Õ9e{ba
/1=k>�=62$AxG89<430:G � IP0^;�>�/10:Gp¤yQ.9H=�/84`2�_eA`2.=�/1=k>k9[2`>�h�/8>�J ��� �
/�2l>�J$9}=oF.f.>k;�9<9};�AbA:>k9HQr0^> è

@
+ Æ ?g2bF.G1G�0:QPQK/8>�/8A`2�L

032`?¢IK0^;�>�/10:G�Q.9H=�/84`2 =��t/�2 è �~_eA`2.=�/1=k>k9[2`>ªh�/8>�J � � �
h|/1G1G�f�9�9<7À0:G�F.0^>k9HQ�>kA ê ò � = �b¤#æ , 
�
 
Ê+ �|9[2._e9:L =��
_<032P2$A:>Of�9|=k9HG89H_e>k9HQB0:= = �� f`? è �|QNF$;�/�2$4ªÐ6/1=k>k;o/1fKFba
>k9  6I.>�/�mx0:G1Ð6/87b/1=�/8A`2PÐ�9H=�/84`2v032PQx_<032P2$A:>zf�9|IP0^;�>�A:C

>�J$9|QP9H=�/84`2,;�9<>�F$;§2$9HQ~>�J$;�A`F.4`JxMzA3G1G89H_e>  6I.>�/�mx0:G1Ð�9ea
=�/84`2�+�1 9[2.QBA:C#=kj:9<>�_oJ 2
�|J.9<A:;�9[m � =�J$AYh|=#>�J.0^>	=�/1=�032�A3I.>�/�mn0:G.QP9H=�/84`2�+

� �$¿�¶:º�¿HÃ � �v�|J$9ÈQ.9H=�/84`2 =
I.;�A$QKF._e9HQ�f`?  6I$a
>�/�mn0:G1Ð�9H=�/84`2 Æ ?$Ð6/87b/1=�/8A`2.�V;�9<9�/1=|A3I.>�/�mn0:G£+
¨�;�A�A:C�=kj:9<>�_§J�°#â@>�=�F.�x_e9H=E>kAª=�J.A[h¥>�J.0^> ê ò � = �� ¤

A3f.>�0:/�2$9HQ¡f�?�>�J$9¢;�AbA:>TQP/87b/1=�/8A`2 è ��/�2È=k>k9HI¡«lA:C
Ð6/1=k>k;�/1fKF.>k9  6I.>�/�mn0:G1Ð6/87$/1=�/8A`2.Ð�9H=�/84`2�/1=�>�J$9gmn0À{./áa
m,FPm 9e{.IN9H_e>k9HQ F$>�/1G1/8>q?"AY7:9<;&0:G1G�G89<430:G�Q.9H=�/84`2.=<+ Õ2._e9�>�J./1=T/1=x9H=�>�0:fPG1/1=�J$9HQ�L�/8>vCpA3G1G8A[h|=T>�JP0^>}0rQ.9ea
=�/84`2�L�>�J.0^>60^>k>�0:/�2.=6>�J./1=Õmx0À{$/�m,FPmô9e{.I�9H_e>k9HQuF$>�/1Gáa
/8>q?ô032.Qô/1=¦;�9H=k>k;o/1_e>k9HQ">kA�9H0:_oJ"QP/87$/1=�/8A`2�Lt/1=!= ��
G10:f�9HG89HQ�f�?�>�J$9Ç_eA:;�;�9H=�INA`2PQP/�2$4�QP/87$/1=�/8A`2�QNF$;�/�2$4
Ð6/1=k>k;�/1fKF.>k9  6I.>�/�mn0:G1Ð6/87$/1=�/8A`2.Ð�9H=�/84`2�+ MzA3G1G89H_e>  ÕI$a
>�/�mn0:G1Ð�9H=�/84`2�=�/�mnIKG8? 0:=�=k9[m�fPG89H=l>�J$9[m >kA:4:9<>�J$9<;[+
�|J$9uf�A$Q.?¥A:C�>�J.9¢IP;�A�A:C,F.=k9H=B/�2.QNF._e>�/8A`2&h|/8>�JÈ0
=k>k;oFP_e>�F$;�9¢=�/�mn/1G10^;T>kA¦>�J$9uI.;�AbA:C)0:f�A[7:9:+E1 9[2PQ®A:C
=kj:9<>�_§J 2
�]\ � ����� �qÛ-^��½�! 

Ð�9[2$A:>k9}>�J$9n>kA:>�0:Gy2�FKm�f�9<;ÕA:CyQ.9H=�/84`2gIP0^;�03mn9<>k9<;�=
f�? � í ��032.Q®>�J$9umn0À{./�m�FKm 2�FKm�f�9<;vA:C)INA3=�=�/1fPG89
7^0:G�F$9H=�A:C�0�Q.9H=�/84`2lIP0^;o03m~9<>k9<;�f�? � + ] _e9[23>k;o0:Gáa
/8�<9HQÈA3I.>�/�mx0:G�Q.9H=�/84`2Ç>�JP0^>}9<7^0:G�F.0^>k9H=t0:G1G6Q.9H=�/84`2.=
9e{PJ.03F.=k>�/87:9HG8?�J.0:=�>�J$9)_eA`mnIPG89e{./8>q?B� ��� � ��� ¤�+J.A:;  6I.>�/�mx0:G1Ð�9H=�/84`2 Æ ?bÐ6/87$/1=�/8A`2.��;�9<9:LÇG89<>�>�J$9
2bFPm�fN9<;�A:C©QP/87b/1=�/8A`2.=if�9O� ! � L�>�J$9Õmn0À{./�m,FPm×2bFPm,a
f�9<;yA:C�QP9H=�/84`2BIP0^;�03mn9<>k9<;�=�I�9<;�QP/87$/1=�/8A`2Bf�9�_3L�032.Q
>�J$9)mn0À{./�m,FPm�_<0^;�QP/�2.0:G1/8>@?}A:C�QP/87$/1=�/8A`2T=k9HIP0^;�0^>kA:;o=
f�9a`�+vÐÕF$;�/�2$4¢MzA3G1G89H_e>�Ð6/87b/1=�/8A`2P5|>�/1G1/8>@?:Li9H0:_§JlQP/87$/áa
=�/8A`2,9<7^0:G�F.0^>k9H=�� ���]b ¤VIP0^;�>�/10:GKQ.9H=�/84`2.=E032.Q~=�9[2.QP=E0
m~9H=�=�0^4:9ªA:C�=�/8�<9 � ���]c ¤z>kA}>�J$9�_<0:G1G89<;[+���9[2._e9:L�>�J$9
_eA`mnIKG89e{$/8>@?�A:C� 6I.>�/�mn0:G1Ð�9H=�/84`2 Æ ?$Ð6/87b/1=�/8A`2.�V;�9<9x/1=
� � � ! � �]b � � � ! � 5È�À¤ �]c ¤ � Ñ�A:;omx0:G1G8?:L1`T/1=�m�FP_oJ
=�mx0:G1G89<;�>�J.032d_�032.Q">�J$9�_eA`mxIPG89e{./8>q?"f�9H_eA`m~9H=
� � � ! � �eb ¤�+ sÈJ$9[2f_¡/1=¦F.IPI�9<;kaqf�A`FP2.QP9HQ�L  6I$a
>�/�mn0:G1Ð�9H=�/84`2 Æ ?$Ð6/87b/1=�/8A`2.�V;�9<9�/1=|9<�x_</89[23><+

�©� �B����ÛP�hg�Û � 
��:ÛK�ji �©�3à
âk2¦0:QPQP/8>�/8A`2¦>kAdI.;�9<7b/8A`F.=nhiA:;�jr;�9<7$/89<hi9HQÇ/�2� b9H_§a
>�/8A`2g�^LNhz9�QK/1=�_HF.=�=|;�9HG10^>�/8A`2.=�A:CE>�J./1=|_eA`2`>k;�/1fKF.>�/8A`2
>kAnA:>�J$9<;�;�9HG10^>k9HQthzA:;�jTf�9HG8A[h)°
âk2¥>�J$9�G1/8>k9<;�0^>�F$;�9�A`2¥4:;�0:INJ./1_<0:G�mnAbQP9HG1=<Lz0l;�9ea

G10^>k9HQ hiA:;�j�/1=�=k>k;�A`2$4dÔkFP2P_e>�/8A`2¡>k;�9<9 ��) 9[2.=k9[2�9<>
0:G£+1Ly�H�:�ÀÒ$¤�h�J./1_oJu0:QKQ.;�9H=�=k9H=ª>�J$9x/1=�=oF$9nA:Cy=k9$#$F$9[2ba
>�/10:GyQ.9H_</1=�/8A`2¥mx0^jb/�2.4.+ ] =~/�2.QK/1_<0^>k9HQ¥f`?r¨�0^;�9HQP/1=

Optimal Design with Design Networks        315



9<>t0:G£+ � ¨#0^;�9HQP/1=B9<>t0:G£+1L)«^¬:¬3­�¤�L)I�A3/�23>�aqfK0:=k9HQ¡Q.9ea
=�/84`2T_eA:;�;�9H=�I�A`2.QP=i>kAn=k9$#$F$9[23>�/10:G�QP9H_</1=�/8A`2tmn0^j$/�2$4.+
âk2.=k>k9H0:Q�L�>�J$9dA3IP>�/�mn0:GÕQ.9H=�/84`2�0:QPQ.;�9H=�=�9HQ¡/�2È>�J./1=
_eA`2`>k;�/1fKF$>�/8A`2�>�0^j:9H=E>�J.9z0:IPIP;�A30:_oJ�A:CN=�9<>�aqfP0:=k9HQ,Q.9ea
=�/84`2�LKh�J./1_§Jt/�2`7:A3G87:9H=Õ=�/�m,F.G8>�032$9<A`F.=|9<7À0:G�FP0^>�/8A`2�A:C
0ªm,F._§J~G10^;�4:962�FPm�f�9<;EA:C�Q.9H=�/84`2xIP0^;�03m~9<>k9<;o=E>�J.032
h�JP0^>v/1=T_eA`2.=�/1Q.9<;�9HQ®/�2®0l>@?bIK/1_<0:G�=�9$#bF$9[2`>�/10:G6Q.9ea
_</1=�/8A`2gI.;�A3fKG89[mB+v��J$9x/1=�=�F.9nA:C�Q.9H=�/84`2l_eA`2.=k>k;�0:/�2`>
7$/8A3G10^>�/8A`2t/1=�0:G1=�AnQ.9H0:G8>�h|/8>�JT/�2}>�J./1=|_eA`23>k;�/1fNF$>�/8A`2�+
] 2$A:>�J$9<;z;�9HG10^>k9HQThzA:;�jn/1=y2$9H=k>k9HQ�Ô�FP2._e>�/8A`2x>k;�9<9H=

�£³ Ôk0^9<;oF.Gá�#LP�H�:��<`¤�L`h�J$9<;�9O0 ) �¦/1=E2$9H=k>k9HQ~/�2�06_<G�F.=�a
>k9<;�A:CK06J./84`J$9<;#G89<7:9HG ) �d>kA�;�9HQKF._e9O=�IP0:_e9O_eA`mnIKG89e{�a
/8>@?r032.Qr>kAd0:G1G8AYh m~A:;�9v9<�x_</89[2`>xf�9HG1/89<C�IP;�A3IP0^430Àa
>�/8A`2�+���J$9ÕQP/87b/1=�/8A`2}>k;�9<9:LPI.;�A3I�A3=k9HQT/�2v>�J./1=y_eA`2`>k;�/áa
fKF.>�/8A`2�Lb/1=O0:G1=kA~0,2$9H=k>k9HQ ) �&=k>k;oFP_e>�F$;�9:+E�|J$96_eA`m,a
IKF.>�0^>�/8A`2�_eA`2.QNF._e>k9HQ�h�/8>�J./�2t0vQP/87b/1=�/8A`2�L�J.A[hz9<7:9<;HL
4:Ab9H=�f�9<?:A`2.Q�I.;�A3fP0:fK/1G1/1=k>�/1_ª;�9H0:=kA`2./�2$4.+yâÊ>|;�9H0:=�A`2.=
0:f�A`F$>#Q.9H=�/84`2,Q.9H_</1=�/8A`2.=<L3_eA`2.=k>k;o0:/�23>�=�032PQ,F.>�/1G1/8>�/89H=<L
032.QB/1=�Q.9H_</1=�/8A`2bac>�J.9<A:;�9<>�/1_�/�2�2.0^>�F$;�9:+
âk2�>�J$9&G1/8>k9<;o0^>�F$;�9ÈA`2�_eA`2.=k>k;�0:/�2`>¥=�0^>�/1=kC£0:_e>�/8A`2

I.;�A3fPG89[m � M| $¨y¤�L^_eA`2.=k>k;�0:/�2`>#4:;�0:IKJ.=�0^;�9O_eA`237:9<;�>k9HQ
>kA ) ��=�>kAª=kA3G87:9�M� $¨i= � Ð�9H_oJ`>k9<;i032.Q~¨�9H0^;�G£L��H�:�:��¤�+
�|J.9�_HF.;�;�9[2`>È_eA`2`>k;�/1fKF.>�/8A`2 9H=�=k9[2`>�/10:G1G8? 9e{$>k9[2.QP=
>�J.0^>t0:IKI.;�A30:_oJ¡>kA�_eA`2.=k>k;�0:/�2`>tA3I.>�/�mx/8�H0^>�/8A`2¡032.Q
h|/8>�Jt0~Q.9H_</1=�/8A`2bac>�J$9<A:;�9<>�/1_ªA3f$Ô�9H_e>�/87:9�C£FP2P_e>�/8A`2�+

�KÙ � �V�i�"�q�iÜÀ�q�V�

su9y;�9<w�2$9HQª>�J.9OQP9<wN2./8>�/8A`2�CpA:;#QP9H=�/84`2~2$9<>qhzA:;�j$=#;�9ea
430^;�QK/�2$4�G89<430:G.0^;�_<=#032.Q�9H=�=k9[2`>�/10:G1/8>q?:+i�|J$9z2.9<h¦QP9<C a
/�2./8>�/8A`2x/�mnI.;�A[7:9H=�9e{.I.;�9H=�=�/87:9[2$9H=�=i032.Q~4`F./1QP032P_e9|>kA
mnAbQ.9HG�_eA`2.=k>k;oF._e>�/8A`2¦032PQl7:9<;�/8wN_<0^>�/8A`2�+dsu9B_eA`m,a
IP/1G89HQ¢0TQ.9H=�/84`2u2.9<>qhzA:;�j�/�2`>kAt0TQP/87$/1=�/8A`2�>k;�9<9~032.Q
I.;�9H=k9[23>k9HQ®0:G84:A:;�/8>�JPmx=n>�J.0^>T_eA`m�fP/�2$9�I.;�A3fP0:fP/1G1/1=�a
>�/1_^L$_eA`2.=k>k;�0:/�2`>�aqfP0:=k9HQT032.QvQ.9H_</1=�/8A`2bac>�J.9<A:;�9<>�/1_6;�9H0Àa
=kA`2P/�2$4ÕC�A:;iA3I.>�/�mn0:G.QP9H=�/84`2n/�2,>�J.9|_eA`mnIP/1G89HQx=k>k;oF._§a
>�F$;�9:+&�|JP/1=~;�9H=�F.G8>}2$A:>xA`2.G8?¥I.;�A[7$/1Q.9H=x0g_eA`mnIKFba
>�0^>�/8A`2.0:G�m~9H_§J.032./1=�m�C�A:;�=�/�2$43G89eaq0^4:9[23>OA3I.>�/�mx0:G.Q.9ea
=�/84`2�LVfKF$>Õ0:G1=kAtwNG1G1=)/�2u0T430:Id/�2¢A3IP>�/�mn0:GE_eA3G1G10:f�A^a
;�0^>�/87:9�Q.9H=�/84`2�+
��J$9"I.;�9H=k9[2`>k9HQ 0:G84:A:;�/8>�JPm =�F./8>k9ö=kA3G87:9H=�>�J$9

I.;�A3fPG89[m"A:C�Q.9H_</1=�/8A`2bac>�J$9<A:;�9<>�/1_�A3I.>�/�mx0:GVQ.9H=�/84`2�/�2
>�J$96_eA`2`>k9e{b>OA:CV_<0^>�0:G8A:4xQP9H=�/84`2vh�J$9<;�9�QP/1=�_e;�9<>k96Q.9ea
=�/84`2)A3I.>�/8A`2.=�0^;�9i_eA`2.wP4`F$;�9HQ�+��|J$9z0:G84:A:;�/8>�JPm =�F./8>k9
Q.9<;o/87:9H=z/8>�=z9<�x_</89[2P_e?vf�?nQ.9H_eA`mnI�A3=�/�2$4�>�J$96Q.9H=�/84`2
Q.A`mx0:/�2¢0:_<_eA:;�QP/�2$4�>kA�Q.9H=�/84`2l=k9HIP0^;�0^>kA:;o=ª/�2uQP/87$/áa
=�/8A`2ª>k;�9<9H=<+�s¡J$9[2�m,F.G8>�/1IKG89�A3I.>�/�mx0:G`Q.9H=�/84`2P=V9e{./1=k><L
>�J$9�0:G84:A:;o/8>�JPm�=oF./8>k9�;�9<>�F$;§2.=�A`2$9EA:C$>�J$9[m¡0^;�fK/8>k;�0^;ka

/1G8?:LKfNF$>�_<032Bf�9Õ9e{b>k9[2PQ.9HQt>kAn;�9<>�F$;o2T0:G1G£+
� �`à#���Kß+�cÛK��Ý��&ÛK���:Ü
J#/�2.032._</10:G�=�F.IPI�A:;�>~>kAg>�J./1=n;�9H=k9H0^;�_oJ®/1=xIP;�A[7$/1Q.9HQ
f�?}ÑÕ $´iäyMÈA:CEMO032P0:QP0$+

g¢Û���ÛP�3ÛN���$ÛKÜ
��� ���	��

������������������

��������� �"!#� !#���$�%��

&��('*)�),+��
-	./&0��13254�&768��9:9:��;��,

��25<:=�&>��?�25<:@A<:BC��25<:���D��
E6E4�<GF
2
&C6H25��

&I1J�,
K9L����� 6E47=�&84 <:689G&M��&C.5<GN,��� �O�QPSR5TCU*V
W�XJY[Z�\5Z�ZS]_^a`bZ�c�]�d�Ze`�Z�]b\E` `�fhgi`kjml�n Tpo�qsr l T�t
f rbu X qwvmqLo8U8q n uxqstzymR j{Z tky�u j o�qLo|ymtzv g}nzX q l qG~*y X qwTmt �
?���N�&*.S����+m�%� 'C���

�����	&C6E4�25&C
[������������&C��
59��Q'C)��,)��0�a
5&C&�6H9:� ./25&8

<:��N
1J�,
�6H�,� ./25
E��<:�,2[��&H2�����

�b.8� Z R X q ��UHqwy�u \ t X�� usuxq�� � tkU � �
�,� �����E� �,���p�b��+�+ �

������&C� .5&8������� ������&8� .5&8���e��� ���z� �_����<G2/2
@A&C
C� '*)�)�¡ �
� 
5�,@¢<:�b£ ��&C� 6H&¤�b<:��N�
E��@¥.¦25�¨§���� 6�2
<G�,�©25

&8&*.8�ª�O�
PSR5TCU*V_«,¬ XwY¨­ TmtC®HVST�t ^ tkU � R X y�qst X�j qst Z R X q ��UHqwy�u \ t ¯
X�� usuxq�� � tkU � ��? ��N�&C.��,+�°*�%��°����

��� �±�²��&C&8��&C³¨��� �¤´#�±����<�µ¶���·'*)�°�+���¸ � U8qLo�qwTmt�o$¹²q XwY
f rbu X q n u �ºg�»J¼8� U X qs½ � o���¾���@�;�
5<L�bN,&��

-��k��§/��&8

��9�µ���'*)�)%°%��¿�&C./25&C�º§���� 6H25<:���À2

5&C&C.C���O��PSR5TCU*V
«�Á XwYÂ­ T�tC®HV¦Tmt ^ tkU � R X y�qst X�j qst Z R X q �ÃU8qwymu \ t X�� usuxqs¯
� � tkU � �b?���N�&*.�Ä�)�¡m�%�,��',�,�±

�m=%<:��&8� 68&��b��4��b�b&���.59:��� �¶�

Å �¶�������b��

<a������!#�Æ¾Ã4 ��� �b
E���m��.
���Æ��'C),)�) �	!©1J
E��@Ç&8F
����

�¥1J�,
�6H��9:9L��;k��
E�m25<:=�&���� �$�b<:./25

<:;��b25&*�$�Ã&C;bF�; ��.5&C�
��&C.5<GN,���a�O�ÈPSR5TCU*V�Á WmXwY ¸ � o�q���t Z r X T l y X qwTmt ­ TmtC® � R�¯
� tkU � �b? ��N,&C.��,)��p�b)��,���

¾	�É�²��

&C�b<L.8�Ê���É!���N,4�&8�%; ����N�4��Ê���©�À��9L���z�Ë��� �
�¶����&C�%� 6��KÄ�����+ ���%&H25F�; �,./&*�·�b&*./<:N���������&C6H<L.5<G�,�bF
2
4�&8�,
5&825<L6Ì?k&8
E./?k&C6H25<:=�&�� �O�QP�R5T*UCV c R5Tmt X q � REo3qst
¸ � oEq���tiÍ ` q l rbu:y X qwTmt�Î � o � ymR5U YÐÏ ¬,¬ WÌÑ T�REÒCo Y T n �
?���N�&*.e'��bÄ,�b�

��� �Ç�b�%�,;�&C�k�%!#�x¾	��ÓÔ��

�¶�%�����Õ��� �Ç�,�Æ<G�,&8
*�Ã'*)�),)��a�a�m³�F
��2
� Ö .�?�
5<:� 68<G?�9:&C.e��1_./&82/F�; ��.5&C�×68��� 68��


5&C�,2	&8��N,<G��&C&8
5F
<:��N�� ` uGT*ymt f y�tky8� �8lÇ� t X Î � ½Cq � ¹²� ¡�� ��Ä,�E� +�°*�%��¡ �

!���¾	�zÓ���
E�¶�Ç'C)��,)�� Z0Ø�Y%� TmR j T�®¦ÙSr ymt X q X y X qs½ �#\ t*® � R�¯
� tkU �ºZSn�n u�q � v X T ZÚf�� U Y y�t qwUEymuS¸ � o�q���t ­ T l	n qsu � R��
�_4�� ���8254�&*./<L.8���$�����p�	&8? ��
/2
@A&C��2Æ��1 �$&*6E4 ����<L68��9�Û±��F
N,<G� &8&8

<:��N �

ÜA�ÃÝ	<:����N ������¾Ã4�&8�Æ����� ��!#�S��&*./4 @����%4��ÌÄ��,��¡ �i!
��&C6H<L.5<G�,�bF�2
4�&8�,
5&825<L6¥N�
E��? 4�<:6C��9Ã@A�b�b&C9�1J��
Ç6H��9:9L��;k��
E�mF
2
<G=,&��b&C.5<GN,�È�,�¦.5��?�? 9G³Õ6E4���<:� .8���O�$!#� Ü�� �}�p�SÞ �Õ��� �
�¶� ��� Å �%�b�b��<G�Æ��&C�b<G25�,

.C� Z vm½mymtkU � o#qst Z R X q �ÃU8qwymu \ t ¯
X�� usuxq�� � tkU �Hß�àÆd	Z�\ Á�¬ W ¬m� ?���N�&*.��,�,�*�%�,+�) ���%?�

<:��N�&C
C�

ÜA�CÝ	<:����N ��� �m¾Ã4�&C����������Ó©� �¶�p´	�p=�&C� .8�}Ä������b�aá	?b2
<G@¥��9
��&C.5<GN,�[<:�¨6H�,9G9L��;k��
E�m2
<G=,&A�b&*./<:N�����&82��Ã�,
5�z�º�O�¤PSR5TCU*V
â XJY�\ t X�� R8V ã�T�qst X²­ Tmt*®HV¶Tmt Z r X TmtzT l Tmr%o Z � � t X o�ymtzv
f rbu X qwy8� � t Xz`kj o X��8l oeä Z	ZefÈZe`Så ¬�æHç*��? ��N,&C.aÄ�¡ 'H�bÄm¡����

316          Y. Xiang



Hybrid Loopy Belief Propagation

Changhe Yuan

Department of Computer Science and Engineering
Mississippi State University
Mississippi State, MS 39762
cyuan@cse.msstate.edu

Marek J. Druzdzel

Decision Systems Laboratory
School of Information Sciences

University of Pittsburgh
Pittsburgh, PA 15260
marek@sis.pitt.edu

Abstract

We propose an algorithm called Hybrid Loopy Belief Propagation (HLBP), which extends
the Loopy Belief Propagation (LBP) (Murphy et al., 1999) and Nonparametric Belief
Propagation (NBP) (Sudderth et al., 2003) algorithms to deal with general hybrid Bayesian
networks. The main idea is to represent the LBP messages with mixture of Gaussians and
formulate their calculation as Monte Carlo integration problems. The new algorithm is
general enough to deal with hybrid models that may represent linear or nonlinear equations
and arbitrary probability distributions.

1 Introduction

Some real problems are more naturally mod-
elled by hybrid Bayesian networks that con-
tain mixtures of discrete and continuous vari-
ables. However, several factors make inference
in hybrid models extremely hard. First, linear
or nonlinear deterministic relations may exist
in the models. Second, the models may con-
tain arbitrary probability distributions. Third,
the orderings among the discrete and continu-
ous variables may be arbitrary. Since the gen-
eral case is difficult, existing research often fo-
cuses on special instances of hybrid models, such
as Conditional Linear Gaussians (CLG) (Lau-
ritzen, 1992). However, one major assumption
behind CLG is that discrete variables cannot
have continuous parents. This limitation was
later addressed by extending CLG with logis-
tic and softmax functions (Lerner et al., 2001;
Murphy, 1999). More recent research begin to
develop methodologies for more general non-
Gaussian models, such as Mixture of Truncated
Exponentials (MTE) (Moral et al., 2001; Cobb
and Shenoy, 2005), and junction tree algorithm
with approximate clique potentials (Koller et al.,
1999). However, most of these approaches rely
on the junction tree algorithm (Lauritzen and

Spiegelhalter, 1988). As Lerner et al. (Lerner et
al., 2001) pointed out, it is important to have
alternative solutions in case that junction tree
algorithm-based methods are not feasible.

In this paper, we propose the Hybrid Loopy
Belief Propagation algorithm, which extends the
Loopy Belief Propagation (LBP) (Murphy et
al., 1999) and Nonparametric Belief Propaga-
tion (NBP) (Sudderth et al., 2003) algorithms
to deal with general hybrid Bayesian networks.
The main idea is to represent LBP messages
as Mixtures of Gaussians (MG) and formulate
their calculation as Monte Carlo integration
problems. The extension is far from trivial due
to the enormous complexity brought by deter-
ministic equations and mixtures of discrete and
continuous variables. Another advantage of the
algorithm is that it approximates the true pos-
terior probability distributions, unlike most ex-
isting approaches which only produce their first
two moments for CLG models.

2 Hybrid Loopy Belief Propagation

To extend LBP to hybrid Bayesian networks,
we need to know how to calculate the LBP mes-
sages in hybrid models. There are two kinds of
messages defined in LBP. Let X be a node in
a hybrid model. Let Yj be X’s children and Ui



be X’s parents. The λ
(t+1)

X (ui) message that X

sends to its parent Ui is given by:

λ
(t+1)

X (ui) =

α
∫
x

λX(x)
∏
j

λ
(t)

Yj
(x)

∫

uk:k 6=i

P (x|u)
∏
k 6=i

π
(t)

X (uk) .(1)

and the message π
(t+1)

Yj
(x) that X sends to its

child Yj is defined as:

π
(t+1)

Yj
(x) =

αλX(x)
∏

k 6=j

λ
(t)

Yk
(x)

∫
u

P (x|u)
∏
k

π
(t)

X (uk) .(2)

where λX(x) is a message that X sends to itself
representing evidence. For simplicity, I use only
integrations in the message definitions. It is ev-
ident that no closed-form solutions exist for the
messages in general hybrid models. However,
we observe that their calculations can be for-
mulated as Monte Carlo integration problems.

First, let us look at the π
(t+1)

Yj
(x) message de-

fined in Equation 2. We can rearrange the equa-
tion in the following way:

π
(t+1)

Yj
(x) =

α
∫
u






P (x,u)

︷ ︸︸ ︷
λX(x)

∏

k 6=j

λ
(t)

Yk
(x)P (x|u)

∏

k

π
(t)

X (uk)





.

Essentially, we put all the integrations out-
side of the other operations. Given the new for-
mula, we realize that we have a joint probability
distribution over x and uis, and the task is to
integrate all the uis out and get the marginal
probability distribution over x. Since P (x, u)
can be naturally decomposed into P (x|u)P (u),
the calculation of the message can be solved us-
ing a Monte Carlo sampling technique called
Composition method (Tanner, 1993). The idea
is to first draw samples for each uis from

π
(t)

X (ui), and then sample from the product of

λX(x)
∏

k 6=j

λ
(t)

Yk
(x)P (x|u). We will discuss how

to take the product in the next subsection. For
now, let us assume that the computation is pos-
sible. To make life even easier, we make further

modifications and get

π
(t+1)

Yj
(x) =

α
∫
u






λX(x)

∏
k

λ
(t)

Yk
(x)P (x|u)

∏
k

π
(t)

X
(uk)

λ
(t)

Yj
(x)




 .

Now, for the messages sent from X to
its different children, we can share most of
the calculation. We first get samples for
uis, and then sample from the product of

λX(x)
∏
k

λ
(t)

Yk
(x)P (x|u). For each different mes-

sage π
(t+1)

Yj
(x), we use the same sample x but

assign it different weights 1/λ
(t)

Yi
(x).

Let us now consider how to calculate the
λ

(t+1)

X (ui) message defined in Equation 1. First,
we rearrange the equation analogously:

λ
(t+1)

X (ui) = α

∫

x,uk:k 6=i






P (x,uk:k 6=i|ui)︷ ︸︸ ︷
λX(x)

∏

j

λ
(t)

Yj
(x)P (x|u)

∏

k 6=i

π
(t)

X (uk)





.(3)

It turns out that here we are facing a quite dif-

ferent problem from the calculation of π
(t+1)

Yj
(x).

Note that now we have P (x, uk : k 6= i|ui), a
joint distribution over x and uk(k 6= i) condi-
tional on ui, so the whole expression is only a
likelihood function of ui, which is not guaran-
teed to be integrable. As in (Sudderth et al.,
2003; Koller et al., 1999), we choose to restrict
our attention to densities and assume that the
ranges of all continuous variables are bounded
(maybe large). The assumption only solves part
of the problem. Another difficulty is that com-
position method is no longer applicable here,
because we have to draw samples for all par-
ents ui before we can decide P (x|u). We note
that for any fixed ui, Equation 3 is an integra-
tion over x and uk, k 6= i and can be estimated
using Monte Carlo methods. That means that

we can estimate λ
(t+1)

X (ui) up to a constant for
any value ui, although we do not know how to
sample from it. This is exactly the time when
importance sampling becomes handy. We can
estimate the message by drawing a set of im-
portance samples as follows: sample ui from a
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chosen importance function, estimate λ
(t+1)

X (ui)
using Monte Carlo integration, and assign the
ratio between the estimated value and I(ui) as
the weight for the sample. A simple choice for
the importance function is the uniform distribu-
tion over the range of ui, but we can improve the
accuracy of Monte Carlo integration by choos-
ing a more informed importance function, the

corresponding message λ
(t)

X (ui) from the last it-
eration. Because of the iterative nature of LBP,
messages usually keep improving over each it-
eration, so they are clearly better importance
functions.

Note that the preceding discussion is quite
general. The variables under consideration can
be either discrete or continuous. We only need
to know how to sample from or evaluate the
conditional relations. Therefore, we can use any
representation to model the case of discrete vari-
ables with continuous parents. For instance, we
can use general softmax functions (Lerner et al.,
2001) for the representation.

We now know how to use Monte Carlo inte-
gration methods to estimate the LBP messages,
represented as sets of weighted samples. To
complete the algorithm, we need to figure out
how to propagate these messages. Belief prop-
agation involves operations such as sampling,
multiplication, and marginalization. Sampling
from a message represented as a set of weighted
samples may be easy to do; we can use resam-
pling technique. However, multiplying two such
messages is not straightforward. Therefore, we
choose to use density estimation techniques to
approximate each continuous message using a
mixture of Gaussians (MG) (Sudderth et al.,
2003). A K component mixture of Gaussian
has the following form

M(x) =
K∑

i=1

wiN(x; µi, σi) , (4)

where
K∑

i=1

wi = 1. MG has several nice prop-

erties. First, we can approximate any contin-
uous distribution reasonably well using a MG.
Second, it is closed under multiplication. Last,
we can estimate a MG from a set of weighted

Algorithm: HLBP

1. Initialize the messages that evidence nodes send to
themselves and their children as indicating messages
with fixed values, and initialize all other messages to
be uniform.

2. while (stopping criterion not satisfied)

Recompute all the messages using Monte Carlo
integration methods.

Normalize discrete messages.

Approximate all continuous messages using MGs.

end while

3. Calculate λ(x) and π(x) messages for each variable.

4. Calculate the posterior probability distributions for
all the variables by sampling from the product of
λ(x) and π(x) messages.

Figure 1: The Hybrid Loopy Belief Propagation
algorithm.

samples using a regularized version of expecta-
tion maximization (EM) (Dempster et al., 1977;
Koller et al., 1999) algorithm.

Given the above discussion, we outline the
final HLBP algorithm in Figure 1. We first ini-
tialize all the messages. Then, we iteratively
recompute all the messages using the methods
described above. In the end, we calculate the
messages λ(x) and π(x) for each node X and
use them to estimate the posterior probability
distribution over X.

3 Product of Mixtures of Gaussians

One question that remains to be answered in
the last section is how to sample from the prod-

uct of λX(x)
∏

k 6=j

λ
(t)

Yk
(x)P (x|u). We address the

problem in this section. If P (x|u) is a contin-
uous probability distribution, we can approx-
imate P (x|u) with a MG. Then, the problem
becomes how to compute the product of several
MGs. The approximation is often a reasonable
thing to do because we can approximate any
continuous probability distribution reasonably
well using MG. Even when such approxima-
tion is poor, we can approximate the product of
P (x|u) with an MG using another MG. One ex-
ample is that the product of Gaussian distribu-
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tion and logistic function can be approximated
well with another Gaussian distribution (Mur-
phy, 1999).

Suppose we have messages M1, M2, ..., MK ,
each represented as an MG. Sudderth et al. use
Gibbs sampling algorithm to address the prob-
lem (Sudderth et al., 2003). The shortcoming
of the Gibbs sampler is its efficiency: We usu-
ally have to carry out several iterations of Gibbs
sampling in order to get one sample.

Here we propose a more efficient method
based on the chain rule. If we treat the se-
lection of one component from each MG mes-
sage as a random variable, which we call a
label, our goal is to draw a sample from the
joint probability distribution of all the labels
P (L1, L2, ..., LK). We note that the joint prob-
ability distribution of the labels of all the mes-
sages P (L1, L2, ..., LK) can be factorized using
the chain rule as follows:

P (L1, L2, ..., LK) = P (L1)
K∏

i=2

P (Li|L1, ..., Li−1) .

(5)
Therefore, the idea is to sample from the

labels sequentially based on the prior or con-
ditional probability distributions. Let wij be
the weight for the jth component of ith mes-
sage and µij and σij be the component’s pa-
rameters. We can sample from the product of
messages M1, ..., MK using the algorithm pre-
sented in Figure 2. The main idea is to cal-
culate the conditional probability distributions
cumulatively. Due to the Gaussian densities,
the method has to correct the bias introduced
during the sampling by assigning the samples
weights. The method only needs to go over the
messages once to obtain one importance sam-
ple and is more efficient than the Gibbs sam-
pler in (Sudderth et al., 2003). Empirical re-
sults show that the precision obtained by the
importance sampler is comparable to the Gibbs
sampler given a reasonable number of samples.

4 Belief Propagation with Evidence

Special care is needed for belief propaga-
tion with evidence and deterministic relations.

Algorithm: Sample from a product of MGs M1 ×M2 ×
...×MK .

1. Randomly pick a component, say j1, form the first
message M1 according to its weights w11, ..., w1J1

.

2. Initialize cumulative parameters as follows
µ∗

1 ← µ1j1
; σ∗

1 ← σ1j1
.

3. i← 2; wImportance← w1j1
.

4. while (i ≤ K)

Compute new parameters for each component of
ith message as follows

σ̂∗

ik ← ((σ∗

i−1)
−1 + (σik)−1)−1,

µ̂∗

ik ← (µik

σik

+
µ

∗

i−1

σ∗

i−1

)σ̂∗

ik.

Compute new weights for ith message with any x

ŵ∗

ik = wikŵ∗

i−1ji−1

N(x;µ
∗

i−1
,σ

∗

i−1
)N(x;µik,σik)

N(x;µ̂∗

ik
,σ̂∗

ik
)

.

Calculate the normalized weights w̄∗

ik.

Randomly pick a component, say ji, from the ith

message using the normalized weights.

µ∗

i ← µ̂∗

iji
; σ∗

i ← σ̂∗

iji
.

i← i + 1;

wImportance = wImportance× w̄∗

iji
.

end while

5. Sample from the Gaussian with mean µ∗

K and vari-
ance σ∗

K .

6. Assign the sample weight ŵ∗

KjK
/wImportance.

Figure 2: Sample from a product of MGs.

In our preceding discussion, we approximate
P (x|u) using MG if P (x|u) is a continuous prob-
ability distribution. It is not the case if P (x|u)
is deterministic or if X is observed. We discuss
the following several scenarios separately.

Deterministic relation without evidence: We
simply evaluate P (x|u) to get the value x as a
sample. Because we did not take into account
the λ messages, we need to correct our bias us-
ing weights. For the message πYi

(x) sent from
X to its child Yi, we take x as the sample and

assign it weight λX(x)
∏
k 6=i

λ
(t)

Yk
(x). For the mes-

sage λX(ui) sent from X to its parent Ui, we
take value ui as a sample for Ui and assign it

weight λX(x)
∏
k

λ
(t)

Yk
(x)/λ

(t)

X (ui).

Stochastic relation with evidence: The mes-
sages πYj

(x) sent from evidence node X to its
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children are always indicating messages with
fixed values. The messages λYj

(x) sent from
the children to X have no influence on X, so
we need not calculate them. We only need to
update the messages λX(ui), for which we take
the value ui as the sample and assign it weight

λX(e)
∏
k

λ
(t)

Yk
(e)/λ

(t)

X (ui), where e is the observed

value of X.
Deterministic relation with evidence: This

case is the most difficult. To illustrate this case
more clearly, we use a simple hybrid Bayesian
network with one discrete node A and two con-
tinuous nodes B and C (see Figure 3).

a 0.7

¬a 0.3

B

N(B; 1, 1)

P (C|A, B) a ¬a

C C = B C = 2 ∗B

��
��

��
����

��

@@R ��	

A B

C

Figure 3: A simple hybrid Bayesian network.

Example 1. Let C be observed at state 2.0.
Given the evidence, there are only two possible
values for B: 2.0 when A = a and 1.0 when A =
¬a. We need to calculate messages λC(a) and
λC(b). If we follow the routine and sample from
A and B first, it is extremely unlikely for us
to hit a feasible sample; Almost all the samples
that we get would have weight 0.0. Clearly we
need a better way to do that.

First, let us consider how to calculate the
message λC(a) sent from C to A. Suppose we
choose uniform distribution as the importance
function, we first randomly pick a state for A.
After the state of A is fixed, we note that we can
solve P (C|A, B) to get the state for B. There-
fore, we need not sample for B from πC(b), in
this case N(B; 1, 1). We then assign N(B; 1, 1)
as weight for the sample. Since A’s two states
are equally likely, the message λC(A) would be

proportional {N(2; 1, 1), N(1; 1, 1)}.

For the message λC(b) message sent from C

to B, since we know that B can only take two
values, we choose a distribution that puts equal
probabilities on these two values as the impor-
tance function, from which we sample for B.
The state of B will also determine A as follows:
when B = 2, we have A = a; when B = 1, we
have A = ¬a. We then assign weight 0.7 to the
sample if B = 2 and 0.3 if B = 1. However, the
magic of knowing feasible values for B is impos-
sible in practice. Instead, we first sample for A

from πC(A), in this case, {0.7, 0.3}, given which
we can solve P (C|A, B) for B and assign each
sample weight 1.0. So λC(b) have probabilities
proportional to {0.7, 0.3} on two values 2.0 and
1.0.

In general, in order to calculate λ messages
sent out from a deterministic node with evi-
dence, we need to sample from all parents ex-
cept one, and then solve P (x|u) for that par-
ent. There are several issues here. First, since
we want to use the values of other parents to
solve for the chosen parent, we need an equa-
tion solver. We used an implementation of the
Newton’s method for solving nonlinear set of
equations (Kelley, 2003). However, not all equa-
tions are solvable by this equation solver or any
equation solver for that matter. We may want
to choose the parent that is easiest to solve.
This can be tested by means of a preprocess-
ing step. In more difficult cases, we have to re-
sort to users’ help and ask at the model build-
ing stage for specifying which parent to solve
or even manually specify the inverse functions.
When there are multiple choices, one heuristic
that we find helpful is to choose the continuous
parent with the largest variance.

5 Lazy LBP

We can see that HLBP involves repeated den-
sity estimation and Monte Carlo integration,
which are both computationally intense. Effi-
ciency naturally becomes a concern for the al-
gorithm. To improve its efficiency, we propose
a technique called Lazy LBP, which is also ap-
plicable to other extensions of LBP. The tech-
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nique serves as a summarization that contains
both my original findings and some commonly
used optimization methods.

After evidence is introduced in the network,
we can pre-propagate the evidence to reduce
computation in HLBP. First, we can plug in any
evidence to the conditional relations of its chil-
dren, so we need not calculate the π messages
from the evidence to its children. We need not
calculate the λ messages from its children to the
evidence either. Secondly, evidence may deter-
mine the value of its neighbors because of deter-
ministic relations, in which case we can evaluate
the deterministic relations in advance so that we
need not calculate messages between them.

Furthermore, from the definitions of the LBP
messages, we can easily see that we do not have
to recompute the messages all the time. For ex-
ample, the λ(x) messages from the children of a
node with no evidence as descendant are always
uniform. Also, a message needs not be updated
if the sender of the message has received no new
messages from neighbors other than the recipi-
ent.

Based on Equation 1, λ messages should be
updated if incoming π messages change. How-
ever, we have the following result.

Theorem 1. The λ messages sent from a non-
evidence node to its parents remain uniform be-
fore it receives any non-uniform messages from
its children, even though there are new π mes-
sages coming from the parents.

Proof. Since there are no non-uniform λ mes-
sages coming in, Equation 1 simplifies to

λ
(t+1)

X (ui) = α

∫

x,uk:k 6=i

P (x|u)
∏

k 6=i

π
(t)

X (uk)

= α

∫

x,uk:k 6=i

P (x, uk : k 6= i|ui)

= α .

Finally for HLBP, we may be able to calculate
some messages exactly. For example, suppose
a discrete node has only discrete parents. We
can always calculate the messages sent from this
node to its neighbors exactly. In this case, we
should avoid using Monte Carlo sampling.

6 Experimental Results

We tested the HLBP algorithm on two bench-
mark hybrid Bayesian networks: emission net-
work (Lauritzen, 1992) and its extension aug-
mented emission network (Lerner et al., 2001)
shown in Figure 4(a). Note that HLBP is ap-
plicable to more general hybrid models; We
choose the networks only for comparison pur-
pose. To evaluate how well HLBP performs, we
discretized the ranges of continuous variables to
50 intervals and then calculated the Hellinger’s
distance (Kokolakis and Nanopoulos, 2001) be-
tween the results of HLBP and the exact solu-
tions obtained by a massive amount of computa-
tion (likelihood weighting with 100M samples)
as the error for HLBP. All results reported are
the average of 50 runs of the experiments.

6.1 Parameter Selection

HLBP has several tunable parameters. We
have number of samples for estimating messages
(number of message samples), number of sam-
ples for the integration (number of integration
samples) in Equation 3. The most dramatic
influence on precision comes from the number
of message samples, shown as in Figure 4(b).
Counter intuitively, the number of integration
samples does not have as big impact as we might
think (see Figure 4(c) with 1K message sam-
ples). The reason we believe is that when we
draw a lot of samples for messages, the preci-
sion of each sample becomes less critical. In
our experiments, we set the number of message
samples to 1, 000 and the number of integra-
tion samples to 12. For the EM algorithm for
estimating MGs, we typically set the regulariza-
tion constant for preventing over fitting to 0.8,
stopping likelihood threshold to 0.001, and the
number of components in mixtures of Gaussian
to 2.

We also compared the performance of two
samplers for product of MGs: Gibbs sam-
pler (Sudderth et al., 2003) and the importance
sampler in Section 3. As we can see from Fig-
ure 4(b,c), when the number of message sam-
ples is small, Gibbs sampler has slight advan-
tage over the importance sampler. As the num-
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Figure 4: (a) Emission network (without dashed nodes) and augmented emission network (with
dashed nodes). (b,c) The influence of number of message samples and number of message inte-
gration samples on the precision of HLBP on augmented Emission network CO2Sensor and Dust-
Sensor both observed to be true and Penetrability to be 0.5. (d) Posterior probability distribution
of DustEmission when observing CO2Emission to be −1.3, Penetrability to be 0.5 and WasteType
to be 1 in Emission network. (e,f,g,h) Results of HLBP and Lazy HLBP: (e) error on emission,
(f) running time on emission, (g) error on augmented emission, (h) running time on augmented
emission.

ber of message samples increases, the difference
becomes negligible. Since the importance sam-
pler is much more efficient, we use it in all our
other experiments.

6.2 Results on Emission Networks

We note that mean and variance alone provide
only limited information about the actual poste-
rior probability distributions. Figure 4(d) shows
the posterior probability distribution of node
DustEmission when observing CO2Emission at
−1.3, Penetrability at 0.5, and WasteType at
1. We also plot in the same figure the corre-
sponding normal approximation with mean 3.77
and variance 1.74. We see that the normal ap-
proximation does not reflect the true posterior.
While the actual posterior distribution has a
multimodal shape, the normal approximation
does not tell us where the mass really is. We
also report the estimated posterior probability
distribution of DustEmission by HLBP. HLBP
seemed able to estimate the shape of the actual
distribution very accurately.

In Figures 4(e,f), we plot the error curves
of HLBP and Lazy HLBP (HLBP enhanced

by Lazy LBP) as a function of the propaga-
tion length. We can see that HLBP needs only
several steps to converge. Furthermore, HLBP
achieves better precision than its lazy version,
but Lazy HLBP is much more efficient than
HLBP. Theoretically, Lazy LBP should not af-
fect the results of HLBP but only improve its
efficiency if the messages are calcualted exactly.
However, we use importance sampling to esti-
mate the messages. Since we use the messages
from the last iteration as the importance func-
tions, iterations will help improving the func-
tions.

We also tested the HLBP algorithm on the
augmented Emission network (Lerner et al.,
2001) with CO2Sensor and DustSensor both ob-
served to be true and Penetrability to be 0.5
and report the results in Figures 4(g,h). We
again observed that not many iterations are
needed for HLBP to converge. In this case,
Lazy HLBP provides comparable results while
improving the efficiency of HLBP.
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7 Conclusion

The contribution of this paper is two-fold. First,
we propose the Hybrid Loopy Belief Propagation
algorithm (HLBP). The algorithm is general
enough to deal with general hybrid Bayesian
networks that contain mixtures of discrete and
continuous variables and may represent linear
or nonlinear equations and arbitrary probability
distributions and naturally accommodate the
scenario where discrete variables have contin-
uous parents. Its another advantage is that it
approximates the true posterior distributions.
Second, we propose an importance sampler to
sample from the product of MGs. Its accuracy is
comparable to the Gibbs sampler in (Sudderth
et al., 2003) but much more efficient given the
same number of samples. We anticipate that,
just as LBP, HLBP will work well for many
practical models and can serve as a promising
approximate method for hybrid Bayesian net-
works.
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Abstract

One practical problem with building large scale Bayesian network models is an expo-
nential growth of the number of numerical parameters in conditional probability tables.
Obtaining large number of probabilities from domain experts is too expensive and too time
demanding in practice. A widely accepted solution to this problem is the assumption of
independence of causal influences (ICI) which allows for parametric models that define
conditional probability distributions using only a number of parameters that is linear in
the number of causes. ICI models, such as the noisy-OR and the noisy-AND gates, have
been widely used by practitioners. In this paper we propose PICI, probabilistic ICI, an
extension of the ICI assumption that leads to more expressive parametric models. We
provide examples of three PICI models and demonstrate how they can cope with a com-
bination of positive and negative influences, something that is hard for noisy-OR and
noisy-AND gates.

1 INTRODUCTION

Bayesian networks (Pearl, 1988) have proved
their value as a modeling tool in many distinct
domains. One of the most serious bottlenecks in
applying this modeling tool is the costly process
of creating the model. Although practically ap-
plicable algorithms for learning BN from data
are available (Heckerman, 1999), still there are
many applications that lack quality data and re-
quire using an expert’s knowledge to build mod-
els.

One of the most serious problems related to
building practical models is the large number
of conditional probability distributions needed
to be specified when a node in the graph has
large number of parent nodes. In the case of
discrete variables, which we assume in this pa-
per, conditional probabilities are encoded in the
form of conditional probability tables (CPTs)
that are indexed by all possible combinations
of parent states. For example, 15 binary par-
ent variables result in over 32,000 parameters, a
number that is impossible to specify in a direct

manner. There are two qualitatively different
approaches to avoiding the problem of specify-
ing large CPTs. The first is to exploit inter-
nal structure within a CPT – which basically
means to encode efficiently symmetries in CPTs
(Boutilier et al., 1996; Boutilier et al., 1995).
The other is to assume some model of interac-
tion among causes (parent influences) that de-
fines the effect’s (child node’s) CPT. The most
popular class of model in this category is based
on the concept known as causal independence or
independence of causal influences (ICI) (Heck-
erman and Breese, 1994) which we describe in
Section 2. These two approaches should be
viewed as complementary. It is because they
are able to capture two distinct types of inter-
actions between causes.

In practical applications, the noisy-OR
(Good, 1961; Pearl, 1988) model together with
its extension capable of handling multi-valued
variables, the noisy-MAX (Henrion, 1989),
and the complementary models the noisy-
AND/MIN (D́ıez and Druzdzel, 2002) are the
most often applied ICI models. One of the ob-



vious limitations of these models is that they
capture only a small set of patterns of interac-
tions among causes, in particular they do not
allow for combining both positive and negative
influences. In this paper we introduce an ex-
tension to the independence of causal influences
which allows us to define models that capture
both positive and negative influences. We be-
lieve that the new models are of practical impor-
tance as practitioners with whom we have had
contact often express a need for conditional dis-
tribution models that allow for a combination
of promoting and inhibiting causes.

The problem of insufficient expressive power
of the ICI models has been recognized by prac-
titioners and we are aware of at least two at-
tempts to propose models that are based on the
ICI idea, but are not strictly ICI models. The
first of them is the recursive noisy-OR (Lemmer
and Gossink, 2004) which allows the specifica-
tion of interactions among parent causes, but
still is limited to only positive influences. The
other interesting proposal is the CAST logic
(Chang et al., 1994; Rosen and Smith, 1996)
which allows for combining both positive and
negative influences in a single model, however
detaches from a probabilistic interpretation of
the parameters, and consequently leads to diffi-
culties with their interpretation and it can not
be exploited to speed-up inference.

The remainder of this paper is organized as
follows. In Section 2, we briefly describe in-
dependence of causal influences. In Section 3
we discuss the amechanistic property of the ICI
models, while in Section 4 we introduce an ex-
tension of ICI – a new family of models – proba-
bilistic independence of causal influences. In the
following two Sections 5 and 6, we introduce two
examples of models for local probability distri-
butions, that belong to the new family. Finally,
we conclude our paper with discussion of our
proposal in Section 7.

2 INDEPENDENCE OF CAUSAL

INFLUENCES (ICI)

In this section we briefly introduce the concept
of independence of causal influences (ICI). First

Figure 1: General form of independence of
causal interactions

however we introduce notation used throughout
the paper. We denote an effect (child) vari-
able as Y and its n parent variables as X =
{X1, . . . ,Xn}. We denote the states of a vari-
able with lower case, e.g. X = x. When it is
unambiguous we use x instead of X = x.

In the ICI model, the interaction between
variables Xi and Y is defined by means of
(1) the mechanism variables Mi, introduced to
quantify the influence of each cause on the effect
separately, and (2) the deterministic function f
that maps the outputs of Mi into Y . Formally,
the causal independence model is a model for
which two independence assertions hold: (1) for
any two mechanism variables Mi and Mj (i 6= j)
Mi is independent of Mj given X1, . . . ,Xn, and
(2) Mi and any other variable in the network
that does not belong to the causal mechanism
are independent given X1, . . . ,Xn and Y . An
ICI model is shown in Figure 1.

The most popular example of an ICI model
is the noisy-OR model. The noisy-OR model
assumes that all variables involved in the inter-
action are binary. The mechanism variables in
the context of the noisy-OR are often referred
to as inhibitors. The inhibitors have the same
range as Y and their CPTs are defined as fol-
lows:

P (Mi = y|Xi = xi) = pi

P (Mi = y|Xi = xi) = 0 . (1)

Function f that combines the individual influ-
ences is the deterministic OR. It is important
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to note that the domain of the function defin-
ing the individual influences are the outcomes
(states) of Y (each mechanism variable maps
Range(Xi) to Range(Y )). This means that f
is of the form Y = f(M1, . . . ,Mn), where typ-
ically all variables Mi and Y take values from
the same set. In the case of the noisy-OR model
it is {y, y}. The noisy-MAX model is an ex-
tension of the noisy-OR model to multi-valued
variables where the combination function is the
deterministic MAX defined over Y ’s outcomes.

3 AMECHANISTIC PROPERTY

The amechanistic property of the causal interac-
tion models was explicated by Breese and Heck-
erman, originally under the name of atemporal

(Heckerman, 1993), although later the authors
changed the name to amechanistic (Heckerman
and Breese, 1996). The amechanistic property
of ICI models relates to a major problem of
this proposal — namely the problem of deter-
mining semantic meaning of causal mechanisms.
In practice, it is often impossible to say any-
thing about the nature of causal mechanisms
(as they can often be simply artificial constructs
for the sake of modeling) and therefore they, or
their parameters, can not be specified explicitly.
Even though Heckerman and Breese proposed a
strict definition of the amechanistic property,
in this paper we will broaden this definition
and assume that an ICI model is an amecha-
nistic model, when its parameterization can be
defined exclusively by means of (a subset) of
conditional probabilities P (Y |X) without men-
tioning Mis explicitly. This removes the burden
of defining mechanisms directly.

To achieve this goal it is assumed that one
of the states of each cause Xi is a special state
(also referred to as as the distinguished state).
Usually such a state is the normal state, like
ok in hardware diagnostic systems or absent for
a disease in a medical system, but such asso-
ciation depends on the modeled domain. We
will use * symbol to denote the distinguished
state. Given that all causes Xi are in their dis-
tinguished states, the effect variable Y is guar-
anteed to be in its distinguished state. The idea

is to allow for easy elicitation of parameters of
the intermediate nodes Mi, even though these
can not be observed directly. This is achieved
through a particular way of setting (control-
ling) the causes Xi. Assuming that all causes
except for a single cause Xi are in their dis-
tinguished states and Xi is in some state (not
distinguished), it is easy to determine the prob-
ability distribution for the hidden variable Mi.

Not surprisingly, the noisy-OR model is an
example of an amechanistic model. In this case,
the distinguished states are usually false or ab-

sent states, because the effect variable is guar-
anteed to be in the distinguished state given
that all the causes are in their distinguished
states Xi = xi. Equation 1 reflects the amecha-
nistic assumption and results in the fact that the
parameters of the mechanisms (inhibitors) can
be obtained directly as the conditional proba-
bilities: P (Y = y|x1, . . . , xi−1, xi, xi+1, . . . , xn).
Similarly, the noisy-MAX is an amechanistic
model – it assumes that each parent variable has
a distinguished state (arbitrarily selected) and
the effect variable has a distinguished state. In
the case of the effect variable, the distinguished
state is assumed to be the lowest state (with re-
spect to the ordering relation imposed on the ef-
fect variable’s states). We strongly believe that
the amechanistic property is highly significant
from the point of view of knowledge acquisi-
tion. Even though we introduce a parametric
model instead of a traditional CPT, the amech-
anistic property causes the parametric model to
be defined in terms of a conditional probability
distribution P (Y |X) and, therefore, is concep-
tually consistent with the BN framework. We
believe that the specification of a parametric
model in terms of probabilities has contributed
to the great popularity of the noisy-OR model.

4 PROBABILISTIC ICI

The combination function in the ICI models is
defined as a mapping of mechanisms’ states into
the states of the effect variable Y . Therefore,
it can be written as Y = f(M), where M is
a vector of mechanism variables. Let Qi be
a set of parameters of CPT of node Mi, and
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Q = {Q1, . . . , Qn} be a set of all parameters
of all mechanism variables. Now we define the
new family probabilistic independence of causal

interactions (PICI) for local probability distrib-
utions. A PICI model for the variable Y consists
of (1) a set of n mechanism variables Mi, where
each variable Mi corresponds to exactly one par-
ent Xi and has the same range as Y , and (2) a
combination function f that transforms a set of
probability distributions Qi into a single prob-
ability distribution over Y . The mechanisms
Mi in the PICI obey the same independence as-
sumptions as in the ICI. The PICI family is de-
fined in a way similar to the ICI family, with
the exception of the combination function, that
is defined in the form P (Y ) = f(Q,M). The
PICI family includes both ICI models, which
can be easily seen from its definition, as f(M)
is a subset of f(Q,M), assuming Q is the empty
set.

In other words, in the case of ICI for a given
instantiation of the states of the mechanism
variables, the state of Y is a function of the
states of the mechanism variables, while for the
PICI the distribution over Y is a function of
the states of the mechanism variables and some
parameters Q.

Heckerman and Breese (Heckerman, 1993)
identified other forms (or rather properties) of
the ICI models that are interesting from the
practical point of view. We would like to note
that those forms (decomposable, multiple de-
composable, and temporal ICI) are related to
properties of the function f , and can be applied
to the PICI models in the same way as they are
applied to the ICI models.

5 NOISY-AVERAGE MODEL

In this section, we propose a new local distrib-
ution model that is a PICI model. Our goal
is to propose a model that (1) is convenient
for knowledge elicitation from human experts
by providing a clear parameterization, and (2)
is able to express interactions that are impos-
sible to capture by other widely used models
(like the noisy-MAX model). With this model
we are interested in modeling positive and neg-

Figure 2: BN model for probabilistic indepen-
dence of causal interactions, where P (Y |M) =
f(Q,M).

ative influences on the effect variable that has a
distinguished state in the middle of the scale.

We assume that the parent nodes Xi are dis-
crete (not necessarily binary, nor an ordering
relation between states is required), and each of
them has one distinguished state, that we de-
note as x∗

i . The distinguished state is not a
property of a parent variable, but rather a part
of a definition of a causal interaction model — a
variable that is a parent in two causal indepen-
dence models may have different distinguished
states in each of these models. The effect vari-
able Y also has its distinguished state, and by
analogy we will denote it by y∗. The range of
the mechanism variables Mi is the same as the
range of Y . Unlike the noisy-MAX model, the
distinguished state may be in the middle of the
scale.

In terms of parameterization of the mecha-
nisms, the only constraint on the distribution
of Mi conditional on Xi = x∗

i is:

P (Mi = m∗

i |Xi = x∗

i ) = 1

P (Mi 6= m∗

i |Xi = x∗

i ) = 0 , (2)

while the other parameters in the CPT of Mi

can take arbitrary values.

The definition of the CPT for Y is a key el-
ement of our proposal. In the ICI models, the
CPT for Y was by definition constrained to be
a deterministic function, mapping states of Mis
to the states of Y . In our proposal, we define
the CPT of Y to be a function of probabilities
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of the Mis:

P (y|x) =

{

∏n
i=1 P (Mi = y∗|xi) for y = y∗

α
n

∑n
i=1 P (Mi = y|xi) for y 6= y∗

where α is a normalizing constant discussed
later. Let qj∗

i = q∗i . For simplicity of notation

assume that qj
i = P (Mi = yj|xi), q∗i = P (Mi =

y∗|xi), and D =
∏n

i=1 P (Mi = y∗|xi). Then we
can write:

my
∑

j=1

P (yj|x) = D +

my
∑

j=1,j 6=j∗

α

n

n
∑

i=1

qj
i =

= D +
α

n

my
∑

j=1,j 6=j∗

n
∑

i=1

qj
i = D +

α

n

n
∑

i=1

(1 − q∗i ),

where my is the number of states of Y . Since
the sum on the left must equal 1, as it defines
the probability distribution P (Y |x), we can cal-
culate α as:

α =
n(1 − D)

∑n
i=1 (1 − q∗i )

.

The definition above does not define P (Y |M)
but rather P (Y |X). It is possible to calculate
P (Y |M) from P (Y |X), though it is not needed
to use the model. Now we discuss how to ob-
tain the probabilities P (Mi|Xi). Using defini-
tion of P (y|x) and the amechanistic property,
this task amounts to obtaining the probabilities
of Y given that Xi is in its non-distinguished
state and all other causes are in their distin-
guished states (in a very similar way to how the
noisy-OR parameters are obtained). P (y|x) in
this case takes the form:

P (Y = y|x∗

1, . . . , x
∗

i−1, xi, . . . , x
∗

i+1, x
∗

n) =

= P (Mi = y|xi) , (3)

and, therefore, defines an easy and intuitive way
for parameterizing the model by just asking for
conditional probabilities, in a very similar way
to the noisy-OR model. It is easy to notice that
P (Y = y∗|x∗

1, . . . , x
∗

i , . . . , x
∗

n) = 1, which poses
a constraint that may be unacceptable from a
modeling point of view. We can address this
limitation in a very similar way to the noisy-
OR model, by assuming a dummy variable X0

(often referred to as leak), that stands for all
unmodeled causes and is assumed to be always
in some state x0. The leak probabilities are ob-
tained using:

P (Y = y|x∗

1, . . . , x
∗

n) = P (M0 = y) .

However, this slightly complicates the schema
for obtaining parameters P (Mi = y|xi). In
the case of the leaky model, the equality in
Equation 3 does not hold, since X0 acts as
a regular parent variable that is in a non-
distinguished state. Therefore, the parameters
for other mechanism variables should be ob-
tained using conditional probabilities P (Y =
y|x∗

1, . . . , xi, . . . , x
∗

n), P (M0 = y|x0) and the
combination function. This implies that the
acquired probabilities should fulfil some non-
trivial constraints. Because of space limitation,
we decided to skip the discussion of these con-
straints. In a nutshell, these constraints are sim-
ilar in nature to constraints for the leaky noisy-
MAX model. These constraints should not be a
problem in practice, when P (M0 = y∗) is large
(which implies that the leak cause has marginal
influence on non-distinguished states).

Now we introduce an example of the applica-
tion of the new model. Imagine a simple di-
agnostic model for an engine cooling system.
The pressure sensor reading (S) can be in three
states high, normal, or low {hi, nr, lo}, that
correspond to pressure in a hose. Two possible
faults included in our model are: pump failure

(P) and crack (C). The pump can malfunction
in two distinct ways: work non-stop instead of
adjusting its speed, or simply fail and not work
at all. The states for pump failure are: {ns, fa,

ok}. For simplicity we assume that the crack on
the hose can be present or absent {pr,ab}. The
BN for this problem is presented in Figure 3.
The noisy-MAX model is not appropriate here,
because the distinguished state of the effect
variable (S) does not correspond to the lowest
value in the ordering relation. In other words,
the neutral value is not one of the extremes,
but lies in the middle, which makes use of the
MAX function over the states inappropriate. To
apply the noisy-average model, first we should
identify the distinguished states of the variables.
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Figure 3: BN model for the pump example.

In our example, they will be: normal for sen-

sor reading, ok for pump failure and absent for
crack. The next step is to decide whether we
should add an influence of non-modeled causes
on the sensor (a leak probability). If such an
influence is not included, this would imply that
P (S = nr ∗ |P = ok∗, C = ab∗) = 1, otherwise
this probability distribution can take arbitrary
values from the range (0, 1], but in practice it
should always be close to 1.

Assuming that the influence of non-modeled
causes is not included, the acquisition of the
mechanism parameters is performed directly
by asking for conditional probabilities of form
P (Y |x∗

1, . . . , xi, . . . , x
∗

n). In that case, a typical
question asked of an expert would be: What

is the probability of the sensor being in the low

state, given that a crack was observed but the

pump is in state ok? However, if the unmod-
eled influences were significant, an adjustment
for the leak probability is needed. Having ob-
tained all the mechanism parameters, the noisy-
average model specifies a conditional probabil-
ity in a CPT by means of the combination func-
tion.

Intuitively, the noisy-average combines the
various influences by averaging probabilities. In
case where all active influences (the parents in
non-distinguished states) imply high probabil-
ity of one value, this value will have a high
posterior probability, and the synergetic effect
will take place similarly to the noisy-OR/MAX
models. If the active parents will ‘vote’ for dif-
ferent effect’s states, the combined effect will be
an average of the individual influences. More-
over, the noisy-average model is a decomposable

model — the CPT of Y can be decomposed in
pairwise relations (Figure 4) and such a decom-
position can be exploited for sake of improved
inference speed in the same way as for decom-
posable ICI models.

Figure 4: Decomposition of a combination func-
tion.

It is important to note that the noisy-average
model does not take into account the ordering
of states (only the distinguished state is treated
in a special manner). If a two causes have high
probability of high and low pressure, one should
not expect that combined effect will have prob-
ability of normal state (the value in-between).

6 AVERAGE MODEL

Another example of a PICI model we want to
present is the model that averages influences
of mechanisms. This model highlights another
property of the PICI models that is important
in practice. If we look at the representation of
a PICI model, we will see that the size of the
CPT of node Y is exponential in the number of
mechanisms (or causes). Hence, in general case
it does not guarantee a low number of distrib-
utions. One solution is to define a combination
function that can be expressed explicitly in the
form of a BN but in such a way that it has sig-
nificantly fewer parameters. In the case of ICI
models, the decomposability property (Hecker-
man and Breese, 1996) served this purpose, and
can do too for in PICI models. This property
allows for significant speed-ups in inference.

In the average model, the probability distrib-
ution over Y given the mechanisms is basically
a ratio of the number of mechanisms that are
in given state divided by the total number of
mechanisms (by definition Y and M have the
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same range):

P (Y = y|M1, . . . ,Mn) =
1

n

n
∑

i=1

I(Mi = y) .

(4)
where I is the identity function. Basically, this
combination function says that the probability
of the effect being in state y is the ratio of mech-
anisms that result in state y to all mechanisms.
Please note that the definition of how a cause Xi

results in the effect is defined in the probability
distribution P (Mi|Xi). The pairwise decompo-
sition can be done as follows:

P (Yi = y|Yi−1 = a,Mn = b)

=
i

i + 1
I(y = a) +

1

i + 1
I(y = b) ,

for Y2, . . . , Yn. Y1 is defined as:

P (Y1 = y|M1 = a,M2 = b) =

=
1

2
I(y = a) +

1

2
I(y = b) .

The fact that the combination function is de-
composable may be easily exploited by inference
algorithms. Additionally, we showed that this
model presents benefits for learning from small
data sets (Zagorecki et al., 2006).

Theoretically, this model is amechanistic, be-
cause it is possible to obtain parameters of
this model (probability distributions over mech-
anism variables) by asking an expert only for
probabilities in the form of P (Y |X). For ex-
ample, assuming variables in the model are bi-
nary, we have 2n parameters in the model. It
would be enough to select 2n arbitrary proba-
bilities P (Y |X) out of 2n and create a set of 2n
linear equations applying Equation 4. Though
in practice, one needs to ensure that the set of
equations has exactly one solution what in gen-
eral case is not guaranteed.

As an example, let us assume that we want
to model classification of a threat at a mili-
tary checkpoint. There is an expected terrorist
threat at that location and there are particular
elements of behavior that can help spot a terror-
ist. We can expect that a terrorist can approach
the checkpoint in a large vehicle, being the only

person in the vehicle, try to carry the attack
at rush hours or time when the security is less
strict, etc. Each of these behaviors is not nec-
essarily a strong indicator of terrorist activity,
but several of them occurring at the same time
may indicate possible threat.

The average model can be used to model this
situation as follows: separately for each of sus-
picious activities (causes) a probability distribu-
tion of terrorist presence given this activity can
be obtained which basically means specification
of probability distribution of mechanisms. Then
combination function for the average model acts
as ”popular voting” to determine P (Y |X).

The average model draws ideas from the lin-
ear models, but unlike the linear models, the lin-
ear sum is done over probabilities (as it is PICI),
and it has explicit hidden mechanism variables
that define influence of single cause on the ef-
fect.

7 CONCLUSIONS

In this paper, we formally introduced a new
class of models for local probability distribu-
tions that is called PICI. The new class is an
extension of the widely accepted concept of in-
dependence of causal influences. The basic idea
is to relax the assumption that the combination
function should be deterministic. We claim that
such an assumption is not necessary either for
clarity of the models and their parameters, nor
for other aspects such as convenient decompo-
sitions of the combination function that can be
exploited by inference algorithms.

To support our claim, we presented two con-
ceptually distinct models for local probability
distributions that address different limitations
of existing models based on the ICI. These mod-
els have clear parameterizations that facilitate
their use by human experts. The proposed mod-
els can be directly exploited by inference al-
gorithms due to fact that they can be explic-
itly represented by means of a BN, and their
combination function can be decomposed into a
chain of binary relationships. This property has
been recognized to provide significant inference
speed-ups for the ICI models. Finally, because

Probabilistic Independence of Causal Influences        331



they can be represented in form of hidden vari-
ables, their parameters can be learned using the
EM algorithm.

We believe that the concept of PICI may lead
to new models not described here. One remark
we shall make here: it is important that new
models should be explicitly expressible in terms
of a BN. If a model does not allow for com-
pact representation and needs to be specified as
a CPT for inference purposes, it undermines a
significant benefit of models for local probabil-
ity distributions – a way to avoid using large
conditional probability tables.
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